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EQUIVALENT-POTENTIAL METHOD FOR RELATIVISTIC SCATTERING 

Jerome Finkelstein 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

January 26, 1967 

ABSTRACT 

The e~uivalent-potential method is generalized so as to permit 

calculation both of multichannel scattering and of certain scattering 

amplitudes of particles of nonzero spin. It is pointed out that 

amplitudes calculated by this method have correct dependence upon 

momentum transfer; it is argued that this feature may make .the 

equivalent-potential method a better approximation to the unitarity 

iteration than is the N/D method. As examples, the ~~, ~ K, and 

~ N amplitudes are c·onsidered. For the first two of these cases it 

is found that the force due to vector meson exchange is far too small 

(it is suggested that inelastic effects may be ~uite important), but 

that if the input couplings are increased so as to reproduce the 

+ vector mesons, then 2. mesons are also produced, at roughly the 

masses of the f O(1250), fO' (1500), and K**(1405). In the ~ N case, 

with the potential given by nucleon and N*(1238) exchange, there are 

no free parameters in the calculation. The N* is then "predicted" 

at a mass of 1100 MeV. The nonresonant phase shifts also agree in 
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a general way with the results of phase-shift analysisj in particular, 

the 811 scattering length has the correct si.gn, while N/D calcula

tions produce the wrong sign. It is argued that this result indicates 

t~st the force due to iteration of the potential, included in this 

method but not in NID, can be important. 
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I. I1~ODUCTION 

An important problem in strong interaction physics has been 

the calculation of scattering amplitudes from input "forces" which 

are assumed known. One common way of calculating two-particle 

amplitudes is the N/D approximation. l In this paper I discuss and 

generalize an alternative procedure suggested several years ago by 

Charap and Fubini.
2 

With this procedure I am able to calculate simply 

and without the introduction of adjustable parameters the scattering 

amplitude implied by a given choice of input "force." Also, I can 

investigate whether certain discrepancies between N/D calculations 

and experiment are due to a failure of the N/D approximation or of 

more basic assumptions. 

The analysis of the scattering problem into "forces" and 

their "effects" is of course based on a classical analogue. Even in 

the classical qase, difficulties arise if this distinction is taken 

too seriously;3 since forces are always accompanied by their effects, 

it is not surprising that sooner or later one must get into trouble if 

one insists on discussing them separately. Nevertheless, this way of 

thinking about problems is certainly extremely useful in classical 

physics. In strong interaction physics it may also be useful, but 

the difficulties will appear much sooner. Loosely speaking, since 

the "effect" in one channel can be the "force"for another, ~his 

distinction can be expected to be useful only in the approximation of 

neglecting exact crossing symmetry. 
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In the framework of the Mandelstam representation, which shall 

be assumed throughout this paper, the notion of force can be defined as 

follows: Let A(s,t) be the (matrix) scattering amplitude connecting 

a specified, finite nurriller of two-body channels, where sand tare 

the usual kinematic variables. Let At(s,t) be the t discontinuity 

of A(s,t). (All amplitudes in this paper have definite exchange 

parity). Then the elastic double spectral function is defined by the 

usual unitarity formula 

Pel(s,t) 
1 = --1 

rcq,S2 .1
0:> 

to 

dt' dt" 
At (s, t ' ) At * (s, t") 

1 
K2(S,t,t',t") 

; (1-1) 

to is the position of the lowest singularity in t The generalized 

potential V, which corresponds to the '~force," is then defined by the 

relation 

At(s,t) = V(s,t) + ~ J ds' 
Pel (s', t) 

, (1-2 ) 
s'- s 

where, if necessary, a cutoff is to be understood on this last integral. 

Clearly this definition of the force depends on which channels are 

explicitly included in the matrix A. If V is real, the amplitude 

satisfies "elastic" unitarity, by which we mean that the S matrix of 

the channels explicitly included is unitary. 

These definitions permit the scattering problem to be attacked 

in two stages. The first stage is the construction of V, the second 

the calculation of the amplitude in terms of V. For the examples 
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which I shall discuss I will take V to be real, and approximate it 

by the most obvious single particle exchange terms. I shall not discuss 

here the possible justifications or limitations of these approximations, 

and in fact shall have essentially nothing new to say about the first 

.stage, except that my numerical results might be thought to provide 

some measure of the reliability of these approximations. The problem 

that I will discuss is, given an approximation to V, to find the 

corresponding amplitude A. 

A popular approach to this problem consists in approximating 

the left-hand cuts of partial wave amplitudes by the projections of V, 

and then unitarizing the amplitude by means of the N/D e~uations 

(In the following, whenever I refer to the N/D method this approxima

tion to the left-hand cuts should be understood); Such a procedure 

assures that the nearest part of the left-hand cut is treated correctly;5 

one hopes that this feature, together with the correct t~eatment of the 

elastic cut, assures an ade~uate approximation at low ener~ies. Since 

E~s. (I-l) and (I-2) can be solved for At by iteration, in principle 

the entire left-hand cut could be obtained, in the approximation that 

we somehow know V. However, since at best we can only know the long 

range parts of V, it might be thought that if the problem can be 

handled at all, only the nearby left-hand cut is important, and hence 

it is legitimate to neglect effects due to iterations of V. 

A hint that this argument may not be correct can be seen in 

the fact that, for large £, amplitudes calculated with the N/n 
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approximation can not have both their asymptotic and their threshold 

behavior correct. Thus iteration of long-range components in the 

potential is not dynamically equivalent to the effect of short-range 

components. I will suggest below, furthermore, that there are examples 

for low £, such as scattering in the ~ N 811 state, in which 

including the iterations of the parts of the potential that we do 

know gives a significantly better answer than does the N/D approxima-

tion. The equivalent-potential method suggested by the work of 

Charap and Fubini,2 which shares with N/D the feature of treating 

the nearby singularities correctly, but which does not neglect the 

force due to ite.rations of the potential, can be used to provide a 

basis for comparison with N/D results, as well as to produce 

amplitudes which are interesting for more general purposes. 

Briefly, this method is as follows: We imagine that we know 

V(s,t) and will settle for an amplitude A which fulfills these 

requirements: 

a) A(s,t) satisfies elastic unitarity. (of· the channels explicitly 

considered) • 

b) For small t, At(s,t) ~ V(s,t). (I-3 ) 

These requirements demand that we include the nearest singularities 

correctly. If we define 

V(r, s) = ;"'(s) ( ) -rift; dt V s,t. e r , (I,.4) 

i' 

" 
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and if the normalization ~(s) is judiciously chosen, the scattering 

amplitude implied by the SchrOiinger e~uation of which V(r,s) is the 

potential can be shown to fulfill re~uirements (I-3). It is the common 

hope of this method and of N/D that these re~uirements will ensure a 

reasonable approximation at low energies; at high energies the short-

range part of V are surely important. 

The e~uivalent-potential method is presented in more detail and 

generality in Section II below. It is applied to examples of scattering 

problems in the next two sections: Section III contains calculations 

of ~ ~ and ~ K scattering, and Section IV a calculation of ~ N 

scattering. The results of these calculations are summarized and 

discussed in Section V. 

Some of the material presented in this paper is contained in 

two preliminary reports of these calculations. 6,7 
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II. THE EQUIVALENT-POTENTIAL METHOD 

The e~uivalent-potential method was first suggested by Charap 

and Fubini2 for the special case of spinless external particles and 

zero kinetic energy. They were able to argue that the energy-independent 

Schr?dinger e~uation potential they obtained would be a good approximation 

when the kinetic energy was s~all compared to the rest mass. A few years 

,/ 8 . later Balazs general~zed this method by letting the potential be 

energy-dependent, and suggested its application to n n scattering. 

Re~uirements (I-3) determine the normalization ~(s)appearing 

in (I-4), and this completely determines the method. Before discussing 

this, I will, essentially follow the outline of Bal~zs, exhibit a 

potential U(r,s) which in principle would produce an amplitude 

satisfying (I-I) and (I-2) exactly. We will then be able to see in 

what sense our VCr,s) is an approximation to this U. 

A. Construction of Exact Potential 

Let us assume that we have solved (I-l) and (I-2) by iteration, 

and that we now know At(s,t) exactly. For application to a two 

channel calculation, I will for a time display the matrix indices of 

At ' although a single channel would have been sufficient to illustrate 

this construction. Knowing At(s,t), define matrices Ct • • (s,E,t) 
~J 

CtiJ·(s,E,t) = L 2-Jdt l dt" 
k 2nPk 

[ft(S,E,t ' )Jik[ft*(s,E,t")Jkj 
I 

Kij{ (E, t, t 't'~) 

and 

(II-l) 

\) 
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2[At (s,t)]ij 1 r r 1 1 1 
[ft(s,E,t)]iJ' = 1 +;- dE' CtiJ·(S,E',t) LE'- E - E'- SJ 

S2 

(11-2 ) 

Here i,j,k refer to the channels; Pk is the same function of E 

that the center-of-mass momentumqk is of s, and K is the standard 

unitarity kernel, which is a function of the three angle cosines. 

Equations (11-1) and (11-2) can be solved for Ct and f t by itera

tion. Having obtained Ct, def~ne U(s, t) by 

By combining (11-2) and (11-3), we see 

= u .. (s,t) +-1 fCO 
~J 1t 

dE' Ctij(s,E',t) 

E' - E 

Now Eqs.· (II-l) and (II-4) can be solved very simply. Consider the 

set of coupled Schrodinger equations, parameterized by s : 

(11-3 ) 

(II-4) 
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With certain restrictions on U(s,t), to be discussed below, we know 

that the amplitude implied by these Schr0ainger e~uations, call it 

fij(S,E,t), will have its· t discontinuity e~ual to [ft(s,E,t)]ij' 

thus justifying the notation. This is so because the t discontinuity 

of f will satisfy E~s. (ll-l) and (ll-4),9 and the solution to these 

e~uations is uni~ue. 

The restrictions are, first, that u .. (r,s) be less singular 
~J 

r-2 at the origin, which from (ll-6) means U. :(s,t) goes to 
~J 

than 
1 

zero faster than t-2 at large t • This will have to be checked in 

individual cases, and in fact will give us trouble when we'try to 

generalize to include scattering of particles with non-zero spin. The 

second restriction is that uij(s,t) be real. From (ll-3), 

1 

lm Uij(s,t) = 2s-2 lm [At(s,t)]ij - Clij(S,s,t), (ll-7) 

and then using (ll-l) and (ll-2), 

(ll-8 ) 

[At (s, t' )] ik[At *(s, til) ]kj 
I 

K2(S,t,t',t") 

That this is zero follows from the assumei uni tari ty of ' At ; that is 

from the matrix analogue of (l~l) and (l-2) and the fact that the input 

V(s,t) is realr 
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Let me now suppress the channel indices. So far we have seen 

we define 

1 

A(s,t) = ~ s~'f(s,s,t) 

we see from (II-2) that the t discontinuity of A(s,t) is just 

At(s,t), which by assumption satisfies (I-l) and (I-2). Having started 

with V(s,t), we have constructed an amplitude whose t discontinuity 

doe.s satisfy (I-l) and (I-2). Of course there are many functions with 

the same t discontinuity, but by using the Schrodinger e~uation we 

have picked out that ,uni~ue one which is analytic in angular momentum. 

This will be another assumption we shall have to make: that ,the low 

partial waves of the amplitude we are seeking are the continuation of 

the high partial waves. A similar assumption is made in N/D calcula-

tions in ignoring the possibility of CDD poles. 

While it might be tempting to try to interprete r as some 

kind of position coordinate, and f(s,E,t) as an off-mass-shell 

amplitude, this is not necessary, and will not be done here. It is 

sufficient for. our purposes to regard the introduction of these new 

variables as a purely formal device to generate a mass-shell amplitude 

A(s,t) which satisfies the mass-shell conditions (I-l)' and (I-2). 
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B. The Approximation 

Tne potential U(s,t) defined by (II-3) would in principle be 

obtained from V(s,t) by iterating (I-l) and (I-2) an infinite number 

of times, and then iterating (II-l) and (II-2) an infinite number of 

times. If we were to iterate each of these e~uations n times 

(keeping only the first n powers of V), and call the resulting 

potential ~(s,t), then it could be seen that ~ is real, and that 

::: U(s,t) 2 
for t < (n + 1) to. If we put ~(s,t) 

~(r, s) -(1/",) f dt ~(s,t) e-rl\/t/r , the resulting amplitude 

would still be unitary, and would have its t discontinuity correct5 

for t < (n + )
2 . 

1 to. Comparing with E~. (I-4), if we set the normaliza-
1 

S2), then VCr,s) ::: ~(r,s)j once again with tion ;"(s) - 2/(", 

channel indices, that is 

co r 
{ 

o 

( ) -r-vt; dt V .. s, t e r 
~J 

(II-10) 

E~uation (II-10) is the basis for the e~uivalent-potential 

calculation for spinless external particles. We have just seen in 

what sense this VCr,s) is an approximation to the U(r,s) defined 

above. However, the properties of the amplitude implied b~ vCr,s) 

can be deduced from (II-10) directly. Clearly f(s,E,t) will satisfy 

the non-relativistically normalized unitarity relation, and for 
1 

t < 4tO its t discontinuity will be 2s-2 V(s,t). Hence A(s,t) 

defined in (II-9) will fulfill re~uirements (I-3). Moreover, since 

~. 
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the amplitude does come from a SchrOiinger e~uation, its full t 

discontinuity will have the structure implied by the (non-relativistic) 

Mandelstam unitarity iteration. Thus the contribution to the force 

coming from higher terms of the iteration, while not included correctly, 

are not ignored either. This is the advantage that the equivalent

potential method has over the N/D method. One way to appreciate the 

advantage of getting the structure in t correctly is to observe that 

the amplitudes that I will calculate have correct threshold .behavior, 

while N/D amplitudes, just because the higher terms of the iteration 

are neglected, do not automatically have correct threshold behavior. 

10 Blankenbecler and Sugar have recently proposed a method of 

making dynamical calculations which shares with the equivalent-potential 

the feature 9f including the force due to iterated exchange, but which 

re~uires the off-shell generalized potential. 

C. Behavior in s 

So far we have examined our amplitude at a fixed value of s, 

and found that as a function of t it has the structure we expectj we 

have speculated that this feature might make it a better approximation 

than is the N/D amplitude. When we look at our amplitude as a function 

·of s, things do not look ~uite so good. In the first place, ~t large 

energies the short-range parts of the force are important, and even if 

we were to know V(s,t) exactly, our approximate treatment of the short

range contributions of the iterations would not be justified. The N/D 

method also suffers from this defect, perhaps even more severely. Also, 
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the analytic structure in the s plane is not correct. We started by 

considering the unitarity expression in the physical region, but having 

defined the potential in (II-lO), we can continue it anywhere we like, 

and in particular notice that VCr,s) will become infinite as s ~ 0, 

since in general V(s,t) will be finite there. It will still be true 

as s ~ 0 that the t discontinuity of our amplitude will be correct 

for t < 4to ' but for t > 4tO it will become more and more incorrect as 

s ~ O. Moreover, this is a defect not shared by N/D; it was introduced 

when we accepted for the higher unitarity iterations expressions which 

differ from the correct ones in not always carefully distinguishing 

between -1 
m 

1 

and 2S~2.· 

This defect would be fatal if we ever had to write a dispersion 

relation in s. But we do not; E~. (II-lO) can be justified, and the 

Schrodinger e~uation solved, at fixed. s. It is entirely possible for 

an amplitude to be a good approximation in the scattering region and 

to have bad analytiC structure somewhere else. We will certainly not 

be able to continue our solution far out of the scattering region. 

Below I will want to suggest that closed coupled channels may 

be important constituents of the p meson. If this be so, then in a 

one-channel calculation, re~uirements (I-3) are not sufficient to assure 

a good approximation. In N/D language we would explain this by saying 

that there is an important singularity, the inelastic· threshold, which 

must be taken into account •. In our language we say that the t 

discontinuity for t > 4tO is affected by the closed channel. It will . 
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perhaps seem strange that we can discuss the neglect of a closed 

channel (or the introduction of a spurious singularity at s = 0) in 

terms of the t discontinuity at fixed s, when the more usual way to 

think about this is in terms of a dispersion relation in s. That we 

can so discuss this can be seen from the following observation: If our 

ampli~ude had the correct t discontinuity for a particular s, then 

(under the assumption of analyticity in angular momentum) it would 

be correct5 for that value of s • 

D. Modification for ~ N 

If the external particles do have spin, there may be several 

coupled amplitudes, in which case the unitarity equations become more 

complicated. It is possible, however, to generalize the results of 

the preceding sections to some amplitudes involving particles with 

spin. For the case of ~ N scattering, I have been able to calculate 

an amplitude for the states with J = £ + ~ , but not for those with 

J = £ - ~ • 

The kinematics of ~ N scattering have been summarized by, 

11 for example, Frautschi and Walecka, whose not~tion I shall use. 

The invariant amplitudes A and B are not unitary in the sense of 

Eq. (I-l), and so could not possibly be reproduced by a SchrOdinger 

equation. Bal~zs had tried to write a Schrodinger equation for the 

~ N amplitude which is a matrix in spin space.12 He found that the 

attractive potential corresponding to nucleon exchange behaved like 

r-3 at the origin, which he proposed to handle with a cutoff. By 
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using amplitudes which obey simple unitarity relations, we shall be 

able partially to overcome this difficulty. 

Consider the partial-wave amplitudes f'(s) 
t± 

for orbital 

angular momentum t and J = t ~ ~, which are normalized to 

i5 
e sin 5/~ under the assumption of elastic unitarity. Then 

let F+ be defined by 

(II-ll) 

in',the physical region, and by analytic continuation whel;ever the sum 

in (II-ll) does not converge. The sum defining F begins at + . t = 0 , 

the sum for F at t = 1. Since the f + satisfy the unitarity 
t-

of spinless particles, so will F + and F That is~: we have the 

familiar relations 

(II-12 ) 

F+ and F are not coupled by unitarity. 

Since F+ and F are each unitary, we could carry out the 

derivations of the preceding sections in terms of them. That is, if 

we could find the potentials V+(s,t), we could hope to put them into 
1-

E~. (II-10) (dropping the 2s-2, since (II-12) shows that :± satisfy 

a nonrelativistically-normalized- unitarity) and solve the Schrodinger 

e~uation for amplitudes F+ which a) were correctly unitary, and 

b) had their t discontinuity correct, for small t. The potentials 
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will, as is customary, be constructed from the single-particle poles 

in the crossed channels, which in the spinless case will mean that 

V(s,t) will be a delta function in t. However, the price we pay 

for eliminating spin from the ~ N unitarity e~uations is that the 

crossing relations become complicated. In the appendix, the following 

points are established: the exchange of a particle contributes to 

F (s,t) not only a pole, but also a cut extending from the pole 
t 

position to t = + 00. Thus Vi corresponding to a single-particle 

exchange force can be written 

= g (s) B(t - t ) + h (s) ~ (s,t) , 
.± . P ± t 

(II-13 ) 

where g+ and h± are kinematic factors, t is the position of the p 

pole in F
t

, and ~t is zero if 

I~ (s,t)1 < const. x t-3/ 2 and 
+ . 

t<t 
P 

Also at large 

~-'s,t) > const. > O. 

t , 

From (II-10), this means that the potential corresponding to 

V behaves like r -3 at the origin. Thus we can not use a (nonsingular) 

Schrodinger e~uation to satisf,y re~uirements (I-3) applied to F 

Actually, this could already have been seen from the fact that F has 

/' 12 no s wave, and is essentially the same trouble that Balazs found. 

For this reason the e~uivalent-potential method does not enable us to 

calculate scattering in those ~ N states with J = t - 1 
'2. On the 

r - l a' t other hand, the potential corresponding to V+ behaves like 

the origin, and so we are able to produce an amplitude satisfying 

(I-3) by this method. In fact, it will turn out that for the range of 
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energies considered, the effect on the amplitude of ~+ is very small 

and might as well have been neglectedj this is consistent with the hope 

that for moderate energies we need only consider the long-range parts 

of forces. 

It might be thought that, since we will have an expression for 

f ,we should make a continuation in the energy, and by virtue of the 
£+ 

MacDowell symmetry arrive at an expression for f 
('£+If 

However, 

because of the considerations of the preceding section, this continuation 

can not be done. 

The equivalent-potential method may be expected yO apply to any 

amplitude which satisfies a unitarity equation such as (II-12), and 

which has all of its partial waves. Another example of such an 

amplitude is the spin-singlet NN amplitude. In this paper I am 

especially interested in calculating amplitudes for which a simple 

approximation to the potential can be written with few if any parameters. 

This is not the case with the NN problem, since the couplings of the 

vector mesons are not very well known, and especially since the ~ ~ 

s-waveexchange seems to be very important,13 and so I have not 

included a calculation of NN scattering. 

E. Calculational Methcxis and Conventions 

For the one-channel problem, the partial wave SchrOdinger 

equation is 

(.£ + 
dr

2 = V(r,.s) v(r) • (II-14 ) 

". 

• 

, 
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A sufficiently simple way to obtain the scattering amplitude is to 

solve (II-14) numerically (one Schrodinger e~uation takes about 

30 ~ sec on the CDC 6600 computer) and get the phase shift o£ from 

the asymptotic form of ~ If R is so large that VCr,s) is 

negligible for r> R, then 

~(R) [j£(~R.y + ~R j.£'(~R)] - ~'(R) Rj£(~R) 
= \jr(R) [n£(~R) + ~R nt' (~R)J - \jr'(R) Rn£(~R) 

, (II-15 ) 

where j£ and n£ are spherical Bessel functions and primes denote 

differentiation with respect to r. It is convenient tq use Bessel 

functions rather than sines and cosines to avoid having to integrate 

(II-14) up to an R so large that the centrifugal term is also 

negligible. 

For the two-channel calculations, the partial wave SchrOdinger 

t ' 14 
e~ua ~ons are 

( d 
2 

2' £ (1 + 1)) ,If ( ) 

2 +~, + 2 '1', r 
dr ~ r ~ 

= LV" (r, s) ~,(r) j 
~J J 

(II-16 ) 
j 

below the threshold of the kth channel, 

need two independent regular solutions of 

1 
2 -

~k = + i 1 ~k 12. We will 

(II-16), which I will label 

with a second subscriptj thus ~,.(r) is the jth solution for the 
. ~J 

ith channel. If we were lucky enough to pick our two solutions so 

that the incoming waves were diagonal, that is, if for R large enough, 

(II-17) 
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then we could read off the 8 matrix, which is given by 

(II-18) 

the ht in (II-17) are spherical Hankel functions: 

h£l = j£ + i n£ ' h£2 = j£ - i n£. In general, the asymptotic 

form of ~ is given by 

(II-19) 

Comparing (II-17) and (II-19), we see 

8 f -1 = BA • (,1,) = ,1, A-I, and so 
'I' lucky 'I' 

(II-20) 

The matrices A and B can be obtained from the asymptotic form of 

~i' , by differentiating and inverting (II-19). Finally, in the two
J 

channel case the eigenphase shifts are obtained from 

-'- ± + 1 [ . 2 2 tl 
2i 0t ~(s) = log 8 j 8- = 2 811 + 822 + ((811 - 822 ) + 4 812 ) j. 

(II-2l) 

The "resonant energies" that I will list are the energies at 

which ° passes through ~/2. The output reduced widths are defined by 

r = (~~tLs , (II-22 ) 

resonance 

.' 
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and have the dimensions of (Gev)2-2£. In the narrow-width approxima-

(dO/ds)-l is the imaginary coordinate of the pole in the s 

plane. 

Since the above discussion is not limited to integral values 

of £, Regge trajectories a(s) = OR(s) + i arCs) can be obtained 

through the approximation that ~(s)iS that value of £ for which 

o£(s) = ~/2J and ares) = (dDR/ds) (dO/ds)-l. As one of several 

checks on the numerical accuracy of these computations, some of the 

one-channel e~uations were also analyzed with a computer program 

written by Burke and Tate,15 which directly finds the pole in the 

S matrix for complex £; the agreement was excellent. 

F. Summary of Equivalent-Potential Method 

The calculations to be described in the next two sections 

proceed as follows: first we pretend that we know the generalized 

potentials; we shall in fact take them to be the simplest single-

particle exChange terms. For the case of spinless external particles 

V(s,t) will thus be a delta function: for the ~ N case V+(s,t) 

will be more complicated. We will then construct the SchrOdinger 

e~uation potential vCr,s) from E~. (II-10), or in the ~ N case 

.from its analogue, 

V (r, s) 
+ = 1 --~ (II-I0.' ) 
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The Schrouinger equation can then be solved numerically to give the 

scattering amplitude of which V(s,t) is the generalized potential. 

Our amplitude will satisfy unitarity and have the correct t 

discontinuity for small t In addition, the structure in t will be 

that dictated by the Mandelstam unitarity iteration, and so the partial 

waves of our amplitude will have correct threshold behavior. There are 

no free parameters in the calculation that are not contained in the 

potential itselfj in particular there is no cutoff, even though the 

exchanged particles will have non-zero spin. This means that when 

the gener~lized potential is known unambiguously, the scattering is 

predicted unambiguously. 
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III. EXAMPLES: 1r 1r AND 1r K SCATrERING 

To be valuable in helping us to judge the validity of the 

e~uivalent-potential method, an example should have the following 

three properties: First, the e~uivalent-potential method must be 

applicable to it; this eliminates most but not all examples of particles 

with non-zero spin. Second, we should know how to construct with a 

minimum of free parameters a generalized potential which has some chance 

of being a good approximation in the resonance region. Third, there 

should be relatively unambiguous experimental results with which to 

compare the calculations. The examples I have chosen to discuss are 

1r 1r , 1r K, and 1r N scattering. In this section I present two calcula-

tions of the 1r 1r amplitude, the first assuming elastic unitarity and 

the second including one other channel, and then a calculation of 1r K 

scattering. In the following section I present a calculation of 1r N 

scattering in the states with J = £ + t 

A. Single Channel 1r 1r Calculation 

In the 1r 1r calculation I will let the generalized potential: 

be given by the p meson exchange term. For a resonance pole in the 

t channel, the amplitude will have the form 

A(t,s) = (III-l) 

where A£(t) is the t channel partial wave in which the resonance 

occurs~ Near the resonance, 
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t t - i R I' 
(III-2 ) 

1 

The phase-space factor p e<luals 2<lt t -2, by the normalization which 
1 

has been established in (I-I). From E<l. (II-22), r
in 

= t 2 ;/(8<lt 2£+1), 

and so 

4 2£ r <It in (III-3 ) 
t - t R- il' 

In the narrow-width approximation, by cOtrib:lirlIg (III-3) and (III-I) 

we see 

(III-4) 

<lR being the value of <It when t = tR • 

To cross into the s channel, we have only to multiply by an 

isotopic spin crossing matrix element ~, so the contribution to the 

generalized potential of the pole in the t channel is 

v( s, t) (III-5 ) 

For p exchange, £ = 1 and tR = : .mp 
2 • There is an 

identical contribution from exchange in the u channel; the two contribu-

tions cancel for those states in which scattering is forbidden by Bose 

statistics and add in the allowed states, so if we remember to compute 

only allowed states, we can write 
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V(s, t) = 12 ~ ~ r. (s + 2 ~R2) O(t _ m 2) 
~n p 

(111-6) 

The parameters appearing in (111-6) are all reasonably well 

known. If we take the physical p to have a mass of 750 MeV and a 

width of 120 MeV, then r. ~ 0.20. 
~n 

There are thus no free parameters, 

and we can get an unambiguous prediction of the ~ ~ amplitude, which 

can be compared with experiment; in particular, we can see how well the 

p is reproduced in the output. 

Not surprisingly, this prediction fails miserably. The p 

does not appear in the output, and the £. = 1 phase shift is only 

100 at the mass at which the p should be. This is consistent with 

I . 16 17 18 the feeling that one gets from N D calculat~ons ' , that the force 

due to the p is just not strong enough to produce the p. Having 

failed to reproduce the p with the physical input, suppose we now 

treat the input width r. as a parameter, and vary it until the 
~n 

£ = 1 phase shift does e~ual ~/2 at the p mass. This results in 

= 0.46 (corresponding to a width of 270 MeV); the output width 

turns out to be rout = 0.50, and so this calculation is very nearly 

self consistent. 

In fact, it is a common approach in ~ ~ calculations to 

. 18 19 
determine the p parameters by ~e~uiring approximate self-cons~stency. ' 

In the present case this would not work, as there are many self consistent 

solutions; even with r. 
~n 

fixed at 0.46, the input and output are 
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consistent to within 10% as the input mass varies from 600 MeV to 

1 GeV. To require exact self consistency in an approximate calcula-

tion does not seem very meaningfUl; among other reasons, this would 

depend on the way in which the output width was defined. Therefore 

all that I can contribute to discussions of self-consistency is to 

report that it is possible to achieve self-consistency using the 

physical p mass. 

We have, within the' limitations of the equivalent-potential 

approximation, confirmed that the force due to the p is not strong 

enough, that other forces (including perhaps the effects of closed 

coupled channels) must be included. Below I will try to deal with 

the problem of closed coupled channels more or less directly; for the 

time being, let me hope that all of these other effects can in some 

sense be approximated by increasing the input p width, so that the 

potential will indeed be given by Eq. (111-6), with the physical p 

mass but with r. = 0.46. F~ving thus adjusted the potential to 
~n 

give the outputp mass correctly, I can now see how closely the other 

parameters of the ~ ~ amplitude agree with experiment. 

With this potential, for I = 0 there are two Regge trajectories 

above £ = 0 at threshold, both of which pass through £ = 2 and thus 

produce resonances. For I = 1 there is one trajectory, which passes 

through the p; for I = 2 the force is repulsive. The real parts of 

the trajectories continue to rise as the energy is increased, and in 

fact do eventually go through higher physical values of £, but well 

( 

i' 
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above 2 
s = 300 m . 
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'-' 
However, the approximations we have made can be 

justified, if at all, only at low energy, and so it would be entirely 

unjustified to attach any significance to these recurrences. 

+ The two I = 0, 2 resonances occur at 1070 and 1900 MeV; 

I will identify them with the f O(1250) and the fO' (1500). These 

and other parameters are summarized in Table I. 

The calculation of s-wave scattering by the equivalent potential 

method is less reliable than the calculation of higher partial waves, 

for the usual reason that the s wave depends more strongly on the 

shorter-range parts of the potential. In this case where we know 

that our potential is wrong, where we are representing unknown forces 

by an increase in',the input width, it would perhaps be asking too much 

to expect an accurate calculation of the s-wave phase shift. On the 

other hand, as at the present time there is no firm evidence on tms 

phase shift, any result we might calculate seems safe from ill1'1lediate 

experimental refutation. For completeness, the s-wave scattering length 

is included in Table I; the negative sign corresponds to a decreasing 

phase shift. This is the sign that would be expected from the existence 

of trajectories above £ = 0 at threshold, even though the forces 

are attractive. 

As explained above, the calculated amplitude can not be 

continued to s = O. However, for some distance above threshold the 

trajectories are very nearly linear; these linear trajectories have 

been extrapolated to s = 0, and the intercepts obtained in this way 



entered into Table I. Since crossing symmetry is not imposed on this 

calculation, there is no constraint forcing Regge intercepts to lie 

below 1. At one time it was supposed that the fO lay on the 

P trajectory and the 
0' 

f on the pl;20 this is the basis for the 

"experimental" intercepts appearing in Table I. If the fO should 

lie on the pI trajectory, the agreement between experiment and 

calculation in this respect would of course be worse. 

B. Coupled ~ ~ - K K Scattering 

. 16 for example It ~s often suggested" that closed coupled 

channels are important constituents of the p, and therefore must 

be'included,in any dynamical calculation of it. Three of the more 

likely channels are ~ w, N N, and K K. Since I am prevented from 

treating the first two of these because of spin complications (the 

p couples to the spin-triplet states of the N N system), I will 

attempt to calculate the coupled ~ ~ - K K system, ignoring the other 

channels. This approximation will mean that I can not hope to get the 

K K scattering at all correct? but perhaps the inclusion of even one 

additional channel will improve the results for the ~ ~ elastic 

amplitide. 

In analogy to the single channel calculation, I will take the 

generalized potential to be given by vector meson exchange. The 

appropriate force diagrams are presented in Fig. 1. The p K X 

coupling is not directly accessible to experiment, but is determined 

if we assume that the reduced VPP couplings are related by SU3.
21 

c' 
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Using these relations, and assuming for simplicity that the ~ is 

the member of the octet (although any other ill - ~ mixing angle could 

have been assumed), the 2 x 2 matrix potential can be expressed in 

terms of the reduced p 1! 1! coupling r in 

= 121! ~ r. (s + 2qR2) oCt _ m 2) 
~n . p (III-7a ) 

v KK-(s,t) = VKK- (s,t) = 
r- 2 2 

( 91!/V 2) ~ r. (s + 2 qR ) 0 (t - m * ) 1!1!, J 1!1! ~n K 

(III-7b ) 

= 

2 2 
+ 3 1! ~ r. (s + 2 qR ) oCt - m ). 

~n p (III-7c) 

Here qR ~s the value of ~ at the position of the exchanged 

resonance:" in (III-7a), qR2 
= (m 2 - 4m 2)/4; in (III-7b), p 1! 

,= 

With the physical value r. = 0.20, the 1! 1! t = 1 phase 
~n 

shift is again 100 at the mass at which the p should be, just as it 

was in the single-channel calculation. A resonance in this amplitude 

does appear, at about 1600 MeV. Adjusting r. to force this resonance 
~n 

down to 750 MeV, we find r. = 0.38, which is a somewhat smaller 
~n " 

value than was necessary in the single channel calculation. The output 

width is improved even more than the input, and is brought down to 
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r ~ 0.32: the calculation is still nearly self consistent. out ' 

With r in 
~ 0.38, the rest of the amplitude was calculated, 

and the results entered in Table I. The widths of the fO and the 

0' f are both substantially reduced from what they were in the one-

channel calculation; unfortunately, the f 
0' 

as well as the 

coupled primarily to the ~ ~ channel, in defiance of experimental 

results. 

One resonance appears in this calculation which did not appear 

at all in the single-channel calculation: a I ~ £ ~ 0 resonance at 

685 MeV, with a full width of 20 MeV. It is amusing to note that, 

because of the asymmetry in the decay of the o P , a resonance with 

these ~uantum numbers has been conjectured to lie underneath the 

However, it is possible to follow the trajectory on which our new 

resonance lies, and see that above the K K threshold it couples 

22 
P • 

primarily to the K K channel; so at £ ~ 0 it is primarily a bound 

state of K K , which explains its small width. But this means that 

its existence depends largely on the dynamics in the K K channel, and 

that is just the part of the problem which we knew we had no chance 

of getting correctly. Thus the appearance of this resonance so near 

to the p mass must be regarded as fortuitous. For the same reasons, 

the failure of the f 
0' 

t 1 K K · -t . 22a to couple s rong y to ":. ~s no ser~ous. 

c. ~ K SGattering 

For the calculation of .~ K scattering, let us again take the 

forces to be given by vector meson exchange, the p in the t channel 

and the K* in the u channel. We again need the p K K coupling, 
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and we can again relate all of the reduced couplings by SU3. 21 This 

time let us say that the one independent input parameter is the K* 

reduced width r'. ,since this is what can be compared with the 
J..n 

output. 

For I = 3/2 the total force is repulsive, so we need only 

consider the I = ~ states. Because of the unequal ~ and K masses, 

the potential looks slightly different than (III_6);23 the ,potential 

appropriate to angular momentum £ is given by 

V(s, t) V (s,t) + £ 
= (-1) V *(s,t) p K 

(III-8a) 

V (s,t) , 16 ~ r'in(s + a) S(t 
2 

= - m ) p p 
(III-8b) 

V *(s,t) 4 ~ r' (s + 2qR 
2 ~ (mK* 

2
)) ,s(t 2 

+ ~(s)) = - m * K in K 
(III-8c) 

In (III-8b), a = m
K

*2 /4 - (m~2 + ~2)/2 , and in (III-8c), 
222 ' 

~(x) = (~ - m~ ) /x. In a preliminary report of this calcula-

tion,6 the approximation ~ = 0 was made; the numerical differences 

in the results were completely negligible. 

r'in can be determined by requiring the output mass of the 

K* to be 890 MeV; this requirement gives r'. = 0.57 (the observed J..n 

width of 50 Mey24 implies r = 0.22). The output width rout = 0.55 

is very nearly the same as the input. There is one other resonance, 

at £ = 2 at 1265 MeV; I identify this with the K**(1405). Parameters 

- for these .two resonances are presented in Table II. 
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IV. EXAMPLE: -rr N SCATTERING 

For the -rr N example, r will construct the generalized potential 

from nucleon and N*(1238 ) exchange. The couplings of the pare some-

wrst uncertain, and in any case the p contribution is expected to be 

small. 25 Since in the rest of the potential there are no free para-

meters, I simply neglect the p force. 

The contributions of Nand N* exchange in the u channel 

to the invariant al,llplitudes A and· B have been given by Ball and 

26 
Wong. For the amplitVdes of isotopic spin (1/2, 3/2) these contribu-

tions are 

(rV-la) 

B(s, t,u) = 

(rV-lb) 

where in units in which m = c = 11 = 1, the N* mass 6- is 
-rr 

8.9, a
l 

= 842, a
2 = 23.4, bl = -157, b2 = 1.5, and the values 

of the couplings are gN*2/8-rr = 0.06, gN
2
/ 4-rr = 14.4. Projecting 

the partial waves of definite exchange parity from (rV-l), we have 

(rV-2a) 

). 
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(IV-2b) 

where, because of the une~ual-mass kinematics, tN* and tN' the 

positions of the poles in the amplitudes of definite exchange parity, 

depend on s; 

t * N 

2 2 2 2 
= IS. - (~ - m1! ) / s ; 

compare the ~uantity ~(s) in (III-8c). 

E~uations (IV-2) and the crossing relations derived in the 

appendix enable us to compute the contributions to V (s,t) of N 
+ 

(IV-3 ) 

and N* exchange, each of which will have the form (II-12). With a 

superscript ± to indicate exchange parity, so that V++ is physical 

for 1 
J - -2 

and (A-13). 

+ 
V -(s,t) 
+ 

even, and V+ for J - ~ odd, we see from E~s. (IV-2) 

E~uation (IV-4) continued 
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(Iv-4 ) 

2 .1. 
z + (z - 1)2, the C's are given by 

is given by Etl. (A-12). 

1 Since only states with J = £ + 2 can be calculated, we can 

not look for the nucleon pole; the only low energy resonance we expect 

to find is the N*(1238 ) in the P33 state. With the physical values 

of the input couplings this resonance appears at 1100 MeV, just above 

threshold. Its full width is 1.5 MeV; this corresponds "to a reduced 

width r of 0.8, to be compared with the experimental value of 1.7 

(120 MeV). These results have been entered into Table III. 

It thus appears that there is no need to depart from the physical 

values of the input parameters to obtain results which look reasonably 

similar to experiment. The non-resonant phase shifts also agree in a 

genera~ way with the results of phase-shift analysis, even though there 

were no parameters that were adjusted to make them agree. In Figs. 2 

and 3 the non-resonant phase shifts with £ ~ 2 are compared with the 

o to 700 MeV phase shift analysis by Roper. 27 

" I 
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At higher energies the results were not consistent with experi-

ment. Between 1500 and 2500 MeV, the only resonances to appear were 

a second at 1600, and an at 2140, and this is clearly 

wrong. In particular, the Regge recurrences of the N*(1238) never 

appear; the trajectory rises only to £ = 2.1 at 1920 MeV. However, 

the slope of the trajectory at the resonant energy is 0.9 (GeVr2, 

which is the same slope as that obtained from a straight-line fit to 

N* 28 ( . the and its observed recurrences and so if we extrapolate back 

to s = 0, our intercept would be about the same as in that fit). This 

result is not surprising if we believe that, while at low ~nergies the 

~trajectory is primarily coupled to the ~ N channel, at higher 

energies channels with higher thresholds (and probably higher external 

spin) are important. 

The reported results were all obtained from the potential 

given by (IV-4). If the cut contribution had been neglected (8 set 

equal to zero), none of the qualitative features would have been 

changed. In order to have another estimate of the degree of agreement 

between the calculated results and experiment, the value of the input 

~ N N coupling necessary to give the N* in the right place was 

determined. (The force due to the exchanged N* is very small in 

this state.) The result was gN2/4~ =ll~O, to be compared with the 

.known value of 14.4.· 
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V. DISCUSSION 

The most important numerical results from the calculations 

descriped in the preceding two sections appear in Tables I-III and 

Figs. 2-3. In the ~ N calculation there were no free parameters, 

and so these results are pure "predictions;" in each of the other 

calculations there was one free parameter, as the input couplings 

were allowed to vary from their physical values. The agreement between 

these resUlts and experiment compares favorably with that of other 

dynamical calculations having comparably few free parameters. 

There were several areas in which the calculated results were 

not reasonable at all. One· such area was at high energy; in the 

~ N calculation the results were not good above 1600 MeV total 

energy. However, at high energies we should not expect the method 

used to be a good approximation, for at least three reasons: at high 

energy (i) the simple form of the generalized potential is not justified, 

(ii) the assumption of elastic unitarity is wrong, and (iii) the 

differences between this method and the full Mandelstam unitarity 

iteration become more acute. Indeed, it would be rather puzzling if 

we were able to get good results by this method in a region where we 

knew27 that the amplitide was ~uite inelastic. And so while our 

failures above 1600 MeV certainly do indicate a limitation on what 

we ~ay hope to do, they do not necessarily cast doubt on the better 

results obtained at lower. energies. 

A more serious failure was indicated by our inability to get 

any sensible results at all in the ~ ~ and ~ K calculations with 

I 

.. 
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the physical values of the input couplings. This failure seems to 

confirm the idea that a simple force, single channel model of the p 

is not very realistic. The fact that the output widths were substantially 

reduced (see Table I) when one additional channel was added indicates 

that at least a large part of the discrepancy between this model and 

reality arises in the neglect of the higher-threshold channels. That 

the inclusion of coupled channels will increase the force (equivalently, 

decrease the ·input width) is well knownj that it will significantly 

decrease the output widths has been suspected, but in N/D calculations 

, 17 
it has not always turned out that way. Unfortunately, at the present 

time the eqUivalent-potential method is not able to handle the other 

channels which might be important constituents of the p. In any 

case, if we accept the result that closed channels are very important 

in reducing the p width, it follows that no strictly single-channel 

calculation should be expected to produce the 'correct p width. 

In order to understand the relationship between the calculations 

reported here and analogous N/D calculations, let us suppose for the 

moment that the assumptions common to both methods, such as elastic 

unitarity and the particular choice of the generalized potential, were 

exactly correct. Under this supposition, the approximation involved 

in N/D is to neglect contributions to the left-hand cut of all but 

the lowest term of the unitarity iteration. As was mentioned in 

Section II, solving the Schrodinger equation means including all of 

the terms of that iteration. Only the lowest term is included exactly 
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(with relativistic kinematics) --to include them all would re~uire an 

infinite iteration just to construct the potential--but it seems 

reasonable to hope that this is better than neglecting them altogether. 

If this be correct, then a given (attractive) generalized potential 

should produce larger scattering in e~uivalent-potential calculations 

than in N/D, which neglects the attraction produced by iterations of 

the potential. For a repulsive potential, the iterations alternate in 

sign, and hence tend to cancel; taking only the lowest-order contribu

tion to the left-hand cut means using too much repulsion. We would 

expect, then,that in the equivalent-potential method attractive forces 

would appear stronger, and repulsive forces weaker, than in N/D 

calculations. 

Unfortunately, this comparison is made difficult by the fact 

that with an adjustable cutoff, the force due to exchange of particles 

of spin ~ 1 can be made as strong as one likes. We then have to push 

the argument further: if N/D neglects important attractive contributions 

to the left-hand cut, then in order to obtain a resonance or a bound 

state at the correct mass, it is necessary to make the cutoff higher 

than if the additional attraction were included. This means that the 

D function would change more slowly with energy; residues would thus be 

greater, and trajectories flatter. We conclude that if the equivalent

potential method is a reliable approximation to the unitarity iteration, 

it should produce smaller residues and steeper trajectories than does 

the N/D method. 
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Indeed" this is the cas~. The residue of the N* reported 

here is only one half of the physical value" while N/D calcUlations 

predict it to be too large.
26

,,2 9 In the single channel ~ ~ calcula-

tion" theresidue,,- although larger than the experimental value" came 

out smaller than in. most N/D calculations; also the trajectories rose 

sharply enough to make resonances at £ = 2 •. It is interesting to 

compare this feature of the 

by Bali30 and with the N/D 

~ ~ results with the calculation done 

calculation of Collins and Teplitz. 18 

The input coupling used by Collins and Teplitz was similar to the 

value used in this paper; however" their output p trajectory did 

not. quite make it to . £ = 1" and no trajectory rose above £ = 1.5. 

Bali" on the other hand, by directly examining the relativistic 

unitarity iteration for the simple p model, found trajectories that 

did rise sharply, and could produce an £ = 2 'resonance. 

There is another way to compare the effective strengths of 

forces in the equivalent-potential and in the N/D methods. Consider 

the case of two forces" of opposite signs but comparable magnitudes. 

If the forces are of the same range, they will cancel within V(s"t). 

If they ar~ of different ranges then the iteration will make the 

attractive one stronger, and the repulsive one weaker, although changing 

the cutoff might not affect the relative strengths of the two forces. 

An example of such a case can be found in the ~ N 811 state, 

where It" exchange is repulsive and N exchange is attractive. 

Abers and Zemach25 estimate the magnitude of the N* force to be 1.1 



times that of the N force; the point is that they are comparable. 

Also the ranges are ~uite different: because of the une~ual ~ and 

N masses, the ratio of the ranges of the two forces is not M/6~. 0.75, 

but rather is tN/t * which at threshold is about 0.44. The facts 
. N 

that the energy dependence of the two forces is different, and that the 

dispersion relation in W includes contributions from the singularities 

of the Pll amplitude, which although far away are strong, make 

difficult the application. of the above reasoning to the N/D calcula

tion of the 811 , Nevertheless, N/D calculations do produce a 

negative scattering length26,29 (which in this case indicates a net 

repulsive fo~ce), although it 'is known that the scattering length is 

positive.27,3l Coulter and 8haw29 obtained a negative scattering 

length even when they took account of inelasticity. 

The potential that I used differed from that used in Refs. 26 

and 29 in that I did not include the force due to p exchange. However, 

since this force is attractive in the 811 state, including it would 

not have decreased the attraction, and hence would not have altered the 

fact that the e~uivalent-potential calculation predicts that the 

scattering length is positive. 

One might suspect that the failure of N/D calculations for 

the 8
11 

state indicates a failure of the assumptions, in particular 

that unknown short-range ~orces are very important, at least for the 

s wave. The results presented here suggest the opposite: that when 

iterations of the potential are taken into account) simple Nand N* 

exchange is ade~uate to obtain a reasonable fit to low-energy ~ N 

scattering. 
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APPE:r-J"DIX 

We need to know the contribution to V+ of a particle pole 

in the crossed reaction. The L~variant amplitudes A and B satisfy 

simple crossing relations, so this contribution to A and B is a 

pole in t or u. The partial waves will then be given by expressions 

of the form 

(A-l) 

Comparison with Eqs. (IV-2) shows, for' example, for nucleon exchange, 

() ) 2;2 ' 2 IS.(s) = 0" K2 s =:!: (1,-2 ~ q, Zo = 1 + t N(s)/2q • In 

this appendix we determine V± when A£ ,and B£ are given by (A-l). 

From Ref. 11, 

the matrix C being given by 

C = 
.1 

32rrif 

~2,. [(W+M)2 _ ~2J [W _ MJ\ 

_ (W_M)2 + ~2, [(W_M)2 _ ~2J [W + MJ ), (A-3 ) 
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with ~ = s and ~ = pion mass. Substituting (A-l) and (A-2) 

into the definition 

we get 

(A-5 ) 

The first sum is easy: 

(A-6) 

The second sum is not so easy. Define 

(A-7) 

For s fixed in the physical region, Zo will be fixed and greater 

than 1. We shall need to evaiuate the discontinuities and the 

asymptotic behavior of S± in the z plane for fixed zO. The 

sums in (A-7) converge only in an ellipse passing through zo' so 

it is necessary to do the sums where they converge, and then continue 

in z [this continuation is implied in writing (A-6)). 

, \ 
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Let us first sum 8 + for 1 < z < zo. We can use laplace r s 

integral representations for P£ and Q£ 

']( 

P£ (z) (1/']() f £ 2 1/2 
, - de [a(z,e)J , a - z + (z - 1) cos e, 

0 (A-8 ) 

Q.e(Zo) = {' (2 (1/2 [ (' )]-£-:1 dx x - 1 f3 zo,x , f3 - Zo + (z 2_ 1)1/2x • 
0 

1 

Although P£ is an entire function, let us choose to stay on the 

sheet of (z2 _ 1)1/2 in which (z2 _ 1)1/2 ~ z at large Izl • 

From (A-6) and (A-7), 

S(z, zo) 8+(z,zO) 
1 1 

L:(2£ + 1) P£(z)Q£+l(zO) - - f3R 
= Z - Z 

0 

1 
L:(2£ + '1) p£(z) Q£(zo) - f3

R 

.1\ 
The choice f3R = Z + will mean that 8 has no pole. 

Now substitute (A-8) into (A-9): 

)' (2£ + 1) ....... 

CD 

J 
1 

The sum can be done inside the integrals, 

1 
+ f3 - a 

2a 

(A-9) 

(A-11) 
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since la/~I < 1 throughout the region of double integration. We 

can now do the integral over e to get 

/\ . -1 
S(z,zO) = 

~R 
{ 
1 

dx 1 

~ _ z + (z2_ 1)1/2 • 

(A-12 ) 

It is straightforward to show that this integral exists for all 

z except for z = Zo and z€[-l,+l], that I~I - const x Izl-3/ 2 

at large Izl, and that S has a cut from -1 to +1 (which does 

not appear in S +) and .another from Zo to + co. Combining 

(A-5), (A-6), and (A-9), we have 

(A-13 ) 

/ 
2 2 1/2 /\ 

with z = 1 + t 2q and ~ = z + (z - 1) • S 
R 

can be evaluated 

numerically from (A-12). V+ is the imaginary part of (A-13), which 

is 0 if z < Zo • 

We can sum s_(z,zo) in a . similar way, and obtain 

+ 4 { 
1 

dx 1 

(A-14 ) 

[ 
@z - 1 

x 2 1 2 ~ - z + (z - 1) 7 
but the imaginary part of this integral is ~ ~/4 at large z • 
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Table I. Parameters of the ~ ~ Amplitude 

One-Channel Two-Channel 
Calculation Calculation Experiment 

Reduced p width: input .. 0.46 0.38 0.20(J20MeV) 

output 0.50 0.32 0.20 

Intercept of p trajectory 0.7 0.7 0.54
a 

0 f mass (MeV) 1070 1140 1250b 

Reduced fO width 0.50 0·35 0.25 (lOOMeV)b 

Intercept of fO trajectory 1.3 1.2 lC 

0' 
f mass (MeV) 1900 1870 1500d 

Reduced f 
0' 

width 0.55 0.39 ? 

Intercept of f 
0' 

trajectory 0.7 0.5 0.69c 

Other resonances below 2500 MeV none 0+(685 ) none established 

Scattering length (m~-l) :"0.8 -2 .. 0 ? 

a. This "experimental" number is from R. J. N. Phillips and W. Rarita, 

Phys. Rev. 139, B1336 (1965). 

b. W. Selove et. ~., Phys. Rev. Letters 2? 272 (1962). 

c. That is, if thefo lies on th~ P trajectory, and the 
0' 

f on 

the P' • The P' intercept is from J. J. G. Scanio, New Determina

tion of the P' Regge Trajectory Intercept, Phys. Rev. (to be 

published) • 

d. V. E. Barnes !:! a1., Phys. Rev. Letters ~ 322 (1965). 
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Table II. Parameters of the ~ K Amplitude 

'> 

Calculation Experiment t,;, 

Reduced K* width: input 0.57 0.22 (50 MeV)a 

output 0·55 0.22 

Intercept of 1(* trajectory 0.4 ? 

K** mass (MeV) 1265 1405a 

Reduced K** width 0.16 0.12 (95 MeV)a 

Intercept of K** trajectory 0.75 ? 

Other resonances below 2500 MeV none none 
established 

a. See Ref. 24. 

,l( 



'. ' 

. .. 

.. 

(; 

-49-

Table III. Parameters of the ~ N Amplitude 

Calculation 

N* mass (MeV) 1100 

Reduced N* width 0.8 

other resonances below 2500 MeV P33 (1600), Sll(2140) 

Non-resonant phase shifts See Figs. 2 and 3 

I 
1 scattering length (m -1) 0.29 = 2 ~ 

a. See Ref. 31. 

Experiment 

1238 

1.7 (120MeV) 

many 

0.17
a 
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FIGURE LEGENDS 

Fig. 1. The generalized potential for the coupled ~ ~ - K K calculation. 

Fig. 2. 
1 

~ N I = - phase shifts for 
2 

. 1 
t ~ 2 and J = t + 2 . Solid 

lines are the phase shifts calculated in this paper; dashed 

lines the results of Roper, Wright, and Feld (Ref. 27). 

(a) 811 phase shift; (b) P13 phase shift; (c) D15 phase 

shift • 

. Fig. 3. 8ame as Fig. 2 for nonresonant I = 3/2 phase shifts. 

(a) . 831 phase shift; (b) D35 phase shift. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
m1SS10n, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 






