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Abstract 

Millions of people are exposed to toxic levels of dissolved arsenic

in groundwater used for drinking. Iron electrocoagulation (FeEC) has 

been demonstrated as an effective technology to remove arsenic at an

affordable price. However, FeEC requires long operating times 

(~hours) to remove dissolved arsenic due to inherent kinetics 

limitations. Air cathode Assisted Iron Electrocoagulation (“ACAIE”) 

overcomes this limitation by cathodically generating H2O2 in-situ. In 

ACAIE operation, rapid oxidation of Fe(II) and complete oxidation and 

removal of As(III) are achieved. We compare FeEC and ACAIE for 

removing As(III) from an initial concentration of 1464 µg/L, aiming for a

final concentration of less than 4 µg/L. We demonstrate that at short 

electrolysis times (0.5 minutes), i.e. high charge dosage rates (1200 C/

L/min), ACAIE consistently outperformed FeEC in bringing arsenic 

levels to less than WHO-MCL of 10 µg/L. Using XRD and XAS data, we 

conclusively show that poor arsenic removal in FeEC arises from 

incomplete As(III) oxidation, ineffective Fe(II) oxidation and the 
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formation of Fe(II-III) (hydr)oxides at short electrolysis times (<20 

minutes). Finally, we report successful ACAIE performance (retention 

time 19 seconds) in removing dissolved arsenic from contaminated 

groundwater in rural California. 
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Introduction 

Toxic levels of arsenic in groundwater used for drinking is a 

major public health concern for nearly 200 million people around the 

world.1, 2 Chronic exposure to arsenic causes various types of internal 

cancers, cardiovascular diseases and gangrenes, and low I.Q in 

children.3-5 Resource poor communities are adversely impacted by 

arsenic poisoning due to the lack of affordable and robust solutions.6-8 

Recently, iron electrocoagulation (FeEC) has been demonstrated as an 

effective, affordable, and robust method to remove arsenic from 

groundwater both in the laboratory and in extended field trials.9-11 

 In FeEC, a low-voltage direct current applied across low-carbon 

steel plates immersed into an electrolyte promotes oxidation of Fe(0) 

to Fe(II) on the Fe anode and reduction of H2O/H2(g) on the Fe cathode.12

In-situ generated Fe(II) undergoes further oxidation by dissolved O2 

(DO) in the bulk solution to form insoluble Fe(III) (oxyhydr)oxides.12 In 

addition, reactive intermediates (i.e. *OH, *O2
-, Fe(IV)) generated during

oxidation of Fe(II) by O2 oxidize As(III) to As(V), which is more easily 

adsorbed than As(III).13-17 Recent studies report that the charge dosage 

(CD, C/L), charge dosage rate (CDR, C/L/min) and O2 recharge rate 

affect arsenic removal in FeEC for a given electrolyte composition.18 At 

a constant CD (C/L), efficient arsenic removal occurs at low CDR 

because the Fe(II) generation rate becomes lower than the rate of 

atmospheric O2 influx into the solution.18 This allows complete 
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oxidation of dissolved Fe(II) to Fe(III) (oxyhydr)oxides and subsequent 

removal of arsenic. At higher CDR, imbalance between the rates of 

Fe(II) generation and O2 dissolution can result in incomplete oxidation 

of Fe(II) and formation of the Fe(II-III) (hydr)oxide, green rust, which 

can be less effective at removing arsenic than Fe(III) precipitates.19-21 

While operating FeEC at low CDR avoids the formation of undesirable 

green rust in most solutions, low CDR also requires long treatment 

times (~hours), unattractive for real world applications.

Recently, air diffusion cathodes (herein called “air cathodes”) 

have been shown to generate H2O2 by cathodic reduction of O2 diffused

from air.22-24 An air cathode comprises a porous carbon cloth with a 

hydrophobic gas diffusion layer on the air-facing side and a catalyst 

layer facing the electrolyte. Air cathodes have been shown to produce 

H2O2 at nearly 100% Faradaic efficiency over a wide range of current 

densities and charge dosage rates.25, 26 Therefore, replacing the Fe 

cathode in FeEC, which typically generates H2(g), with an air cathode 

(technique herein referred to as Air Cathode Assisted Iron 

Electrocoagulation,  or “ACAIE”) results in cathodic H2O2 formation. In-

situ generated H2O2 oxidizes Fe(II) at nearly 4 orders of magnitude 

faster than O2 and also produces higher stoichiometric yields of 

selective reactive intermediates (Fe(IV)) compared to O2, which 

enhances the kinetics of As(III) oxidation and removal by orders of 

magnitude.13, 27, 28 Processes similar to ACAIE have been reported in the 
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literature under different terms (e.g., electro-Fenton, peroxi-

coagulation, etc.) with applications that addressed mainly the removal 

of persistent organic contaminants at acidic pH via OH radical 

formation. Only a few studies have examined arsenic removal at 

circum-neutral pH using ACAIE, but these studies investigated only low 

CDR operating conditions (2.8 C/L/min) with electrolysis duration of 60 

mins, which is prohibitively long for real world applications.29, 30 These 

studies also did not examine the structure and arsenic uptake mode of 

the solids formed in ACAIE, which are expected to be significantly 

different than those from standard FeEC systems, owing to different 

pathways and kinetics of their formation. Knowledge of the structure 

and arsenic bonding mode of the solids formed by ACAIE over a wide 

range of CDR is essential to predict the arsenic sorption reactivity and 

colloidal stability of the Fe(III) precipitates and leaching of sorbed 

arsenic, since the mobilization of arsenic from solids depends on its 

sorption mode.19, 31, 32

In this work, we investigated As(III) removal using FeEC and 

ACAIE systems over a wide range of operating CDR (1.5 C/L/min to 

1200 C/L/min), corresponding to a electrolysis times from 0.5 to 400 

minutes and current densities from 0.8 to 156 mA/cm2. These 

operating parameters are relevant to decentralized (community scale) 

and centralized (municipal utility scale) drinking water treatment 

plants and span the range of parameters used in other industries 
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(inorganic and organic wastewater treatment).10, 30 We characterized 

the reaction products in both systems by X-ray diffraction (XRD) and 

synchrotron-based Fe and As K-edge X-ray absorption spectroscopy 

(XAS). With these macroscopic and molecular-scale data, we show that

ACAIE substantially and consistently outperforms FeEC in removing 

high concentrations of As(III) to below 4 µg/L as the electrolysis time 

decreases from hours to minutes (i.e. as CDR increases from 1.5 to 

>1000 C/L/min). Finally, we demonstrate the performance of a flow-

through ACAIE reactor operated at high CDR in a field test using 

arsenic-contaminated groundwater in a rural community in California. 

Our results suggest that ACAIE systems can be an attractive 

alternative to conventional arsenic removal strategies for communities 

that require rapid flow-through treatment of large volumes of arsenic-

contaminated water. 

2 Materials and methods

2.1 Laboratory scale electrochemical experiments

2.1.1 FeEC reactor

FeEC experiments were conducted in 0.5 L glass beakers with 

two parallel low-carbon steel plates (1006-1026 steel grade, McMaster-

CARR) separated by a non-conducting spacer (acrylic rectangular 

sheet: 14 cm × 2.5 cm × 2.5 cm) immersed in the electrolyte. The 

total submerged surface area of the steel plates in the FeEC 

experiments was 46 cm2 (7 cm X 6.5 cm). These plates were cleaned 
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with sandpaper until the surfaces were shiny and then rinsed with 

deionized water before the experiments. 

2.1.2 ACAIE reactor

Laboratory scale ACAIE experiments were performed in a 

custom-built rectangular batch reactor open to the atmosphere and 

fitted with a carbon-based air cathode (submerged surface area of 64 

cm2) on one side of the reactor. The air cathodes were fabricated 

according to Barazesh et al. (2015), with further descriptions in the 

supporting information (SI).26 A rectangular steel plate (submerged 

surface area of 45 cm2, 1006-1026 steel grade, McMaster-CARR) 

served as the anode and was placed parallel to the air cathode. A non-

conducting spacer (acrylic rectangular sheet: 14 cm × 2.5 cm × 1.3 

cm) maintained an inter-electrode distance of 2.5 cm for all ACAIE 

experiments except for those at CDR of 1200 C/L/min, which were 

performed at an electrode spacing of 0.7 cm. Images of the 0.5 L 

ACAIE experimental setup are shown in Figure S1. The same air 

cathode was used for a single set of charge dosage rate experiments 

(5 total experiments at CDR of 1.5, 6, 60, 100 and 600 C/L/min). A new 

air cathode was used to repeat these experiments once and another 

new air cathode was used to repeat the same experiments a third 

time. No significant difference in the H2O2 Faradaic efficiency of the air 

cathodes was observed at the beginning and end of each set of 

replicate experiments (Figure S10A, S10B, S10C).

8

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162



Manuscript accepted on April 20, 2020 for publication in Environmental Science and 
Technology. 
DOI: 10.1021/acs.est.0c00012

2.1.3 Electrolysis 

An external DC power supply operated in galvanostatic mode 

delivered specified currents to each system. The total charge dosage 

was 600 C/L (3.1 mM Fe by Faraday’s law) unless otherwise specified, 

which was selected based on the operating parameters of an existing 

FeEC plant treating arsenic-contaminated groundwater in West Bengal,

India.10, 11 To examine the impact of a wide range of operating 

conditions on arsenic removal, we varied the electrolysis time from 1 

to 400 minutes, which corresponds to CDRs of 600 to 1.5 C/L/min. The 

volume factor in C/L/min is the actual electrolyte volume being treated.

Herein, electrolyte volume and reactor volume are used 

interchangeably. Additional experiments at an electrolysis time of 0.5 

minutes (CDR of 1200 C/L/min) were performed only in the ACAIE 

system to understand the effect of reduced electrode spacing on 

arsenic removal and energy consumption.

2.1.4 Electrolyte and measurement protocols

Batches of freshly prepared synthetic Bangladesh groundwater 

(SBGW, composition listed in Table S1) were used as the electrolyte in 

all laboratory experiments, unless otherwise noted.14, 33, 34 SBGW was 

prepared with reagent grade chemicals and is described further in the 

SI. The initial pH of each experiment was adjusted to 7.0 by bubbling 

CO2(g) or by adding small volumes of 1.1 M HCl or 1 M NaOH. The 

electrolyte was stirred (~550 rpm) with a magnetic stir plate during 
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electrolysis. At the end of electrolysis, unfiltered and filtered (0.45 µm 

Nylon filter) samples were collected to measure total and dissolved 

concentrations of constituents. Herein, the constituents measured in 

the filtrate are referred to as “dissolved concentrations”. The initial and

final pH, DO and conductivity were measured using an Orion Star™ 

A329 meter. Dissolved arsenic and iron concentrations were measured 

by ICP-MS (Agilent 7700) and the concentrations of total Fe, P, Ca, Mg 

and Si in the initial electrolytes were measured by ICP-OES 

(PerkinElmer 5300 DV). New air cathodes were characterized for H2O2 

generation before use in ACAIE experiments (see SI for experimental 

details). All laboratory experiments were performed in triplicates at 

room temperature; error bars represent the standard deviation of the 

measurements. 

2.2 Field scale ACAIE experiments

Field experiments were performed with local arsenic-

contaminated groundwater at a farm in rural community in California 

using a custom flow-through ACAIE reactor with high surface area 

(FigureS2). The primary goal of this field trial was to test the 

effectiveness of ACAIE at intermediate scales in some worst-case 

scenario conditions (i.e. short retention times) and it was not our goal 

to test this prototype over extended periods. In this ACAIE system, an 

air cathode and low-carbon steel anode (1006-1026 steel grade, 

McMaster-CARR), each with a submerged surface area of 400 cm2, 
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were positioned at an inter-electrode spacing of 1 cm. A stainless-steel 

mesh (316 stainless steel wire cloth, 20 x 20 mesh size, 0.07 cm 

opening size, wire diameter 0.06 cm) was used on the air-facing side of

the air cathode to act as a current collector and provide mechanical 

support. Additional mechanical support to the air cathode and 

stainless-steel mesh assembly was provided by a 1.3 cm thick acrylic 

sheet with holes to access air, as shown in Figure S2A. This system was

operated at a flow rate of 1.3 L/min and with a hydraulic retention time

of 19 seconds. The actual electrolyte volume or reactor volume of this 

reactor was 0.4 L. The CD and CDR employed in the field were 233 C/L 

and 750 C/L/min. Samples for total and dissolved concentrations were 

collected every five minutes at the outlet. The experiment was stopped

after treating 100 L of arsenic-contaminated groundwater (250 

equivalent reactor volumes). At the end of electrolysis, commercial 

grade alum (5 mg/L as Al) was added as a coagulant to the 100 L of 

treated water and allowed to flocculate for another 20 minutes. After 

flocculation, samples for measurement of dissolved arsenic were 

collected by filtering an aliquot of treated water through a 0.45 µm 

filter.

2.3 X-ray diffraction

Experiments for XRD characterization were conducted using the 

FeEC and ACAIE experimental setups described in sections 2.1.1 and 

2.1.2, but a simple electrolyte (5 mM NaCl, 5 mM NaHCO3, pH 7) was 
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used instead of SBGW. We used the simple electrolyte, which was free 

of surface-poisoning oxyanions, to ensure that the solids formed were 

crystalline enough for adequate characterization by XRD. For this 

analysis, we focused primarily on distinguishing between pure Fe(III) 

precipitates and mixed-valent Fe(II-III) (hydr)oxides. Fe precipitates for 

XRD measurements were collected on a 0.1 µm filter using a vacuum 

pump. Fe(II-III) (hydr)oxide samples were collected under nitrogen 

atmosphere and a small amount (~1mL) of glycerol was added to the 

filtered solids to prevent Fe(II) oxidation by exposure to air.35 

Diffractograms were collected from 5 to 95 2θ with a Bruker AXS D8 

Discover GADDS X-ray diffractometer, using Co K- radiation. To 

facilitate comparison among samples with different crystallinity, we 

report the diffractograms normalized by the highest intensity peak. 

2.4 X-ray absorption spectroscopy

Fe and As K-edge X-ray absorption spectra were collected at 

beam line 4-1 of the Stanford Synchrotron Radiation Lightsource (SSRL,

Menlo Park, USA). Fe K-edge spectra were recorded at room 

temperature in transmission mode out to k of 13 Å-1 using ion 

chambers to measure I0 and It. As K-edge spectra were recorded at 

liquid nitrogen temperatures (≈80 °K) in fluorescence mode out to k of 

13.5 or 14 Å-1 using a Lytle detector. Individual spectra were aligned, 

averaged, and background-subtracted using SixPack software36 

following standard methods described previously.37 The EXAFS spectra 
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were extracted using k3-weighting and the As K-edge EXAFS spectra 

were Fourier-transformed over the k-range 4 to 13 Å-1 using a Kaiser-

Bessel window with dk of 3 Å-1. Additional details regarding the sample 

preparation and data collection procedures are given in the SI.

2.4.1 As K-edge XANES analysis 

The percentages of As(III) and As(V) in each sample were 

quantified by linear combination fits (LCFs) of the As K-edge XANES 

spectra using the SixPack software.36 To minimize systematic errors 

due to the selection of particular reference compounds, we preformed 

three sets of LCFs for each sample using three sets of As(III) and As(V) 

adsorption reference spectra: As(III) and As(V) adsorbed to 2-line 

ferrihydrite, magnetite and green rust. The details of the synthesis and

data collection of these reference spectra are described elsewhere.19, 38

The XANES LCFs were performed over the range of 11860 to 11880 eV,

with negative percentages disallowed. Individual LCFs were not 

constrained to sum the percentages of fit-derived As(III) and As(V) to 

100. We report the As(III) and As(V) percentages in the samples as the 

average and standard deviation of the three sets of LCFs.

2.4.2 As K-edge EXAFS shell-by-shell fits 

Theoretical curve fits of the As K-edge EXAFS spectra of select 

samples and adsorption references were carried out in R+R-space (Å)

using the SixPack software,36 which is built on algorithms derived from 

the IFEFFIT library.39 The presence of multiple arsenic oxidation states 
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bound to the solids can lead to the co-existence of several distinct 

coordination complexes and multiple scattering paths, each with 

different fitting parameters.40 Therefore, to simplify our analysis, we 

only performed shell-by-shell fits on samples determined by XANES 

analysis to contain a single oxidation state (i.e. >90% As(III) or As(V)). 

Phase and amplitude functions (As-O, As-O-O, As-Fe) were calculated 

with FEFF641 using the crystal structure of scorodite.42 We 

geometrically constrained the As-O-O multiple-scattering path in the 

fits to the first-shell As-O path and set its degeneracy to 12 for samples

containing As(V) and 6 for samples containing As(III). Further details of 

the shell-by-shell fitting approach are given in the SI. 

3 Results  

3.1 Behavior of bulk solution parameters in FeEC and ACAIE 

systems

3.1.1 Arsenic removal
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Figure 1: Dissolved arsenic (A) and iron (B) remaining in the filtered 
solution after electrolysis as a function of CDR in the FeEC (black 
squares) and ACAIE (white squares) systems. The corresponding 
electrolysis times are shown in the secondary X-axis above (note 
decreasing values from left to right). The total charge dosage in each 
experiment was 600 C/L. Synthetic Bangladesh groundwater was used 
as the electrolyte (initial As(III) of 1464 ± 83 µg/L).

Figure 1A shows the effect of CDR on the residual arsenic in 

solution after treatment in the FeEC and ACAIE systems for a total 

charge dose of 600 C/L (3.1 mM Fe by Faraday’s law). In the FeEC 

system, the residual arsenic was less than 10 µg/L at the lowest CDR of

1.5 C/L/min, but increased to slightly more than 10 µg/L as the CDR 

increased to 6 C/L/min. Dissolved arsenic levels after treatment 

increased substantially when the CDR was increased further, leading to

20 times more aqueous arsenic (>200 µg/L) for all FeEC experiments 
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at CDR >6 C/L/min. Aqueous arsenic in the treated water in the FeEC 

system was never below 300 µg/L in experiments at the highest CDRs 

of 100 to 600 C/L/min. In sharp contrast, the residual arsenic levels in 

the ACAIE experiments depended less on CDR and were below 4 µg/L 

for all experiments (white squares in Figure 1A). In ACAIE experiments,

dissolved arsenic in the treated water increased slightly from 0.6 ± 0.6

µg/L to 3.8 ± 0.7 µg/L across the entire range of CDRs from 1.5 to 1200

C/L/min, which corresponds to electrolysis times ranging from 400 to 

0.5 minutes. 

Figure 1B shows the influence of CDR on the dissolved iron 

concentration immediately after electrolysis in the FeEC and ACAIE 

systems. For FeEC experiments, the dissolved iron concentration 

increased from 0.3 mg/L to 20 mg/L with an increase in CDR from 1.5 

to 6 C/L/min, but then stabilized at 70 mg/L at CDR ≥ 60 C/L/min. The 

aqueous iron levels were also significantly lower using an air cathode 

compared to an Fe cathode. In all ACAIE experiments, regardless of 

CDR, the dissolved iron remained below the WHO Secondary MCL 

(WHO-SMCL) of 0.3 mg/L. 

3.1.2 pH and DO

The average initial pH in both FeEC and ACAIE experiments was 

7.0 ± 0.1. The final pH in FeEC and ACAIE experiments behaved 

differently with CDR. The final pH in all FeEC experiments was always 

at least 0.5 log units higher than the initial value and ranged from 7.6 
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to 7.9 (Figure S3A). In ACAIE experiments, the final pH also increased 

from the initial value, but a more systematic trend with CDR was 

observed. At the lowest CDR of 1.5 C/L/min, the final pH was 7.8, 

whereas the final pH was only 7.1 at the highest CDR of 1200 C/L/min, 

which corresponds to the shortest electrolysis time of 0.5 minutes. 

The average initial DO in FeEC and ACAIE experiments was 7.4 ±

1.0 mg/L. The behavior of final DO differed significantly in the FeEC 

and ACAIE experiments (Figure S3B). In the FeEC system, the DO 

decreased substantially after treatment. The final DO was 3.5 mg/L 

when the CDR was 1.5 C/L/min, and it decreased further as CDR 

increased, leading to a DO of <0.1 mg/L for experiments at CDR ≥ 6 C/

L/min. In contrast, the final DO in the ACAIE system was higher than 

the initial value. The final DO increased from 8.7 to 11.7 mg/L with an 

increase in CDR from 1.5 to 100 C/L/min, but dropped to 8.8 and 7.9 

mg/L at CDR of 600 and 1200 C/L/min. 

3.1.3 Color and total iron concentrations of the suspension 

After electrolysis, visual inspection the electrolyte in FeEC 

experiments showed orange precipitates at CDR of 1.5 C/L/min, 

consistent with Fe(III) (oxyhydr)oxides, and the characteristic green-ish

blue color of green rust (GR) for experiments at CDR ≥ 6 C/L/min 

(Figure S4). Measurements of total iron in suspension indicated the 

total iron produced was more than 90% of the theoretical value based 

on Faraday’s law at all CDRs except at 1.5 C/L/min, where only 82% of 
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the theoretical iron concentration was observed. In contrast to FeEC 

experiments, only orange precipitates were observed in the ACAIE 

system at all CDRs. Furthermore, the total iron measured in the ACAIE 

experiments was >95% of the theoretical value at all CDRs (Figure S5).

The efficiency of H2O2 production by the air cathodes used in the 

ACAIE experiments (Figure S6) was lowest at the lowest CDR of 1.5 

C/L/min (48 ± 9% of the theoretical value), but increased steadily with 

increasing CDR (>80% of the theoretical H2O2 at CDR> 60 C/L/min).

3.2 Structure of iron precipitates formed in FeEC and ACAIE 

systems

3.2.1 X-ray diffraction 

Figure 2: XRD patterns of the Fe precipitates collected after electrolysis
in FeEC (A) and ACAIE (B) systems. The electrolyte was 5 mM NaCl + 5 
mM NaHCO3 (pH 7). The letters L, Fh and GR indicate the diffraction 
peaks of lepidocrocite, ferrihydrite and carbonate green rust 
respectively.43-46 CLM in the figures represents C/L/min. The broad peak
near 21 2 in Figure 2A arises from glycerol.   
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The diffractograms of the Fe precipitates in the FeEC and ACAIE 

systems showed different characteristic Bragg peaks depending on 

CDR (Figure 2). At low CDR, diffraction peaks from lepidocrocite were 

observed in the FeEC system, consistent with the orange color of the 

solids. However, as the CDR increased to 6 and 60 C/L/min, 

characteristic Bragg peaks of carbonate GR were observed in the 

solids, with intense reflections near 12 2 and 24 2. In addition, the 

GR formed at 60 C/L/min had broader peaks than the 6 C/L/min 

sample, consistent with its 10-fold shorter synthesis time. The XRD 

patterns of the solids formed in the ACAIE experiments showed 

systematic trends with CDR, but the changes in peak position and 

intensity were different than those in the FeEC system. At CDR of 1.5 

C/L/min, peaks consistent with lepidocrocite were observed, but the 

peaks were broader than those at the same CDR in the FeEC system. 

As the CDR increased from 1.5 to 60 C/L/min in the ACAIE system, the 

diffraction patterns showed a progressive decrease in peaks arising 

from lepidocrocite to peaks consistent with 2-line ferrihydrite (2LFh). 

Similar to the FeEC system, the highest CDR in the ACAIE system 

formed solids with the lowest crystallinity, but no evidence for mixed-

valent Fe(II-III) (hydr)oxides were observed. 

3.2.2 Fe K-edge XANES and EXAFS
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Figure 3: Fe K-edge XANES (A) and EXAFS spectra (B) of the Fe 
precipitates formed in FeEC and ACAIE systems. Reference spectra for 
green rust (GR) and 2-line ferrihydrite (2LFh) are also give for 
comparison. SBGW was used as the electrolyte in these experiments. 
CLM represents C/L/min.

The Fe K-edge XANES and EXAFS spectra of the Fe precipitates 

formed in FeEC and ACAIE systems are compared to the spectra of Fe-

bearing reference minerals (e.g. GR and 2LFh) in Figure 3. Consistent 

with the XRD data, the line shape of the XANES spectrum of solids 

produced at 60 C/L/min in the FeEC system matched the GR reference 

spectrum (Figure 3A), particularly the sharp absorption peak near 7130

eV. In addition, the EXAFS spectrum of this sample resembled the 

EXAFS spectrum of GR, including the asymmetric first oscillation from 
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2.5 to 4.5 Å-1. However, the EXAFS oscillations of the FeEC 60 C/L/min 

sample had lower amplitude and were more broad than the GR 

reference spectrum, which can be explained by the FeEC sample 

having lower crystallinity than the reference GR due to its rapid 

synthesis time and formation in the presence of surface-poisoning ions.

In contrast to the FeEC system, the ACAIE samples (6 and 60 C/L/

min) yielded solids with XANES spectra that matched closely that of 

2LFh. The more intense pre-edge peak and the flattened region near 

the absorption maximum, which is also found in the spectrum of 2LFh, 

indicate the predominance of Fe(III) in the ACAIE samples, consistent 

with the XRD patterns. The EXAFS spectra of the ACAIE samples also 

matched that of 2LFh, particularly the symmetric first oscillation and 

low amplitude peaks at k > 8 Å-1. However, some subtle differences are

apparent between the EXAFS spectra of 2LFh and the ACAIE samples. 

For example, the small shoulder in the first oscillation near 5.5 Å-1 in 

the 2LFh EXAFS spectrum is reduced in the ACAIE samples and the 

small peak near 7.5 Å-1 is flat in the ACAIE samples. These differences 

are consistent with a lower degree of edge- and corner-sharing 

bonding in the ACAIE samples relative to 2LFh.47       

3.3 As X-edge X-ray absorption spectroscopy 

3.3.1 As K-edge XANES spectra
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Figure 4: As K-edge XANES (A), EXAFS (B), and corresponding Fourier 
transforms (C) of FeEC and ACAIE samples. Reference spectra of As(III) 
and As(V) adsorbed to 2-line ferrihydrite (2LFh_As(III), 2LFh_As(V)) are 
also given. In C), the shell-by-shell fitting output is given in solid lines 
and the data is given in dotted lines.  SBGW was used as the 
electrolyte in these experiments. CLM represents C/L/min.

Figure 4A compares the As K-edge XANES spectra of solids 

formed in the FeEC and ACAIE systems at CDRs of 6 and 60 C/L/min to 

the reference spectra of As(III) and As(V) adsorbed to 2LFh. In the FeEC

system, the XANES spectrum of the solids formed at 6 C/L/min has two 

distinct peaks with maxima near 11870 eV and 11874 eV, consistent 

with the absorption maxima for the reference As(III) and As(V) spectra. 

At increased CDR in the FeEC system, the peak indicative of As(III) 

increases and is accompanied by a nearly complete decrease in the 
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As(V) peak. The LCFs of these samples (Table S2) confirm that the 

As(III) percentage increases from 63 ± 2% to 100 ± 2% as the CDR 

increases from 6 to 60 C/L/min, indicating inefficient As(III) oxidation at

high CDR in the FeEC system. By contrast, only peaks for As(V) are 

apparent in the XANES spectra of samples produced at identical CDRs 

of 6 and 60 C/L/min in the ACAIE system. The LCFs of the ACAIE 

samples revealed a negligible percentage of As(III), with only As(V) 

detected, which indicates highly effective As(III) oxidation using an air 

cathode, even at high CDR values. 

3.3.2 As K-edge EXAFS spectra

Figure 4B displays the As K-edge EXAFS spectra of samples 

produced at CDR of 6 and 60 C/L/min in the FeEC and ACAIE systems. 

In the FeEC system, the EXAFS oscillations of the samples resembled 

the As(III) adsorption reference spectrum, consistent with the XANES 

LCFs indicating the predominance of sorbed As(III). The first two 

oscillations from 4 to 8 Å-1 in the FeEC samples showed a small, 

asymmetric shoulder at higher k, which is also present in the As(III) 

adsorption reference. The EXAFS spectra of samples in the ACAIE 

system are characterized by flatter oscillations from 4 to 8 Å-1 than the 

FeEC samples and the reference spectra. Compared to the reference 

spectra, the ACAIE samples are a closer match to As(V) adsorbed to 

2LFh, which is consistent with the absence of As(III) determined by 

XANES LCFs.
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3.3.3 Shell-by-shell fits of the As K-edge EXAFS Spectra

Figure 4C shows the Fourier-transformed As K-edge EXAFS 

spectra of select FeEC and ACAIE samples and reference spectra with 

the output of the shell-by-shell fits overlain on the data. The results of 

the shell-by-shell fits are given in Table S2. For the FeEC sample at 

CDR of 60 C/L/min, which was determined to be >95% As(III) by XANES

LCFs, the first-shell fits were consistent with As(III) based on the fit-

derived coordination number (CNAs-O) of 3.1 ± 0.4 and interatomic 

distance (RAs-O) of 1.77 ± 0.01 Å.48 The second shell of this sample was 

fit with an As-Fe path with CN = 1.3 ± 0.6 and R = 3.41 ± 0.03 Å. This 

RAs-Fe value is identical within fit-derived errors to previous studies 

assigning this interatomic distance to As(III) bound in a binuclear 

corner-sharing (2C) geometry to GR particle edges.40 However, we note 

that the fit-derived CNAs-Fe value of 1.3 ± 0.6 is slightly lower than the 

theoretical value of 2.0 for the 2C geometry. Attempts to fit the second 

shell with an As-Fe mononuclear edge-sharing (2E) bond with RAs-Fe near

3.0 Å, which has been proposed in previous studies of As(III) bound to 

Fe precipitates,48 were unsuccessful, yielding physically meaningless 

(or negative) values of CNAs-Fe and RAs-Fe. 

Fits of the first and second shells of the solids formed in the 

ACAIE system at CDR of 6 and 60 C/L/min were similar, indicating a 

similar arsenic uptake mode regardless of CDR. The first shell As-O 

parameters returned by the fit were CNAs-O of 4.4 ± 0.5 to 4.7 ± 0.5 and
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RAs-O of 1.69 ± 0.01 Å, consistent with As(V) in tetrahedral 

coordination.49 The second-shell fits in the ACAIE system yielded values

of 3.0 ± 0.8 to 3.1 ± 0.8 for CNAs-Fe and 3.24 ± 0.02 Å for RAs-Fe. These 

second-shell fitting parameters are similar to those of the reference 

spectrum of As(V) adsorbed to 2LFh (CNAs-Fe =1.9 ± 0.9; RAs-Fe = 3.28 ± 

0.03 Å), but the ACAIE samples have a slightly higher CN.  Based on 

the RAs-Fe of 3.24 Å for ACAIE samples, we conclude that As(V) is bound 

to the ACAIE solids in the 2C geometry.49 The RAs-Fe of the ACAIE 

samples (3.24 Å) is almost 0.2 Å shorter than the RAs-Fe of the FeEC 

sample at CDR of 60 C/L/min (3.41 Å), which we identified as As(III) 

bound also in the 2C geometry. This difference in RAs-Fe for the same 2C 

geometry reflects the shorter As-O distance of As(V) (1.69 Å) compared

to As(III) (1.77 Å) and the shorter average Fe-O distance (2.0 Å) for 

Fe(III) precipitates50 compared to GR (2.1 Å).51 

3.4 Field performance of a flow through ACAIE in rural 

California

Figure S7 shows the arsenic removal performance of the 

continuous flow ACAIE system that treated 100 L (250 equivalent 

reactor volumes, 19 second retention time) of real groundwater 

followed by coagulation and flocculation. Pre-coagulation filtered 

samples, collected during electrolysis, had a pale-yellow color 

indicative of particulate Fe, which suggests arsenic-bearing Fe(III) 

precipitates of sizes smaller than 0.45 µm passed through the filter. 
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Therefore, we measured dissolved iron concentrations above 0.3 mg/L 

(WHO-SMCL) during electrolysis. Dissolved iron reached below 0.3 mg/

L after coagulation and flocculation with alum (5 mg/L as Al).  

Dissolved arsenic concentrations decreased dramatically from an initial

value of 118 µg/L to less than 30 µg/L in the first five minutes and then

remained below 20 µg/L, when collected during electrolysis. After 

flocculation, dissolved arsenic decreased to below 0.5 µg/L.

4 Discussions

4.1 Impact of CDR on the structure of Fe precipitates in the

FeEC and ACAIE systems

In FeEC, complete oxidation of Fe(II) to Fe(III) is achieved when 

the rate of Fe(II) generation is less than rate of atmospheric O2 

dissolution; this typically occurs at low CDR. At a low CDR of 1.5 

C/L/min, completely oxidized Fe(III) precipitates formed in FeEC, which 

is consistent with the final DO near 3.5 mg/L (Figure S3B). At increased

CDR, measurements of the final DO below 0.1 mg/L indicate that the 

rate of Fe(II) generation exceeded the rate of O2 dissolution. This rapid 

introduction of Fe(II) and consumption of DO at CDR ≥6 C/L/min 

resulted in incomplete Fe(II) oxidation and the formation of GR. This 

conclusion is supported by the XRD and Fe K-edge XAS data as well as 

the characteristic color of solids. 

In contrast to the FeEC system, complete oxidation of Fe(II) to 

Fe(III) during ACAIE treatment occurred due to the nearly equimolar 
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generation of H2O2 by the cathode, especially at high CDR (80-85% 

efficiency, Figure S6).26 In addition, the H2O2 Faradaic efficiency 

remained nearly constant (~85 %) even when the CDR increased an 

order of magnitude (from 60 to 600 C/L/min), which suggests negligible

O2 diffusion limitations to the air cathode. The efficient production of 

H2O2, which oxidizes Fe(II) at nearly 4 orders of magnitude faster than 

DO,27, 28 explains why dissolved Fe(II) did not accumulate and GR did 

not form in the ACAIE system even at the highest CDR of 1200 C/L/min.

While no transition from Fe(III) precipitates to GR was observed at in 

the ACAIE system, some systematic changes in Fe(III) precipitate 

structure with CDR were detected in the XRD data. At the lowest CDR 

of 1.5 C/L/min, lepidocrocite was observed in the XRD, but 2LFh 

became dominant as the CDR increased. This trend in reduced 

crystallinity can be explained by the decreased efficiency of H2O2 

production (48 ± 9% of the theoretical value) at CDR of 1.5 C/L/min 

compared to the high efficiency of H2O2 production at CDR> 6 C/L/min. 

Since <60% of the theoretical H2O2 was produced at CDR of 1.5 

C/L/min, the half-life of Fe(II) in experiments at low CDR is likely longer 

than at high CDR. The higher stability of Fe(II) at low CDR is consistent 

with the well-documented rapid transformation of freshly-formed Fe(III)

precipitates to lepidocrocite catalyzed by Fe(II).52, 53 Another 

speculative explanation for the difference in the structure of the Fe(III) 

(oxyhydr)oxides is that long electrolysis times (~6.7 hours) at low CDR 
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of 1.5 C/L/min could allow sufficient time for crystallization of poorly-

ordered Fe(III) (oxyhydr)oxides to lepidocrocite by other crystal growth 

mechanisms (e.g. oriented aggregation or Ostwald ripening).54

4.2 Behavior of arsenic in the FeEC and ACAIE systems

 In the FeEC experiments, we observed excellent removal of 

As(III) to below 2 µg/L at the lowest CDR of 1.5 C/L/min (Figure 1A). At 

this CDR, we also observed the formation of strictly Fe(III)-bearing 

solids. This effective arsenic removal is explained by complete 

oxidation of Fe(II) by DO at low rates of Fe(II) addition, which leads to 

As(III) outcompeting Fe(II) for Fe(IV), resulting in efficient As(III) 

oxidation and removal.13, 34, 55 By contrast, as the CDR increased above 

6 C/L/min in the FeEC system, we observed nearly 300 µg/L of arsenic, 

70 mg/L of Fe and <0.1 mg/L of DO remaining in the solution after 

electrolysis (Figure 1, Figure S3B). In addition, our structural data 

revealed the formation of GR. The lower arsenic removal efficiency at 

high CDR in the FeEC system results from several processes related to 

the increased Fe(II) addition rate. At high rates of Fe(II) addition, DO is 

consumed rapidly and leads to the accumulation of aqueous Fe(II), 

which outcompetes As(III) for reactive Fenton-type oxidants, resulting 

in inefficient As(III) oxidation. This result is consistent with the As K-

edge XANES analysis showing the predominance of sorbed As(III) at 

CDR >6 C/L/min (Figure 4). In addition, the formation of GR at high 

CDRs likely decreases arsenic removal efficiency because of its lower 
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specific surface area compared to Fe(III) precipitates and GR could 

compete with As(III) for the reactive oxidants.56 Although we still 

detected inner-sphere As(III) adsorption complexes on GR in the FeEC 

experiments, our observation that GR did not remove arsenic 

effectively is consistent with previous work showing Fe(III) precipitates 

to be more advantageous to arsenic removal.38 

In contrast to the FeEC system, nearly 100% arsenic removal 

was observed in ACAIE experiments at all CDRs. For example, aqueous 

arsenic levels decreased from 1464 µg/L to <4 µg/L, despite the 800-

fold shorter treatment time (400 to 0.5 minute electrolysis time for 

CDR of 1.5 to 1200 C/L/min). In addition, we found no evidence for the 

accumulation of Fe(II) nor the formation of GR in the ACAIE 

experiments. The remarkable arsenic removal efficiency of the ACAIE 

system results can be explained by the rapid kinetics of Fe(II) oxidation

by H2O2 coupled with higher yields of reactive oxidants. Despite air 

saturated DO levels observed in the ACAIE system at all dosage rates 

(Figure S3B), we expect H2O2 to outcompete DO to oxidize aqueous 

Fe(II) (kapp_H2O2 = 104.5 M-1s-1 ; kapp_O2 = 100.9 M-1s-1) because it reacts 

quicker than DO. We validated this hypothesis with an additional 

experiment provided in SI (Section S6, Figure S11). The more effective 

production of reactive oxidants in the ACAIE system is consistent with 

the As K-edge XANES and EXAFS data, which identified only As(V) 

bound in the 2C adsorption geometry to Fe(III) precipitate surfaces, 
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regardless of CDR. In addition to efficient oxidation of As(III) to As(V), 

the lower crystallinity of Fe(III) (oxyhydr)oxides compared to GR 

formed at high CDR can also benefit arsenic removal because of their 

high specific surface area. 

4.3 Electrolyte composition

Comparing the laboratory experiments, which were conducted 

primarily in SBGW, with the field experiments performed in real 

groundwater allows us to examine the influence of groundwater 

chemistry on arsenic removal in the ACAIE system. For example, 

previous studies indicate that Ca and Mg aid in the aggregation and 

flocculation of Fe(III) (oxyhydr)oxides by charge neutralization.57, 58 

Consequently, in the laboratory experiments, high concentrations of Ca

and Mg in SBGW likely aided the aggregation of the solids (nominal 

diameter >0.45µm), resulting in effective particle removal by filtering 

with measurements of iron and arsenic in the filtered solutions below 

their respective SMCL and MCL. However, low concentrations of Ca and

Mg in Allensworth groundwater prevented the aggregation of Fe(III) 

(oxyhydr)oxides (nominal size around 0.45 µm), which lead to some of 

the arsenic-rich Fe(III) (oxyhydr)oxides passing the filters.59 This was 

evident by the yellow color of the filtered samples and measurements 

of arsenic in the filtered solution above the WHO-MCL during 

electrolysis. However, the addition of alum at the end of electrolysis in 

the field experiments resulted in the particle flocculation and dissolved
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iron and arsenic remained far below their respective SMCLs of 0.3 mg/L

and 10 µg/L respectively. Dissolved organic carbon in the groundwater 

could also be responsible for the poor aggregation of Fe(III) 

(oxyhydr)oxides generated in the field. These results confirm the 

importance of solution composition (e.g., bivalent cations, dissolved 

organic carbon) for the removal of particulate iron by filtration. 

Therefore, an additional coagulation and flocculation step is 

recommended for particle separation. However, recent studies show 

that electrocoagulation systems could be coupled with membrane 

filtration to further decrease treatment times compared to 

gravitational settling.60-62 

4.4 Technical and environmental implications

Recent studies show that arsenic levels even below 10 µg/L can 

cause significant increases in excess cancers, which calls for 

innovative treatment solutions that can remove arsenic to <1 µg/L.63 

Our results show that ACAIE can achieve arsenic removal <1 µg/L at 

CDRs of 1.5 and 6 C/L/min. At higher CDRs (and shorter treatment 

duration) 1 µg/L arsenic can be likely achieved by increasing and 

optimizing the total charge dose, which is currently under investigation

in our laboratory. In addition, ACAIE removes arsenic to <4 µg/L with 

superior energy efficiency than that of FeEC (Figure S9). The reduction 

in Electrical Energy per Order for ACAIE, relative to FeEC, ranges from 

8% to 76% between CDRs 1.5 to 600 C/L/min (Figure S9). Therefore, 
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target arsenic levels of <1 µg/L can likely be achieved at significantly 

lower operating costs with ACAIE relative to FeEC. Furthermore, the 

extremely short treatment duration (i.e. short residence time) implies 

that ACAIE systems require a much smaller footprint than an 

equivalent FeEC system. This also could lead to smaller capital cost for 

the reactor. Based on these benefits, we propose that ACAIE can be a 

breakthrough technology to decrease arsenic concentrations to less 

than <1 µg/L both in large-scale water treatment plants in rural 

communities relying on decentralized treatment.   

Importantly, the As K-edge XANES and EXAFS spectra showed 

that the bonding environment of As(V) did not change with CDR in the 

ACAIE system, with As(V) forming the 2C adsorption complex with 

Fe(III) (oxyhydr)oxides in all experiments. Given the wide range of 

electrolysis times, detection of the same 2C adsorption complex is 

remarkable. This result is also important since the As and Fe bonding 

environment in the reaction products of the ACAIE system are nearly 

identical to arsenic-rich Fe(III) precipitates that have been tested 

previously for arsenic leachability by the Toxicity Characteristic 

Leaching Procedure (TCLP)55, 64 and for long-term disposal by 

incorporation in concrete.65, 66 Therefore, the results of previous 

investigations of the fate of arsenic-rich Fe(III) precipitates during 

sludge storage and disposal will likely be applicable to the ACAIE 
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treatment residuals, which is useful to inform sludge management 

strategies. 

Low mechanical stability of large size air cathodes could limit the

scale-up of ACAIE for single-size very large treatment systems. While 

mechanical stability can be a concern for single air cathodes of very 

large size (e.g. larger than a square meter), our field experiments were

performed with a modestly large air cathode assembly (air cathode of 

400 cm2) and showed mechanical stability and high efficiency for 

extended periods. Furthermore, when targeting rural, decentralized 

communities, small scale ACAIE systems can be implemented with 

vertically stacked multiple ACAIE reactors, each of moderate scale, 

without resorting to very large electrodes. However, if eventually 

larger electrodes are required for much higher capacity ACAIE systems 

than those in our field tests, screen printing techniques can be 

explored to fabricate air cathodes with several m2 surface. 

Finally, fouling of the air cathodes can be caused by the 

precipitation of Ca and Mg carbonates due to local regions of alkaline 

pH near the cathodes26 and by the physical accumulation of Fe(III) 

(oxyhydr)oxides on the cathode surface over months to years of 

operation. However, we observed no significant change in cathodic 

H2O2 production in waters containing high Ca and Mg  concentrations 

(Figure S10), consistent with previous findings.26 We note that the 

impact of fouling by Fe(III) (oxyhydr)oxides on the cathode over long-
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term continuous operation, which could decrease H2O2 production, 

should be investigated to increase the operational life of the cathodes. 

Supporting Information

The supporting information contains: SBGW recipe, air cathode 

fabrication, Faradaic efficiency of H2O2 measurements, energy 

consumption data, controlled experiments to test the dominant oxidant

in ACAIE, X-ray absorption spectroscopy details, long-term 

performance of the air cathode, in addition to supporting tables and 

figures referenced in the main manuscript. The supporting information 

is available free of charge via the internet at http://pubs.acs.org.
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