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Summarz

An approximation for nonlinear viscoelasticity over short time ranges,
recently published by Huang and Lee, is extended to include large deformations
and simplified by the dropping of insignificant terms. An alternative approxi-
mation for short times is developed systematically as the counterpart to
Coleman and Noll's approximation for slow deformations. This method is applied

to the study of acceleration waves.



1. Introduction

A few years ago Coleman and Noll (1,2,3] established some important
theorems on the asymptotic behavior of nonlinear viscoelastic ("simple™)
materials. Using the axiom of fading mewory, they showed that for slow
deformations the behavior can be approximated by constitutive equations of
the Rivlin-Ericksen type, tending to Newtonian viscosity in the limit, while
for deformations (relative to the "present" configuration) which, in the

recent past, are infinitesimal, the behavior is characterized by linear

viscoelasticity. The latter approximation is also valid for large deformations
if they take place slowly, but is superseded by the former.

A considerable amount of work in viscoelasticity is concerned with
deformations that vary rapidly and by finite (though small) amounts.
Constitutive equations for small finite deformations were presented by
Pipkin [4], on the basis of the work of Green and Rivlin [5], in the form of
multiple-integral expansions for functionals possessing sufficient continuity.
In order to study the effects of rapid variations, Huang and Lee [6] presented
an approximation to Pipkin's equations which is, in form, a special case of
the "finite linear viscoelasticity” of Coleman and Noll [1]. This note will
discuss the validity of Huang and Lee's approximation, present an alternative,
and show some applications.

While all the references cited above [1-6] work with three-dimensional
deformations, it is sufficient for the purposes of the present discussion to
treat the situation characterized by one stress variable 0 and one deformation
variable €, the former being a functional of the latter. The extension to

the general case is made by a suitable mapping onto the space of second-rank



tensors, providing that objectivity requirements are observed. Such a

procedure may by now be regarded as elementary.

2, Discussion and Generalization of Huang and Lee's Approximation

If the functional mentioned above is continuous, then, to any desired

accuracy, we have

N
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where t is the time, with the origin so chosen that €=0 for t<O. The
kernels Kn(...) are symmetric functions of their arguments.
The first term S1 is the familiar relaxation integral of linear visco-

elasticity. The next term,
s, = JE IR (t,,t)é(t-t Yé(t-t ) dt.dt
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may be integrated by parts to yield, after Huang and Lee (with € written

for €(t) ),
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The preceding analysis completes, in effect, Huang and Lee's approxi-

mation. But it can be readily seen that, for any n,

n
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With R neglected, Eq. (6) is formally identical with the one-dimensional
equation of finite linear viscoelasticity [2].

I will now show that, just as in the case of slow deformations, finite
linear viscoelasticity is superseded by the Rivlin-Ericksen approximation,
with the constants related to integrals of the relaxation function [3,7],
so in the case of rapid deformations the generelized Huang-Lee approximation,

Eq. (6), may in turn be simplified. Let us define
e (t) = [P e(t)at
1 o 1 1
and by recursion,
e () = (n+1) [ e (tdt, ;
n+1 o n 1 1’

hence by definition ec)se. Also,

€ = ft £ "
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Clearly,
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Let us consider, now, the second term on the right-hand side of Eq. (5).

Integration by parts leads to
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neglect Qn if one neglects Rn. Equation (6), therefore,reduces to
2
0 = F(e) + Gl(e)e1 + 0(t™), 7

where Gl(e) = G(€,0). On defining the kernel ''traces"”,

En(w =K (t,...,t),
we also have
N - n
F(e) = X Kn(O)e .
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The effect of the approximation (7) is that of the kernels Kn("') the
only significant parts are those which are linear in the arguments. In their
calculations, Huang and Lee used quadratic and exponential kernels; we see

now that the contributions of the nonlinear terms are of the same order of

magnitude as the neglected terms.

3. A Systematic Short-Time Approximation

Let us expand all the kernels as power series

k k
o0 00
K(t,...t)= I ... % Kin) . tll ...tnn ) (8)
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The coefficients Kﬁn)...k are symmetric with respect to their subscripts.
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Inserting into Eq. (2), we obtain
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The contribution of any one term is O(M t ).

It is now possible to gather all terms of any desired order in M and t,
and to approximate by lopping off those of orders higher than a desired one

(in M or t). For example, if terms up to t2 are retained we have
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The first two terms are equivalent to Eq. (7); the next two represent the
next approximation.

If € is represented by a polynomial,

m

€(t) = £ a t
m m
then
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k= & (Em %t

Consequently the stress may be represented by a power series,

o(t) = %bmt.

The first three coefficients may be obtained from Eq. (10), to wit:
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These expressions are particularly simple if the strain history is continuous,

i.e., a. = 0:

0
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These expressions will be used in the following application.

4. Application to Wave Propagation

We consider the one-dimensional equations of wave propagation,

o _ L w w
> “Poot’ ox = ot a2

v being the velocity, in the material half-space x > O with uniform rest

density po, and the boundary condition

pad m
v= X C t, t>0, x=0,

Since the velocity input is continuous, we expect it to be propagated, at
least for a certain distance, as an acceleration wave moving with material

speed U. Hence we assume solutions in the form

-} “m
€ =X a (x)t |,
n

m=1
@ m
c=X b (xX)T ,
m
m=1
o m
v=2 c (xX)1 ,
m
m=1

with T=t-x/U, valid in some region 0 <r<T(x), 0<x<X. We are not concerned
with the limits of validity T(x),X. Assuming term-by-term differentisbility,

we obtain, from Eqs. (12),
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1
T U b1 =Py
- c, =8
v 1" "1
2 t
-0 b2 + b1 = 2 po c2,

Since b1 and b are given by Egqs. (11), we obtain, after elimination,

(po Uz - K(;) ) cl =0,

finding the material wave speed to be given, as expected, by

1/2
U = (K(()l)/p ) ;
and
K (2)
) o 1 (1) 00 2 _
K c1_§K1 v g <, = 0. 13)

Equation (13), which governs the variation of the acceleration discontinuity
<, as the wave progresses, has been derived by other means by Varley [8] and
by Coleman and Gurtin [9]. Further results have been obtained elsewhere

by the use of the present method [10].
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