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Abstract 

Choice reaching, e.g., reaching a targeted object by hand, 
involves a dynamic online integration of perception, action and 
cognition, where neural activities of prefrontal cortical regions 
are concurrently coordinated with sensori-motor subsystems. 
On the basis of this theoretical development, the authors 
investigate the extent to which cursor movements in a simple 
choice-reaching task reveal people’s emotions, such as anxiety. 
The results show that there is a strong correlation between 
cursor trajectory patterns and self-reported anxiety in male 
participants. Because computer cursors are ubiquitous, our 
trajectory analysis can be augmented to existing affective 
computing technologies.   

Keywords: affective computing; cursor motion; choice 
reaching 

Introduction 
An adaptive computer system that can read users’ emotions 

and tailor its output dynamically will transform the nature of 
human-computer interactions. Present affective computing 
methods apply facial expressions, vocal tones, gestures, and 
physiological signals for emotion assessment (Calvo & 
D’Mello, 2010; Zeng, Pantic, Roisman, & Huang, 2009); yet, 
these methods are not always practical for everyday 
applications (e.g., wearing a multi-channel EEG cap). This 
article investigates the possibility of analyzing cursor motion 
for affective computing in a choice reaching task.  

To reach a target object by hand, thousands of muscles and 
billions of nerve cells have to coordinate. In this process, 
higher cortical systems (e.g., the prefrontal cortex) can only 
make a coarse action plan (e.g., move your hand), and local 
sensori-motor subsystems modulate the hand movement by 
dynamically processing contextual and cognitive information 
(Thelen, 1998). Choice-reaching behavior is dynamic in 
nature, where motor coordination is adjusted in real time in a 
continuous feedback loop (Spivey, 2007; Song & Nakayama, 
2007). We hypothesize that emotions influence this process 
and fine-tuned analysis of cursor trajectories can help assess 
users’ emotional states. 

Affective Computing 
Two influential reviews published in 2009 and 2010 (Calvo 

& D’Mello, 2010; Zeng et al., 2009) suggest the following 
short-comings in the current Affective Computing (i.e., AC) 

technologies: (1) many of the visual- and audio-based 
methods (e.g., detecting emotions by facial expressions and 
speech) do not fare well in a natural setting; (2) assessment 
methods based on physiological signals (e.g., EEG) are still 
impractical for everyday application. Our independent 
review of the studies published in major Human Computer 
Interaction (HCI) conferences and journals show significant 
improvements in AC technologies in the last several years. 
Techniques developed in “wearable computers” made great 
progress in assessing people’s physiological states in 
everyday settings (Hedman et al., 2009; McDuff, Karlson, 
Kapoor, Roseway, & Czerwinski, 2012). The scope of AC 
research has grown significantly, as AC technologies are now 
applied for public speech training (Pfister & Robinson, 
2011), gaze detection in infant-parent communication 
(Cadavid, Mahor, Messinger, & Cohn, 2009), and intelligent 
tutoring/game systems (D’Mello, Graesser, & Picard, 2007; 
Graesser & D’Mello, 2011).  

Cursor motion analysis originated in the late 1970s when 
researchers started to evaluate the performance of different 
input devices (Accot & Zhai, 1997, 1999; Card, English, & 
Burr, 1978). In the last 15 years, a number of research studies 
have employed cursor movement analysis for emotion 
assessment. Zimmermann (2008) employed a film-based 
emotion elicitation technique and investigated the impact of 
arousal and valence on cursor motion in an online shopping 
task. Kapoor et al. (Kapoor, Burleson, & Picard, 2007) 
adopted a pressure-sensitive mouse for their multichannel 
automatic affect detection system and measured mean, 
variance, and skewness of mouse pressure while participants 
(middle school students,) learned to solve a Tower of Hanoi 
puzzle. Azcarraga and Suarez (Azcarraga & Suarez, 2012) 
evaluated EEG signals and mouse activities (the number of 
mouse clicks, distance traveled, click duration) during 
algebra learning in an intelligent tutoring system (ITS) to 
predict participants’ emotions. Prediction rates based solely 
on EEG were 54 to 88%. When mouse activity data were 
augmented to the EEG data, accuracy rates increased up to 
92%. Yamauchi (2013) presents a new machine learning 
technique involving feature selection associated with cursor 
motions and emotion detection. Beyond these studies, clear 
evidence that links cursor activities and affects remains 
sparse.  

2721



Theoretical Rationale 
Embodied cognition. Recent advances in “embodied 

cognition” introduce a new way of analyzing human 
behavior. People’s cognitive, attitudinal, and affective states 
are expressed in their bodily actions, and their bodily actions 
invoke affective states (Barsalou, 1999; Barsalou, 
Niedenthal, Barbey, & Ruppert, 2003). These intricate 
interactions among cognition, emotion and action are 
articulated by Barsalou’s (1999) perceptual symbol systems 
hypothesis, which states that the essence of off-line cognition 
involves a reenactment (simulation) of sensory and 
perceptual modules.  

Physiological findings provide another layer of evidence 
that emotions can be reflected in voluntary hand motions. The 
dorsolateral prefrontal region—the control center of high-
order cognition—is connected to all premotor areas and 
controls limb movements; this area receives a considerable 
amount of input from dopaminergic cells, which influence 
emotional states such as feelings of reward and pleasure 
(Kolb & Whishaw, 2009). 

The basal ganglia, which play a pivotal role in voluntary 
motor control, receive excitatory input from almost all 
cortical areas, and transfer the information back to the same 
cortical areas through the thalamus. These feedback loops 
involve not only motor-related cortices (e.g., primary motor, 
supplementary motor and primary somatosensory cortices), 
but also other cortical and subcortical regions that control 
emotion, motivation and decision making (Mendoza & 
Foundas, 2008). It is well known that dopamine deficiency in 
the basal ganglia results in neurological movement disorders 
such as Parkinson’s disease and Tourette syndrome. These 
motor disorders often come with emotional disorders. More 
than 40% of the people suffering from Tourette syndrome 
experience symptoms of Obsessive-compulsive disorder, 
which is an anxiety disorder (Mink, 2008). Apathy—“a 
decrease of goal-directed behavior, thinking, and mood”—
occurs about in 40% of the patients suffering from 
Parkinson’s disease (Weintraub & Stern, 2007). Those 
individuals with deficits in dopamine production often 
exhibit impairments in motor control as well as emotion and 
higher order cognition (Mink, 2008). 

Recent behavioral research suggests that high-order 
cognitive judgments such as inductive reasoning and 
knowledge formation are affected by tacit knowledge, affects 
and mindsets, which in turn can be captured by the movement 
of a computer cursor (Dale, Kehoe, & Spivey, 2007; 
Freeman, Pauker, Apfelbaum, & Ambady, 2009; Spivey et 
al., 2005; Xiao & Yamauchi, 2014; Yamauchi, 2013; 
Yamauchi & Bowman, 2014; Yamauchi, Kohn, & Yu, 2007).  

On the basis of these findings, we postulate that subtle 
emotional states can be reflected in the way people move 
computer cursors and fine-tuned analysis of cursor 
trajectories can be applied for affective computing. Below, 
we present an empirical study that explores this possibility. 

   

Experiment 
Our 

experiment 
consisted of 
visual perception 
task involving 
judgments of 
similarities of 
simple figures 
(Kimchi & 
Palmer, 1982; 

Yamauchi, 
2013). Participants were presented with a triad of geometric 
figures on a computer monitor (96 trials in total), and selected 
which choice figure, left or right, was more similar to the base 
figure shown at the bottom (Figure 1). Participants indicated 
their choice by pressing the “left” or “right” button placed at 
the top of each choice figure (Figure 1). We selected this 
choice-reaching task because the perception of similarity is 
one of the most fundamental psychological functions that 
mediates decision making, memory, generalization, 
impression formation and problem solving (Hahn & 
Ramscar, 2001). 

In each trial, our program recorded the x-y coordinates of 
the cursor location every 20-30 milliseconds from the onset 
of a trial (participants pressing the “Next” button) until the 
end of the trial (participants pressing either the left- or right- 
choice button). From this data set, we extracted 16 features 
of cursor motions, and examined the extent to which cursor 
movement patterns of individual participants reflect their 
self-reported state anxiety scores (Spielberger, Gorsuch, 
Lushene, Vagg, & Jacobs, 1983). 

 
 

    
(3-4) (9-10) (15-16) (36) 

 
Figure 2: Sample stimuli used in the choice-reaching 

task. 

Method 
Participant. Participants (N = 133; female = 75, male = 58) 

were undergraduate students participating for course credit.  
Materials and Procedure. The stimuli for the choice-

reaching task were 32 triads of geometric figures—two 
choice figures placed at the two top-corners of the frame and 
a base figure placed at the bottom-center of the stimulus 
frame (Figures 1&2). Each figure shows an overall shape 
(either a square or a triangle) with smaller squares or 
triangles, yielding four types of figures—a global square or 
triangle made of local squares or triangles.  

In each triad, two choice-figures placed at the upper two 
corners of a stimulus frame were similar to the base figure 

 
Figure 1: A screen shot of a choice-
reach trial (the dotted line was not 
shown in the actual experiment.) 
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either in their overall shape or local shapes. In total, 16 basic 
triads were produced by varying the number of local 
shapes—figures made of 3-4, 9-10, 15-16, or 36 local shapes 
(Figure 2). In the experiment, 32 triads were produced from 
the 16 basic triads by swapping the locations of the choice 
figures; these 32 triads were shown 3 times, yielding 96 trials 
of choice reaching for each participant.  

To start each trial, participants pressed the “Next” button, 
and a triad stimulus appeared. Participants indicated their 
responses by pressing the “left” or “right” button (Figure 1). 
After their response, the “Next” button appeared again. This 
cycle was repeated 96 times. Note that there are no 
correct/incorrect answers in this task, and participants were 
instructed to make a selection based on their personal 
preference. 

Shortly after the completion of the choice-reaching 
experiment, participants received the state anxiety 
questionnaire (Spielberger et al., 1983) and rated each 
statement (e.g., “I feel afraid”) on a four-point scale (20 
questions in total). This questionnaire has been used widely 
to assess generalized anxiety disorder (GAD). In this study, 
we focused on anxiety for our analysis because anxiety is one 
of the key affective states that arise at the time of cognitive 
disequilibrium, and anxiety is also a key emotion pertinent to 
deep learning (D’Mello, Dale, & Graesser, 2011).  

 

 
Figure 3: An illustration of cursor trajectory features. 

16 features were extracted for each participant. 
 

Data analysis. To pre-process the cursor movement data, 
we first applied a linear interpolation method and 
standardized cursor trajectories of all trials into 100 equally-
spaced time steps starting from the onset time of the first 
cursor move to the time slice of the final move (at which the 
choice button, either left or right, was pressed (Dale et al., 
2007; Freeman et al., 2009; Spivey et al., 2005; Yamauchi, 
2013). 

For each trajectory, we divided the 100 time-steps into four 
equal segments (Figure 3) and extracted two features—
attraction and zigzags (Figure 4)—from the four segments. 
Attraction was defined as the area of departure from the 
shortest path and the zigzag is the number of changing 
directions with respect to the straight line from the starting 

position to the end position (Figure 4). These cursor 
trajectory features were selected because these features have 
been shown to be significant in cognitive decision making 
(Dale et al., 2007; Freeman et al., 2009; Spivey et al., 2005; 
Xiao & Yamauchi, 2014; Yamauchi, 2013; Yamauchi & 
Bowman, 2014; Yamauchi et al., 2007). 

For individual participants, means and standard deviations 
of these features were calculated over trials, yielding 16 
predictors (2 features x 4 segments x 2 statistical properties 
(mean, SD)). D’Mello and colleagues (D’Mello et al., 2011) 
investigated body movements of users in an intelligent 
tutoring system and showed that inconsistent body motions 
during learning reflect high levels of anxiety. In this vein, 
standard deviations of cursor properties over different trials 
are likely to reflect participants’ emotional states. 

 

  

Figure 4:  Illustrations of (a) attraction and (b) zigzags 
 
Design. For the cursor trajectory data, we employed linear 

regression analysis with anxiety scores as the dependent 
variable and 16 cursor trajectory features as the independent 
variables (Figure 3). The values of independent variables 
(i.e., extracted cursor trajectory properties) and the dependent 
variable (i.e., observed anxiety scores) were normalized so 
that the mean and standard deviation of each variable were 0 
and 1, respectively. For the cursor trajectory analysis, the 
trials that took more than 6 seconds were not analyzed. Thus, 
a total of 11,555 trials (90.1 % of the entire trials) were 
analyzed. 

Results and Discussion 
Anxiety questionnaire data. The anxiety questionnaire 

asked participants to indicate their levels of anxiety on a 1-4 
scale (20 questions). Our questionnaire results showed that 
female participants reported a higher level of anxiety (M = 
2.0, SD = 0.56) than male participants (M = 1.8, SD = 0.46), 
t(132) = 2.36, p = 0.02, d = 0.3, 95% CId [-0.04, 0.64].  

Linking cursor trajectories to anxiety. To investigate the 
relationship between cursor trajectories and self-reported 
anxiety scores, we applied stepwise regression analysis 
separately to female (n = 75) and male (n = 58) participants. 
This separate analysis procedure was adopted because a large 
number of studies demonstrate sex differences in emotionally 
charged stimuli (e.g., Bradley & Lang, 2007), and our anxiety 
quetionnaire data revealed significant sex differences. For 
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this analysis, a total of 16 predictors were submitted to a 
stepwise linear regression (Figure 3) with the Akaike 
Information Criterion (AIC) for the predictor selection 
criterion. 

 

 
Figure 5:  Graphical summaries of two regression analyses. 

The units of the x-y coordinates of the graphs are 
standardized “z-scores.” 

 
Consistent with the studies that report gender differences 

in emotional experience (Cahill, 2006), our results revealed a 
strong gender effect. Cursor trajectory patterns obtained from 
female participants were moderately correlated with their 
self-reported anxiety scores; F(2, 72) = 4.81, p = 0.01, R2 = 
0.12 (adjusted R2 = 0.09); 12 % of the variance observed in 
female participants’ anxiety scores was explained by two 
predictors identified in the stepwise regression. Given male 
participants, our regression analysis indicated that 47% of the 
variance was explained by seven predictors; F(7, 50) = 6.22, 
p < 0.001, R2 = 0.47 (adjusted R2 = 0.39) (Figure 5).   

 
Table 1: Coefficients selected by the regression analysis 

  Female Male 

  Segments Mean SD Mean SD 

Attract 76-100     

 51-75 .34**    

 26-50    .51** 

 1-25   -.29*  

Zigzag 76-100 -.16#  -.81*** .39* 

 51-75   .77***  

  26-50    -.23# .24# 

 1-25     

Note. p***< .001, .001 ≤ p**< .01 .01≤p*< .05, .05≤p#. 

 
Overall, two properties, attraction and zigzag, extracted 

during the midsection time-steps (26-50 & 51-75) appear 
particularly important. For male participants, zigzags 
extracted from 51-75th time-steps and 76-100th time-steps 
were shown to be highly correlated with self-reported anxiety 
scores (Table 1). Given female participants, attraction taken 
in the middle section (51-75th time-steps) was critical.  

Assessing the validity of the regression result. To assess the 
validity of our cursor trajectory analysis, we examined the 

extent to which randomly generated pseudo predictors could 
explain the empirical anxiety scores obtained in the 
experiment. If the 16 cursor properties extracted from 
individual participants performed no better than randomly 
generated pseudo-predictors, our method should be judged as 
ineffective.  

In this simulation analysis, we replaced the 16 trajectory 
predictors with 16 vectors of arbitrary numbers sampled 
randomly from the standard normal distribution. We applied 
the same stepwise regression analysis to the “pseudo 
predictors” and calculated R2. This process was repeated 
1000 times to estimate the distribution of R2 obtained from 
the pseudo predictors.   

 

 (a) 

 

(b) 

 
Figure 6: Results from the simulation study based on female 

participants (a), and male participants (b). 
 

Figure 7 shows the results of this simulation study. The 
dotted red lines represented R2 obtained from the actual 
experiment. Given the female participants, our empirical 
predictors outperformed random pseudo predictors slightly 
more than 50% of the time, suggesting that the cursor 
trajectory predictors extracted from female participants were 
barely effective compared to randomly generated predictors. 
Given the data from male participants, our empirical 
predictors outperformed the random pseudo predictors more 
than 99% of the time, suggesting that our cursor trajectory 
worked well in explaining male participants’ self-reported 
anxiety levels.  

Discussion 
The extracted cursor trajectories for male participants 

predicted about 47% of the variance of their self-reported 
anxiety scores. For female participants, the same predictors 
were not very effective. Although we found a statistically 
significant correlation between some of the identified 
predictors and anxiety scores, our verification analysis 
showed that randomly sampled pseudo predictors can 
achieve a comparable level of accountability in female 
participants. It is well known that there are considerable sex 
differences in male and female brains especially in the 
amygdala. The way that emotional states are expressed is also 
different between male and female (Burleson & Picard, 2007; 
Conati, 2002). It appears that such basic sex differences are 
at play in the cursor movements observed in our male and 
female participants as well. 
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The idea that emotion influences bodily motions has been 
investigated in HCI (Glowinski & Mancini, 2011; Thrasher, 
Van der Zwaag, Bianchi-Berthouze, & Westerink, 2011). 
Other studies suggest that emotional states are expressed 
through keystrokes (Epp, Lippold, & Mandryk, 2011). The 
present study extends these studies by showing that people’s 
emotional states (at least for male participants) can be 
reflected by the subtle movements of computer cursors in a 
simple choice-reaching task. 

Our cursor trajectory analysis provides a new method for 
affective computing for male participants with added 
advantage for the ease of implementation and computation. 
Computer cursors are by far among the most ubiquitous 
means connecting people and computers, and almost all 
computers, including tablets, require some form of cursor or 
finger movements for interaction. Because movement can be 
traced in time-stamped x-y coordinate points, the cost for 
online data processing can be miniscule.  

Limitations and Future directions 
Our study is correlational and the causal link between 

cursor motion and emotion is unknown. The impact of 
emotion on cursor motion should be tested experimentally 
where a certain emotion is experimentally elicited.  This 
study employed a simplified task and our procedure was 
effective only for male participants. Although such a 
controlled situation is needed for the initial investigation of a 
new technology, the proposed method should be vetted 
thoroughly in more realistic settings. The applicability of the 
cursor-based method should be examined further with more 
rigorous statistical methods (e.g., cross validation). It is 
possible that the cursor-based analysis is viable only in the 
task context that requires choice-reaching. The 
generalizability of our procedure should be investigated 
further in contexts that do not involve choice reaching. It 
should be also noted that the cursor-based affective 
computing method is limited because it requires direct 
interaction with computers (e.g., facial expressions can be 
assessed without computers). These limitations should be 
effectively addressed in future studies. 

Conclusion 
In recent years, there has been an increasing consensus 

about the need to broaden our understanding of human 
emotion and its impact on human computer interaction. The 
present study combines the virtues of the integrated 
understanding of human physiology, emotion and motor 
control and shows the intricate link between the three. We 
suggest that cursor trajectory analysis can be integrated into 
existing AC technologies, providing an economical method 
of affective computing.  
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