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ABSTRACT OF THE THESIS

Evaluating the Uncertainties in the Shifts of Atmospheric Rivers (ARs) over Recent Decades in

the Southern Hemisphere

by
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Professor Gang Chen, Chair

In this study, we investigate the uncertainties mainly in the trends of frequency and shifts of ARs

on the choice of AR detection algorithm and reanalysis data, and also analyze the causes of

trends at various temporal and spatial scales using two ensembles from Community Earth

System Model (CESM) simulations and decomposition covering the period of 1980-2016.

Meteorological reanalyses show all-seasonal poleward shifts over the Pacific, in contrast to

statistically insignificant equatorward shifts during MAM and SON over the Atlantic and Indian

Ocean sectors throughout decades. The spatial patterns of intensification and shifts of ARs are

largely driven by the changes in atmospheric circulation while anthropogenic forcing enhances

the increase in moisture-driven AR frequency with nearly uniform warming over the Southern

Ocean. Sea surface temperature (SST) variability characterized by the negative phase of the

Interdecadal Pacific Oscillation (IPO) could generate dynamically-driven patterns of ARs to

compensate for the poleward shift driven by thermodynamics.
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1. Introduction

Atmospheric river (AR) is defined as a long, narrow and transient corridor of strong integrated

horizontal water vapor transport (IVT) in the lower troposphere, typically featured by

highly-concentrated moisture and low-level jet stream ahead of the cold front of an extratropical

cyclone (Rutz et al., 2019; Payne et al., 2020; Zhou & O’ Brien et al., 2021; Zhang, Ralph &

Zheng, 2019). ARs are important components of the meridional transport of atmospheric

moisture resulting in over 90% of the poleward moisture transport at midlatitudes (Zhu &

Newell, 1998). With intense moisture transport, ARs generate forced precipitation through

interaction with topography or ascent along a warm conveyor belt or frontal boundary (Payne et

al., 2020). AR precipitation is positively correlated with IVT, regarded as AR intensity (Rutz et

al., 2014). AR events are associated with about 40-75% of extreme wind and precipitation at

40% of the world’s coastlines in mid-latitude ocean basins (Waliser & Guan, 2017). In

California, ARs have been historically contributing to water supplies but also have caused

substantial socio-economic damage from landslides and flooding by generating extreme

precipitation which challenges water resource management (Payne et al., 2020; Michaelis et al.,

2022; Swain et al., 2018; Gershunov et al., 2017; Dettinger et al., 2011; Guan et al., 2010). In

California, precipitation and streamflow totals, generally fueled by landfalling ARs on the west

coast, have large annual variations due to large storms, and AR-driven precipitation contributes

20 - 50% of the state’s precipitation (Michaelis et al., 2022; Dettinger et al., 2011). ARs also

extend into the polar regions and further disturb the sensitive feedback processes (Nash et al.,

2018). While ARs and associated extreme water vapor transport rarely occur over the polar

regions, studies show that 40-60% of the total annual precipitation in certain Antarctic regions is

from the top 10% of extreme daily precipitation events (Turner et al., 2019). ARs contribute
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significantly, around 13%, to the Antarctic accumulated snowfall (10-20% of the total snowfall

across East Antarctica) and a majority of extreme precipitation events across the middle to high

latitudes where ARs mostly occur (Wille et al., 2021). In addition, ARs also control the mass

balance by triggering ice melting or amplifying warming by affecting the surface radiative

balance and generating condensational latent heat or turbulent heat fluxes (Francis et al., 2020;

Wille et al., 2019; Komatsu et al., 2018). Studies show that ARs influence the decline of Arctic

sea ice (Hegyi & Taylor, 2018) and result in short-duration but high-volume surface melting

events, particularly in West Antarctica (Maclennan et al., 2022).

The changes in ARs can be decomposed into contributions from atmospheric moisture variability

caused by thermodynamic processes, and changes in the atmospheric circulation that transports

water vapor driven by large-scale atmospheric circulation (Ma et al., 2020). Different aspects of

water vapor transport in individual AR events are further distinguished into “wet”

(moisture-dominated IVT) and “windy” (wind-dominated IVT). Windy ARs modulate the

precipitation magnitudes and generate greater precipitation, particularly over orography and at

higher IVT. As the global mean surface temperature increases, the water-holding capacity of the

atmosphere will be enhanced which helps intensify the moisture transport, thus strengthening the

moisture dominance of regional ARs (Algarra et al., 2020; Gonzales et al, 2020). The intensity of

AR-driven precipitation and hydrological extremes will also be enhanced by increased

atmospheric moisture following Clausius–Clapeyron scaling in which the column-averaged

integrated moisture increases at a rate of 7.3%/k with respect to the average surface air

temperature (Payne et al., 2020; Allan, 2012; O’Gorman & Muller, 2010). In CMIP5/6 future

simulations, most AR detectors indicate a global increase in AR frequency, sizes, and counts

with strong radiative forcing (O’Brien et al., 2021). AR activities are also modulated by
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large-scale dynamics characterized by diverse intensities, moisture sources, and preferred tracks

of future ARs with climate change (Payne et al., 2020; Fish et al., 2019). In the tropics, ARs in

the North Pacific region are affected by the Madden-Julian oscillation (MJO), convectively

coupled equatorial waves, the quasi-biennial oscillation, and El Nino-Southern Oscillation

(Benedict et al., 2019). In the extratropics, shifts in the North Pacific upper-tropospheric jet

stream associated with Rossby wave propagation and Rossby wave breaking can significantly

modulate AR intensity and landfall location (Payne & Magnusdottir, 2014; Neiman et al., 2008).

Rossby wave breaking dynamically influences the AR moisture dominance as well (Gonzales et

al, 2020; Benedict et al., 2019; Mundhenk et al., 2016). Investigation of ARs in the Southern

Hemisphere is still an area of ongoing research (Ma et al., 2020).

Due to the dependency on identification algorithms and the complexity of their evolution, the

identification and characterization of ARs in large datasets including reanalyses and climate

simulations remain uncertain (Michaelis et al., 2022), so a collection of identification and

tracking methods have been developed, termed Atmospheric river detection tools (ARDTs).

ARDTs are applied to objectively and quantitatively discriminate ARs, normally featured by

anomalously high moisture or moisture transport that occurs in continuous and filamentary

structures from the background in the datasets by following a set of thresholds and filters

(O’Brien et al., 2022). Recently, the Atmospheric River Tracking Intercomparison Project

(ARTMIP), which has so far worked on tier 1 and 2 experiments, is an international effort

initiated by the U.S. Department of Energy (DOE) and National Oceanic and Atmospheric

Administration (NOAA) scientists to systematically understand and quantify the uncertainties in

AR science based on the choice of methodology (Tier 1) and describe the impacts on climate

science and other fields (Tier 2) (Payne et al., 2020; Shields et al., 2018). Shields [2019] found

3



that the climatology of ARs (e.g. the frequency, duration, intensity, propagation speed and

predictability) largely depends on the choice of ARDTs. The occurrence of consensus ARs

concentrates on the extratropics while the largest disagreement between the global detection

methodologies results from the detection of weak features (Lora et al., 2020). High-resolution

historical and future climate model simulations illustrate that uncertainties in projected AR

frequency and AR-driven precipitation are sensitive to ARDT selection (Shields et al., 2023;

O’Brien et al., 2022). Zhou and O’Brien [2021] studied and found common AR-MJO and

AR-ENSO connections across different AR detection methods since responses of AR to climate

change are tied to the definition of the feature. Although the detector-related uncertainties may

be negligible at a time scale longer than AR itself, there’re still large disagreements in the

regional AR-related research, indicating more challenges need to be overcome regarding how

AR responds to different modes of climate variability. Intercomparison of algorithms enables

further understanding of the underlying physical processes (e.g. transient baroclinic instabilities)

that influence the evolution of ARs during their life cycles and features (“flavors”) associated

with ARs observed across various classes of AR algorithms which is the main source of

challenges for the categorization of ARDTs (O’Brien et al., 2020). Understanding the

disagreements and developmental intent of the ARDTs will also affect the choice of ARDTs for

different purposes when applying to different scientific questions (e.g. with diverse geographical

or topographical constraints, or different horizontal resolutions) (Shields et al., 2023; Collow et

al., 2022; O’Brien et al., 2022). Moreover, it is helpful for the stakeholder communities to better

know their socio-economic impacts such as assessment of hazards (e.g. extreme precipitation,

floods, and storms), water management, city and transportation planning, agriculture or industry

that relies on global and regional hydrological information (Shields et al., 2019).
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Based on both observations and climate models, there has been a meridional shift of westerly jets

in the Southern Hemisphere over the past few decades (Waugh et al., 2020; Swart et al., 2015;

Solman & Orlanski, 2014; Chen & Held, 2007; Kushner et al., 2001; Yang et al., 2020). Waugh

[2020] analyzed the intensification and shift of regionally averaged winds. Thomas [2015]

analyzed the natural variability of extratropical circulation by comparing Coupled Model

Intercomparison Project Phase 5 (CMIP5) preindustrial control model runs and observed trends

in Southern Annular Mode (SAM), jet magnitude, and location that are all related to changes in

ocean circulation, and found that those trends could be due to the combination of natural

variability and external forcing. Swart [2015] found the spatial structure of the observed trends in

zonal winds largest, but also most uncertain in the southeastern Pacific. The mean trend in the

CMIP5 is similar to observations in the core area of the westerlies while several reanalyses

overestimate the recent trends (Swart et al., 2015). AR events usually occur in conjunction with

the strong low-level wind like westerly jets, according to the definition of IVT, but strong surface

wind associated with AR has been less discussed in the AR literature compared with AR-driven

precipitation (Gonzales et al., 2020). Understanding the physical (i.e. dynamic and

thermodynamic) processes associated with ARs is very crucial in the context of climate change.

Ma [2020] investigated the trend of annual ARs over the Southern Ocean over recent decades

and found the majority of AR frequency trends are driven by large-scale atmospheric circulation.

The results show an increase in AR frequency over the Southern Ocean and a decrease over

lower latitudes in the past four decades which generate poleward AR shifts. Fully coupled CESM

experiments indicate evidence of positive AR frequency trends driven by anthropogenic forcing

and dynamically-driven trends forced by observed sea surface temperature that reconcile the

moisture-driven trends. In this study, we aim to further study the seasonal changes of ARs and
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decomposed components driven by dynamics and thermodynamics over individual ocean basins

to investigate the impacts of external forcing, and also intercomparison among the identification

methods and reanalyses to quantify the uncertainties in the choice of method and data. The

remainder of this manuscript is organized into five sections. Section 2 includes the description of

data sets and methods used in this study. Section 3 includes the discussion and analysis of results

which are concluded in section 4.

2. Data and Methods

2.1 Observation and Climate model

For the analysis of different observation, we use five reanalyses between 1980 - 2016, including

the ECMWF global atmospheric reanalysis ERA-Interim which provides global, 6-hourly

atmospheric fields at 1.5°⨉1.5° spatial resolution and the fifth generation ECMWF global

atmospheric reanalysis (ERA5) at the higher spatial resolution of 1°⨉1°, version 2 of the

National Aeronautics and Space Administration (NOSA) Modern-Era Retrospective analysis for

Research and Applications, Version 2 (MERRA-2) at the horizontal spatial resolution of

0.5°⨉0.625°, National Centers for Environmental Protection-National Center for Atmospheric

Research (NCEP-NCAR) Reanalysis Project at the NOAA Physical Sciences Laboratory at the

horizontal spatial resolution of 2.5°⨉2.5°, and the Japanese 55-year Reanalysis (JRA55) at the

horizontal spatial resolution of 1.25°×1.25°. Calculations of IVT from reanalyses use data at

00:00 UTC each day (no impacts on results if use mean values). The AR detection developed by

Guan and Waliser et al., (2015) uses a fixed threshold for integrated water vapor transport (IVT)

that derives from horizontal wind and specific humidity at pressure levels between surface and

200mba pressure level (near surface level, 850mba, 500mba, 200mba in the reanalysis except
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that 300mba is the highest level in NCEP-NCAR due to lack of pleasure data above 300 mba)

(see equation below).

𝐼𝑉𝑇 = [( 1
𝑔

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

200𝑚𝑏𝑎

∫ 𝑞𝑢 𝑑𝑝)2 + ( 1
𝑔

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

200𝑚𝑏𝑎

∫ 𝑞𝑣 𝑑𝑝)2]

Where g is the acceleration due to gravity, q is the specific humidity; u and v are the zonal and

meridional layer-averaged wind; dp is the pressure increment between two successive pressure

levels.

We also use daily mean values from two ensembles of CESM simulations at a spatial resolution

of 0.9°⨉1.25°. We use the 40-member fully coupled atmosphere-ocean simulations from the

CESM Lapse Ensemble (LENS) (Kay et al., 2015). The ensemble is forced by the observed

historical forcing from 1920 to 2005 and Representative Concentration Pathway 8.5 (RCP8.5)

forcing since 2006 which will be a good approximation of the reality for 2005 to 2020 if look at

the total cumulative carbon dioxide (CO2) emission during that period. (Moss et al., 2010;

Taylor et al., 2012; Ma et al., 2020). The other one is a 10-member atmosphere-only ensemble

from the same version of CESM, Version 1.1 (GOGA). They use the same historical forcing as

LENS (except the ozone forcing) followed by applying time-varying prescribed National

Oceanic and Atmospheric Administration (NOAA) Extended Reconstruction Sea Surface

Temperature (SST), Version 4, and Hadley Centre Sea Ice. In spite of the likelihood of

underestimating the dynamic contribution to AR frequency trends in GOGA due to slightly

difference in forcing (Schneider and Deser et al., 2018; Ma et al., 2020), another study shows

that it has statistically insignificant effects on the trends of the westerly jet in Southern

Hemisphere during the satellite era and thus would not affect the conclusion in this study. Each

ensemble member only differs in the initial condition by applying a small perturbation in initial
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atmospheric temperature fields.

2.2 AR detection algorithms

To facilitate the intercomparison of ARDTs, 8 different ARTMIP methods are included and

3-hourly IVT in MERRA2 is aggregated as shown in Table 1.

Table 1
List of Selected AR Detection Algorithms

No. ARDT Reference Region Thresholds

1 Cascade_bard_v1 O'Brien et al. (2020) Global Relative threshold (based on spatial
percentile for each timestep). An
inverted Gaussian filter is applied at
the equator to damp out the ITCZ.

2 Lora_global Lora et al. (2017) Global Length ≥ 2,000 km; IVT anomaly ≥
100 by subtracting𝑘𝑔 𝑚−1 𝑠−1

climatological and regional mean
IVT from the daily IVT field

3 Guan_waliser Guan and Waliser (2015) Global Relative: percentile IVT;85𝑡ℎ

Absolute min requirement designed
for polar locations: 100 𝑘𝑔 𝑚−1𝑠−1

IVT

4 Mundhenk_v3 Mundhenk et al. (2016) Global IVT anomaly ≥ 250 by𝑘𝑔 𝑚−1𝑠−1

subtracting climatological mean and
seasonal cycle

5 ClimateNet Kashinath et al. (2020) Global Threshold free; input fields are IWV,
U850, V850, SLP

6 PanLu Pan and Lu (2019); Pan
and Lu (2020)

East Asia &
Global but
latitude ≥
15°N

Length＞2000 km; length-width
ratio exceeds 2; sum of turning angle
< 360°; exceed local threshold (85%
quantile IVT) and regional threshold
(80% quantile IVT in the detection
region)

7 Tempest_ivt250 Ullrich & Zarzycki
(2017); McClenny et al.
(2020); Rhoades, Jones,
O'Brien
et al. (2020)

Global but
latitude ≥
15°N

IVT ≤ -5e4 ,∇2 𝑘𝑔 𝑚−1𝑠−1 𝑟𝑎𝑑−2

IVT ≥ 250 ; object＞25𝑘𝑔 𝑚−1𝑠−1

grid points

8 CASCADE_IWV Experimental Global Convolutional neural network to
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replicate ARTMIP mean; Threshold
free; use IWV as input

2.3 Dynamic and Thermodynamic Decomposition

A scaling method to decompose the dynamic and thermodynamic contributions to the AR

frequency trends in this study is developed by removing the interannual variability of the annual

mean specific humidity (Ma et al., 2020). The AR frequency derived from the scaled IVT (i.e.

dynamically-driven specific humidity, u, see equation below) indicates the dynamic𝑞
𝑑𝑦𝑛𝑎𝑚

component of the total AR frequency, while the corresponding linear trends represent the AR

frequency trends driven by atmospheric dynamics, and the difference represents

thermodynamically-driven trends.

=𝑞
𝑑𝑦𝑛𝑎𝑚

𝑞
𝑖,𝑗

× 𝑞
𝑐
/𝑞

𝑚

Where is the climatological specific humidity at the level at each grid cell, is the annual𝑞
𝑐

𝑞
𝑚

mean specific humidity at the same level at each grid cell in the given year. Climatological

specific humidity is calculated by averaging the data of the study period.

2.4 Latitude of ARs

The averaged latitude of ARs is weighted by AR frequency and area at particular latitudes

between 20°S - 60°S in order to zoom into the mid-latitude regions. The calculation of

area-weighted mean latitude is shown by the equation:

𝐴𝑟𝑒𝑎 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑅 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:  𝑤𝑓(𝑖) =  𝑓(𝑖) *  𝑐𝑜𝑠( 𝑙𝑎𝑡(𝑖)
π )

𝑙𝑎𝑡(𝑖) ⊂[− 60, − 20],  𝑖 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒
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Where lat represents the vector of latitudes (degrees in the meridional direction), while wf(i), f(i)

and lat(i) indicate the value at particular latitude using the index i. f(i) represents the zonally

averaged AR frequency within each ocean basin.

]𝐴𝑟𝑒𝑎 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝐴𝑅𝑠:  𝑤𝑙(𝑖) =  
−20°

−60°

∑ [ 𝑙𝑎𝑡(𝑖) * 𝑤𝑓(𝑖)

−20°

−60°

∑ 𝑤𝑓(𝑖)

The method to calculate the centroid latitude of AR events is developed by Guan and Waliser

(2015), but not used in this study. However, the conclusions in this study will not be affected by

the use of the method.

3. Results

3.1. Intercomparison of the AR Detection Algorithms

AR frequency is the most basic attribute characterizing the climatology of ARs of which the

global distribution represents the fraction of time during which AR conditions occur at any given

location. Figure 1 shows the distributions of seasonal AR frequency (MAM: March - May; JJA:

Jun - Aug; SON: Sep - Nov; DJF: Dec - Feb) in the Southern Hemisphere from 8 AR detection

algorithms during 1980-2016. It presents uncertainties in the AR frequency detected by different

ARDTs and shows spatial patterns of AR frequency roughly coincide with the storm tracks

(Shaw et al., 2016). AR frequency has different magnitudes based on the choice of ARDT, but all

the spatial distributions present large magnitudes of AR frequency clustering over the

extratropical oceans which are in agreement with the results by Lora et al. (2020), Collow et al.

(2022) and other findings from ARTMIP. AR total trends vary among seasons characterized by

positive signals (i.e. increasing trends) covering large areas, particularly the extratropics, and

several areas of negative signals (i.e. decreasing trends) while some of the seasonal trends are
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very noisy, like Guan_Waliser. The magnitude of seasonal trends differs among ARDTs. For

example, Tempest250 and CASCADE_IWV have smaller areas of strong positive trends

compared with ClimateNet and PanLu.
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Figure 1. Spatial distribution of climatological (shading) seasonal AR frequency identified by 8 AR detection
algorithms based on Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2):
Cascade_bard_v1, Lora_global, Guan_waliser, Mundhenk_v3, ClimateNet, PanLu, Tempest_ivt250,
CASCADE_IWV. AR frequency is defined as the fraction of time during which AR conditions occur at any given
location annually or seasonally of which the magnitude is represented by shadings. Coastlines are shown in black.
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Figure 2. Spatial distribution of climatology (contours) and the linear trends (shading, ) of seasonal AR% 𝑑𝑒𝑐𝑎𝑑𝑒−1

frequency identified by 8 AR detection algorithms based on Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA2): Cascade_bard_v1, Lora_global, Guan_waliser, Mundhenk_v3, ClimateNet,
PanLu, Tempest_ivt250, CASCADE_IWV. Coastlines are shown in black. Black line indicates the climatological
location of peak AR frequency. Stippling indicates regions with trends significant at the 90% significance level
based on two-tailed Student’s t test.

The area-weighted latitudes of annual and seasonal ARs are used to calculate the shift of ARs at

different spatial scales (i.e. within the whole Southern Ocean (SH) and individual ocean basins,

such as Pacific(PA), Atlantic and Indian Ocean sectors (ATIN)), as shown in Figure 3. There’re

large spreads in the shifts through the application of different ARDTs. Over the Southern Ocean,

there is a poleward shift of annual ARs, except for PanLu, at an average rate of -0.13°±0.079°

latitude per decade. The seasonal ARs in the Southern Ocean show poleward shifts at an average

rate of -0.22°±0.095° latitude per decade in JJA, but also statistically insignificant equatorward

shifts during SON. While ARs in the Pacific shift poleward in all seasons, the smallest shifts

usually occur in DJF at an average rate of -0.17°±0.081° latitude per decade and the largest occur

in MAM, JJA, and SON ranging from -0.2° ~ -0.6° latitude per decade (Figure 3b). ARs over the

Atlantic and Indian Ocean sectors detected by some selected ARDTs have prominent, but
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statistically insignificant equatorward shifts in MAM and SON at an average rate of 0.04°±0.12°,

0.20°±0.14° latitude per decade, and poleward shifts in DJF and JJA at a rate of -0.16°±0.075°,

-0.15°±0.082° latitude per decade (Figure 3c).

Figure 3. Linear trends of annual and seasonal AR area-weighted latitudes over: a) Southern Hemisphere (SH), b)
Pacific Ocean basin, c) Atlantic and Indian Ocean sectors. AR frequency are identified by 8 algorithms shown with
triangles in different colors: Cascade_bard_v1, Lora_global, Guan_waliser, Mundhenk_v3, ClimateNet, PanLu,
Tempest_ivt250, CASCADE_IWV. Solid triangles represent the trends significant at the 95% significance level
based on P-value.
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3.2. Trends of Atmospheric River (AR) frequency in the Southern Hemisphere

Figure 4. Spatial distribution of trends (solid contours) and linear trends (shading, ) of annual AR% 𝑑𝑒𝑐𝑎𝑑𝑒−1

frequency in ERA, MERRA2, NCEP, ERA5, JRA55. Black line indicates the climatological location of peak AR
frequency. Coastlines are partially shown in black. Stippling indicates regions with trends significant at the 90%
significance level based on two-tailed Student’s t test.

Trends of annual AR frequency from different reanalysis data have different spatial patterns

(Figure 4). All reanalysis datasets show stronger positive annual AR frequency trends over the

Pacific compared to other ocean basins. Moreover, spatial distributions of annual AR frequency

trends show a poleward shift of ARs with increasing AR frequency on the poleward side and

decreasing AR frequency on the equatorward side of climatological locations of peak AR

frequency. Changing occurrence of AR events may impact the local weather and climate such as
15



prolonged drought in Australia during El Niño and positive Indian Ocean Dipole (IOD) events

(McKay et al., 2023), reduced rainfall, and even drought in central Chile (Fuentes et al., 2021;

Boisier et al., 2016) and variability of sea-ice melting in Antarctica (Davison et al., 2023).

AR consists of both moisture and horizontal low-level winds which are strongly affected by the

SST variability. To figure out the cause of AR frequency trends, Figure 5 presents the spatial

distributions of seasonal AR frequency trends from observations (i.e. reanalysis mean) and

ensembles of CESM simulations (GOGA and LENS). In the reanalysis, seasonal AR frequency

trends in DJF and JJA have positive AR frequency trends on the southern flank of the

climatological peak over the Atlantic and Indian Ocean sectors, producing poleward AR shifts

(Figure 5, upper, b, d). The inverse pattern during SON drives equatorward AR shifts (Figure 5,

upper, c). Over the Pacific, there are positive AR frequency trends during all seasons at

extratropics. Analyzed by Ma et al. (2020), SST trends in LENS show relatively more uniform

positive signals (i.e. warming pattern) in the Southern Hemisphere compared with GOGA in

which the cooling region exists near the coast of Antarctica and tropics associated with warming

in the subtropics (see their Figure 1). Therefore, observed SST variability in GOGA brings

ensemble mean AR frequency trends in closer agreement with the observed trends featured by

some negative trends (not all) on the northern side of the climatological peak ARs and near the

west coast of Antarctica, especially during SON, and an extensive band of increased AR

frequency over the Pacific reaching from northwestern/central to southeastern Pacific. AR

frequency trends from ensemble mean of LENS which represent anthropogenically forced

signals under the RCP 8.5 scenario are characterized by positive trends covering the majority of

extratropical regions over the Southern Ocean that reveal rather a uniform warming pattern on

the polar side of the climatological peak. In conclusion, anthropogenic forcing contributes a lot
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to the positive trends in the Southern Ocean, and internal SST variability plays an important role

in modulating the spatial pattern of ARs over the Southern Ocean that is similar to the observed.

Figure 5. Spatial distribution of climatology (solid contours) and linear trends (shading, ) of: seasonal% 𝑑𝑒𝑐𝑎𝑑𝑒−1

reanalysis-mean AR frequency (upper panel), seasonal AR frequency in GOGA (middle panel), seasonal AR
frequency in LENs (bottom panel). Black line indicates the climatological locations of peak AR frequency. Stippling
indicates regions with trends significant at the 90% significance level based on two-tailed Student’s t test.

3.3. Uncertainties in the Shifts of AR Frequency

To better illustrate the shifts of ARs over recent decades, trends of zonal mean AR frequency

across the latitudes at smaller spatial and temporal scales are analyzed for understanding AR

shifts (Figure 6). The magnitudes of zonal mean AR frequency trends normally peak on the

poleward side of AR latitude, especially at high latitudes (<40°S). In comparison with other

reanalyses, NCEP has the largest increasing trend in AR frequency at around 50°S ~ 60°S. The

negative signals due to reduced AR frequency during SON at around 60°S south to the

climatological location of peak AR frequency over the Atlantic and Indian Ocean sectors are
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apparent in Figure 6, bottom. AR latitudes from model ensembles and reanalyses place further

north during boreal summer and fall (JJA and SON) and shift southward during boreal winter

and spring (DJF and MAM), as also captured by GOGA and LENs and similar to the seasonal

changes in jet locations. The majority of trends from reanalysis data fall within the spread of

models.

Figure 6. Linear trends of zonal seasonal AR frequency averaged over: Southern Hemisphere (SH; upper panel),
Pacific Ocean basin (PA; middle panel), Atlantic and Indian Ocean sectors (ATIN; bottom panel). Horizontal lines
indicate the climatological location of peak AR frequency and shadings indicate the spread in each model.

Consistent with the shifts of ARs using different ARDTs (Figure 3), the observed AR frequency

presents statistically significant poleward shifts at an average rate of -0.38°±0.090° latitude per
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decade in JJA while the smallest poleward shift occurs in SON at an average rate of

-0.16°±0.050° latitude per decade over the Southern Ocean (Figure 7a). NCEP usually presents

the largest poleward AR shift among all the reanalysis data. The seasonality of AR shift also

varies in individual ocean basins (Figure 7b, c). Over the Pacific, AR shifts during the period of

1980 - 2016 are dominant with negative signals representing poleward shifts. The biggest shifts

usually occur in SON (except NCEP) at an average rate of -0.49°±0.092° latitude per decade,

and the smallest occur in DJF at an average rate of -0.18°±0.11° latitude per decade. Associated

with the largest poleward shift in JJA at an average rate of -0.41°±0.10° latitude per decade over

the Atlantic and Indian Ocean sectors, there is a slightly equatorward shift in SON

(0.087°±0.061° latitude per decade) agreed among all the reanalysis data indicating a different

characteristic of seasonal AR shifts in reanalyses over the ATIN though they’re not statistically

significant at 95% significance level (a P-value of 0.05 or 5%). That seasonal AR shifts of

MERRA2 differ from ARTMIP results may be solely caused by 6-hourly and 3-hourly IVT that

are used to define the AR. Considerable variability exists among the members of CESM

ensembles in the magnitude and sign of the trends that also differ from the observations.

Ensemble mean AR frequency trends averaged over all the members in GOGA present

equatorward shifts in MAM in the SH; DJF, MAM, and JJA in the Pacific (Figure 7a, b).

However, although GOGA shows consistent spatial patterns of AR frequency trends with the

observations, both GOGA and LENS fail to reproduce the equatorward shift over the Atlantic

and Indian Ocean sectors in SON which is probably caused by other physical processes that are

not well reproduced in the model simulations (Figure 10). The influence of atmospheric

teleconnection on ARs still needs further research. Studies show that models seem to vary in

their ability to simulate the temporal variation of the teleconnection patterns and still need further
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improvement in the simulation of wave-train-like atmospheric teleconnection patterns (Handorf

& Dethloff, 2012; Cassado & Pastor, 2012; Stoner et al., 2009). The equatorward shifts during

SON over the Atlantic and Indian Ocean sectors could probably be related to the equatorward

shifts of westerly jets in the Southern Pacific during SON from ERA-Interim, JRA55, and

MERRA-55 found by Waugh (2020) (see their Figure 3).

Figure 7. Linear trends of annual and seasonal AR area-weighted latitudes over: a) Southern Hemisphere (SH), b)
Pacific Ocean basin (PA), c) Atlantic and Indian Ocean sectors (ATIN). Reanalyzed AR frequency trends are shown
with triangles in different colors. Box plots indicate the model results (black represents GOGA; blue represents
LENS). Solid triangles represent the trends significant at the 95% significance level based on P-value. Horizontal
lines indicate the model mean values and vertical lines indicate the spread in each model. Black hollow circles
represent the outliers.

3.4. Decomposition of AR Frequency Driven by Dynamics and Thermodynamics

By decomposing the AR frequency, we further analyze AR frequency trends driven by dynamics

and thermodynamics respectively (Figure 8, 9). The spatial patterns of dynamically-driven AR

frequency trends vary among seasons (Figure 8, upper), but are similar to the total trends with

positive trends at the extratropics and negative trends at the subtropics (Figure 5, upper). The

spatial patterns of decomposed AR frequency trends highlight the main contribution of seasonal

changes in AR frequency generated by changes in large-scale atmospheric circulation (Figure 10,

upper). Thermodynamically-driven AR frequency has been increasing and covered the majority
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of the Southern Ocean in LENS and GOGA as ARs grow in size and intensity with increasing

surface temperature. Driven by the observed SST, a cooling region near the coast of Antarctica

drives decreasing AR frequency trends there which explains the more negative

thermodynamically-driven AR frequency trends compared with the dynamically-driven (Figure 8

and 9, lower) and equatorward AR shifts (Figure 10, lower). The magnitudes of AR frequency

trends from the GOGA ensemble mean exceed LENs ensemble mean trends (Figure 8, middle,

d), indicating larger dynamic contributions driven by variation of SST, particularly during boreal

winter. The seasonality of trends driven by thermodynamics is hard to identify.

Figure 8. Spatial distribution of dynamic components of climatology (solid contours) and linear trends (shading,
): seasonal reanalysis-mean AR frequency (upper panel), seasonal AR frequency in GOGA (middle% 𝑑𝑒𝑐𝑎𝑑𝑒−1

panel), seasonal AR frequency in LENS (bottom panel). Black line indicates the climatological location of peak total
AR frequency. Stippling indicates regions with trends significant at the 90% significance level based on two-tailed
Student’s t test.
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Figure 9. Spatial distribution of thermodynamic components of climatology (solid contours) and linear trends
(shading, ) of: seasonal reanalysis-mean AR frequency (upper panel), seasonal AR frequency in GOGA% 𝑑𝑒𝑐𝑎𝑑𝑒−1

(middle panel), seasonal AR frequency in LENS (bottom panel). Black line indicates the climatological location of
peak AR frequency. Stippling indicates regions with trends significant at the 90% significance level based on
two-tailed Student’s t test.

Figure 10. The linear trends of annual and seasonal AR area-weighted latitudes due to dynamic (upper panel) and
thermodynamic contributions (lower panel): a) Southern Hemisphere (SH), b) Pacific Ocean basin (PA), c) Atlantic
and Indian Ocean sectors (ATIN). Reanalyzed trends of AR frequency are shown with triangles in different colors.
Box plots indicate the model results (black represents GOGA; blue represents LENS). Only solid triangles in the
upper panel represent the trends significant at the 95% significance level based on P-value. Horizontal lines in boxes
indicate the model mean values and vertical lines indicate the spread in each model. Black hollow circles are the
outliers.
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4. Conclusions

We analyzed the climatology and trends of ARs detected by different ARDTs over the Southern

Hemisphere in observations and climate models over the past four decades of which the results

are consistent with previous findings of ARTMIP. Distribution of climatology and seasonal trend

of AR frequency using different ARDTs have large uncertainties. The consensus among the

detection is that most high AR frequency (over 12%) concentrates within the ocean basins across

mid-to-high latitudes. The distribution of observed AR frequency trends shows increased AR

frequency at the extratropics resulting in the poleward AR shifts over the Southern Ocean which

is further confirmed by the changes in AR locations. Detected by different AR algorithm, the

annual AR frequency shifts at a rate of -0.13°±0.079°, -0.32°±0.062° and -0.018°±0.081° latitude

per decade over the entire Southern Ocean (SH), Pacific (PA), and Atlantic and Indian Ocean

sectors (ATIN). From the reanalyses, the annual AR shifts at a rate of -0.23°±0.077°,

-0.32°±0.13° and -0.15°±0.086° latitude per decade over the entire Southern Ocean (SH), Pacific

(PA), and Atlantic and Indian Ocean sectors (ATIN), in agreement with results from Ma et al.

(2020). The strongest seasonal shift in the reanalyses happens in JJA at a rate of -0.38°±0.090°,

-0.33°±0.12° and -0.41°±0.10° latitude per decade for SH, PA, and ATIN, and the weakest

poleward shift in SON for SH at a rate of -0.16°±0.050° latitude per decade, in DJF for PA at a

rate of -0.18°±0.11° latitude per decade. The AR frequency presents statistically insignificant

equatorward shifts during SON over the ATIN, with the average rate of 0.20°±0.14° latitude per

decade among selected ARDTs and 0.087°±0.061° latitude per decade on average in reanalyses.

The intercomparison of reanalyses shows that NCEP presents the strongest signals in AR

frequency trends and shifts.
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The seasonality of ARs over individual ocean basins differs from each other which may indicate

different climate impacts. Model results from two ensembles of CESM are used to analyze the

ARs’ response to anthropogenic forcing and SST variability in the Southern Hemisphere. AR

frequency from LENs reveals uniform increasing pattern over the entire ocean basin under the

RCP8.5 scenario. At the same time, ARs modulated by the negative IPO-like surface warming in

the GOGA ensemble have reduced frequency over the cooling area near Antarctica leading to

equatorward shifts over the Pacific. The pronounced equatorward shifts during DJF and MAM in

GOGA deviate from the poleward AR shifts in observations. Therefore, model simulations still

have potential to improve the simulation of seasonality which could relate to model’s ability to

simulate the atmospheric teleconnection patterns modulating the ARs (Handorf & Dethloff,

2012; Cassado & Pastor, 2012; Stoner et al., 2009).

The decomposition of AR further explains the change of ARs in another aspect. The observed

AR frequency trends are mainly caused by changes in atmospheric circulation according to the

dominant dynamically-driven AR frequency trends accounting for over 90% of the total trend,

and also weak trends driven by thermodynamics during all the seasons. The thermodynamic

effect generates increasing AR frequency over the majority of the Southern Ocean, particularly

over the Pacific. Thermodynamically-driven observed AR frequency trends in reanalysis remain

large uncertainties. The AR locations shift equatorward in GOGA, but poleward in LENs which

could be explained by reconciled trends due to observed SST anomalies.

Data Availability Statement

ERA-Interim and ERA5 data can be found from ECMWF

(https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/;https://www.ecmwf.int/en/fo
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recasts/dataset/ecmwf-reanalysis-v5). MERRA2 data is available at MDISC, managed by the

NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

(https://disc.gsfc.nasa.gov/datasets?project=MERRA-2). NCEP data can be found online

(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html). JRA55 research data is archived at

the National Center for Atmospheric Research, Computational and Informaiton Systems

Laboratory. Data from CESM large ensemble are available online

(http://www.cesm.ucar.edu/projects/community-jects/LENS/data-sets.html). GOGA 10-member

ensemble (ERSSTv4) are available online (http://www.cesm.ucar.edu/experiments/cesm1.1/LE/).

Details about Atmospheric Rivers Tracking Methods Intercomparison Project (ARTMIP) can be

found on their official website (https://www.cgd.ucar.edu/projects/artmip).
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