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Abstract 16 

Photosynthesis responds quickly to changes in light, increasing with incoming photosynthetic 17 

photon flux density (PPFD) until leaves become light saturated. This instantaneous response to 18 

PPFD, which is widely studied and incorporated into models of photosynthesis, is overlaid on 19 

non-instantaneous photosynthetic changes resulting from the acclimation of plants to average 20 

PPFD over intermediate timescales of a week to months (PPFD). Such photosynthetic light 21 

acclimation is not typically incorporated into models, due to the lack of observational constraints. 22 

Here, we use eddy covariance observations from globally distributed and automated sensor 23 

networks, along with photosynthesis estimates from 9 terrestrial biosphere models (TBMs) to 24 

quantify and assess photosynthetic acclimation to light in natural environments. In addition, we 25 

use recent theoretical developments to incorporate light acclimation in a TBM. Our results show 26 

widespread light acclimation of ecosystem photosynthesis. On average, a 1 μmol m-2 s-1 increase 27 



in PPFD10 (10-day average PPFD) leads to a 0.031 ± 0.013 μmol C m-2 s-1 increase in maximum 28 

photosynthetic assimilation rate (Amax), with croplands having a stronger acclimation rate than 29 

grasslands and forests. Our analysis shows that the TBMs examined either neglect or 30 

substantially underestimate light acclimation. By updating a TBM to include photosynthetic 31 

acclimation, successfully reproducing the PPFD10-Amax relationship, we provide a robust method 32 

for the incorporation of photosynthetic light acclimation in future models. 33 

 34 

Main 35 

Global photosynthesis is the largest carbon flux in the global carbon cycle 1, removing CO2 from 36 

the atmosphere and thus contributing to climate change mitigation. The amount of carbon 37 

assimilated by photosynthesis is dependent on the short- and long-term responses of vegetation 38 

to a range of climate factors, in particular incoming solar irradiance, about half of which is 39 

photosynthetically active photons 2. The intensity of incoming photosynthetic active photons is 40 

described by photosynthetic photon flux density (PPFD; unit: μmol photon m-2 s-1). PPFD is 41 

utilized by leaves in a fast biochemical process that converts photonic energy into biochemical 42 

energy to drive the Calvin-Benson cycle and ultimately fix CO2 into starches and sugars that are 43 

used to maintain metabolism and grow biomass 3. The relationship between the instantaneous 44 

rate of photosynthesis (A) and PPFD has been well documented using light response curves, in 45 

which A generally increases with PPFD and plateaus at maximum A (Amax) when leaves become 46 

light saturated 4. 47 

 48 

The well documented light response curves, and the understanding of leaf biochemical processes 49 

generated from them, form the basis of many terrestrial biosphere models (TBMs), the principle 50 



tools used to estimate the terrestrial carbon cycle 5. In such models, however, PPFD only 51 

influences instantaneous rates of photosynthetic carbon assimilation. This approach is at odds 52 

with results from field experiments, which show that, over intermediate timescales of a week to 53 

months, plants also respond to increasing PPFD by increasing Amax 
6–10. Experimental 54 

observations consistently show that leaves exposed to higher average levels of PPFD over 55 

intermediate timescales (PPFD) tend to have larger Amax. For example, leaf-level Amax can 56 

increase from less than 5 μmol C m-2 s-1 to more than 15 μmol C m-2 s-1 while autumn PPFD 57 

increases from approximately 50 μmol photon m-2 s-1 to 600 μmol photon m-2 s-1 6. This strategic 58 

adjustment to PPFD improves plant light-use efficiency, a process known as photosynthetic light 59 

acclimation, to further increase the magnitude of instantaneous A. 60 

 61 

Historically, studies have investigated photosynthetic light acclimation at the leaf scale and for 62 

limited species in controlled experiments, providing an incomplete picture of the existence, 63 

degree and pattern of photosynthetic light acclimation in natural ecosystems. Additionally, many 64 

studies have found that the within-canopy gradient of leaf-level photosynthetic capacity is 65 

optimized to follow the within canopy light profile 11,12, indicating that leaf-level light 66 

acclimation underlies the ecosystem-scale photosynthetic activity. However, the connection 67 

between leaf and ecosystem light acclimation has remained elusive, as direct evidence of 68 

ecosystem-scale light acclimation is lacking, as is an effective method to simulate acclimation. 69 

Hence, photosynthetic light acclimation is ignored in state-of-the-art TBMs 13. Globally 70 

distributed observations of ecosystem carbon fluxes based on the eddy-covariance technique 14,15, 71 

and the resulting estimates of ecosystem gross primary productivity 16, offer a unique opportunity 72 

to examine the degree of photosynthetic light acclimation in natural ecosystems. In tandem, 73 



recent theoretical developments, in particular the coordination hypothesis, which suggests that 74 

plant photosynthesis acclimates at intermediate timescales of weeks to months 17–21, provide a 75 

potential approach to incorporate the process of photosynthetic light acclimation into TBMs. 76 

 77 

Here, we use globally distributed eddy covariance measurements from more than a hundred sites 78 

to examine ecosystem scale photosynthetic light acclimation. We estimate ecosystem Amax using 79 

a light response curve approach 16 across all sites, and characterize the ecosystem light 80 

acclimation rate (γA) as the sensitivity of Amax to PPFD10 (i.e. 10-day average PPFD). The 81 

objectives of this study are to examine whether and to what degree ecosystem photosynthetic 82 

light acclimation (i.e. positive γA) occurs, to understand the distribution of γA along 83 

environmental and ecological gradients, to evaluate TBMs using γA inferred from observations, 84 

and to develop and test an approach to incorporate photosynthetic light acclimation into TBMs. 85 

 86 

Results and Discussion 87 

We derived ecosystem Amax from half-hourly net ecosystem carbon exchange measured at eddy 88 

covariance sites covering a wide range of variation in Amax and environmental factors. Multiple 89 

environmental factors co-vary with PPFD on intermediate timescales, in particular daytime air 90 

temperature (Tair) and vegetation foliage densities (indicated by fraction of absorbed 91 

photosynthetic active ration; fAPAR; unitless). In order to remove the influence of extraneous 92 

environmental variability, we grouped the derived Amax and observed PPFD10 into bins by their 93 

corresponding fAPAR and Tair (see Methods) and then quantified γA within each bin (Fig.1). In 94 

addition to removing extraneous influences on the derived photosynthetic light acclimation, this 95 

also allowed us to examine light acclimation across environmental gradients. We detected 96 



positive γA in 85% of the bins studied, suggesting a widespread existence of photosynthetic light 97 

acclimation under natural conditions (Fig. 1a). 59.8% of those positive PPFD10-Amax correlations 98 

were statistically significant (p < 0.1; 48.1% for p < 0.05). Our analysis found an average γA of 99 

0.031 ± 0.013 mol mol-1 (μmol C m-2 s-1 per μmol photon m-2 s-1; mean ± s.d.) for the significant 100 

acclimation cases (p < 0.1). Changes in the length of the time windows we used to detect light 101 

acclimation did not affect our results (Extended Data Fig. 1). We used a linear regression of Amax 102 

to PPFD10  to derive γA (Fig. 1b) as it was commonly adopted by previous leaf-level experiments 103 

6,9, though we acknowledge cases where Amax responded to PPFD non-linearly 8,10. The 104 

ecosystem γA (0.031 ± 0.013 mol mol-1) we derived from the eddy covariance data was 105 

comparable to the leaf-level γA (0.027 ± 0.016 mol mol-1) we collated from previous studies (Fig. 106 

1c; Supplementary Table 1). It should be noted that ecosystem γA is the slope of the regression of 107 

canopy Amax (μmol C m-2 ground surface area s-1) to PPFD10 (μmol photon m-2 ground surface 108 

area s-1), while leaf γA is the slope of the regression of leaf Amax (μmol C m-2 leaf area s-1) to 109 

PPFD10 (μmol photon m-2 ground surface area s-1), meaning that ecosystem γA is equal to the 110 

sum of γA of all leaves in a canopy divided by total leaf area (a.k.a. the average leaf γA). The 111 

ecosystem γA we derived is therefore comparable to published leaf-level γA (Fig. 1c). We note 112 

that using an Amax standardized to a PPFD of 2000 μmol m-2 s-1 resulted in a somewhat lower γA 113 

of 0.025 ± 0.012 mol mol-1 (Extended Data Fig. 2). 114 

 115 

Although we show light acclimation is related to light intensity (i.e. PPFD10), some studies 116 

suggested photoperiod 22 and the total amount of photons 10 received by vegetation can cause 117 

changes in Amax. We assessed the dependence of Amax on photoperiod (the number of daytime 118 

hours in a day; unit: hours) and total photons (mol m-2 day-1) of the same 10-day windows, and 119 



found positive γA in more than 80% of the bins in both cases (Extended Data Fig. 3). The 120 

patterns of γA we derived from the regressions of Amax to photoperiod and total photons were 121 

very similar to what we obtained when using PPFD10 (Fig. 1a), potentially caused by the strong 122 

correlations between three light metrics. In this study, we used PPFD10 as the primary predictor 123 

in order to compare with theoretical acclimation predictions of the response of Amax to light 124 

intensity.  125 

  126 

We further examined several potential drivers to explain the changes in ecosystem γA. First, we 127 

found that ecosystem γA (the average γA of bins with significant (p < 0.1) light acclimation) was 128 

relatively insensitive to fAPAR between 0.4 to 0.6, as γA stabilized at 0.028 ± 0.011 mol mol-1 129 

(Fig. 2a). However, for dense canopies where fAPAR > 0.6, γA significantly increased with 130 

fAPAR to 0.041 ± 0.015 mol mol-1 (p < 0.05; Fig. 2a; Extended Data Fig. 1). Considering that 131 

ecosystem γA indicates the average leaf γA within a canopy, and that shaded leaves constitute an 132 

increasingly larger portion of a canopy as fAPAR increases (Extended Data Fig. 4)23, our results 133 

indicate that shaded leaves acclimate to light faster than sunlit leaves. This suggests a nonlinear 134 

and gradually saturating response of Amax to PPFD, which has been proposed by a meta-135 

analysis10 though some studies suggested otherwise6,8.  Meanwhile, the changes in fAPAR did 136 

not influence the detectability of light acclimation (i.e. the ratio of the number of the bins where 137 

γA > 0 and p < 0.1 to the total number of bins) using our method, as the detectability stabilized at 138 

60%. 139 

 140 

We found that the detectability of light acclimation changed as a function of Tair, with 141 

detectability declining from almost 100% to 0% when Tair either increased or decreased from 142 



around 10 °C to the higher or lower end of the temperature range (Fig. 2b). The decreased 143 

detectability of acclimation at low temperature could potentially be caused by photoinhibition, a 144 

light-induced process that damages photosystem II and downregulates Amax 
24 and consequently 145 

influences γA. Several studies have found that the effect of photoinhibition is particular evident at 146 

low temperature 25–27, though there are conflicting reports over the temperature dependence of 147 

photoinhibition 28. In addition, we found that the decreased detectability of light acclimation 148 

under high temperature was related to the effect of vapor pressure deficit (VPD) on stomatal 149 

conductance (Fig. 2d). Stomatal aperture is inversely related to VPD 29,30, and stomatal closure 150 

could reduce Amax and hence influence γA. Note however that our data pre-filtering criteria 151 

removed most periods with moderate to high VPD (see Methods section 3), in order to minimize 152 

the VPD effect on γA. For those bins with significant (p < 0.1) light acclimation, γA was 0.033 ± 153 

0.017 mol mol-1 for Tair < 10 °C, 0.027 ± 0.010 mol mol-1 for Tair between 10 °C and 20 °C, and 154 

0.039 ± 0.013 mol mol-1 for Tair > 20 °C. (Fig. 2b; Extended Data Fig. 1). The significantly 155 

higher γA (t-test, p < 0.05) under warmer conditions is consistent with some previous reports31,32, 156 

though a lack of experimental observations on the temperature dependence of light acclimation 157 

precludes a mechanistic explanation. We also noted that the higher percentage of data pairs from 158 

cropland and broadleaf forests (Extended Data Fig. 5), which had a higher acclimation rate (Fig. 159 

2c), might explain the higher γA we found under warm conditions. 160 

 161 

γA varied by plant functional type (PFT) (Fig. 2c; Extended Data Fig. 6), with croplands (CRO) 162 

having the largest acclimation rate around 0.073 ± 0.117 mol mol-1, followed by evergreen 163 

broadleaf forests (EBF; 0.052 ± 0.058 mol mol-1), deciduous broadleaf forests (DBF; 0.049 ± 164 

0.077 mol mol-1), grasslands (GRA; 0.045 ± 0.042 mol mol-1), mixed forests (MF; 0.034 ± 0.059 165 



mol mol-1) and evergreen needleleaf forests (ENF; 0.032 ± 0.043 mol mol-1). γA from CRO was 166 

significantly larger than γA of the others (t-test, p < 0.05). This variation in γA reflects a 167 

difference in the photosynthetic plasticity between PFTs, with some studies attributing the inter-168 

species variations in photosynthetic plasticity to successional stages 33 and nutrient use strategies 169 

34. The inter-PFT variation in γA is potentially related to nitrogen use efficiency (NUE), which 170 

could influence Amax 
35. The rank ordering of γA we observed for each PFT (CRO > DBF = EBF > 171 

ENF) (Fig. 2c), was similar to the rank ordering of NUE reported based on the global TRY plant 172 

trait database 36. We note that some bins had negative γA, though most of the negative γA were 173 

not statistically significant (Extended Data Fig. 6). Uncertainties in γA, as well as the occurrences 174 

of negative γA, can be caused by some light properties (i.e. spectral quality37 and light 175 

fluctuations38,39) and biological factors (i.e. leaf age40) that are known to impact light acclimation 176 

but not considered here. We also note that most negative γA values corresponded to bins with few 177 

data pairs (i.e. only 6 – 60 pairs per bin) available to constrain the Amax - PPFD10 relationship 178 

(Extended Data Fig. 5 and 7). 179 

 180 

We further tested nine TBMs (Supplementary Table 3) to assess the degree of γA in their 181 

simulations (Fig. 3a). We found that none of the models captured the observed distribution of  γA, 182 

with five models showing positive but underestimated γA (BEPS 0.011 ± 0.021 mol mol-1; CN-183 

CLASS 0.007 ± 0.030 mol mol-1; ECOSYS 0.023 ± 0.025 mol mol-1; SiBCASA 0.006 ± 0.017 184 

mol mol-1; SSiB2 0.004 ± 0.010 mol mol-1) and four models showing zero or negative mean γA 185 

(Can-IBIS -0.011 ± 0.008 mol mol-1; ORCHIDEE -0.010 ± 0.016 mol mol-1; SiB -0.007 ± 0.016 186 

mol mol-1; TECO -0.029 ± 0.021 mol mol-1). Non-zero γA in models that do not explicitly 187 

account for acclimation can potentially arise due to a prescribed variation in the maximum 188 



carboxylation rate (Vcmax), which influences simulated Amax under light saturation conditions 36. 189 

However, Vcmax variation in the examined TBMs is dependent on either biomass allocation 41, or 190 

soil nutrient limitation and optimized water use 42, or a simple scaling factor 43, rather than the 191 

direct acclimation of Amax to PPFD10. These empirical methods are often generalized from local 192 

studies and prone to estimating biased γA when extrapolated to large scales (Fig. 3a), highlighting 193 

a need to explicitly consider the PPFD10 - Amax relationship in TBMs.  194 

  195 

Recent theoretical advances provide an opportunity to implement photosynthetic light 196 

acclimation from the first principles of photosynthesis. Here, we tested an approach that predicts 197 

the responses of Vcmax to multiple environmental factors from first principles 19, and which can 198 

be used to predict the acclimation of Amax to light. The model was developed based on the 199 

coordination hypothesis which suggests that the light and dark reactions of photosynthesis are 200 

coordinated to optimize light use efficiency 17–21 (see Methods). We incorporated this optimality 201 

model in one of the TBMs investigated, BEPS 44,45, and found that γA significantly improved (t-202 

test, p < 0.05) from 0.011 ± 0.021 mol mol-1 in the original BEPS to 0.023 ± 0.014 mol mol-1 in 203 

the updated BEPS (BEPS-opt) (Fig. 3b). The improvement in γA resulted in a 5.2% increase in 204 

the intra-annual variation in estimated gross primary productivity (GPP) and a 28.9% increase (t-205 

test, p < 0.05) in the inter-annual variation in estimated GPP, which were closer to the variations 206 

in GPP we derived from eddy covariance observations (Fig. 3c, d).  207 

  208 

Photosynthetic light acclimation is a key feature of plants that leads to spatial and temporal 209 

changes in global photosynthesis and ecosystem carbon uptake. In this study, we analyzed a 210 

database of eddy covariance observations and found widespread photosynthetic light acclimation. 211 



The global average acclimation rate detected was 0.031 ± 0.013 mol mol-1 (p < 0.1), which is 212 

comparable to the previously reported leaf-level acclimation rate. The acclimation rate of 213 

croplands was observed to be stronger than that of forests and grasslands. The observed light 214 

acclimation was independent of changes in canopy leaf area for sparse canopies but increase with 215 

foliage amount for dense canopies, potentially suggesting shaded leaves acclimate faster to light 216 

than sunlit leaves. Low temperature reduced the detectability of light acclimation potentially due 217 

to photoinhibition, and high temperature did so by increasing VPD and the resulting stomatal 218 

closure. Nine state-of-the-art TBMs we tested failed to accurately reproduce the magnitude of 219 

light acclimation we observed. By incorporating a recently developed optimality model in a 220 

TBM, we constrained the associated uncertainty and successfully reproduced the magnitude of 221 

observed light acclimation. Together, these results suggest that the long-observed acclimation of 222 

photosynthesis to light at the leaf scale is also prevalent at the ecosystem scale, and provide an 223 

effective approach for its incorporation into land surface models. 224 

 225 

 226 

Methods 227 

1. Derivation of Amax from eddy covariance measurements 228 

We used eddy covariance observations of carbon exchange between ecosystems and the 229 

atmosphere provided in the standard FLUXNET2015 Tier 1 dataset 46. It provides half-hourly 230 

and hourly net carbon flux (Fc) and their concurrent meteorological records for 166 sites from 231 

different regional networks (Supplementary Table 2). We used gap-filled meteorological records 232 

including incoming solar radiation (SW_IN_F), air temperature (TA_F) and vapor pressure 233 



deficit (VPD_F) to derive the seasonal varying Amax of eddy covariance sites from non-gap-filled 234 

Fc measurements.  235 

Fc is the balance of CO2 taken up by photosynthesis and released by respiration. In the process of 236 

partitioning Fc into an ecosystem photosynthesis and respiration term using the daytime 237 

partitioning method 16,47, a key step is to fit Fc with a light response curve (LRC): 238 =	 +                          (1)   239 

where  (μmol J-1) is the canopy-scale quantum yield,  is the maximum rate of CO2 uptake of 240 

the canopy under saturating light levels (μmol photon m-2 s-1), which is equivalent to Amax. Rg is 241 

the global radiation and  is the ecosystem respiration term. The impact of VPD on  is 242 

considered by requiring that  decreases exponentially with the increase of VPD when VPD 243 

exceeds a threshold (VPD0). 244 

= exp − (VPD − VPD ) , VPD > VPD, VPD ≤ VPD            (2) 245 

where  and k are fitted parameters and VPD0 is 10 hPa 47. 246 

To account for the seasonal variation in Amax, we applied the equations above to a short time 247 

window (2-14 days) of Fc depending on the availability of flux measurements (Extended Data 248 

Fig. 8), and assumed every day in the same time window has the same daily Amax. We retrieved 249 

the daily Amax of these 166 sites by implementing equations (1) and (2) using the REddyProc R 250 

package (https://github.com/bgctw/REddyProc), and we found the majority of the fitted LRCs 251 

were robust for Amax retrievals (Extended Data Fig. 9). 252 

After obtaining daily Amax, we calculated the average Amax for every adjacent and non-253 

overlapped 10-day window for each site. PPFD10 and Tair are the averages of the daytime PPFD 254 



and daytime air temperature within the same 10-day window. fAPAR in each 10-day window 255 

was acquired by interpolating the 8-day MODIS fAPAR time series (MOD15A2H) at each site.  256 

257 

2. Derivation of Amax from the estimates of terrestrial biosphere models258 

The North America Carbon Program (NACP) site-level interim synthesis is a model-data 259 

comparison aimed at discerning the impact of different model structures on carbon flux estimates. 260 

The program data repository (https://daac.ornl.gov/NACP/) provides access to the estimates of 261 

Gross Primary Productivity (GPP) from 22 TBMs and their corresponding meteorological 262 

records at 41 eddy covariance sites located in US and Canada (Supplementary Table 4) 48. To 263 

obtain the Amax of these sites from the TBMs estimates, we used hourly estimates of GPP 49 264 

along with hourly meteorological records (PPFD, air temperature, VPD) and MODIS fAPAR 265 

obtained from the NACP repository 50, and fitted the LRC to these hourly GPP and 266 

meteorological variables (Equation 1). Since we used GPP as the Fc term in equation (1) in this 267 

step, the respiration term ( ) was fixed at 0. Because GPP estimates from models are temporally 268 

continuous, we applied this LRC to a time window of 10 days directly to get an Amax for every 269 

10 days. PPFD10 and Tair are the averages of the daytime PPFD and air temperature within the 270 

same 10-day window. We retrieved Amax from modelled GPP for all 22 TBMs in NACP using 271 

equations (1) and (2) (https://github.com/lxzswr/simpleLRC). However, in this study we only 272 

included the nine TBMs that had hourly GPP estimates at more than 20 sites in order to derive 273 

enough γA samples for our analysis (Extended Data Fig. 10 and Supplementary Table 3). 274 

In addition, we used the boreal ecosystem productivity simulator (BEPS) – one of the nine TBMs 275 

in NACP – to test the possibility of incorporating an optimality model (see section 4 of the 276 

Methods) in TBMs to improve the simulation of light acclimation. BEPS is a two-leaf enzyme 277 



kinetic model that has been extensively validated against measured carbon and water fluxes over 278 

different biomes 51,52 and its parameterization and structure is described in detail elsewhere 53,54. 279 

 280 

3. Calculation of the photosynthetic light acclimation rate (γA) 281 

Following the derivation of seasonal varying Amax from eddy covariance measurements and 282 

TBM estimates, we analyzed the relationship between Amax and its corresponding PPFD10 and 283 

defined γA as the rate of light acclimation of photosynthesis. Since fAPAR and Tair also change 284 

across the season and might influence the variations of Amax, it is necessary to remove the effects 285 

of fAPAR and Tair on Amax to identify the PPFD10-Amax relationship. To do so, we grouped the 286 

Amax and PPFD10 pairs into bins, with each bin confined to a narrow interval of fAPAR and Tair. 287 

We used an interval of fAPAR of 0.02 and an interval of Tair of 1 °C. Then, in each bin, we 288 

regressed Amax against PPFD10 to obtain γA. The specific intervals of fAPAR and Tair were 289 

chosen to ensure the number of the pairs of PPFD10 and Amax was large enough for a regression 290 

analysis and small enough to assume fAPAR and Tair were nearly constant within each bin. In 291 

addition, water stress (i.e. high VPD, low soil water content) may also influence the variations of 292 

Amax 
55,56, so we used a strict threshold to remove the drought-affected data points using the 10-293 

day average of the ratio of actual evapotranspiration (ET) to potential ET (α), which has been 294 

suggested as an effective indicator of soil moisture stress on photosynthesis 56. We calculated α 295 

using the actual ET measured by eddy covariance and the potential ET calculated from the 296 

Priestley-Taylor equation 57. We excluded days with α < = 0.8 as they were deemed water-297 

stressed. In addition to applying this threshold, we also removed shrubland and savanna sites as 298 

they are sensitive to water stress. After the removal, the average VPD for all  PPFD10-Amax pairs 299 

was 0.47 ± 0.43 kPa, or 90% of the data pairs had VPD < 1 kPa. We ended up with 26985 pairs 300 



of Amax and PPFD10 in total from 118 sites. The regression of Amax and PPFD10 was carried out 301 

for each bin only if there were at least 20 pairs of Amax and PPFD10 in it (900 bins in total; 302 

Extended Data Fig. 7) for cross-sites analysis and at least 5 pairs for PFT-specific analysis. Since 303 

every site on average only had 229 pairs of Amax and PPFD10, we were not able to bin these pairs 304 

at each site and calculate γA for each site specifically. For the derivation of Amax and γA from 305 

TBMs estimated fluxes, we followed the same procedures as used for the flux observations. We 306 

also derived A standardized to a PPFD of 2000 µmol m-2 s-1 (A2000) from the fitted light response 307 

curves (Equation 1) to study light acclimation as the response of A2000 to PPFD10 and presented 308 

the results in Extended Data Fig. 2. However, for the convenience of incorporating light 309 

acclimation in TBMs and providing a consistent benchmark for future model-data comparisons, 310 

we presented the results in the main text using Amax. 311 

 312 

4. The optimality model for Vcmax25 313 

The maximum carboxylation rate (Vcmax; μmol m-2 s-1) is often used to represent the activity of 314 

the photosynthetic enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in light 315 

saturated leaves, meaning the increase of Amax to PPFD is related to an increase of Vcmax to 316 

PPFD. A recent study developed an optimality model for Vcmax 
19 based on the coordination 317 

hypothesis 21 and the least-cost hypothesis 17 to estimate leaf Vcmax using various climate 318 

variables including PPFD. This optimality model therefore provides an approach to include the 319 

impact of PPFD on Amax in TBMs.  320 

According to the classic Farquhar biochemical model 58, the photosynthetic rate, A, is limited by 321 

either Vcmax, or by the electron transport rate for the regeneration of ribulose-1,5,-bisphosphate 322 

(RuBP; J; μmol m-2 s-1). The two processes are represented by equations (3) and (4), respectively: 323 



=	 ∗
                       (3) 324 

= ∗∗                         (4) 325 

where Ci is the intercellular CO2 concentration (Pa),  Γ∗ is the CO2 compensation point (Pa) in 326 

the absence of mitochondrial respiration, and K (Pa) is estimated as: 327 = 1 +                  (5) 328 

where Kc and Ko are Michaelis-Menten coefficients of Rubisco activity for CO2 and O2 (Pa), and 329 

Oi is the intercellular O2 concentration (Pa). K and Γ∗ are temperature dependent variables and 330 

the calculation of them is introduced in detail by Smith et al.19. J is dependent on a response 331 

curve of the incident photosynthetically active photon flux density (I; μmol m-2 s-1), converging 332 

at the maximum electron transport rate (Jmax; μmol m-2 s-1): 333 − ( +	 ) + 	 = 0              (6) 334 

where  is the curvature of the light response curve and assumed to be 0.85, and  is the 335 

maximum quantum yield of photosynthetic electron transport fixed at 0.257 mol mol-1. 336 

Combining equations (4) and (6) gives: 337 = ∗∗ ∗
                   (7) 338 

where ∗ is derived from the following two equations: 339 

∗ = 1 + − (1 + ) − 4                      (8) 340 

= −(1 − 2 ) + (1 − ) − 4                    (9) 341 

For the calculation of , c was assumed to be a constant at 0.053 19, and m is 
∗∗. According 342 

to the coordination hypothesis, photosynthesis under typical daytime conditions is close to the 343 



point where Rubisco-limited and electron transport-limited rate are equal, meaning Ac = Aj. 344 

Therefore, by combining equation (3) and (7), we get: 345 = ∗ ∗
            (10) 346 

This equation implies that Vcmax adjusts to incident light levels over intermediate timescales, as I 347 

is equivalent to PPFD. Following the least-cost hypothesis, Ci is sustained at an optimal level to 348 

minimize the carbon cost of water use 17: 349 = ∗ + 1 − ∗ √               (11) 350 

= ∗. ∗                      (12) 351 

where  defines the sensitivity of Ci/Ca to VPD and  is a constant 146. More details about the 352 

calculation of Ci are introduced in Smith et al.19. 353 

In this study, we used 10-day average climate variables acquired from the meteorological 354 

measurements of eddy covariance sites, including PPFD, Tair, VPD to drive the optimality model 355 

to get the 10-day Vcmax, normalized Vcmax from growing temperature to 25 °C (Vcmax25) and then 356 

linearly interpolated 10-day Vcmax25 to daily values to drive BEPS.  357 

Note that the optimality model provides us with Vcmax at the growing temperature. We 358 

normalized Vcmax to 25 °C using a modified Arrhenius temperature response function 59 used in 359 

BEPS following equation (13):  360 

= exp	[ ( − )/( )] 	( 	 )	( 	 )                   (13) 361 

where Tl is the growing temperature of leaf in Kelvin, Tref is the reference temperature of Vcmax25 362 

(298.15K), Ha is the activation energy for carboxylation (55000 J mol-1), Hd is the deactivation 363 



energy (200000 J mol-1), ΔS is an entropy term (663.1 J mol-1 K-1) and R is the universal gas 364 

constant (8.314 J mol-1 K-1). 365 

 366 

Data Availability 367 

This study used openly available eddy covariance measurements provided by FLUXNET2015 368 

Tier 1 dataset (https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/), and the North America 369 

Carbon Program site-level interim synthesis data downloaded from https://daac.ornl.gov/NACP/. 370 

The MODIS fAPAR time series (MOD15A2H) for eddy covariance sites were acquired from 371 

https://lpdaac.usgs.gov/tools/appeears. 372 

 373 

Code Availability 374 

The code to derive maximum ecosystem photosynthetic rate from eddy covariance 375 

measurements is available at https://github.com/bgctw/REddyProc; the code of the optimality 376 

model for Vcmax is available at https://github.com/SmithEcophysLab/optimal_vcmax_R; the 377 

code of the Boreal Ecosystem Productivity Simulator is available at https://github.com/JChen-378 

UToronto/BEPS_hourly_site_4.02. 379 

 380 
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556 

Fig. 1 | The relationships between the maximum photosynthetic rate (Amax) of ecosystems 557 

and 10-day average PPFD (PPFD10). (a) the rate of photosynthetic light acclimation (γA; mol 558 

mol-1; μmol C m-2 s-1 per μmol photon m-2 s-1) under different vegetation densities (indicated by 559 

fraction of absorbed PAR; fAPAR) and daytime air temperature (Tair), and the black dots indicate 560 

where there is a significant (p < 0.1) linear correlation between PPFD10 and Amax. Amax and 561 

PPFD10 pairs are grouped by fAPAR and Tair, where the interval of fAPAR is 0.02 and the 562 

interval of Tair is 1 °C. Only bins with at least 20 pairs of Amax and PPFD10 are plotted. (b) 563 

several exemplary and significant (p < 0.05) responses of Amax to PPFD10 under different fAPAR 564 

and Tair. The shadings indicate 95% confidence interval of the linear regressions. (c) The 565 

comparison between ecosystem γA derived from flux data and published leaf-level γA. For each 566 

box, the cross indicates the mean, the center line indicates the median, the box indicates the 567 

upper and lower quartiles and the whiskers indicate the 5th and 95th percentiles of the data. 568 

569 

570 

571 

Fig. 2 | Ecosystem photosynthetic light acclimation rate (γA) changes with (a) vegetation 572 

densities (fAPAR), (b) daytime temperature (Tair), (c) plant functional types (PFTs) and (d) 573 

vapor pressure deficit (VPD). The shadings in (a) and (b) indicate one standard deviation of γA 574 

(n > 5; n is the number of bins with significant γA (p < 0.1)) for each fAPAR and Tair, the red 575 

lines indicate the detectability of photosynthetic light acclimation (i.e. n divided by the total 576 

number of bins). (c) γA of each PFT. For each box, the cross indicates the mean, the center line 577 

indicates the median, the box indicates the upper and lower quartiles and the whiskers indicate 578 



the 5th and 95th percentiles of the data. The acronyms of PFTs in (c) stand for croplands (CRO), 579 

deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf 580 

forests (ENF), mixed forests (MF) and grasslands (GRA). ‘*’ indicates that γA of CRO is 581 

statistically different than γA of other PFTs (t-test, p < 0.05); (d) The impact of VPD on γA. The 582 

significance level of light acclimation and the sign of γA change with VPD. For each box, the 583 

point indicates the mean, the box indicates the upper and lower quartiles and the whiskers 584 

indicate the 5th and 95th percentiles of the data. Red indicates bins with γA > 0 and blue box 585 

indicates bins with γA < 0.  586 

587 

588 

Fig. 3 | Incorporating photosynthetic light acclimation into terrestrial biosphere models. (a) 589 

The distribution of γA derived from eddy-covariance measurements (black) and from the GPP 590 

estimates of 9 terrestrial biosphere models (TBMs; other colors) participating in the North 591 

American Carbon Program. (b) Incorporating the optimality model into a TBM (the boreal 592 

ecosystem productivity simulator (BEPS)) to improve the estimation of photosynthetic light 593 

acclimation. The distribution of eddy covariance-based γA is in black, the distribution of γA 594 

derived from BEPS estimates is in blue and the distribution of γA derived from BEPS improved 595 

by the optimality model (BEPS-opt) is in red. (c) The intra-annual variation and (d) inter-annual 596 

variation of estimated and “measured” gross primary productivity (GPP). BEPS and BEPS-opt 597 

stand for the GPP estimated by the two models; GPP-DT stands for “measured” GPP derived 598 

from net carbon fluxes using the day-time partition method. For each box, the cross indicates the 599 

mean, the center line indicates the median, the box indicates the lower and upper quartiles and 600 



the whiskers indicate the 5th and 95th percentiles of the data. ‘*’ indicates that BEPS-opt is 601 

significantly improved (t-test, p < 0.05) compared to BEPS.  602 
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