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Abstract 

A limiting current model for the potential and concentration 

distribution for a flow-by porous electrode of infinite length to width ratio is 

developed and compared to previous models of Alkire and Ng and F'edkiw. 

For flow-by electrodes of practical interest. the maximum solution phase 

potential drop is shown to be dependent upon one relevant parameter: the 

product of the electrode width and the reciprocal of the penetration depth. 

ad. Criteria delineating the optimal electrode configuration are given using 

this potential difference as a basis for comparison. Results of the 

comparison show that the criteria are dependent upon reactant conversion 

but independent of any specific mass transfer correlation . 
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Introduction 

Packed-bed porous electrodes have become increasingly attractive in 

the past several years for use in a number of industrially important 

processes. These electrodes have been suggested for such diverse 

applications as removal of dilute metal ions from waste streams [1], 

electro-organic synthesis [2], and off-peak energy storage [3]. 

Two principal configurations for packed-bed electrodes have been 

developed: the flow-through configuration, where fluid flow and current are 

parallel; and the flow-by configuration, where the fluid flows 

perpendicularly to the current. Both configurations are illustrated in 

Figure 1; where the porous electrodes are represented by rectangles and 

the separators by dashed lines. For simplicity we choose to represent the 

counterelectrodes as planar electrodes; however, in general, the 

counterelectrodes can also be porous electrodes. 

Figure 1a illustrates a flow-through electrode with an upstream 

counterelectrode. An upstream counterelectrode is favored over a 

downstream counterelectrode in the flow-through configuration, because it 

gives a lower ohmic potential drop, particularly at high conversions [4]. The 

y direction denotes the direction of fluid flow in the figure. For the 

flow-through configuration, the flow is divided as it enters and flows in 

different directions through the working electrode and counterelectrode. 

Current generated within the porous electrode flows in the same spatial 

direction as the fluid flow. 

Figure 1 b illustrates a' flow-by configuration. For the flow-by 

configuration the fluid flow is again divided, but here the flow to the working 

2 
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electrode and counterelectrode remains in the same direction. In this 

configuration. current generated within the porous electrode travels 

generally in the x direction. which is perpendicular to the direction of the 

ft.uid ft.ow. 

Bennion and Newman [1] developed a one-dimensional model for the 

flow-through electrode assuming its performance to be limiled only by the 

transport of reactants from the bulk stream to the surface of the electrode. 

More realistic one-dimensional models for the flow-through electrode not 

restricted to this "limiting current" assumption have subsequently been 

developed [5]. These models incorporate equilibrium constraints. finite rate 

kinetics. and parasitic side reactions in addition to the transport of 

reactants. 

Because the fluid and current travel in the same direction in the 

flow-through configuration. the analysis remains one-dimensional even in 

the general case. In the flow-by configuration. however. the general 

analysis is necessarily two-dimensional. The absence of a common space 

variable for the ft.uid and current ft.ow requires that the analysis be 

formulated in terms of partial differential equations unless simplifications 

are made. 

Alkire and Ng [6.7] simplified the analysis of the ft.ow-by electrode by 

assuming current ft.ow to travel directly perpendicular to the fluid ft.ow. This 

assumption reduces the equation for the potential distribution from a 

partial differential equation to an ordinary differential equation. Recently. 

Fedkiw [8] has analyzed the special case of a ft.ow-by electrode at the 

limiting current by including the two-dimensional nature of the current 

distribution and the effects of the finite electrode length. However. he 

• 
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included in his analysis a single specific dependence of the mass-transfer 

coefficient on velocity. 

Alkire and Ng [6,7], Trainham and Newman [2], and Fedkiw [8] have all 

considered the selection of the optimum electrode configuration for a given 

application. Trainham and Newman developed a method, applicable below 

the limiting current, to select the optimum configuration. Alkire and Ng, 

followed by Fedkiw, considered the choice of the optimum configuration at 

the limiting current. Alkire and Ng maximized the volumetric current 

density to compare the two configurations. Fedkiw compared the maximum 

solution-phase potential drop for the ft.ow-through configuration to the 

maximum solution phase potential for the ft.ow-by electrode. Equal 

electrode volumes and identical flow velocities were chosen as fixed 

quantities for these two comparisons. At the limiting current, the 

maximization of the volumetric current density or the minimization of the 

maximum ohmic potential drop lead to the same result. 

The results of Alkire and Ng and !t'edkiw can be reconciled by an order 

of magnitude analysis. This can be useful in determining the approximate 

conditions under which the flow-by configuration is superior to the 

ft.ow-through configuration at the limiting current. Consider a 

ft.ow-through and a flow-by electrode of equal dimensions and feed flow 

rates and with identical packings and feed compositions. Each reactor has a 

length L, width d, and height W. At the limiting current, the reactant flows 

through the electrode and reacts at a rate determined solely by the type of 

packing and the magnitude of the ft.uid flow. The distribution of the reaction 

and the total current will therefore be identical in the two reactors. For 

high conversions of reactant to product, most of the reactant will be 
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depleted in a region very near the front of the electrode. The characteristic 

length of this region is the penetration depth, denoted by 1/ a. Most of the 

current in the fiow-through electrode with an upstream counterelectrode, 

must travel an approximate distance 1/ a, through an area of Wd. The 

majority of the current in the fiow-by electrode, however, need only travel a 

distance comparable to the width of the ele"ctrode d, through an area of 

W / a. The superior electrode configuration is the configuration that yields a 

lower ohmic potential drop. The ohmic potential drop is the product of the 

total current times the length of travel divided by the cross sectional area 

to current fiow. A comparison of the" ohmic drop shows that the fiow-by 

electrode configuration is preferred for high conversions if the approximate 

condition 

ad < 1 (1) 

is satisfied. This result is identical to the result obtained by Alkire and Ng 

when they maximized the volumetric current density to compare 

configurations. 

At low conversions however, the penetration length eventually becomes 

comparable to the electrode length. In this limit, the current in the 

fiow-through electrode now fiows a distance L, rather than 1/ a. Likewise in 

the fiow-by electrode, the current fiows through an area of WL. Equating 

the ohmic potential drop in the low-conversion limit results in the criterion 

that the fiow-by configuration is favored for 

.f.> 1 d . (2) 

Equation 1 shows that, at high conversions. the parameter ad is of primary 

importance in distinguishing the optimum electrode configuration and in 

determining the maximum potential drop in the fiow-by configuration. At 
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low conversions, Equation 2 shows LI d can be expected to be the 

parameter of primary importance in determining the optimum 

configuration. 

In this paper, we propose a limiting-form solution to the 

two-dimensional potential distribution for large. a.d. This solution shows 

that the maximum solution phase potential drop for the flow-by electrode is 

primarily dependent upon the parameter ad with only a secondary 

dependence upon LI d. We then reexamine potential distribution derived by 

Fedkiw to determine the conditions under which the two-dimensional 

nature of the current distribution and the effects of the finite electrode 

should be included. This new solution, along with the expressions derived by 

Fedkiw and Alkire and Ng, is presented in a form that is not restricted to the 

single mass-transfer correlation presented by Fedkiw. 

Finally, the flow-by and flow-through configurations are compared 

using the maximum solution phase potential drop as a basis for comparison. 

Criteria are given delineating the optimum electrode configuration which 

depend upon reactant conversion. Results of this comparison show that the 

two configurations can be compared independent of any specific mass 

transfer relationship. 



Potential Distribution 

The starting point for the analysis will be the theoretical framework for 

porous electrodes developed by Bennion and Newman [1] and extended by 

Newman and Tiedemann [9]. The porous electrode is treated as a 

superposition of two continua. representing the fluid phase and the solid 

phase. A single reaction of the form 

(3) 

will be assumed to occur within the electrode. Under these assumptions. the 

electrode reaction appears as a homogeneous source or sink term within 

the conservation of species equation. A solution with excess supporting 

electrolyte and a uniform solution conductivity will be assumed as well as a 

dilute solution of reacting species. Diffusion and dispersion will be 

neglected. Also. the velocity within the electrode is assumed to be plug-flow. 

one-dimensional in the y direction only. Under these conditions. at steady 

state. conservation of the reactant species for both the flow-through and 

flow-by electrode can be expressed as 

dc 
v -- = -ak c dy m 

(4) 

with the boundary condition 

at y = O. c = cF . (5) 

Solution to Equation (4) subject the boundary condition of Equation (5) 

yields 

C = cF e- o.y • (6) 

where 

8 
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0:= (7) 

The reciprocal of the parameter 0: can be thought of as a penetration 

length. The penetration length defines the distance where the reactant is 

depleted to lie of its inlet composition, or, as an order of magnitude, the 

length of the region where most of the reaction occurs within the electrode. 

At the end of the bed (y =L), the concentration of the ft.owing stream 

will have reacted to the largest extent. Here the concentration of the 

reactant will be denoted as cL. Equation (6) then gives at the end of the bed 

CL = cF e - aL . (8) 

This may be rearranged for o:L in terms of the inlet and outlet 

concentrations as 

CF 
o:L = In -. (9) 

CL 

Equation (9) shows that the parameter o:L effectively specifies the 

conversion of reactant within the electrode. 

Now that the concentration distribution has been established. the 

solution to the potential distribution may proceed. For a uniform 

conductivity and negligible diffusion potential. Ohm's law governs the 

potential distribution within the ft.uid phase 

(10) 

Faraday's law relates the transfer current to the local rate of mass transfer 

within the electrode 

nFakmc 
j = 

One must also employ the relationship 

(11) 

(12) 

which defines the transfer current as the divergence of the total current. 
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Substituting the concentration distribution obtained in Equation (6) into 

Equation (11) and using Equations (to) and (12), we obtain 

nFakmcF 
V2q, = - ---- e - o.y 

2 SR " 
(13) 

,. 

In contrast to the solution for the concentration distribution, the solution 

to the potential distribution depends upon the electrode configuration. 

Bennion and Newman [1] solved Equation (13) for a one-dimensional 

flow-through electrode. Alkire and Ng [6] solved Equation (13) for the 

flow-by electrode assuming potential variation only in the direction 

perpendicular to fluid flow. This assumption reduces Equation (13) from a 

partial differential equation to an ordinary differential equation. Fedkiw [8] 

solved Equation (13) for two-dimensional current flow in a flow-by electrode 

of finite length. 

Here, we propose to examine the limiting case of a flow-by electrode 

with an infinite aspect ratio. Thus our case will reflect the condition 

L 
R = d ~ 00 • (14) 

The potential distribution is obtained by solving Equation (13) subject to the 

boundary conditions 

8q,2 
at y = 0, 8y = 0 , (15) 

8q,2 
~OO, 8y ~O, as y (16) 

8q,2 
at x = 0, 8x- = 0 , (17) 

and 

at x = d , q,2 = V . (18) 

Solution to Equation (13) by separation of variables subject to the boundary 

conditions in Equations (15) through (18) yields 
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_tP_2 __ -_V_ = [~x _ 1]e -o.y 
nFCFV 2 cos ad 

sR /C akm 

+ 2ad > (-1)n - - ---- e cos A xl d ~ [ 1 1] -AnY/ d. 
~ 2 2 ( )2 n' ( 9) n=O An An - ad 1 

\ .. 
where 

(20) 

To the designer, the maximum variation in solution phase potential may 

be a quantity of greater interest rather than the potential distribution 

within the electrode. To relate the relevant design variables to the 

maximum variation in solution potential, the results of the potential 

distribution will be used. For the flow-by electrode configuration, the 

semi-infinite potential distribution indicates that the maximum solution 

phase potential drop occurs at the front of the electrode, y =0, between the 

two electrode boundaries, x =0 and x =d. This is the position where the 

greatest current is flowing. The maximum solution phase potential 

difference in dimensionless form is given as 

4l2(x=O,y =0) - V Sh 
--n-Fl-c-F-V-2-- = -:;;;;;;;V"2 - 7~-: p~ 

= _·1_ -1 + 2ad f: (-1)n [+ -2-
1---2]. (21) 

cos ad n=O An An - (ad) 

This result can be compared to the results obtained by other 

investigators. The Alkire-Ng approximation gives for the maximum solution 

phase potential difference 

-------= 
nFcpV2 (22) 
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The solution obtained by Fedkiw which includes the effects of the finite 

electrode length can be represented as 

rp2(X =O,y =0) - V 
------= 

nFcpv 2 

~rp2 Sh ---- -- = f (ad,aL) 
enFcpDo Pe 2 

SR /C akm sR /C 

(23) 

where f (ad ,aL) represents a complicated function of lhe variables ad and 

o.L previously derived by Fedkiw [8]. 

For the flow-through electrode, the maximum solution phase potential 

drop occurs between the front and the rear of the electrode, y =0 and y =L. 

From Bennion and Newman [1], this is 

<P2(Y =0) - <P2(Y =L) 
nFcpv 2 

sR /C akm 

__ ~_<P....;2 __ Sh = 1 _ e- aL [1 + aL) . 
enFcpDo Pe 2 (24) 

In Figure 2 we have plotted the dimensionless maximum potential drop 

times the ratio of the Sherwood Number to the square of the Peclet Number 

for a flow-by electrode. The variable ad has been chosen as the 

independent variable. We have included curves for a semi-infinite electrode 

and curves for electrodes of finite aspect ratio. Curves for the finite aspect 

ratio electrodes were obtained from the work of Fedkiw. In addition, the 

solution given by Alkire and Ng is shown. These curves are independent of 

any specific mass-transfer relationship. This figure clearly demonstrates 

five points. 

(1) The dimensionless maximum potential drop times the ratio of the 

Sherwood Number to the square of the Peciet Number calculated by the 

finite-electrode solution, the semi-infinite-electrode solution, and the 

Alkire and Ng solution all approach the same limit as ad becomes small. 

(2) The maximum dimensionless potential drop times the ratio of the 

Sherwood Number to the square of the Peclet Number approaches a 

'"'. 
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limit for R becoming large. At large values of ad and large aspect ratios 

this relationship becomes proportional to ad. In the limit of small ad. 

this relationship approaches a value given by 1/ 2(ad )2. 

(3) The maximum dimensionless solution phase potential drop times the 

ratio of the Sherwood Number to the square of th e Peclet Number for 

finite R asymptotically becomes proportional to a.d at large values of 

ad. The value of this proportionality constant is determined by the 

magnitude of R. 

(4) The effect of the finite eleclrode length is important only for values of R 

approximately less than one and then only at large values of ad. 

(5) The Alkire and Ng one-dimensional solution is seen to reflect the limit 

as the aspect ratio of the flow-by electrode tends toward zero for all 

values of ad. This contrasts with earlier work which has assumed the 

Alkire and Ng solution results only as the aspect ratio R. goes to infinity 

[8]. 

If the maximum dimensionless solution phase potential drop times the 

ratio of the Sherwood Number to the square of the Peclet Number for the 

flow-through electrode were plotted on this graph. the resulting curves 

would be horizontal straight lines. Equation (24) shows that for the 

flow-through electrode this quantity is not dependent upon the parameter 

ad. 

-. 
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Comparison of Configurations 

As a first approximation, the optimum electrode configuration for a 

specified conversion might be found by assuming that the dimensionless 

potential drops times the ratio of the Sherwood Number to the square of the 

Peclet Number are equal. This would correspond to both the flow-through 

and flow-by electrodes having identical volumes, flow-rates, and 

consequently, equal pressure drops. In Figure 3 we have plotted the values 

of ad and R (as functions of aL) which give equal dimensionless maximum 

potential drops times the ratio of the Sherwood Number to the square of the 

Peclet Number for the flow-through electrode and for the flow-by 

electrode. We have also designated the regions where each type of 

configuration is preferred. Again, the variable aL directly represents the 

requirement of conversion that we have imposed on the design. The 

maximum dimensionless potential drop times the ratio of the Sherwood 

Number to the square of the Peclet Number for the flow-through electrode 

has been calculated using Equation (24). We have included the three 

possibilities for evaluating the this quantity for the flow-by electrode. First, 

the flow-by electrode is assumed to be infinitely long, and Equation (21) is 

used. We can also assume the one-dimensional potential variation of Alkire 

and Ng might be appropriate and use Equation (22). Finally, the effects of 

the finite electrode length also can be included. The relationship given by 

Fedkiw could also be used. For this finite electrode case, an additional 

constraint must be imposed since this function explicitly depends on the 

aspect ratio. The value of R is computed from 

15 
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R = 1:.. = aL 
d ad' (25) 

Thus, the value of ad and the value of R is found for each value of aL such 

that the' maximum dimensionless potential drops times the ralio of the 

Sherwood Number to the square of the Peclel Number are equal. For 

',J. 
comparison, we have also included the results of the order of magnitude 

analysis which were derived in the introduction. 

We emphasize here, that this comparison of the two electrode 

configurations does not require lhat we specify a mass-transfer coefficient 

relationship. This comparison does nol depend upon lhe Sherwood-Peclet 

Number relationship. Fedkiw compared the two configurations in a similar 

way except that he introduced a specific Sherwood-Peclet Number 

relationship in his comparison. The comparison presented here is 

considered to be preferable because it is not restricted to a single 

correIa tion. 

Figure 3 establishes several important points. At low values of aL and, 

consequently, low conversion, the aspect ratio and the value of ad for equal 

potential drops are independent of the fiow-by potential drop relationship. 

The Alkire and Ng one-dimensional approximation, the semi-infinite 

electrode approximation, and the finite electrode relationship all predict the 

same geometry. In this low conversion range, aL less lhan one, the aspect 

ratio for equal potential drops is seen to approach one. The value of ad, 
... 

given equal electrode cost, is seen Lo approach a limiting relationship of 

ad = aL . (26) 

The conclusion to be made here is that a fiow-by electrode is favored at low 

conversions if it can be constructed with an aspect ratio greater than one. 

Otherwise, a fiow-through electrode would be a better choice. Equation (26) 
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is identical to Equation (2) obtained by the order of magnitude analysis in 

the introduction section. 

At higher conversions, values of aL greater than about 2, the criterion 

that specifies the more economical configuration changes. In this region, 

the value of R delineating the optimum electrode configuration no longer is 

constant. Also, the one-dimensional Alkire and Ng approximation deviates 

from the two-dimensional solutions. Since the one-dimensional 

approximation over-predicts the potential drop, it results in a criterion 

giving a lower flow-by aspect ratio. The two-dimensional potential 

distributions are thus seen to affect the choice of electrode configurations 

only at high conversions. From Figure 3 we can see that at high conversion 

one would choose a flow-by electrode only if the resulting aspect ratio is 

greater than 0.45 times aL. According to Fedkiw [8], the flow-by 

configuration was preferred over the flow-through configuration for 

R~ 5. (27) 

One can see, however, that this relationship holds only for values of aL near 

10. In terms of ad, the flow-by electrode is superior at high conversions 

only if 

ad < 2.218 . (28) 

Except for the factor of 2.218, Equation (28) is consistent with Equation 

(1) obtained by an order of magnitude estimate in the introduction section. 

This factor accounts for the variation of current across the flow-by 

electrode and the two-dimensional current flow which was not included in 

the earlier analysis. 

Figure 3 also demonstrates another significant point. The curves for 

the optimum electrode configuration given by the finite length electrode or 
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the semi-infinite electrode. are very nearly the same. At high and low 

conversions, the criterion becomes independent of whether one considers 

the finite electrode length. Only for a region of cx.L near one, does the effect 

of the finite electrode length on the criterion become noticeable. From 

Figure 2, one can see that only when the aspect ratio approaches one at 

high conversions does the effect of the finite electrode length on the 

potential drop become noticeable. But at large conversions, or large cx.L, it 

is impractical to construct a flow-by electrode with an aspect ratio near 

one. Consequently, considering the potential distribution in a flow-by 

electrode of finite length is not really important for practical flow-by 

designs when the maximum potential drop is used as a basis for comparison. 

The potential distribution for an electrode with an infinite aspect ratio gives 

results which are practically identical but in a less complicated expression. 



Conclusions 

The two-dimensional potential distribution for a flow-by porous 

electrode of infinite length to width ratio operating at the limiting has been 

derived. It is shown that the maximum solution phase potential drop 

depends primarily on the ratio of the electrode width and the penetration 

depth ad. The potential drop for practical flow-by designs depends only 

weakly upon the length to widlh ratio. This result has been compared to the 

polential drop for a finile length electrode given by Fedkiw and the 

one-dimensional potential drop of Alkire and Ng. 

The flow-through and flow-by electrode configurations have been 

compared at the limiling current using the maximum solulion phase 

potential difference as a basis for comparison. This comparison is 

independent of any specific mass-transfer coefficienl correlation. Criteria 

delineating the optimal electrode configuration have been given which 

depend upon the reactant conversion. At low conversion a flow-by 

electrode is favorable providing that it can be constructed with a length to 

width ratio greater than one. At high conversions. however. a flow-by 

electrode is favorable if the ratio of the electrode width and penetration 

depth is less than 2.21B. 

20 

f, 



Acknowledgement 

This work was supported by the Assistant Secretary of Conservation and 

Renewable Energy, Office of Energy Systems Research, Energy Storage 

Division of the U.S. Department of Energy under Contract 

DE-AC03-76SF00098. 

21 



List of Symbols 

English Characters 

a specific interfacial surface area. cm2/ cmS 

c pore averaged concentration. mole/ems 

d flow-by electrode bed width perpendicular to fluid-flow direction. 
cm 

Do free stream diffusion coefficient of reacting species. cm2/s 

F Faraday constant. 96,485 coulombs/equiv 

i2 total current density within electrolyte phase. A/ cm2 

j transfer current density. A/cms 

k m mass transfer coefficient. cm/s 

L bed depth in direction of fluid flow. cm 

M arbitrary species 

n number of electrons transferred in reaction 

Pe Peclet number, v / aDo 

R bed aspect ratio. L/ d 

Sh Sherwood number. f-km/ aDa 

SR stoichiometric coefficient of reactant 

v superficial fluid velocity. cm/s 

V reference potential of flow-by electrode at y =d, V 

z charge number, equiv/mol 

Greek Characters 

a reciprocal of penetration length. akm/v, cm- 1 

61))2 maximum allowable solution potential drop. V 

e bed porosity or void fraction 

22 
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/C conductivity of fluid phase in bed, (Ocmtl 

A dimensionless eigenvalue 

CP2 solution potential, V 

Subscripts 

i 

n 

F 

L 

species number 

eigenvalue number 

feed condition 

exit condition 

23 



Figure Captions 

Figure 1. Porous electrode configurations, a) fiow-through electrode, 

upstream counterelectrode, b) fiow-by electrode. 

Figure 2. Dimensionless maximum potential drop times the ratio of the 

Sherwood Number to the square of the Peclet Number for the fiow-by 

electrode of various aspect ratios as a function of ad. 

Figure 3. Values of ad and R for equal dimensionless potential drops 

times the ratio of Sherwood Number to the square of the Peclet Number for 

the fiow-through electrode and the fiow-by electrode using: a) order of 

magnitude expressions, b) Alkire and Ng expression, c) semi-infinite 

electrode, d) Fedkiw expression. These two representations are equivalent 

since R = aL I ad. 

24 
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