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1 Introduction

UPC++ is a C++11 library that supports Partitioned Global Address Space (PGAS) programming. It is
designed for writing efficient, scalable parallel programs on distributed-memory parallel computers. The PGAS
model is single program, multiple-data (SPMD) in which each separate thread of execution (referred to as a
process) has access to private memory as well as a global address space. This global address space is accessible
to all processes and is allocated in shared segments that are distributed over the processes (see Figure 1).
UPC++ provides various convenient methods for accessing and using this global memory, as will be described
later in this guide. In UPC++4, all accesses to remote memory are explicit, via a special set of methods.
There is no implicit communication. This design decision was made to encourage programmers to be aware of
the cost of data movement, which may incur expensive communication. Moreover, all remote-memory access
operations are asynchronous by default. Together, these two constraints are intended to enable programmers
to write code that performs well at scale.
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Figure 1: Figure 1. PGAS Memory Model.

This guide describes the LBNL implementation of UPC++4-, which uses GASNet for communication across a
wide variety of platforms, ranging from Ethernet-connected laptops to commodity InfiniBand clusters and
supercomputers with custom high-performance networks. GASNet is a language-independent, networking
middleware layer that provides network-independent, high-performance communication primitives tailored for
implementing parallel global address space languages and libraries such as UPC, UPC++, Co-Array Fortran,
Legion, Chapel, and many others. For more information about GASNet, visit https://gasnet.lbl.gov.

Although our implementation of UPC++ uses GASNet, in this guide, only the Getting Started with UPC++
section is specific to the implementation. The LBNL implementation of UPC++ adheres to the implementation-
independent specification. Both are available at the UPC++ homepage at https://upcxx.lbl.gov/. Please
report any problems in the issue tracker, https://upcxx.lbl.gov /issues.

UPC++ has been designed with modern object-oriented concepts in mind. Novices to C++ should avail
themselves of good-quality tutorials and documentation to refresh their knowledge of Template Meta
programming, the C++ standard library (std::), and lambda functions, which are used heavily in UPC++.

2 Getting Started with UPC++

We present a brief description of how to install UPC++ and compile and run UPC++ programs. For more
detail, consult the INSTALL.md file that comes with the distribution.

2.1 Installing UPC+H+

This programming guide assumes that the source code file has been extracted to a directory,
<upcxx-source-path>. From the top-level of this directory, run the install script:


https://gasnet.lbl.gov
https://upcxx.lbl.gov/
https://upcxx.lbl.gov/issues

./install <upcxx-install-path>

This will build the UPC++ library and install it to the <upcxx-install-path> directory. We recommend
that users choose an installation path which is a non-existent or empty directory path, so that uninstallation
is as trivial as rm -rf <upcxx-install-path>. Note that the normal installer downloads the GASNet
communication library, so an Internet connection is required. An offline installer is also available.

For Mac installations, the Xcode Command Line Tools need to be installed before invoking install, i.e.:
xcode-select —--install

To build for the compute nodes of a Cray XC, the CROSS environment variable needs to be set before the
install command is invoked, i.e. CROSS=cray-aries-slurm, e.g.:

cd <upcxx-source-path>
CROSS=cray-aries-slurm ./install <upcxx-install-path>

The installer will use the cc and CC compiler aliases of the loaded Cray programming environment.

The list of compatible versions of compilers for the various platforms can be found in the README.md that
comes with the distribution, under the section “System Requirements”. The install script checks that the
compiler is supported and if not, it terminates with an error message indicating that CXX and CC need to be
set to supported compilers.

2.2 Compiling UPC++ Programs

To compile against UPC++, the <upcxx-install-path>/bin/upcxx wrapper can be used. For example, to
build the hello world code given previously, execute:

<upcxx-install-path>/bin/upcxx -0 hello-world.cpp

Note that either the -0 (for optimized) or -g (for debug mode) will need to be specified. Alternatively, instead
of -0 or -g, the environment variable UPCXX_CODEMODE={03,debug} can be set. If C++14 or C++17 specific
features are required, the C++ standard will also need to be specified (either ~std=c++14 or -std=c++17).
For an example, look at the Makefile in the <upcxx-source-path>/example/prog-guide/ directory. That
directory also has code for all of the examples given in this guide. To use the Makefile, first set the
UPCXX_INSTALL shell variable to the install path.

UPC++ also supports multithreading within a process, e.g. using OpenMP. In these cases, to ensure
that the application is compiled against a thread-safe UPC+4 backend, set the environment variable
UPCXX_THREADMODE=par. Note that this option is less efficient than the default, UPCXX_THREADMODE=seq,
which enables the use of a UPC++ backend that is synchronization-free in most of its internals; thus, the
parallel thread mode should only be used when multithreading within processes.

In general, the network conduit (a particular implementation of the interconnection network, provided by
GASNet, upon which UPC++’s backend is implemented) is automatically set and shouldn’t have to be
changed. However, it can be explicitly set using the UPCXX_GASNET_CONDUIT variable, e.g. to set the conduit
to UDP:

export UPCXX_GASNET_CONDUIT=udp

More details about both installation and compilation can be found in the INSTALL.md file in the source code
root directory.

2.3 Running UPC++4 Programs

To run a parallel UPC++ application, use the upcxx-run launcher provided in the installation directory:

<upcxx-install-path>/bin/upcxx-run -n <processes> <exe> <args...>



The launcher will run the executable and arguments <exe> <args...> in a parallel context with <processes>
number of UPC++ processes. For multiple nodes, specify the node count with -N <nodes>.

Upon startup, each UPC++ process creates a fixed-size shared memory heap that will never grow. By default,
this heap is 128 MB per process. This heap size can be set at startup by passing a -shared-heap parameter
to the run script, which takes a suffix of KB, MB or GB; e.g. to reserve 1GB per process, call:

<upcxx-install-path>/bin/upcxx-run -shared-heap 1G -n <processes> <exe> <args...>

One can also specify the shared heap size as a percentage of physical memory, split evenly between processes
sharing the same node, e.g., —shared-heap=50%. There are several other options that can be passed to
upcxx-run. Execute with -h to get the following list of options:

usage: upcxx-run [-h] [-n NUM] [-N NUM] [-shared-heap HEAPSZ] [-backtrace]
[-show] [-info] [-ssh-servers HOSTS] [-localhost] [-v] [-vv]
command ...

A portable parallel job launcher for UPC++ programs, v2018.9.0

options:
-h, --help show this help message and exit
-n NUM, -np NUM Spawn NUM number of UPC++ processes. Required.
-N NUM Run on NUM of nodes.

-shared-heap HEAPSZ Requests HEAPSZ size of shared memory per process.
HEAPSZ must include a unit suffix matching the
pattern "[KMGT]B?" or be "[0-100]%" (case-insensitive).

-backtrace Enable backtraces. Compile with -g for full debugging
information.

-show Testing: do not start the job, just output the command
line that would have been executed

—-info Display useful information about the executable

-ssh-servers HOSTS List of SSH servers, comma separated.

-localhost Run UDP-conduit program on local host only

-v Verbose output

-vv Very verbose output

command to execute:
command UPC++ executable
arguments

3 Hello World in UPC++

The following code implements “Hello World” in UPC++:

#include <iostream>
#include <upcxx/upcxx.hpp>

// we will assume this is always used in all examples
using namespace std;

int main(int argc, char *argv[])
{
// setup UPC++ runtime
upcxx::init();
cout << "Hello world from process " << upcxx::rank_me()



<< " out of " << upcxx::rank_n() << " processes" << endl;
// close down UPC++ runtime
upcxx::finalize();
return O;

}

The UPC++ runtime is initialized with a call to upcxx: :init (), after which there are multiple processes
running, each executing the same code. The runtime must be closed down with a call to upcxx: :finalize().
In this example, the call to upcxx: :rank_me () gives the index for the running process, and upcxx: :rank_n()
gives the total number of processes. The use of rank in the function names refers to the rank within a team,
which in this case contains all processes, i.e. team upcxx: :world. Teams are described in detail in the Teams
section.

When this “hello world” example is run on four processes, it will produce output something like the following
(there is no expected order across the processes):

Hello world from process O out of 4 processes
Hello world from process 2 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

4 Global Memory

A UPC++ program can allocate global memory in shared segments, which are accessible by all processes. A
global pointer points at storage within the global memory, and is declared as follows:

upcxx: :global_ptr<int> gptr = upcxx::new_<int>(upcxx::rank_me());

The call to upcxx: :new_<int> allocates a new integer in the calling process’s shared segment, and returns a
global pointer (upcxx::global_ptr) to the allocated memory. This is illustrated in figure 2, which shows
that each process has its own private pointer (gptr) to an integer in its local shared segment. By contrast,
a conventional C++ dynamic allocation (int *mine = new int) will be in private local memory. Note
that we use the integer type in this paragraph as an example, but any type T can be allocated using the
upcxx: :new_<T>() function call.

Rank, Rank, Rank

L \ 1 \ k| Shared

mine: mine: aew mine: |

Private

Global address
space

gptr: gptr: gptr:

Figure 2: Figure 2. Global pointers.

A UPC++ global pointer is fundamentally different from a conventional C++ pointer: it cannot be
dereferenced using the * operator; it does not support conversions between pointers to base and derived types;
and it cannot be constructed by the C++ std::addressof operator. However, UPC++ global pointers
support pointer arithmetic and may be passed by value.



The upcxx: :new_ function calls the class constructor in addition to allocating memory. Since we are allocating
a scalar, we can pass arguments to the constructor. Thus, we don’t have to invoke the default constructor.
The upcxx: :new_ function is paired with upcxx: :delete_:

upcxx::global_ptr<int> x = upcxx::new_<int>(42);
// work with

upcxx::delete_(x);

In addition, UPC++ provides a function, upcxx: :new_array, for allocating a 1-dimensional array in the
global address space. Note that this array is not distributed across processes (as in UPC). Rather, each process
allocates its own array object which need not have the same size. The upcxx: :new_array operation calls the
default class constructor for the objects being allocated. The destruction operation is upcxx: :delete_array;
for example, to allocate 10 initialized elements:

upcxx::global_ptr<int> x_arr = upcxx::new_array<int>(10);
// work with z_arr
upcxx::delete_array(x_arr);

UPC+H+ also provides functions for allocating and deallocating uninitialized shared storage without calling
constructors and destructors. The upcxx::allocate function allocates enough (uninitialized) space for n
shared objects of type T on the current process, with a specified alignment, and upcxx: :deallocate frees
the memory.

4.1 Downcasting global pointers

If the shared memory pointed to by a global pointer has affinity to a local process, UPC++ enables a
programmer to use a global pointer as an ordinary C++ pointer, through downcasting, via the local method
of upcxx: :global_ptr, for example:

upcxx::global_ptr<int> x_arr = upcxx::new_array<int>(10);

assert(x_arr.is_local()); // a precondition of global_ptr<I>.local()
int *local_ptr = x_arr.local();
local_ptrl[il = ... // work with local ptr

Using this downcasting feature, we can treat all shared objects allocated by a process as local objects (global
references are needed by remote processes only). Storage with local affinity can be accessed more efficiently
via an ordinary C++4 pointer. Note that the local() method is safe only if the global pointer is local. To
this end, UPC++ provides the is_local method for global pointer to check for locality, which will return
true if this global pointer is local and can be downcast. This call can help to avoid catastrophic errors, as it
is is incorrect to attempt to downcast a global pointer that is not local to a process. It’s a good idea to make
liberal use of assert(gptr.is_local()) when downcasting pointers to ensure that the downcast is valid.

5 Using Global Memory with One-sided Communication

We illustrate the use of global shared memory with a simple program that implements a one-dimensional (1D)
stencil. Stencil codes are widely used for modeling physical systems, e.g. for solving differential equations.
Stencil codes are iterative algorithms that operate on a mesh or partition of data, where the value at each
mesh location is computed based on the values at neighboring locations. A trivial example is where at each
iteration the value for each mesh location u[i] is computed as the average of its neighbors:

ulil = (uli - 11 + uli + 11) / 2;

In many applications, these updates are iterated until the computed solution converges to a desired degree of
accuracy, epsilon.



One way to parallelize the 1D stencil computation is with red-black updates. The mesh is divided into two
groups: the odd-numbered indexes (red) and the even-numbered indexes (black). When iterating, first all the
red indexes are updated, and then all the black. This enables us to compute the values for all of a color in
any order with only dependencies on the other color, as shown in the following code sketch:

for (int step = 0; step < max_steps; step++) {
for (int i = 1 + step % 2; i <n - 1; i += 2)
ulil = (uli - 11 + uli + 11) / 2;
if (error(u) <= epsilon) break;

}
Note that the red updates are done on even-numbered steps, and the black updates on odd-numbered.

To implement the parallel algorithm in UPC++, we split the solution into panels, one per process. Each
process can operate independently on its own subset of the mesh, except at the boundaries, where a process
will need to access the neighbors’ values. In order to do this, we can allocate the panels in the shared segment,
using UPC++’s array allocation:

upcxx: :global_ptr<double> u_gptr = upcxx::new_array<double>(n_local);

Here n_local is the number of points assigned to the local panel. Assuming that the total number of
processes divides n evenly, we have n_local = n / upcxx::rank_n() + 2. The final +2 is extra space for
ghost cells to store the neighboring values.

Processes in UPC++ are not automatically aware of new allocations in another process’s shared segment, so
we must ensure that the processes obtain the global pointers that they require. There are several different
ways of doing this; we will show how to do it using a convenient construct provided by UPC++, called a
distributed object.

A distributed object is a single logical object partitioned over a set of processes (a team), where every process
has the same global name for the object (i.e. a universal name), but its own local value. Distributed objects
are created with the upcxx::dist_object<T> type, for example, in our stencil, we can declare our panels to
be a distributed object:

upcxx::dist_object<upcxx::global_ptr<double>> u_g(upcxx: :new_array<double>(n_local));

Each process in a given team must call a constructor collectively for upcxx: :dist_object<T>, with a value
of type T representing the process’s instance value for the object (a global pointer to an array of doubles in
the example above). Although the constructor for a distributed object is collective, there is no guarantee
that when the constructor returns on a given process it will be complete on any other process. To avoid this
hazard, UPC++ provides an interlock to ensure that accesses to a dist_object are delayed until the local
representative has been constructed.

We can still use the local method of upcxx::global_ptr to downcast the pointer contained in a distributed
object, provided the allocation has affinity to the process doing the downcast. We use this feature to get an
ordinary C++ pointer to the panel:

double *u = u_g->local();

To access the remote value of a distributed object, we use the upcxx: :dist_object: :fetch member function,
which, given a process rank argument, will get the T value from the sibling distributed object representative
on the remote process. For simplicity we will use periodic boundary conditions, so process 0 has process n-1
as its left neighbor, and process n-1 has process 0 as its right neighbor. In our algorithm, we need to fetch
the global pointers for the left (uL) and right (uR) ghost cells:

int left_nb = (lupcxx::rank_me() 7 upcxx::rank n() - 1 : upcxx::rank me() - 1);
ul. = u_g.fetch(left_nb).wait();
uR = u_g.fetch((upcxx::rank_me() + 1) % upcxx::rank_n()).wait();

Because the fetch function is asynchronous, we have to synchronize on completion, using a call to wait ().
Later, in the Asynchronous Computation section, we will see how to overlap asynchronous operations, that is,



when communication is split-phased. But for now we do not separate the asynchronous initiation from the
wait ().

Now, when we execute the red-black iterations, we can use the global pointers to the ghost cells to get the
remote processes’ values. To do this, we invoke a remote get:

if (!(step % 2)) ul0] = upcxx::rget(ulL + block) .wait();
else uln_local - 1] = upcxx::rget(uR + 1).wait();

The remote get function is part of the one-sided communication model supported by UPC++. Also supported
is a remote put function, upcxx: :rput. These operations initiate transfer of the value object to (put) or from
(get) the remote process; no coordination is needed with the remote process (this is why it is one-sided). The
type T transferred must be TriviallySerializable, generally by satisfying the C++ TriviallyCopyable concept.
Like many asynchronous communication operations, rget and rput default to returning a future object
that becomes ready when the transfer is complete (futures are discussed in more detail in the Asynchronous
Computation section, and completions in general are described in more detail in the Completions section).

Putting all the components described together, the main function for the red-black solver is:

int main(int argc, char **argv)
{
upcxx::init();
// initialize parameters - simple test case
const long N = 1000;
const long MAX_ITER = N * N * 2;
const double EPSILON = 0.1;
const int MAX_VAL = 100;
const int EXPECTED VAL = MAX_VAL / 2;
// get the bounds for the local panel, assuming number of processes divides N evenly
int block = N / upcxx::rank_n(Q);
// plus two for ghost cells
int n_local = block + 2;
// set up the distributed object
upcxx::dist_object<upcxx::global_ptr<double>> u_g(upcxx: :new_array<double>(n_local));
// downcast to a regular C++ pointer
double *u = u_g->local();
// fill with uniformly distributed random values
mt19937_64 rgen(upcxx::rank_me() + 1);
for (int i = 1; i < n_local - 1; i++)
uli]l = 0.5 + rgen() % MAX_VAL;
upcxx::global_ptr<double> ulL = nullptr, uR = nullptr;
// fetch the left and right pointers for the ghost cells
int left_nb = (lupcxx::rank _me() ? upcxx::rank n() - 1 : upcxx::rank me() - 1);
ulL = u_g.fetch(left_nb).wait();
uR = u_g.fetch((upcxx::rank_me() + 1) % upcxx::rank_n()).wait(Q;
upcxx: :barrier();
// iteratively solve
for (long stepi = 0; stepi < MAX_ITER; stepi++) {
// alternate between red and black
int start = stepi % 2;
// get the walues for the ghost cells
if (!start) ul0] = upcxx::rget(ulL + block).wait();
else uln_local - 1] = upcxx::rget(uR + 1).wait();
// compute updates and error
for (int i = start + 1; i < n_local - 1; i += 2)
uli]l = (uli - 11 + uli + 11) / 2.0;



// wait until all processes have fintshed calculations
upcxx: :barrier();
// periodically check convergence
if (stepi % 10 == 0) {
if (check_convergence(u, n_local, EXPECTED_VAL, EPSILON, stepi))

break;
}
}
upcxx::finalize();
return 0O;

}

We have one helper function, check_convergence, which determines if the solution has converged. It uses a
UPC++ collective, upcxx: :reduce_all, to enable all the processes to obtain the current maximum error:

bool check_convergence(double *u, int n_local, const double EXPECTED_VAL,
const double EPSILON, long stepi)
{
double err 0;
for (int i = 1; i < n_local - 1; i++)
err = max(err, fabs(EXPECTED_VAL - ul[il));
// upczz collective to get maxz error over all processes
double max_err = upcxx::reduce_all(err, upcxx::op_fast_max).wait();
// check for convergence
if (max_err / EXPECTED_VAL <= EPSILON) {
if (lupcxx::rank_me())
cout << "Converged at " << stepi <<", err " << max_err << endl;
return true;
}

return false;

}

Because the collective function is asynchronous, we synchronize on completion, using wait (), to retrieve the
result.

6 Remote Procedure Calls

An RPC enables the calling process to invoke a function at a remote process, using parameters sent to the
remote process via the RPC. For example, to execute a function square on process r, we would call:

int square(int a, int b) { return a * b; }
upcxx: :future<int> fut_result = upcxx::rpc(r, square, a, b);

By default, an RPC returns the result in an appropriately typed upcxx: :future, and we can obtain the
value using wait, i.e.

int result = fut_result.wait();

(for more on futures, see the Asynchronous Computation section). The function passed in can be a lambda or
another function, but note that the function cannot be in a shared library. The arguments to an RPC must
be Serializable, generally either by satisfying the C++ TriviallyCopyable concept (which includes all builtin
types and many class types), or be one of the commonly used STL types (see also View-Based Serialization).
Support for serialization of more complex types will appear in a future release of UPC++.

We illustrate the use of RPCs with a simple distributed hash table, similar to the C++ unordered map. The
hash table is implemented in a header file, and provides insert and find operations. It relies on each process
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having a local std: :unordered_map to store the key-value pairs, and in order for the local unordered maps
to be accessible from the RPCs, we wrap them in a distributed object:

using dobj_map_t = upcxx::dist_object<std::unordered_map<std::string, std::string> >;
dobj_map_t local_map;

This is initialized in the constructor:
DistrMap() : local_map({}) {}

For the insert operation, the target process is determined by a hash function, get_target_rank(key), which
maps the key to one of the processes. The data is inserted using a lambda function, which takes a key and a
value as parameters. The insert operation returns the result of the lambda, which in this case is an empty
future:

upcxx: :future<> insert(const std::string &key, const std::string &val) {
return upcxx::rpc(get_target_rank(key),
[1(dobj_map_t &lmap, std::string key, std::string val) {
lmap->insert({key, vall});
}, local_map, key, val);
}

Note the use of the dist_object argument local_map to the RPC. As a special case, when a dist_object
is passed as the argument to an RPC, the RPC activation at the target receives a reference to its local
representative of the same dist_object.

Special care should be taken by the programmer when using lambda captures for RPC. In particular, when
passing C++ lambdas to the UPC++ RPC operations, reference captures should never be used. This is
because the C++ compiler implements reference captures using raw virtual memory addresses, which are
generally not meaningful at the remote process that executes the RPC callback.

The find operation is similar, and is given in the full header example:

#include <map>
#include <upcxx/upcxx.hpp>

class DistrMap
{
private:
// store the local unordered map in a distributed object to access from RPCs
using dobj_map_t = upcxx::dist_object<std::unordered_map<std::string, std::string> >;
dobj_map_t local_map;
// map the key to a target process
int get_target_rank(const std::string &key) {
return std::hash<std::string>{}(key) % upcxx::rank_nQ);
}
public:
// initialize the local map
DistrMap() : local_map({}) {}
// insert a key-value patir into the hash table
upcxx: :future<> insert(const std::string &key, const std::string &val) {
// the RPC returns an empty upczz::future by default
return upcxx::rpc(get_target_rank(key),
// lambda to insert the key-value pair
[](dobj_map_t &lmap, std::string key, std::string val) {
// insert into the local map at the target
lmap->insert ({key, vall});
}, local_map, key, val);
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};

}
// find a key and return assoctated value in a future
upcxx::future<std::string> find(const std::string &key) {
return upcxx::rpc(get_target_rank(key),
// lambda to find the key in the local map
[] (dobj_map_t &lmap, std::string key) -> std::string {
auto elem = lmap->find(key);
// no key found
if (elem == 1lmap->end()) return std::string();
// the key was found, return the value
return elem->second;
}, local_map, key);
}

A test example of using the distributed hash table is shown below. Each process generates a set of N key-value
pairs, guaranteed to be unique, inserts them all into the hash table, and then retrieves the set of keys for the
next process over, asserting that each one was found and correct. The insertion phase is followed by a barrier,
to ensure all insertions have completed:

#include <iostream>
#include "dmap.hpp"

using namespace std;

int main(int argc, char *argv[])

{

}

upcxx::init();
const long N = 10000;
DistrMap dmap;
// insert set of unique key, wvalue pairs into hash map, wait for completion
for (long i = 0; i < N; i++) {
string key = to_string(upcxx::rank_me()) + ":" + to_string(i);
string val = key;
dmap.insert(key, val).wait();
}
// barrier to ensure all tinsertions have completed
upcxx: :barrier();
// now try to fetch keys inserted by neighbor
for (long i = 0; i < N; i++) {
string key = to_string((upcxx::rank_me() + 1) % upcxx::rank_n()) + ":" + to_string(i);
string val = dmap.find(key).wait();
// check that value %s correct
assert(val == key);
}
upcxx::barrier(); // wait for finds to complete globally
if (lupcxx::rank_me()) cout << "SUCCESS" << endl;
upcxx::finalize();
return 0O;

In the previous example, the rpc operations are synchronous because of the call to the wait method. To
achieve maximum performance, UPC++ programs should always take advantage of asynchrony when possible.
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7 Asynchronous Computation

Most communication operations in UPC++ are asynchronous. So, in our red-black solver example, when we
made the call to upcxx: :rget, we explicitly waited for it to complete using wait (). However, in split-phase
algorithms, we can perform the wait at a later point, allowing us to overlap computation and communication.

The return type for upcxx: :rget is dependent on the UPC++ completion object passed to the UPC++ call.
The default completion is a UPC++ future, which holds a value (or tuple of values) and a state (ready or not
ready). We will use this default completion here, and will return to the subject in detail in the Completions
section. When the rget completes, the future becomes ready and can be used to access the results of the
operation. The call to wait () can be replaced by the following equivalent polling loop, which exits when
communication has completed:

upcxx: :future<double> fut = upcxx::rget(uR + 1);
while (!fut.ready()) upcxx::progress();
uln_local - 1] = fut.result();

First, we get the future object, and then we loop on it until it becomes ready. This loop must include a
call to the upcxx: :progress function, which progresses the library and transitions futures to a ready state
when their corresponding operation completes (see the Progress section for more details on progress). This
common paradigm is embodied in the wait () method of upcxzx::future.

Using futures, the process waiting for a result can do computation while waiting, effectively overlapping
computation and communication. For example, in our distributed hash table, we can do the generation of
the key-value pair asynchronously as follows:

// initialize key and value for first insertion
string key = to_string(upcxx::rank_me()) + ":" + to_string(0);
string val = key;
for (long i = 0; i < N; i++) {
upcxx: :future<> fut = dmap.insert(key, val);
// compute new key while waiting for RPC to complete
if 4 <N-1){

key = to_string(upcxx::rank_me()) + ":" + to_string(i + 1);
val = key;
X
// wait for operation to complete before next insert
fut.wait();
b

UPC++ also provides callbacks or completion handlers that can be attached to futures. These are functions
that are executed when the future is ready (this is sometimes also referred to as “future chaining”). In our
distributed hash table example, we want to check the value once the find operation returns. To do this
asynchronously, we can attach a callback to the future using the .then method of upcxx::future. The
callback is executed on the initiating process when the find completes, and is passed the result of the future
as a parameter. In this example, the callback is a lambda, which checks the returned value:

for (long i = 0; i < N; i++) {

string key = to_string((upcxx::rank_me() + 1) % upcxx::rank n()) + ":" + to_string(i);
// attach callback, which itself returns a future
upcxx::future<> fut = dmap.find(key) .then(

// lambda to check the return value

[key] (string val) {

assert(val == key);

s

// wait for future and its callback to complete
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fut.wait(Q);
}

An important feature of UPC++ is that there are no implicit ordering guarantees with respect to asynchronous
operations. In particular, there is no guarantee that operations will complete in the order they were initiated.
This allows for more efficient implementations, but the programmer must not assume any ordering that is not
enforced by explicit synchronization.

7.1 Conjoining Futures

When many asynchronous operations are launched, it can be tricky to keep track of all the futures, and wait
on all of them for completion. In the previous example of asynchronous finds, we might have preferred to
issue all the finds asynchronously and wait on all of them to complete at the end. UPC++ provides an
elegant solution to do this, allowing futures to be conjoined (i.e. aggregated), so that the results of one future
are dependent on others, and we need only wait for completion explicitly on one future. The example below
illustrates how the hash table lookups can be performed asynchronously using this technique:

// the start of the conjoined future
upcxx: :future<> fut_all = upcxx::make_future();
for (long i = 0; i < N; i++) {
string key = to_string((upcxx::rank_me() + 1) % upcxx::rank n()) + ":" + to_string(i);
// attach callback, which itself returns a future
upcxx: :future<> fut = dmap.find(key) .then(
// lambda to check the return value
[key] (string val) {
assert(val == key);
I
// conjoin the futures
fut_all = upcxx::when_all(fut_all, fut);
// periodically call progress to allow incoming RPCs to be processed
if (i % 10 == 0) upcxx::progress();
}
// wait for all the conjoined futures to complete
fut_all.wait();

The future conjoining begins by invoking upcxx: :make_future to construct a trivially ready future fut_all.
We then loop through each iteration, calling DistrMap: :find asynchronously, and obtaining the future fut
returned by the . then callback attached to the find operation. This future is passed to the upcxx: :when_all
function, in combination with the previous future, fut_all. The upcxx: :when_all constructs a new future
representing readiness of all its arguments (in this case fut and fut_all), and returns a future with a
concatenated results tuple of the arguments. By setting fut_all to the future returned by when_all, we
can extend the conjoined futures. Once all the processes are linked into the conjoined futures, we simply
wait on the final future, i.e. the fut_all.wait() call. Note that within the loop, we have a periodic call
to upcxx: :progress, which gives the UPC++ runtime an opportunity to process incoming RPCs and run
completion callbacks (progress is described in more detail in the Progress section).

It is also possible to keep track of futures with an array or some other container, such as a vector. However,
conjoining futures has several advantages:

e Only a single future handle is needed to manage an entire logical operation and associated storage.
This simplifies composition by enabling an encapsulated communication initiation function to return a
single future to the caller rather than, for instance, an array of futures.

e Conjoined futures minimize the number of synchronous calls to .wait () needed to complete a group of
operations. Without conjoined futures, the code must loop through multiple .wait calls, potentially
adding overhead.
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e Conjoined futures do not leave intermediate futures explicitly instantiated in the application-level
memory, thus potentially allowing the storage holding them to be reclaimed as soon as the futures are
ready.

8 Quiescence

Quiescence is a state in which no process is performing computation that will result in communication
injection, and no communication operations are currently in-flight in the network or queues on any process.
Quiescence is of particular importance for applications using anonymous asynchronous operations on which
no synchronization is possible on the sender’s side. For example, quiescence may need to be achieved before
destructing resources and/or exiting a UPC++ computational phase.

To illustrate a simple approach to quiescence, we use the distributed hash table again. In this case, we use a
version of RPC that does not return a future:

template<typename Func, typename ...Args>
void upcxx::rpc_ff(upcxx::intrank_t recipient, Func &&func, Args &&...args);

The “ff” stands for “fire-and-forget”. From a performance standpoint, it has the advantage that is does not
send a response message to satisfy the future back to the process which has issued the RPC. However,
because no acknowledgment is returned to the initiator, the caller does not get a future to indicate when the
upcxx: :rpc_£f invocation has completed execution at the target. We can modify the distributed hash table
insert operation to use upcxx::rpc_ff as follows:

// insert a key-value patir into the hash table
void insert(const std::string &key, const std::string &val) {
// this RPC does mot return anything
upcxx: :rpc_ff(get_target_rank(key),
// lambda to insert the key-value pair
[1(dobj_map_t &lmap, std::string key, std::string val) {
// insert into the local map at the target
lmap->insert ({key, vall});
}, local_map, key, val);
}

The only way to determine completion is to use additional code; for example, we could change the distributed
hash table insert loop as follows:

// distributed object to keep track of number of inserts expected at this process
upcxx::dist_object<long> n_inserts = 0;
// keep track of how many inserts have been made to each target process
std::unique_ptr<long[]> inserts_per_rank(new long[upcxx::rank_n()]());
// insert all key-value pairs tnto the hash map
for (long i = 0; i < N; i++) {
string key = to_string(upcxx::rank_me()) + ":" + to_string(i);
string val = key;
// tinsert has no return because it uses rpc_ff
dmap.insert(key, val);
// tincrement the count for the target process
inserts_per_rank[dmap.get_target_rank(key)]++;
// pertiodically call progress to allow incoming RPCs to be processed
if (i % 10 == 0) upcxx::progress();
X
// update all remote processes with the expected count
for (long i = 0; i < upcxx::rank n(); i++) {
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if (inserts_per_rank[i]) {
// use rpc to update the remote process's expected count of inserts
upcxx: :rpc(d,
[] (upcxx::dist_object<long> &e_inserts, long count) {
*e_inserts += count;
}, n_inserts, inserts_per_rank[i]).wait();
+
}
// wait until all threads have updated insert counts
upcxx: :barrier();
long expected_inserts = *n_inserts;
// wait until we have received all the expected updates, spinning on progress
while (dmap.local_size() < expected_inserts) upcxx::progress();

To track completion each process must know how many inserts to expect. Thus each process keeps track of
how many inserts it makes to every other process in the local variable inserts_per_rank. Once a process
has finished all its inserts, it uses an RPC to update the value of a distributed object, n_inserts for all the
destination processes. After updating this counter, all processes wait on a barrier, which ensures that all
processes have dispatched their inserts. However, the barrier does not guarantee that all the inserts in flight
have completed at their destinations. To ensure this is the case, every process must spin on a comparison of
the expected counts to the size of the local unordered map, given by the method DistrMap: :local_size(),
which is defined simply as:

int local_size() { return local_map->size(); }

Within the while loop, upcxx: :progress is called each time to ensure that the UPC++ runtime engine
executes any outstanding RPCs that have arrived at the process (progress is described in more detail in the
Progress section).

This is one way to achieve quiescence; there are many alternatives. When the number of messages to be
received is known beforehand or can be efficiently tracked, it is possible to implement simple mechanisms
such as the one used in our distributed hash table example. There are also more powerful (and more
scalable) quiescence algorithms, such as the counting algorithm, that do not require knowledge of the number
of messages/RPCs beforehand. Advanced users requiring this capability should consult the appropriate
literature.

9 Atomics

UPC++ provides atomic operations on shared objects. These operations are handled differently from
C++ atomics and rely on the notion of an atomic domain, a concept inherited from UPC. In UPC++,
all atomic operations are associated with an atomic domain, an object that encapsulates a supported type
and set of operations. Currently, the allowed types are std::int32_t, std::uint32_t, std::int64_t, and
std::uint64_t. The full list of operations can be found in the UPC++ specification.

Each atomic domain is a collective object comprised of instances of the atomic_domain class, and the
operations are defined as methods on that class. The use of atomic domains permits selection (at construction)
of the most efficient available implementation which can provide correct results for the given set of operations
on the given data type. This implementation may be hardware-dependent and vary for different platforms.
To get the best possible performance from atomics, the user should be aware of which atomics are supported
in hardware on their platform, and set up the domains accordingly.

Similar to a mutex, an atomic domain exists independently of the data it applies to. User code is responsible
for ensuring that data accessed via a given atomic domain is only accessed via that domain, never via a
different domain or without use of a domain. Users may create as many domains as needed to describe their
uses of atomic operations, so long as there is at most one domain per atomic datum. If distinct data of the
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same type are accessed using differing sets of operations, then creation of distinct domains for each operation
set is recommended to achieve the best performance on each set.

We illustrate atomics by showing how they can be used to solve the quiescence counting problem for the
distributed hash table, discussed in the previous section. The code is as follows:

// keep track of how many inserts have been made to each target process
std: :unique_ptr<int64_t[]> inserts_per_rank(new int64_t[upcxx::rank_n()]());
// insert all key-value pairs tinto the hash map
for (long i = 0; i < N; i++) {
string key = to_string(upcxx::rank_me()) + ":" + to_string(i);
string val = key;
dmap.insert(key, val);
inserts_per_rank[dmap.get_target_rank(key)]++;
// periodically call progress to allow incoming RPCs to be processed
if (i % 10 == 0) upcxx::progress();

// setup atomic domain with only the operations needed
upcxx::atomic_domain<int64_t> ad({upcxx::atomic_op::load, upcxx::atomic_op::add});
// distributed object to keep track of number of inserts expected at every process
upcxx::dist_object<upcxx::global_ptr<int64_t> > n_inserts(upcxx: :new_<int64_t>(0));
// get pointers for all other processes and use atomics to update remote counters
for (long i = 0; i < upcxx::rank_n(); i++) {
if (inserts_per_rank[i]) {
upcxx::global_ptr<int64_t> remote_n_inserts = n_inserts.fetch(i).wait();
// use atomics to increment the remote process's expected count of inserts
ad.add(remote_n_inserts, inserts_per_rank[i], memory_order_relaxed) .wait();
X
b
upcxx: :barrier();
// Note: once a memory location s accessed with atomics, it should only be
// subsequently accessed using atomics to prevent unexpected results
int64_t expected_inserts = ad.load(*n_inserts, memory_order_relaxed).wait();
// watt until we have received all the expected updates, spinning on progress
while (dmap.local_size() < expected_inserts) upcxx::progress();

We modify the code from the example in the Quiescence section so that the n_inserts is actually a pointer
to int64_t, rather than a long itself. We do this because atomic operations require global pointers, and we
explicitly use int64_t because long is not guaranteed to be supported for atomic operations on all platforms.
Then we declare an atomic domain, which includes only the two operations we will actually use:

upcxx::atomic_domain<long> ad_long({upcxx::atomic_op::load,
upcxx::atomic_op::add});

Each process maintains an array, inserts_per_rank, of the expected counts for all other processes. Once it
has finished all its inserts, it loops over all the remote processes, and for each one it first obtains the remote
global pointer using fetch, and then atomically updates the target process’s counter. Finally, each process
spins, waiting for the size of the local unordered map to match its expected number of inserts.

Like all atomic operations (and indeed, nearly all UPC++ communication operations), the atomic load and
add operations are asynchronous. The load operation returns a completion object, which defaults to a future.
In the example in this section, we simply waited for each atomic operation to complete, but we could easily
use future conjoining or promises to track completion of the atomic operations.

Note that an atomic domain must be explicitly destroyed via a collective call to the atomic_domain: :destroy ()
method, before the allocated atomic_domain object goes out of scope or is deleted. (This action meets
the precondition of the object’s destructor, that the object has been destroyed) If the atomic_domain
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object hasn’t been destroyed appropriately, the program will crash with an error message that
upcxx: :atomic_domain: :destroy() must be called collectively before the destructor, which has been
invoked implicitly.

10 Completions

In the previous examples in this guide, we have relied on futures to inform us about the completion
of asynchronous operations. However, UPC++ provides several additional mechanisms for determining
completion, including promises, remote procedure calls (RPCs) and local procedure calls (LPCs). Further on
in this section, we give an example of completions using promises.

A completion object is constructed by a call to a static member function of one of the completion classes:
UPCXX: :SOurce_cx, UpCXX: :remote_cx or upcxx: :operation_cx. These classes correspond to the different
stages of completion of an asynchronous operation: source and remote completions indicate that the resources
needed for the operation are no longer in use by UPC++ at the source process or remote process, respectively,
whereas operation completion indicates that the operation is complete from the perspective of the initiator.
As we have seen in the previous examples in this guide, most operations default to notification of operation
completion using a future, e.g.:

template <typename T, typename Completions=decltype(upcxx::operation_cx::as_future())>
RType upcxx::rput(T const *src, upcxx::global_ptr<T> dest, std::size_t count,
Completions cxs=Completions{});

As shown above, the completion object is constructed as a completion stage combined with a type of
completion. There are restrictions on which completion types can be associated with which stages: futures,
promises and LPCs are only valid for source and operation completions, whereas RPCs are only valid for
remote completions.

It is possible to request multiple completion notifications from one operation using the pipe (|) operator
to combine completion objects. For example, future completion can be combined with RPC completion as
follows:

auto cxs = (upcxx::remote_cx::as_rpc(some_func) | upcxx::operation_cx::as_future());

The completion argument passed to an asynchronous communication initiation function influences the
polymorphic return type of that function (abbreviated as RType in prototypes). In particular, if one future
completion is requested (as with the default completion), then the return type RType is an appropriately typed
future (as we’ve seen in prior examples). If a completion argument is passed that requests no future-based
completions, then the return type RType is void. If more than one future completion is requested (for
example, source and operation completions) then the return type RType is a std: :tuple of the requested
futures:

upcxx: :future<> fut_src, fut_op;
std::tie(fut_src, fut_op) = upcxx::rput(p_src, gptr_dst, 1,
upcxx: :source_cx::as_future() | upcxx::operation_cx::as_future());
fut_src.wait();
// ... source memory now safe to overwrite
fut_op.wait(); // wait for the rput operation to be fully complete

In the following example, we show how promises can be used to track completion of the distributed hash table
inserts. Each non-blocking operation has an associated promise object, which can either be explicitly created
by the user or implicitly by the runtime when a non-blocking operation is invoked. A promise represents the
producer side of the operation, and it is through the promise that the results of the operation are supplied
and its dependencies fulfilled. A future is the interface through which the status of the operation can be
queried and the results retrieved, and multiple future objects may be associated with the same promise. A
future thus represents the consumer side of a non-blocking operation.
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First, we modify the insert operation to use a promise instead of return a future:

// insert a key, value patr into the hash table, track completion with promises
void insert(const std::string &key, const std::string &val, upcxx::promise<> &prom) {
upcxx: :rpc(get_target_rank(key),
// completion is a promise
upcxx::operation_cx::as_promise(prom),
// lambda to insert the key, wvalue pair
[] (dobj_map_t &lmap, std::string key, std::string val) {
// insert into the local map at the target
lmap->insert({key, vall});
}, local_map, key, val);
3

Now we modify the insert loop to use promises instead of futures for tracking completion:

// create an empty promise, to be used for tracking operations

upcxx::promise<> prom;

// insert all key, walue pairs into the hash map

for (long i = 0; i < N; i++) {
string key = to_string(upcxx::rank_me()) + ":" + to_string(i);
string val = key;
// pass the promise to the dmap insert operation
dmap.insert(key, val, prom);
// periodically call progress to allow incoming RPCs to be processed
if (i % 10 == 0) upcxx::progress();

}

// finalize the promise

upcxx: :future<> fut = prom.finalize();

// wait for the operations to complete

fut.wait();

In our distributed hash table example, we create an empty promise, prom, which has a dependency count of
one. Then we register each insert operation in turn on the promise, incrementing the dependency count each
time, representing the unfulfilled results of the RPC operation used in the insert. Finally, when registration
is complete, the original dependency is fulfilled to signal the end of the registration, with the prom.finalize
call. This call returns the future associated with the promise, so we can now wait on that future for all the
operations to complete.

11 Progress

Progress is a key notion of UPC++ which programmers must be aware of. The UPC++ framework does not
spawn any hidden OS threads to advance its internal state or track outstanding asynchronous communication.
The rationale is this keeps the performance characteristics of the UPC++ runtime as lightweight and
configurable as possible, and simplifies synchronization. Without its own threads, UPC++ is reliant on each
application process to periodically grant it access to a thread so that it may make “progress” on its internals.
Progress is divided into two levels: internal progress and user-level progress. With internal progress, UPC++
may advance its internal state, but no notifications will be delivered to the application. Thus the application
cannot easily track or be influenced by this level of progress. With user-level progress, UPC++ may advance
its internal state as well as signal completion of user-initiated operations. This could include many things:
readying futures, running callbacks dependent on those futures, or invoking inbound RPCs.

The upcxx::progress function, as already used in our examples, is the primary means by which the
application performs the crucial task of temporarily granting UPC++ a thread:
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upcxx: :progress (upcxx: :progress_level lev = upcxx::progress_level: :user)

A call to upcxx: :progress() with its default arguments will invoke user-level progress. These calls make for
the idiomatic points in the program where the user should expect locally registered callbacks and remotely
injected RPCs to execute. There are also other UPC++ functions which invoke user-progress, notably
including upcxx: :barrier and upcxx::future::wait. For the programmer, understanding where these
functions are called is crucial, since any invocation of user-level progress may execute RPCs or callbacks, and
the application code run by those will typically expect certain invariants of the process’s local state to be in
place.

Many UPC+H+ operations have a mechanism to signal completion to the application. However, for
performance-oriented applications, UPC++ provides an additional asynchronous operation status indi-
cator called progress_required. This status indicates that further advancements of the current process or
thread’s internal-level progress are necessary so that completion of outstanding operations on remote entities
(e.g. notification of delivery) can be reached. Once the progress_required state has been left, UPC++
guarantees that remote processes will see their side of the completions without any further progress by the
current process. The programmer can query UPC++ to determine whether all operations initiated by this
process have reached a state at which they no longer require progress using the following function:

bool upcxx::progress_required();

UPC++ provides a function called upcxx: :discharge () which polls on upcxx: :progress_required() and
asks for internal progress until progress is not required anymore. upcxx: :discharge() is equivalent to the
following code:

while (upcxx: :progress_required())
upcxx: :progress (upcxx: :progress_level::internal);

Any application entering a long lapse of inattentiveness (e.g. to perform expensive computations) is highly
encouraged to call upcxx: :discharge() first.

12 Personas

As mentioned earlier, UPC++ does not spawn background threads for progressing asynchronous operations,
but rather leaves control of when such progress is permissible to the user. To help the user in managing
the coordination of internal state and threads, UPC++ introduces the concept of personas. An object of
type upcxx: :persona represents a collection of UPC++’s internal state. Each persona may be active with
at most one thread at any time. The active personas of a thread are organized in a stack, with the top
persona denoted the current persona of that thread. When a thread enters progress, UPC++ will advance
the progress of all personas it holds active. When a thread initiates an asynchronous operation, it is registered
in the internal state managed by the current (top) persona.

When a thread is created, it is assigned a default persona. This persona is always at the bottom of the
persona stack, and cannot be pushed onto the persona stack of another thread. The default persona can be
retrieved using:

upcxx: :persona& upcxx::default_persona() ;

Additional personas can also be created by the application and pushed onto a thread’s persona stack, as
described below.

For any UPC++ operation issued by the current persona, the completion notification (e.g. future readying)
will be sent to that same persona. This is still the case even if that upcxx: :persona object has been
transferred to a different thread by the time the asynchronous operation completes. The key takeaway here
is that a upcxx::persona can be used by one thread to issue operations, then passed to another thread
(together with the futures corresponding to these operations). That second thread will be then be notified of
the completion of these operations via their respective futures. This can be used, for instance, to build a
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progress thread — a thread dedicated to progressing asynchronous operations. Another possibility is to use
completion objects (see Completions) to execute a callback (more precisely a local procedure call, or LPC) on
another persona when the operation is complete. We recommend using this second option as upcxx: :future
and upcxx: :promise objects are not thread-safe and thus can only be safely referenced by a thread holding
the persona used to create these objects.

UPC++ provides a upcxx: :persona_scope class for modifying the current thread’s active stack of personas.
The application is responsible for ensuring that a given persona is only ever on one thread’s active stack
at any given time. Pushing and popping personas from the stack (hence changing the current persona) is
accomplished via RAII semantics using the upcxx: :persona_scope constructor/destructor.

Here are the constructors:

upcxx: :persona_scope (upcxx: :persona &p);

template<typename Lock>
upcxx: :persona_scope(Lock &lock, upcxx::persona &p);

The upcxx: :persona_scope constructor takes the upcxx::persona that needs to be pushed. Only one
thread is permitted to use a given persona at a time. To assist in maintaining this invariant, the
upcxx: :persona_scope constructor accepts an optional thread locking mechanism to acquire during con-
struction and release during destruction (the Lock template argument can be any type of lock, such as C++
std: :mutex).

The following example introduces several of these concepts, using two threads to exchange an integer containing
a rank id fetched from a neighbor process (defined as (upcxx::rank_me() + 1)%upcxx::rank_n()). A
upcxx: :persona object progress_persona is first created. This persona object is used by thread called
submit_thread to construct a completion object which will execute an LPC on the progress_persona as
the completion notification for the subsequently issued rget operation (the value fetched by the rget is
passed as an argument to the LPC callback that is eventually queued for execution by progress_persona).
The submit_thread thread then waits and makes progress until the atomic variable thread_barrier is
set to 1. Meanwhile, another thread called progress_thread pushes progress_persona onto its persona
stack by constructing an appropriate upcxx: :persona_scope (in this case we know by construction that
only one thread will push this persona, so we can safely use the lock-free constructor). This thread then
calls upcxx: :progress() repeatedly until the done boolean is set to true within the LPC attached to the
completion object.

int main () {
upcxx::init();
// create a landing zone, and share it through a dist_object
// allocate and initialize with local rank
upcxx: :dist_object<upcxx::global_ptr<int>> dptrs(upcxx::new_<int>(upcxx::rank_me()));
upcxx::global_ptr<int> my_ptr = *dptrs;
// fetch my netghbor's pointer to its landing zone
upcxx::intrank_t neigh_rank = (upcxx::rank_me() + 1)%upcxx::rank_n();
upcxx::global_ptr<int> neigh_ptr = dptrs.fetch(neigh_rank).wait();
// declare an agreed upon persona for the progress thread
UPCXX: :persona progress_persona;
atomic<int> thread_barrier(0);
bool done = false;
// create the progress thread
thread progress_thread( [&]() {
// push progress_persona onto this thread's persona stack
upcxx: :persona_scope scope(progress_persona) ;
// progress thread drains progress until work ts done
while (!done)
upcxx: :progress () ;
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cout<<"Progress thread on process "<<upcxx::rank_me()<<" is done'<<endl;
//unlock the other threads
thread_barrier += 1;
s
// create another thread to issue the Tputs
thread submit_thread( [&] () {
// create a completion object to execute a LPC on the progress_thread
// which verifies that the value we got was the rank of our netghbor
auto cx = upcxx::operation_cx::as_lpc( progress_persona, [&done, neigh_rank] (int got) {
assert(got == neigh_rank);
//signal that work is complete
done = true;
s
// use this completion object on the rget
upcxx::rget(neigh_ptr, cx);
// block here until the progress thread has ezecuted all LPCs
while(thread_barrier.load(memory_order_acquire) != 1){
sched_yield();
upcxx: :progress() ;
}
b
// watt until all threads finish their work
submit_thread. join() ;
progress_thread. join();
// wait until all processes are done
upcxx: :barrier();
if ( upcxx::rank_me()==0 )
cout<<"SUCCESS'"<<endl;
// delete my landing zone
upcxx::delete_(my_ptr);
upcxx::finalize();

}

The thread initializing UPC++ via a call to upcxx::init () (this is usually done in the main function) is
also assigned the master persona in addition to its default persona. The master persona is special in that it is
the only persona in each process which can execute RPCs destined for this process and collective operations.
A thread can access this persona object by calling:

upcxx: :persona& upcxx::master_persona();

This persona can also be transferred between threads using upcxx: :persona_scope objects. However, due
to its special nature, the thread which was initially assigned the master persona must first release it before
other threads can push it. This is done using the upcxx::liberate_master_persona() function. This is
of particular importance if one desires to implement a progress thread which will execute RPCs issued by
remote processes.

As an example, we show how to implement such a progress thread in the distributed hash table example.
We first modify the DistrMap class so that a completion object is used to track the completion of the RPC
issued by the find function. When the RPC completes, a function func provided by the caller is executed as
an LPC on the persona provided by the caller as well:

// find a key and return associated value in a future

template <typename Func>

void find(const std::string &key, upcxx::persona & persona, Func func) {
// the wvalue returned by the RPC is passed as an argument to the LPC
// used in the completion object
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auto cx = upcxx::source_cx::as_buffered() | upcxx::operation_cx::as_lpc(persona,func);
upcxx: :rpc(get_target_rank(key),cx,
// lambda to find the key in the local map
[1(dobj_map_t &lmap, std::string key) -> std::string {
auto elem = lmap->find(key);
// no key found
if (elem == lmap->end()) return std::string(Q);
// the key was found, return the value
return elem—->second;
},local_map,key);
}

Let’s now review how this can be used to implement a progress thread. A thread progress_thread is created
to execute incoming RPCs issued to this process, as well as operations submitted to a progress_persona
(in this example, this thread will execute N LPCs). The master persona is therefore first released before
the creation of the progress_thread. Both the master persona and progress_persona are pushed onto
progress_thread’s persona stack by constructing two upcxx: :persona_scope objects. The progress thread
then calls upcxx: :progress until 1pc_count reaches 0, and finally sets the atomic variable thread_barrier
to signal the other threads that all operations have been completed. Concurrently, ten threads are created
to perform a total of N find operations, using the progress_persona to handle the completion of these
operations. This is done by executing an LPC on the progress_persona which verifies that the received value
corresponds to what was expected and decrement the 1pc_count counter by one. These threads then call
upcxx: :progress () until the progress thread has handled all operations (See Quiescence). It is important to
note that the master persona needs to be transferred back to the main thread using a upcxx: : persona_scope
in order to call collectives like upcxx: :barrier () and upcxx::finalize (). Finally, note that in this example
we use C++11 threads, but the example would work with other threading mechanisms, such as OpenMP or
pthreads.

// try to fetch keys inserted by neighbor
// note that in this example, keys and values are assumed to be the same
const int num_threads = 10;
thread * threads[num_threads];
// declare an agreed upon persona for the progress thread
UPCXX: :persona progress_persona;
atomic<int> thread_barrier(0);
int lpc_count = N;
// liberate the master persona to allow the progress thread to use it
upcxx::liberate_master_persona();
// create a thread to execute the assertions while lpc_count ts greater than 0O
thread progress_thread( [&]1() {

// push the master persona onto this thread's stack

upcxx: :persona_scope scope(upcxx::master_persona());

// push the progress_persona as well

UPCXX::persona_scope progress_scope(progress_persona) ;

// wait until all assertions im LPCs are complete

while(lpc_count > 0) {

sched_yield();
upcxx: :progress();

X

cout<<"Progress thread on process "<<upcxx::rank_me()<<" is done'"<<endl;

// unlock the other threads

thread_barrier += 1;

s
// launch multiple threads to perform find operations
for (int tid=0; tid<num_threads; tid++) {
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threads[tid] = new thread( [&,tid] (O {

// split the work across threads

long num_asserts = N / num_threads;

long i_beg = tid * num_asserts;

long i_end = tid==num_threads-17N:(tid+1)*num_asserts;

for (long i = i_beg; i < i_end; i++) {
string key = to_string((upcxx::rank_me() + 1) % upcxx::rank n()) + ":" + to_string(i);
// attach callback, which itself runs a LPC on progress_persona on completion
dmap.find(key, progress_persona,

[key,&lpc_count] (string val) {

assert(val == key);
lpc_count--;
IOk
b
// block here until the progress thread has ezecuted all RPCs and LPCs
while(thread_barrier.load(memory_order_acquire) != 1){

sched_yield();
upcxx: :progress () ;
}
s
}

// wait until all threads are done
progress_thread. join();
for (int tid=0; tid<num_threads; tid++) {
threads[tid]->join();
delete threads[tid];
}
{
// push the master persona onto the initial thread's persona stack
// before calling barrier and finalize
upcxx: :persona_scope scope(upcxx::master_persona());
// wait until all processes are done
upcxx: :barrier();
if (upcxx::rank me() == 0 )
cout<<"SUCCESS"<<endl;
upcxx::finalize();

13 Teams

A UPC++ team is an ordered set of processes and is represented by a upcxx: :team object. For readers
familiar with MPI, teams are similar to MPI_Communicators and MPI_Groups. The default team for most
operations is upcxx: :world() which includes all processes.

Creating a team is a collective operation and may be expensive. It is therefore best to do it in the set-up
phase of a calculation. New upcxx::team objects can be created by splitting another team using the
upcxx: :team: :split () member function. This is demonstrated in the following example, which creates
teams consisting of the processes having odd and even ranks in upcxx:world() by using (upcxx::rank_me ()
% 2) as the color argument to split (). It is worth noting that the key argument is used to sort the members
of the newly created teams, and need not be precisely the new rank as in this example.

upcxx::team & world_team = upcxx::world();
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int color = upcxx::rank_me() % 2;
int key = upcxx::rank_me() / 2;
upcxx::team new_team = world_team.split(color, key);

A team object has several member functions. The local rank of the calling process within a team is given by
the rank_me () function, while rank_n() returns the number of processes in the team. The global rank (in
the world() team) of any team member can be retrieved using the [1 operator.

The upcxx: :team: :from_world() function converts a global rank from the world() team into a local rank
within a given team. This function takes either one or two arguments:

upcxx::intrank_t upcxx::team::from_world(intrank_t world_index) const;
upcxx::intrank_t upcxx::team::from_world(upcxx::intrank_t world_index,
upcxx::intrank_t otherwise) const;

In the first case, the process with rank world_index in world() MUST be part of the team, while in the
second overload, the otherwise value will be returned if that process is not part of the team. We can
therefore modify our example to do the following (for simplicity, we assume an even number of processes):

upcxx::team & world_team = upcxx::world();

int color = upcxx::rank_me() % 2;

int key = upcxx::rank_me() / 2;

upcxx::team new_team = world_team.split(color, key);

upcxx::intrank_t local_rank = new_team.rank_me();
upcxx::intrank_t local_count = new_team.rank_n();

upcxx::intrank_t world_rank = new_team[(local_rank+1)%local_count];
upcxx::intrank_t expected_world_rank = (upcxx::rank_me() + 2) 7% upcxx::rank_n();
assert(world_rank == expected_world_rank);

upcxx::intrank_t other_local_rank = new_team.from_world(world_rank);
assert(other_local_rank == (local_rank+1)%local_count);
upcxx::intrank_t non_member_rank =

new_team.from_world((upcxx::rank_me()+1)%upcxx::rank_n(),-1);
assert(non_member_rank == -1);

new_team.destroy(); // collectively release the sub-team

In addition to the upcxx::world() team, another special team is available that represents all the processes
sharing the same shared-memory node. This team is obtained by calling the upcxx: :local_team() function.
All members of this team will see upcxx: :global_ptr<T> to shared memory allocated by a member of the
local_team report is_local() == true, and local() will return a valid raw pointer to the memory. This
is particularly important if one wants to optimize for shared memory operations.

14 Collectives

Collectives are intimately tied to the notion of Teams. Collectives in UPC++ all operate on the
upcxx: :world() team by default, and always have to be initiated by a thread holding the master persona on
each process (See Personas). As in other programming models, such as MPI, each collective call in a UPC++
program must be initiated in the same order (with compatible arguments) in every participating process.

One of the most useful and basic collective operations in parallel programming is the barrier operation.
UPC++ provides two flavors of barrier:
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void upcxx::barrier(upcxx::team &team = upcxx::world());

template<typename Completions=decltype(upcxx::operation_cx::as_future())>
RType upcxx::barrier_async(upcxx::team &team = upcxx::world(),
Completions cxs=Completions{});

The first variant is a blocking barrier on team and will return only after all processes in the team have entered
the call.

The second variant is an asynchronous barrier which by default returns a future (See Completions). This
future is signaled when all processes in the team have initiated the asynchronous barrier.

Another fundamental collective operation is the broadcast operation, which is always an asynchronous
operation in UPC++ and defaults to returning a upcxx: :future. There are two variants:

template <typename T, typename Completions=decltype(upcxx::operation_cx::as_future())>
RType upcxx::broadcast(T &&value, upcxx::intrank_t root,
upcxx::team &team = upcxx::world(), Completions cxs=Completions{});

template <typename T, typename Completions=decltype(upcxx::operation_cx::as_future())>
RType upcxx::broadcast(T *buffer, std::size_t count, upcxx::intrank_t root,
upcxx::team &team = upcxx::world(), Completions cxs=Completions{});

The first variant transfers an object of type T from the process with (team-relative) rank root to all processes
in team. The return value is a upcxx::future<T> containing the broadcast value. The second variant
transfers count objects of type T stored in an array referenced by buffer, and its default return value is an
object of type upcxx: :future<>.

These functions can be used in the following way:

int my_rank = upcxx::rank_me();
// launch a first broadcast operation from rank O
upcxx: :future<int> fut = upcxx::broadcast(my_rank, 0);

// do some overlapped work like preparing a buffer for another broadcast
std: :vector<int> buffer(10);
if ( upcxx::rank_me() == 0 )
for (int i = 0; i< buffer.size(); i++)
buffer[i] = i;

// launch a second broadcast operation from rank O
upcxx: :future<> fut_bulk = upcxx::broadcast( buffer.data(), buffer.size(), 0);

// wait for the result from the first broadcast
int bcast_rank = fut.wait();
assert(bcast_rank == 0);

// wait until the second broadcast ts complete

fut_bulk.wait();

for (int i = 0; i< buffer.size(); i++)
assert(buffer[i] == i);

UPC++ also provides collectives to perform reductions. Each of these variants applies a binary operator op
to the input data. This operator can either be one of the built-in operators provided by the library, or can be
a user-defined function (for instance a lambda).

template <typename T, typename BinaryOp ,
typename Completions=decltype(upcxx::operation_cx::as_future())>
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RType upcxx::reduce_one(T &&value, BinaryOp &&op, upcxx::intrank_t root,
upcxx::team &team = upcxx::world(), Completions cxs=Completions{});

template <typename T, typename BinaryOp,
typename Completions=decltype(upcxx::operation_cx::as_future())>
RType upcxx::reduce_all(T &&value, BinaryOp &&op,
upcxx::team &team = upcxx::world(), Completions cxs=Completions{});

template <typename T, typename BinaryOp,
typename Completions=decltype(upcxx::operation_cx::as_future())>
RType upcxx::reduce_one(const T *src, T *dst, size_t count, BinaryOp &&op,
upcxx::intrank_t root, upcxx::team &team = upcxx::world(),
Completions cxs=Completions{});

template <typename T, typename BinaryOp,
typename Completions=decltype(upcxx::operation_cx::as_future())>
RType upcxx::reduce_all(const T *src, T *dst, size_t count, BinaryOp &&op,
upcxx::team &team = upcxx::world(), Completions cxs=Completions{});

Similar to upcxx: :broadcast, the first two variants reduce an object value of type T and by default return
a upcxx: :future<T> containing the resulting value. The second set of variants perform similar operations on
contiguous buffers of count objects of type T pointed by src. They place the reduced values in a contiguous
buffer pointed by dst, and default to returning a upcxx: :future<> for tracking completion.

When using the upcxx: :reduce_one functions, the reduction result will be available only at the root process,
and the result is undefined on other processes. When using the upcxx: :reduce_all functions, a reduction
result will be provided to all processes belonging to team.

UPC++ provides built-in reduction operators (op_fast_add, op_fast_mul, op_fast_min, op_fast_max,
op_fast_bit_and, op_fast_bit_or, and op_fast_bit_xor) which may be hardware-accelerated on systems
with collectives offload support.

15 Non-Contiguous One-Sided Communication

The rput and rget operations assume a contiguous buffer of data at the source and destination processes.
There are specific specialized forms of these functions for moving groups of buffers in a single UPC++ call.
These functions are denoted by a suffix [rput,rget] _[irregular,regular,strided]. The rput_irregular
operation is the most general: it takes a set of buffers at the source and destination where the total data
size of the combined buffers and their element data type need to match on both ends. The rput_regular
operation is a specialization of rput_irregular, where every buffer in the collection is the same size. The
rput_strided operation is yet even more specialized: there is just one base address specified for each of the
source and destination regions, together with stride vectors describing a multi-dimensional array transfer.

constexpr int sdim[] = {32, 64, 32};
constexpr int ddim[] {16, 32, 64};

upcxx: :future<> rput_strided_example(float* src_base, upcxx::global_ptr<float> dst_base)
{
return upcxx::rput_strided<3>(
src_base, {{sizeof(float), sdim[0]*sizeof (float), sdim[0]*sdim[1]*sizeof (float)}},
dst_base, {{sizeof(float), ddim[0]*sizeof(float), ddim[0]*ddim[1]*sizeof (float)}},
{{4, 3, 2}
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Figure 3: Figure 3. Example of strided one-sided communication.

upcxx: :future<> rget_strided_example(upcxx::global_ptr<float> src_base, float* dst_base)
{
return upcxx::rget_strided<3>(
src_base, {{sizeof(float), sdim[0]*sizeof(float), sdim[0]*sdim[1]*sizeof (float)l}},
dst_base, {{sizeof(float), ddim[0]*sizeof (float), ddim[0]*ddim[1]*sizeof (float)l}},
{4, 3, 2}h);
}

The strided example code snippet corresponds to the translation data motion shown in Figure 3. By altering
the arguments to the _strided functions a user can implement various transpose and reflection operations
in an N-dimensional space within their UPC++ call. Note the strides are expressed in units of bytes; this
enables users to work with data structures that include padding.

For more general data structures a user can use the _irregular functions:

pair<particle_t*, size_t> src[l={{srcP+12, 22}, {srcP+66, 12}, {srcP, 4}};
pair<upcxx::global_ptr<particle_t>, size_t> dest[]={{destP, 38}};

auto f = upcxx::rput_irregular(src, end(src), dest, end(dest));

f.wait(Q);

The user here is taking subsections of their source array of their particle_t type pointed to by srcP and
copying them to the location pointed to by destP. All variants of rput and rget assume the element type is
TriviallySerializable. This example also shows how data can be shuffled in their UPC++ call. The user is
responsible for ensuring their source and destination result in equivalent amounts of data.
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16 View-Based Serialization

RPC’s transmit their arguments over the wire using the concept of “serialization”, which is type-specific
logic of how to encode potentially rich C++4 objects to and from flat byte buffers. For substantially large
objects, deserializing them from UPC++’s internal network buffers can have non-trivial performance cost,
and, if the object was built up only to be consumed and immediately torn down within the RPC, then it’s
likely that performance can be regained by eliminating the superfluous build-up/tear-down. Notably this
can happen with containers: Suppose process A would like to send a collection of values to process B which
will assimilate them into its local state. If process A were to transmit these values by RPC’ing them in a
std: :vector<T> (which along with many other std:: container types, is supported as serializable in the
UPC++ implementation) then upon receipt of the RPC, the UPC++ program would enact the following
steps:

1. UPC++ would build the vector by visiting each T in the network buffer and copying it into the vector.

2. UPC++ would invoke the RPC callback function giving it the vector.

3. The RPC callback function would traverse the T’s in the vector and consume them, likely by copying
them out to the process’s private state.

4. The RPC function would return control to the UPC++4 progress engine which would destruct the
vector.

This process works, but can entail alot of unnecessary overhead that might be problematic in performance-
critical communication. The remedy to eliminating steps 1 and 4 is to allow the application to get direct
access to the T elements in the internal network buffer. UPC++ grants such access with the upcxx: : view<T>
type. A view is little more than a pair of iterators delimiting the beginning and end of an ordered sequence
of T values. Since a view only stores iterators, it is not responsible for managing the resources supporting
those iterators. Most importantly, when being serialized, a view will serialize each T it encounters in the
sequence, and when deserialized, the view will “remember” special network buffer iterators delimiting its
contents directly in the incoming buffer. The RPC can then ask the view for its begin/end iterators and
traverse the T sequence in-place.

The following example demonstrates how a user could easily employ views to transmit an array of double’s with
minimal intermediate copies. On the sender side, the user acquires begin and end iterators to the value sequence
they wish to send (in this case doublex acts as the iterator type) and calls upcxx: :make_view(beg,end) to
construct the view. That view is bound to an rpc whose lambda accepts a upcxx: :view<double> on the
receiver side, and traverses the view to consume the sequence.

// Simple demonstration of shipping an array of doubles by view.
double xbuf = /*...%/; // local data buffer
size_t len = /*...%/;
upcxx: :rpc(target_rank,
[] (upcxx: :view<double> buf_in_rpc) {
// Traverse ‘buf_in_rpc’ like a container. Views fulfill most of the
// contatiner contract: begin, end, size, and tf the element type is
// trivial, even operator/[].
for(double x: buf_in_rpc)
/* consume each ‘x° */;
3,
upcxx: :make_view(buf, buf + len)

)

Beyond just simple pointers to contiguous data, arbitrary iterator types can be used to make a
view. This allows the user to build views from the sequence of elements within std containers using
upcxx: :make_view(container), or, given any compliant ForwardIterator, upcxx: :make_view(begin_iter,
end_iter).

For a more involved example, we will demonstrate one process contributing histogram values to a histogram
distributed over all the processes. We will use std: :string as the key-type for naming histogram buckets,
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double for the accumulated bucket value, and std::unordered_map as the container type for mapping
the keys to the values. Assignment of bucket keys to owning process is done by a hash function. We will
demonstrate transmission of the histogram update with and without view’s, illustrating the performance
advantages that views enable.

// Hash a key to its owning rank.
upcxx::intrank_t owner_of (std::string const &key) {
std::uint64_t h = 0x1234abcd5678cdef;
for(char c: key)
h = 63*%h + std::uint64_t(c);
return h % upcxx::rank_n();

}
using histograml = std::unordered_map<std::string, double>;

// The target rank's histogram which ts updated by incoming rpc's.
histograml my_histol;

// Sending histogram updates by value.
upcxx: :future<> send_histol_byval(histograml const &histo) {
std: :unordered_map<upcxx::intrank_t, histograml> clusters;

// Cluster histogram elements by owning rank.
for(auto const &kv: histo)
clusters[owner_of (kv.first)].insert (kv);

upcxx::promise<> *all_done = new upcxx::promise<>;

// Send per-owner histogram clusters.
for(auto const &cluster: clusters) {
upcxx: :rpc(cluster.first,
upcxx::operation_cx::as_promise(*all_done),

[]1 (histograml const &histo) {
// Pain point: UPC++ already traversed the key-values once to build the
// "histo” container. Now we traverse agatin within the RPC body.

for(auto const &kv: histo)
my_histol[kv.first] += kv.second;

// Pain point: UPC++ will now destroy the container.
1,
cluster.second
)3
}

return all_done->finalize().then(
[=] ) { delete all_done; }

);
}

// Sending histogram updates by view.
upcxx: :future<> send_histol_byview(histograml const &histo) {
std: :unordered_map<upcxx::intrank_t, histograml> clusters;
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// Cluster histogram elements by owning rank.
for(auto const &kv: histo)
clusters[owner_of (kv.first)].insert (kv);

upcxx::promise<> *all_done = new upcxx::promise<>;

// Send per-owner histogram clusters.
for(auto const &cluster: clusters) {
upcxx: :rpc(cluster.first,
upcxx::operation_cx::as_promise(*all_done),

[]1 (upcxx::view<std::pair<const std::string, double>> histo_view) {
// Pain point from “send_histol_byval : Eliminated.

// Traverse key-values directly in network buffer.
for(auto const &kv: histo_view)
my_histol[kv.first] += kv.second;

// Pain point from “send_histol_byval : Eliminated.
},
upcxx: :make_view(cluster.second) // build view from container's begin()/end()
)3
}

return all_done->finalize().then(
[=]1 () { delete all_done; }
);
}

There is a further benefit to using view-based serialization: the ability for the sender to serialize a subset of
elements directly out of a container without preprocessing it (as is done in the two examples above). This is
most efficient if we take care to use a container that natively stores its elements in an order grouped according
to the destination process. The following example demonstrates the same histogram update as before, but
with a data structure that permits sender-side subset serialization.

// Hash a key to its owning rank.
upcxx::intrank_t owner_of (std::string const &key) {
std::uint64_t h = 0x1234abcdb5678cdef;
for(char c: key)
h = 63%h + std::uint64_t(c);
return h % upcxx::rank n();

}

// This comparison functor orders keys such that they are sorted by
// owning rank at the expense of rehashing the keys in each invocation.
// A better strategy would be modify the map's key type to compute this
// information once and store it in the map.
struct histogram2_compare {
bool operator() (std::string const &a, std::string const &b) const {
using augmented = std::pair<upcxx::intrank_t, std::string const&>;
return augmented(owner_of(a), a) < augmented(owner_of(b), b);
b
};
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using histogram2 = std::map<std::string, double, histogram2_compare>;

// The target rank's histogram which ts updated by incoming Tpc's.
histogram2 my_histo2;

// Sending histogram updates by view.
upcxx: :future<> send_histo2_byview(histogram2 const &histo) {
histogram2::const_iterator run_begin = histo.begin();

upcxx::promise<> *all_done = new upcxx::promise<>;

while(run_begin != histo.end()) {
histogram2::const_iterator run_end = run_begin;
upcxx::intrank_t owner = owner_of (run_begin->first);

// Compute the end of this run as the beginning of the next run.
while(run_end !'= histo.end() && owner_of (run_end->first) == owner)
++run_end;

upcxx: :rpc (owner,
upcxx::operation_cx::as_promise(*all_done),

[]1 (upcxx::view<std::pair<const std::string, double>> histo_view) {
// Traverse key-values directly in network buffer.
for(auto const &kv: histo_view)
my_histo2[kv.first] += kv.second;
},
// Serialize from a subset of “histo’ in-place.
upcxx: :make_view(run_begin, run_end)

)

run_begin = run_end;

}

return all_done->finalize().then(
[=]1() { delete all_done; 7}

);

¥

16.1 The view’s Iterator Type

The above text presented correct and functional code, but it oversimplified the C++ type of the UPC++
view by relying on some of its default characteristics and type inference. The full type signature for view is:

upcxx: :view<T, Iter=/*internal buffer iterator />

Notably, the view type has a second type parameter which is the type of its underlying iterator. If omitted,
this parameter defaults to a special UPC++4 provided iterator that deserializes from a network buffer,
hence this is the correct type to use when specifying the incoming bound-argument in the RPC function.
But this will almost never be the correct type for the view on the sender side of the RPC. For instance,
upcxx: :make_view(...) deduces the iterator type provided in its arguments as the Iter type to use in the
returned view. If you were to attempt to assign that to an temporary variable you might be surprised:

std::vector<T> vec = /*...*/;
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// Type error: mismatched Iter types
upcxx::view<T> tmp = upcxx::make_view(vec);

// OK: tmp deduced to: upczz::view<T, std::vector<I>::const_iterator>
auto tmp = upcxx::make_view(vec);

16.2 Buffer Lifetime Extension

Given that the lifetime of a view does not influence the lifetime of its underlying data, UPC++ must make
guarantees to the application about the lifetime of the network buffer when referenced by a view. From the
examples above, it should be clear that UPC++ will ensure the buffer will live for at least as long as the RPC
function is executing. In fact, UPC++ will actually extend this lifetime until the future (if any) returned by
the RPC is ready. This gives the application a convenient means to dispatch the processing of the view to
another concurrent execution agent (e.g. a thread), thereby returning from the RPC nearly immediately so
that UPC++ can service more progress events.

The following example demonstrates how a process can send sparse updates to a remote matrix via rpc. The
updates are not done in the execution context of the rpc itself, instead the rpc uses 1pc’s to designated
worker personas (backed by dedicated threads) to dispatch the arithmetic update of the matrix element
depending on which worker owns it. Views and futures are used to extend the lifetime of the network buffer
until all 1pc’s have completed, thus allowing those 1pc’s to use the elements directly from the buffer.

// Number of worker threads/personas.
constexpr int worker_n = 8;

// Each persona has a dedicated thread spinning on its progress engine.
upcxx: :persona workers[worker_n];

// Rank's local matriz.
double my_matrix[1000] [1000] = {/*0...%/};

struct element {
int row, col;
double value;

};

upcxx: :future<> update_remote_matrix(
upcxx::intrank_t rank,
element const *elts, int elt_n
) {
return upcxx::rpc(rank,
[1 (upcxx::view<element> elts_in_rpc) {
upcxx: :future<> all_done = upcxx::make_future();

for(int w=0; w < worker_n; w++) {
// Launch task on respective worker.
auto task_done = workers[w].lpc(
[w, elts_in_rpcl O {
// Sum subset of elements into “my_matriz’ according to a
// round-robin mapping of matriz rows to workers.
for(element elt: elts_in_rpc) {
if(w == elt.row % worker_n)
my_matrix[elt.row] [elt.col] += elt.value;
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}
)

// Conjoin task completion into “all_done’.
all_done = upcxx::when_all(all_done, task_done);

}

// Returned future has a dependency on each task lpc so the network
// buffer (thus “elts_in_rpc’ view) will remain valid until all tasks
// have completed.
return all_done;

3,

upcxx: :make_view(elts, elts + elt_n)

)
}

17 Memory Kinds

The memory kinds interface enables the UPC++ programmer to identify regions of memory requiring
different access methods or having different performance properties, and subsequently rely on the UPC++
communication services to perform transfers among such regions (both local and remote) in a manner
transparent to the programmer. With GPU devices, HBM, scratch-pad memories, NVRAM and various types
of storage-class and fabric-attached memory technologies featured in vendors’ public road maps, UPC++
must be prepared to deal efficiently with data transfers among all the memory technologies in any given
system. UPC++ currently handles one new memory kind — GPU memory in NVIDIA-branded CUDA devices
— but in the future it may be extended to handle other types of memory.

We demonstrate how to use memory kinds to transfer data between device and host memories, and then
between host and device residing on different nodes. For simplicity our examples assume a single device per
node, but UPC++ can also handle nodes with heterogeneous device counts. See the UPC++ Specification
for the details.

In our first example, we allocate a block of storage in device and host memories and then move the data from
host to GPU.

To allocate storage, we first open a device CUDA Device IDs start at 0; since we have only one device in this
example, we open device 0:

upcxx::init();

auto gpu_device = upcxx::cuda_device( 0 ); // Open device 0
The next step is to construct an allocator, which we then use to allocate the actual storage. Of note, we pass

the segment size to the allocator— in our case 4MB. If we need a larger segment, we need to specify that at
the time we construct the allocator. Currently, there is no way to dynamically extend the segment.

std::size_t segsize = 4%1024%1024; // 4MB
// Allocate GPU segment
auto gpu_alloc = upcxx::device_allocator<upcxx::cuda_device>(gpu_device, segsize);

The next step is to allocate an array of 1024 doubles on the GPU, by calling the allocate function of the
allocator we have just created.

// Allocate an array of 1024 doubles on GPU
global_ptr<double,memory_kind::cuda_device> gpu_array = gpu_alloc.allocate<double>(1024);

Next, we allocate the host storage using the familiar new_array method:
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global_ptr<double> host_array = upcxx::new_array<double>(1024);

Data movement is handled by the upcxx: :copy () function. We transfer 1024 doubles from the host buffer to
the GPU buffer. As with rput and rget, copy is an asynchronous operation that returns a future. In this
case, we simply use wait, but the full machinery of Completions is available (see the Programmer’s Guide for
the details).

upcxx: :copy(host_array, gpu_array, 1024).wait(Q);

If we wanted to move the data in the opposite direction, we’d simply swap the host_array and gpu_array
arguments. Note the absence of explicit CUDA data movement calls.

After transferring the data, most users will need to invoke a computational kernel on the device, and will
therefore need a raw pointer to the data allocated on the device. The device_allocator::allocate function
returns a global_ptr to the data in the specific segment associated with that allocator. This global_ptr
can be downcast to a raw device pointer using the allocator’s local function.

template<typename Device>
template<typename T>
Device::pointer<T> device_allocator<Device>::local(global_ptr<T, Device::kind> g);

This function will return the raw device pointer which can then be used as an argument to a CUDA
computational kernel.

In a similar fashion, a raw device pointer into the segment managed by a device_allocator may be upcast
into a global_ptr using the to_global_ptr function of that allocator.

template<typename Device>
template<typename T>
global_ptr<T, Device::kind> device_allocator<Device>::to_global_ptr(Device: :pointer<T> ptr);

In the case of CUDA, it is important to obtain the device id in order to be able to launch a kernel. This can
be retrieved using the cuda_device: :device_id method.

Here is a complete example:

#include <upcxx/upcxx.hpp>
#include <iostream>

using namespace std;

using namespace UupCXX;

#if 'UPCXX_CUDA_ENABLED
#error "This example requires UPC++ to be built with CUDA support."
#endif

int main() {
upcxx::init();

std::size_t segsize = 4x1024%1024; // JMB

auto gpu_device = upcxx::cuda_device( 0 ); // open device 0

auto gpu_alloc = // alloc GPU segment
upcxx::device_allocator<upcxx::cuda_device>(gpu_device, segsize);

// alloc an array of 1024 doubles on GPU and host
global_ptr<double,memory_kind::cuda_device> gpu_array = gpu_alloc.allocate<double>(1024);
global_ptr<double> host_arrayl = new_array<double>(1024);

global_ptr<double> host_array2 = new_array<double>(1024);

double *hl = host_arrayl.local();
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double *h2 = host_array2.local();

// initialize hl

for (int i=0; i< 1024; i++)
hi[i] = i;

// copy data from host memory to GPU

upcxx: :copy(host_arrayl, gpu_array, 1024).wait();
// copy data back from GPU to host memory

upcxx: :copy(gpu_array, host_array2, 1024).wait();

int nerrs = 0;
for (int i=0; i< 1024; i++){
if (hi1[i] '= h2[i]){
if (nerrs < 10)
cout << "Error at element " << i << endl;
nerrs++;
}
}
if (nerrs)
cout << "Failure: " << nerrs << " errors detected\n";
else
cout << "Success" << endl;

delete_array(host_array2);
delete_array(host_arrayl);
gpu_alloc.deallocate(gpu_array) ;

gpu_device.destroy();
upcxx::finalize();

}

The power of the UPC++ memory kinds facility lays in its unified interface for moving data not only between
host and device on the same node, but between source and target that reside on different nodes. As in the
previous example, the copy method leverages UPC++’s global pointer abstraction. We next show how to
move data between a host and device that reside on different nodes.

Assuming that we have set up a GPU allocator, we allocate host and device buffers as before. We use
dist_object as a directory for fetching remote global pointers, which we can then use in the copy () method:

dist_object<global_ptr<double,memory_kind::cuda_device>> dobj(gpu_array) ;
int neighbor = (rank_me() + 1) % rank_n();
global_ptr<double,memory_kind::cuda_device> other_gpu_array = dobj.fetch(neighbor).wait();

// copy data from local host memory to remote GPU

upcxx: :copy(host_arrayl, other_gpu_array, 1024).wait();
// copy data back from remote GPU to local host memory
upcxx::copy(other_gpu_array, host_array2, 1024).wait();

upcxx: :barrier();

Again, if we want to reverse the direction of the data motion, we need only swap the first two arguments in
the call to copy ().

Our code concludes by deallocating host and node buffers. Device allocator has its own method for deallocation:

gpu_alloc.deallocate(gpu_array) ;
upcxx: :delete_array(host_array) ;
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Note that in this second example, we have added a call to upcxx::barrier to prevent a process from
deallocating its segment while another rank is copying data (See Quiescence).

In this tutorial, we’ve shown how to use the memory kinds in UPC++4-. This powerful feature relies on a
unified notion of the global pointer abstraction to enable methods that use the pointer to interpret the type
of memory the pointer refers to, while hiding the details of the actual access method from the user.

We’ve not demonstrated how to move data directly between GPUs. We leave the details as an exercise to the
reader.
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