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Abstract 

 
The Subsumptive Constraints Account of why explaining “why?” helps learning 

  
by 
  

Joseph Jay Williams 
 

Doctor of Philosophy in Psychology 
 

University of California, Berkeley  
 

Professor Tania Lombrozo, Chair  
 
 

Constructing explanations in response to why-questions plays an important role in 
learning and generalization – in young children, students, adults and scientists – but much 
remains to be understood about the underlying mechanisms and their implications for practical 
learning and teaching. The first chapter of this dissertation presents theSubsumptive Constraints 
account, which proposes that explaining why a fact or observation is true drives learners to 
understand how it can be subsumed as an instance of a pattern or generalization. Chapters two 
through four present nine experiments which test whether explaining exerts this selective effect, 
rather than a general boost for learning, examining contexts ranging from learning artificial 
categories to learning to predict other people's behavior. In these nine experiments, three specific 
predictions of the Subsumptive Constraints account were supported. The second chapter presents 
the first three experiments, which provide evidence that explaining category membership 
promoted the discovery of broad underlying patterns that supported generalization. Four 
experiments reported in the third chapter further revealed that seeking explanations increased 
learners' consultation of existing knowledge that could be used to discover patterns in their 
observations. Explaining also interacted with existing knowledge to influence which patterns 
learners generalized to novel contexts. The final two experiments in chapter four confirmed the 
Subsumptive Constraints account’s counterintuitive prediction that seeking explanations can 
impair learning, by revealing that learning was driven by an interaction between explanation and 
the reliability of underlying patterns. Explaining drove people to ignore specific observations 
that were exceptions to patterns, so that explaining fostered overgeneralization at the expense of 
accurate learning. The fifth chapter concludes this work. By drawing together theory and 
methodology from cognitive psychology, education, and philosophy, this dissertation provides 
novel theoretical, empirical, and practical insight into how generating explanations influences 
and improves learning. Explaining does not simply promote an 'all-purpose' boost to engagement 
and metacognition – and is therefore not always practically beneficial or optimal. By 
characterizing the particular nature of the processing constraints promoted by explaining – as 
selectively constraining the search for and evaluation of patterns that underlie specific 
observations – this novel Subsumptive Constraints account explains why explaining especially 
impacts learners’ use of existing knowledge in transfer and generalization, and provides insight 
into when to expect and how to maximize explanation’s practical benefits. 
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1. Introduction 
 

Understanding how people learn is one of the central questions in cognitive science: How do 
people acquire knowledge in a way that supports transfer and generalization to novel contexts? One 
activity that has an intimate connection with learning and understanding is asking “Why?” – generating 
why-explanations. Most of us have had the experience that seeking and generating explanations can 
foster learning and understanding – whether spontaneous and covert, out loud to oneself, or for another 
person. In fact, there is extensive evidence for the importance of explanation in learning, from research 
in science and mathematics education (Fonseca & Chi, 2011), cognitive psychology (Lombrozo, 2012), 
development (Wellman & Liu, 2006), artificial intelligence (DeJong, 2006; Mitchell et al, 1986), and 
philosophy (Lombrozo, 2011; Salmon, 1989). 

Investigating explanation’s role in learning is particularly important because seeking 
explanations is so ubiquitous: whether a child asking why a person is sad, an adult wondering why 
traffic is slow, or a scientist explaining why the planets move the way they do. The present research 
focuses on why-explanations, although the common sense extension of explanation can be construed 
more broadly: such as thinking aloud or explaining what one is thinking about, explaining the meaning 
of a sentence, or explaining how something works. This focus on why-explanations is chosen based on 
the assumption that it is broad enough to encompass a significant swathe of reasoning and learning, but 
not too heterogeneous or vaguely defined to resist experimental study, or preclude empirical support for 
meaningful generalizations about the relationship between “explanation” and learning. Conceptual 
analyses of what makes for good scientific explanations have been pursued for decades in philosophy of 
science (Salmon, 1989), and provide reason to expect many why-explanations to share common 
features. Moreover, why-explanations have been important theoretical constructs and targets of inquiry 
in psychological theories of conceptual representation (Carey, 1985; Murphy & Medin, 1985), causal 
reasoning (Wellman & Liu, 2006), and conceptual development (Gopnik & Meltzoff, 1997).  

Despite the importance of explaining, there is much work to be done in characterizing the precise 
mechanisms that account for why explaining helps learning.  This is not merely a theoretical problem, 
but also of practical concern. Without an understanding of the underlying mechanisms, there is a 
practical challenge in anticipating the contexts in which explaining is most helpful, ineffective, or even 
harmful.  

The remainder of this first chapter reviews previous research on explanation and learning, and 
proposes a novel theory– the Subsumptive Constraints account. Three lines of research to test the 
predictions of the Subsumptive Constraints account are outlined and presented in the second, third, and 
fourth chapters. The fifth chapter concludes the dissertation, synthesizing the key empirical findings, 
considering implications for understanding explanation’s role in learning, and discussing practical 
implications and directions for future research. 

1.1. The effects of generating explanations in mathematics and science education 

In educational contexts, there is a range of evidence for the self-explanation effect: generating 
explanations – of the meaning of an expository text, a worked-out example solution, or a correct answer 
to a problem – can promote learning and generalization, exceeding the benefits of learners’ typical study 
strategies, such as reading material twice, or thinking aloud. Benefits of self-explanation have been 
found across the domains of Newtonian physics, geometry, algebra, probability, biology of the 
circulatory system, learning chess, and reading science texts (Chi et al, 1989; Chi et al, 1994; 
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McNamara, 2004; Renkl, 1997; Renkl et al, 1998; Rittle-Johnson, 2006; Siegler, 2002; Wong, Lawson 
& Keeves, 2002).                         

Self-explanation can foster: comprehension (McNamara et al, 2006), the acquisition of 
declarative knowledge, understanding of biological systems (Chi 1994), procedural and conceptual 
knowledge underlying problem-solving ability in math, physics and statistics (Chi, 1989; Siegler, 2002; 
Renkl, 1997; Rittle-Johnson, 2006), and the encoding of problem solutions (Crowley & Siegler, 1999). 
These benefits have been found in age groups ranging from university students (Chi et al, 1989) to 9th 
graders (Wong et al, 2002) to 5-year olds (Siegler, 1995).  

1.2. Explanation and learning in philosophy, cognitive psychology, and development 

Seeking, generating and receiving explanations plays a key role in human understanding of and 
reasoning about the world. Work in philosophy of science suggests that why-explanations satisfy 
features critical for supporting learning and reasoning: providing cues to likelihood (Salmon, 1971), 
causal structure (Salmon, 1984; Strevens, 2008), and subsuming and unifying generalizations (Kitcher, 
1981; 1989; Strevens, 2008). Not just knowing a fact, but being able to explain it is central to science, 
and explanations are key components of theories (Woodward, 2010).  
  Cognitive science accounts of the structure of conceptual knowledge identify explanations as a 
key representational component (Carey, 1985; Murphy & Medin, 1985). Moreover, possessing or 
generating explanations impacts reasoning about causation (Koslowski, 1996; Ahn et al, 1995), 
induction of properties (Lombrozo, 2007; Rehder, 2007; Sloman, 1994), and probabilistic judgment 
(Koehler, 1991; Pennington & Hastie, 1992). 
  Developmental work shows that children’s seeking of explanations emerges soon after they learn 
to talk – children as young as two start seeking explanations for Why? and How? (Callanan & Oakes, 
1992; Chouinard, 2008; Hickling & Wellman, 2001). When adults do not answer with relevant 
explanations, 2, 3, and 4-year-old children re-ask the question or attempt to generate explanations 
themselves (Chouinard, 2008; Frazier, 2009). Legare et al (2010) demonstrated that children attempt to 
explain observations that contradict rather than conform to their prior beliefs, providing further evidence 
for children's explanations serving the role of learning, rather than simple discourse about beliefs or 
opportunities to socially demonstrate current knowledge.  
  Children's attempts to generate explanations can also have profound effects on their learning, 
despite not having much training in using language to construct explanations, relatively impoverished 
metacognitive insight into their reasoning, and significantly less prior knowledge to utilize than adults. 
In formal schooling contexts, 3rd and 4th grade (8 or 9 year old) children's understanding of arithmetic 
and mathematical equivalence is fostered when they are prompted to explain why correct answers are 
correct and why incorrect answers are wrong (Siegler, 2002; Rittle-Johnson, 2006). The benefits of self-
generation are observed even when children are also given direct instruction on the correct solution, and 
extend especially to transfer and generalization to novel problems (Rittle-Johnson, 2006). In fact, Brown 
and Kane (1988) found that preschoolers were more likely to transfer a solution to an analogous problem 
when prompted to explain how the first problem was solved than if its solution was explained to them. 
     Even in everyday informal settings that are less structured and not as obviously pedagogical as 
schooling environments, prompts to explain can advance understanding of physical systems like balance 
beams (Pine & Messer, 2000). Asking children to generate explanation can even drive five year old’s 
conceptual change in the domain of number conservation (Siegler, 1995) and preschoolers’ (3 to 4 
years) false belief reasoning in theory of mind (Amsterlaw & Wellman, 2006).  

1.3. Why does explaining “why?” help learning? 
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            Despite the great deal of empirical work investigating the effects of explanation, much 
less is known about the exact mechanisms that underlie its effects on learning. A broad learning 
engagement account suggests that explaining increases engagement with the task of learning: 
establishing the goal of generating explanations out loud in a social context may increase motivation to 
learn, the act of having to actively explain can boost attention to the materials being studied or events 
observed, and attempting to explain extends the amount of time spent effectively processing the 
available information (see for e.g., Siegler, 2002). This account suggests that explaining should 
effectively ramp up whatever processing people naturally engage in, providing a general boost to 
learning. However, it does not make precise predictions about when explaining will help vs. have no 
effect on learning, and what kind of learning and understanding explaining will be most helpful for 
promoting. 

1.4. The Subsumptive Constraints Account 

The Subsumptive Constraints account of explanation’s role in learning proposed in this 
dissertation suggests that explaining selectively constrains the processing that people engage in – rather 
than boosting overall processing. The hypothesis is that explaining "why?" drives people to seek 
underlying generalizations, understanding how the fact or observation being explained could be 
anticipated as an instance of a broader pattern. For example, explaining why 2 x 6 = 12 invokes the 
principle that multiplication is repeated addition, and an explanation like "John is a teacher because he's 
a caring person" appeals to a regularity – that caring people are more likely to become teachers. 
Explaining why a particular fact is true therefore drives people to discover underlying patterns, which 
then form a basis for generalizing to novel contexts. 
 Each of chapters two, three, and four is a published journal paper that represents a distinct line of 
research testing the Subsumptive Constraints account. Chapter two further articulates the Subsumptive 
Constraints account and reports three experiments that test whether people’s sensitivity to subsumptive 
constraints drives them to discover subtle underlying regularities, privileging those patterns that have 
broader scope in that they account for more observations. Chapter three presents four experiments that 
consider learning when multiple patterns are present, probing the joint effects of engaging in explanation 
and possessing prior knowledge about the target of explanation. These studies extend the work in 
chapter two by testing whether explaining promotes the discovery and use of patterns that existing 
knowledge suggests are broad in scope and likely to apply to novel contexts. Chapter four investigates a 
unique and counterintuitive prediction of the Subsumptive Constraints account: that explaining does not 
produce a general-purpose benefit, but influences learning through an interaction with the reliability of 
underlying patterns. The Subsumptive Constraints account counterintuitively predicts that explaining 
can impair learning, as when there are exceptions to underlying patterns, explaining can promote 
overgeneralization at the expense of learning about specific observations. The presentation of these three 
lines of work is followed by the concluding chapter, which considers implications of and future 
directions for this work. 
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2. The Role of Explanation in Discovery and Generalization: Evidence From 
Category Learning 

2.1. Abstract 

Research in education and cognitive development suggests that explaining plays a key role in 
learning and generalization: when learners provide explanations – even to themselves – they learn more 
effectively and generalize more readily to novel situations. This paper proposes and tests a subsumptive 
constraints account of this effect. Motivated by philosophical theories of explanation, this account 
predicts that explaining guides learners to interpret what they are learning in terms of unifying patterns 
or regularities, which promotes the discovery of broad generalizations. Three experiments provide 
evidence for the subsumptive constraints account: prompting participants to explain while learning 
artificial categories promotes the induction of a broad generalization underlying category membership, 
relative to describing items (Exp. 1), thinking aloud (Exp. 2), or free study (Exp. 3). Although 
explaining facilitates discovery, Experiment 1 finds that description is more beneficial for learning item 
details. Experiment 2 additionally suggests that explaining anomalous observations may play a special 
role in belief revision. The findings provide insight into explanation’s role in discovery and 
generalization. 

2.2. Introduction 

Seeking explanations is a ubiquitous part of everyday life. Why is this bus always late? Why was 
my friend so upset yesterday? Why are some people so successful? Young children are notorious for 
their curiosity and dogged pursuit of explanations, with one “why?” question followed by another. 
Equally curious scientific researchers might wonder: Why is explaining so important?  

Psychologists and philosophers have independently proposed that in explaining observations 
about the past, we uncover underlying structure in the world, acquiring the knowledge to predict and 
control the future (e.g. Heider, 1958; Quine & Ullian, 1970; Lombrozo & Carey, 2006; Lombrozo, 
2006; but see Keil, 2006). For example, in explaining a friend’s behavior, you might come to appreciate 
the extent of his or her ambition, which informs expectations about future actions. Moreover, 
explanations have been posited as central, organizing elements within intuitive theories (Carey, 1985) 
and conceptual representations (Murphy & Medin, 1985; Carey, 1991; Lombrozo, 2009), suggesting that 
the process of explaining may be intimately related to learning concepts and theories. 

Everyday experiences provide many illustrations of explanation’s effects on learning. In the 
course of explaining a concept or a problem’s solution to another person, the explainer may generate a 
new insight or acquire a deeper understanding of the material, despite not having received any additional 
input from the world. Attempting to explain what one is reading or learning about similarly seems to 
promote learning, beyond simply memorizing or passively encoding. 

In fact, empirical research in education and cognitive development confirms that the process of 
explaining can foster learning. There are benefits in explaining to others (Roscoe & Chi, 2007; 2008), 
and even in explaining to oneself. This phenomenon is known as the self-explanation effect, and has 
been documented in a broad range of domains: acquiring procedural knowledge about physics problems 
(Chi et al., 1989), declarative learning from biology texts (Chi et al., 1994), and conceptual change in 
children’s understanding of number conservation (Siegler, 1995; 2002) and theory of mind (Amsterlaw 
& Wellman, 2006), to name only a few. Compared to alternative study strategies like thinking aloud, 
reading materials twice, or receiving feedback in the absence of explanations (e.g. Wong et al, 2002; 
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Chi, 1994; Siegler, 2002; Amsterlaw & Wellman, 2006), self-explaining consistently leads to greater 
learning. Notably, the greatest benefit is in transfer and generalization to problems and inferences that 
require going beyond the material originally studied. Explanation’s role in learning and generalization is 
further underscored by a tradition of research in machine learning and artificial intelligence known as 
explanation-based learning (Mitchell, Keller, Kedar-Cabelli, 1986; DeJong & Mooney, 1986). 

Why is the process of explaining so helpful for learning, and especially for deep learning: 
acquiring knowledge and understanding in a way that leads to retention and use in future contexts? 
Researchers have generated a number of proposals about the mechanisms that underlie explanation’s 
beneficial effects on learning. These include the metacognitive consequences of engaging in explanation 
(such as identifying comprehension failures), explanation’s constructive nature, explanation’s 
integration of new information with existing knowledge, and its role in dynamically repairing learners’ 
mental models of particular domains (for discussion, see Chi et al, 1994; Chi, 2000; Siegler, 2002; 
Crowley & Siegler, 1999; Rittle-Johnson, 2006). Generating explanations may also scaffold causal 
learning by focusing attention on cases for which the outcome is known (Wellman & Liu, 2006), and by 
encouraging learners to posit unobserved causes (Legare, Wellman, & Gelman, in press; Legare, 
Gelman, & Wellman, under review). Given the diversity of the processes that can underlie learning 
(Nokes & Ohlsson, 2005), it is likely that explanation influences learning via multiple mechanisms.  

2.2.1. Exploring the role of explanation in generalization 
In this paper we explore a subsumptive constraints account of explanation’s effects on learning, 

which provides an account of why explaining particularly facilitates transfer and generalization. The 
hypothesis is that engaging in explanation exerts constraints on learning which promote the discovery of 
broad generalizations that underlie what is being explained. This hypothesis is motivated by work on the 
structure of explanations. By the structure of explanations, we mean the relationship that must hold 
between an explanation and what it explains for it to be genuinely explanatory. Little research in 
psychology has addressed this question directly (see Lombrozo, 2006), but a rich tradition from 
philosophy provides candidate theories that offer useful starting points for psychological theorizing (see 
Woodward, 2009, for a review of philosophical accounts of scientific explanation). 

Accounts of explanation from philosophy have typically emphasized logical, probabilistic, 
causal, or subsumptive relationships between the explanation and what it explains. While there is no 
consensus, we focus on pattern subsumption theories, which have been advocated in past research on 
explanation within psychology (Lombrozo & Carey, 2006; Wellman & Liu, 2006). Pattern subsumption 
theories propose that the defining property of an explanation is that it demonstrates how what is being 
explained is an instance of a general pattern (for discussion see Salmon, 1990; Strevens, 2008). For 
example, in explaining a friend’s current cold by appeal to the contraction of a germ from another 
person, a specific event (Bob’s cold) is subsumed as an instance of a general pattern (the transmission of 
germs produces illnesses in people). A subset of these accounts further emphasizes unification: the value 
of explaining disparate observations by appeal to a single explanatory pattern (e.g. Friedman, 1974; 
Kitcher, 1981, 1989). The general pattern that germ transmission produces illnesses not only accounts 
for Bob’s cold, but also a diverse range of other data about the occurrence and spread of diseases. 

Subsumption and unification accounts of explanation predict the privileged relationship between 
explanation and generalization that is demonstrated by the self-explanation effect. If the explanations 
people construct satisfy the structural demands of subsumption, then the process of explaining will exert 
particular constraints on learning: the beliefs and inferences generated will be those that play a role in 
demonstrating how what is being explained conforms to a general pattern. Explaining will therefore 
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guide people to interpret observations in terms of unifying regularities, and the information constructed 
in successful explanations will result in the induction or explicit recognition of generalizations that 
underlie what is being explained. Discovering and explicitly representing such generalizations can in 
turn facilitate transfer from one learning context to novel but relevant contexts. For example, attempting 
to explain an instance of a person’s behavior might lead to an explanation that posits an underlying 
personality trait, providing the basis to generalize about that person in a range of new situations. 

While it may seem intuitive that explanations unify and subsume, this approach to understanding 
the effects of explanation on learning and generalization has not been fully developed, nor has it been 
tested empirically. Previous work has typically emphasized the ways in which explanation contributes to 
processes known to facilitate learning, such as metacognitive monitoring and strategy or belief revision. 
Our account complements this work by taking a different tack, emphasizing that the process of 
explaining may exert particular constraints on the knowledge constructed in learning by virtue of the 
properties of explanations. The specific constraints we explore are those motivated by pattern 
subsumption and unification theories of explanation. In sum, the key, novel idea in a subsumptive 
constraints account is that explaining facilitates generalization because satisfying the structural 
properties of explanations exerts constraints that drive learners to discover unifying regularities, 
allowing transfer to novel contexts. 

To test our hypothesis that explaining promotes the discovery of unifying regularities, we 
employ a task from cognitive psychology: learning artificial categories from positive examples. 
Exploring the role of explanation in the context of category learning has two important benefits. First, 
there are already reasons, both theoretical and empirical, to suspect an important relationship between 
explanation and category structure. Previous work on category learning suggests that categories are 
judged more coherent to the extent they support explanations (Patalano, Chin-Parker, & Ross, 2006), 
that different explanations differentially influence conceptual representations (Lombrozo, 2009), and 
that background beliefs that explain feature combinations facilitate category learning (Murphy & 
Allopenna, 1994) and influence judgments of a category member’s typicality (Ahn, 2002). Moreover, 
compared to learning a category through classification and feedback, explaining items’ category 
membership can lead participants to rely more heavily on features that are meaningfully related to the 
type of category (e.g. a social club) and less heavily on features that are diagnostic but not meaningful 
(Chin-Parker, Hernandez, & Matens, 2006), suggesting that explanation and classification with feedback 
may differentially impact the category learning process. 

A second benefit of studying the role of explanation in the context of category learning comes 
from the opportunity to employ well-controlled artificial materials in a relatively well-understood task. 
Category members can vary along many dimensions, and prior research has identified multiple ways in 
which category membership can be extended from known to novel items. For example, category 
membership could be generalized on the basis of rules or definitions (Bruner et al, 1956; Nosofsky, 
Clark & Shin, 1989; Ashby & Maddox, 2004), rules with exceptions (Nosofsky, Palmeri & McKinley, 
1994), similarity to prototypical summary representations (Posner & Keele, 1968; Hampton, 2006), 
similarity to specific exemplars of a category (Medin & Schaffer, 1978; Nosofsky, 1986), or 
representations that combine prototypes and exemplars (Love, Medin, & Gureckis, 2004). These 
competing accounts are a source of contemporary debate (e.g. Allen & Brooks, 1991; Medin, Altom, & 
Murphy, 1984; Murphy, 2002; Lee & Vanpaemel, 2008).  

Our aim here is not to evaluate competing theories of conceptual structure, but rather to 
capitalize on what is already known about category learning and categorization to inform the design of 
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our experimental task and stimulus materials. Specifically, if explaining constrains learners to seek 
unifying and subsuming regularities, those who engage in explanation should be more likely than 
learners engaged in a comparison task to discover broad generalizations underlying category 
membership. 

2.3. Overview of Experiments 
In three experiments, we investigate the effects of explaining on the discovery of regularities 

underlying two artificial categories of alien robots. The principal hypothesis is that attempting to 
generate explanations of category membership will constrain learners to interpret their observations in 
terms of general unifying patterns, which will facilitate the discovery of a subtle regularity underlying 
category membership.  

To test this, the categories we employ support two generalizations about category membership: a 
feature of body shape that accounts for the membership of 75% of study items (square vs. round bodies, 
termed “the 75% rule”), and a more subtle feature concerning foot shape that perfectly accounts for 
membership of all items (pointy vs. flat feet, termed “the 100% rule”). The prediction is that explaining 
will drive learners to discover the 100% rule. Although the 100% rule is harder to discover than the 75% 
rule, the 100% rule provides the most unified account of category membership. 

In each of the three experiments, participants study category members, either explaining why a 
robot might belong to a given category or engaging in a control task: describing items (Exp. 1), thinking 
aloud during study (Exp. 2), or free study (Exp. 3). Participants then categorize new items, are tested on 
their memory for the original study items, and are explicitly asked to report what distinguishes the two 
categories. Table 1 provides a useful reference for key differences across experiments, which are 
discussed in detail in the methods section for each experiment.  

Three feature of this series of experiments are worth emphasizing. First, the explanation 
condition is compared to three different control conditions, which have complementary strengths and 
weaknesses. In particular, the conditions allow us to examine alternative accounts of the effects of 
explanation. If the benefits of engaging in explanation stem from increased attention to item details, then 
tasks such as describing that likewise engage attention should yield a comparable benefit, and the 
explanation condition should only outperform control conditions in Experiments 2 and 3. If the benefits 
of engaging in explanation stem from the role of articulating thoughts in language, then the explanation 
condition should outperform free study (Exp 3), but not describing (Exp 1) or thinking aloud (Exp 2), 
which similarly involve language. Our hypothesis, in contrast, predicts a benefit for explanation across 
all three control conditions. 

Second, the use of artificial categories allows us to investigate our proposal about the role of 
explanation in learning while minimizing a potential role for alternative mechanisms. In particular, 
because artificial categories evoke minimal prior knowledge, it’s unclear how accounts of explanation 
that emphasize the integration of new information with prior knowledge would account for a tendency to 
discover or employ one rule over the other. There are also no existing mental models of the domain for 
explaining to repair or revise. In fact, some accounts of explanation’s role in judgment provide reason to 
predict that explaining should promote generalization based on the more salient 75% rule: explaining 
why a hypothesis is true has been shown to increase belief in that hypothesis (for a review see Koehler, 
1991), suggesting that requiring participants to provide explanations for membership could entrench 
belief in initial hypotheses rather than promote discovery of more unifying but subtle alternatives. More 
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broadly, if people articulate hypotheses when they provide explanations and are biased in confirming 
these initial hypotheses (Nickerson, 1998), explaining could have adverse effects on discovery. 

Finally, in Experiments 2 and 3, participants are explicitly informed of a later categorization test. 
Making the task very explicit to all participants minimizes the possibility that effects of explanation are 
due to implicit task demands, such as the prompt to explain simply directing participants to discover a 
basis for category membership. 

2.4. Experiment 1 

In Experiment 1, participants learned about artificial categories of alien robots. Half were 
prompted to explain while learning, the other half to describe. Description was chosen as a comparison 
because it requires participants to verbalize, attend to the materials, and be engaged in processing 
materials for an equivalent length of time, but does not impose the same structural constraints as 
explanation. If explaining drives participants to interpret observations in terms of general regularities, 
then participants prompted to explain should be more likely than those who describe to discover the 
subtle but perfectly predictive rule (the 100% rule), and to use it as a basis for categorization.  

2.4.1. Methods 
Participants.  

150 undergraduates and members of the Berkeley community (75 per condition) participated for 
course credit or monetary reimbursement. 

Materials.  

The task involved study items, test items, transfer items, and memory items.  

Study items. Participants learned about two categories of robots from an alien planet, glorps and 
drents (study items are shown in Fig. 1). Each item was composed of four features: left color (blue, 
green, red, yellow), right color (brown, cyan, grey, pink), body shape (square or circular), and foot shape 
(eight different geometric shapes). Color was uncorrelated with category membership: every right and 
left color occurred exactly once per category. Body shape was correlated with category membership: 
three of four glorps (75%) had square bodies, and three of four drents had round bodies. Finally, each 
robot had a unique geometric shape for feet, but there was a subtle regularity across categories: all 
glorps (100%) had pointy feet while all drents had flat feet.  

This category structure supports at least three distinct bases for categorizing new robots. First, 
participants could fail to draw any generalizations about category membership, and instead categorize 
new items on the basis of their similarity to individual study items, where similarity is measured by 
tallying the number of shared features across items.1 We call this ‘item similarity’. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 To confirm that our criterion for similarity (number of shared features) corresponded to that of 

naïve participants, 25 participants who were not in the main studies were presented with each item from 
the categorization tests, and asked to indicate which study item was most similar. Across all items, the 
study items our criterion identified were the most frequently chosen. 
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Alternatively, participants could detect the correlation between body shape and category 
membership, called the “75% rule”, as it partitions study items with 75% accuracy. Finally, participants 
could discover the subtle regularity about pointy versus flat feet, called the “100% rule”, as it perfectly 
partitions study items.  

Test items. Three types of test item (shown in Fig. 2) were constructed by taking novel 
combinations of the features used for the study items. Each type yielded a unique categorization 
judgment (of glorp/drent) according to one basis for categorization (100% rule, 75% rule, item 
similarity), and so pitted one basis for categorization against the other two. We call these item similarity 
probes (2 items), 75% rule probes (2 items), and 100% rule probes (4 items). 

Transfer Items. These items used completely novel foot shapes to distinguish participants who 
genuinely drew an abstract generalization concerning “pointy” versus “flat” feet from those who simply 
recognized the importance of particular foot shapes. For each item, the 100% rule was pitted against 
item similarity and the 75% rule. Critically, while the test items introduced new combinations of old 
features, the transfer items actually involved new features (new foot shapes). 

Memory Items. Twenty-three robots were presented in a memory test at the end of the 
experiment: 8 were the old study items (35%), and 15 were lures (65%). The lures consisted of test items 
that were categorized in the test phase, study items with foot shapes switched to those of another robot, 
study items with left- and right-hand-side colors switched, study items with body and colors changed, 
and study items with entirely new features (new colors, body shapes, foot shapes).  

Procedure. 

 The task involved several phases: introduction, study, testing, transfer, memory, and an explicit 
report. 

Introduction phase. Participants were instructed that they would be looking at two types of 
robots, glorps and drents, from the planet Zarn. They were given a color sheet that displayed the eight 
study items, in a random order but with category membership clearly indicated for each robot. 
Participants studied the sheet for 15 seconds, and kept it until the end of the study phase. 

Study phase. Each of the eight study items was presented onscreen with its category label. 
Participants in the explain condition received instructions to explain why the robot was of that type (e.g. 
“This robot is a GLORP. Explain why it might be of the GLORP type.”), and those in the describe 
condition received instructions to describe the robot of that type (e.g. “This robot is a GLORP. Describe 
this GLORP.”). All participants typed their responses into a displayed text box, with each robot onscreen 
for 50 seconds. Participants were not allowed to advance more quickly nor take extra time. After the 
study phase the experimenter removed the sheet showing the 8 robots. 

Test and transfer phases. The eight test items were presented in random order, followed by the 
eight transfer items in random order, with participants categorizing each robot as a glorp or a drent. To 
discourage participants from skipping through items without paying attention, a response was only 
recorded after each robot had been displayed for two seconds. Participants were informed of this delay 
and the screen flickered after the two-second period ended.  

Memory phase. The eight study items (35%) and 15 lures (65%) were presented in a random 
order, and participants judged whether or not each robot was one of the original robots from the 
introduction and study phases. As in categorization, items had to be onscreen for two seconds. 
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Explicit report. Participants were explicitly asked whether they thought there was a difference 
between glorps and drents, and if so, to state what they thought the difference was. Responses were 
typed onscreen. 

2.4.2. Results 
Basis for Categorization.  

 To understand how explaining influenced what participants learned about categories, we 
evaluated participants’ bases for categorizing novel robots. Explicit reports were coded into four 
categories (displayed in Table 2): 100% rule (explicitly mentioning pointy versus flat feet), 75% rule 
(square versus circular body shape), “item similarity” (reliance on nearest match from study), and 
“other”2. Responses were coded independently by two coders with 91% agreement, and the first coder’s 
responses were used for analyses.3 Table 2 suggests that more participants learned and utilized the 100% 
rule in the explain than in the describe condition, while more participants drew on the 75% rule in the 
describe than the explain condition.    

 This pattern was evaluated statistically by tests for association between condition and a 
coding category: in each test the four rows were collapsed into two, the first being the target coding 
category and the second all other coding categories combined. Participants’ basis for categorization was 
more likely to be the 100% rule in the explain than the describe condition (χ2(1) = 15.89, p < 0.001), 
while the 75% rule was more prevalent in the describe than the explain condition (χ2(1) = 19.56, p < 
0.001). ‘Item similarity’ and ‘other’ responses were not significantly associated with condition. 

 While both groups of participants drew generalizations about the basis for category 
membership, these findings suggest that those in the explain condition were more likely to discover the 
subtle 100% rule, which drew on an abstraction about foot shape to account in a unified way for the 
category membership of all study items. 

Categorization of test and transfer items. 

For the purposes of analysis, participants’ categorization responses were scored as accurate if 
they corresponded to the 100% rule. Figure 3 shows test and transfer accuracy as a function of 
condition. Note that accuracy near 50% does not reflect chance responding, because items pit bases for 
categorization against each other. For example, for transfer items the two most common accuracy scores 
were 0% (perfectly systematic use of the 75% rule) and 100% (perfectly systematic use of the 100% 
rule).  

A 2 (task: explain vs. describe) x 2 (categorization measure: test vs. transfer) mixed ANOVA 
was conducted on categorization accuracy. This revealed a main effect of task (F(1,148) = 16.10, p < 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 The “Other” category further consisted of blank, “no difference”, any other basis, and unclear 

or uncodable responses. 
3 Coding revealed that some participants reversed the two category labels. An example would be 

stating that glorps had flat feet or that drents had square bodies, when in fact the opposite was true. For 
all three experiments, when a participant’s verbal response or post-experiment debriefing 
unambiguously indicated a switch in category labels, that participant’s categorization responses were 
reverse coded. 
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0.001), with participants in the explain condition categorizing test and transfer items significantly more 
accurately than those in the describe condition. There was also a significant effect of categorization 
measure (F(1,148) = 13.46, p < 0.001), as test accuracy was higher than transfer accuracy. It is worth 
noting that the more accurate categorization of transfer items by participants in the explain condition 
(t(148) = 2.91, p < 0.01) suggests that they not only recognized the importance of foot shape in 
determining category membership, but abstracted away from the specific shapes used on study items to 
recognize the subtle property of having ‘pointy’ or ‘flat’ feet.  

Categorization performance was also analyzed separately for each of the three types of test item 
(displayed in Fig. 2). Participants’ categorization of the 100% rule probes was more consistent with the 
100% rule in the explain than the describe condition (t(148) =4.41, p < 0.001), while categorization of 
the 75% rule probes was more consistent with the 75% rule in the describe than the explain condition 
(t(148) = 3.77, p < 0.001). There was no difference for item similarity probes (t(148) = 1.37, p = 0.17). 
These patterns of significance mirror those for explicit reports.  

The test and transfer accuracy scores did not follow a normal distribution, as the items used pit 
bases for categorization against each other, making the modal responses either very high or very low. To 
ensure the reliability of the categorization accuracy findings, we additionally analyzed categorization 
accuracy using a non-parametric measure. Each participant was coded as relying on the 100% rule if 7 
or 8 of the 8 transfer items were accurately categorized (all others were coded as not using the 100% 
rule). We relied on transfer item categorization as the most sensitive measure for use of the 100% rule: 
test items could be perfectly categorized by remembering specific foot shapes. A chi-squared test for 
association substantiated the finding that explaining was associated with greater discovery of the 100% 
rule (χ2(1) = 10.37, p < 0.01).  

Memory for study items. 
Because engaging in explanation may have drawn special attention to the anomalous items (an 

issue addressed in Experiment 2), memory was analyzed separately for items consistent with the 75% 
rule and for those that were anomalies with respect to the 75% rule. Memory performance is reported 
using the d’ measure of sensitivity (see Wickens, 2002). The d’ measure reflects participants’ ability to 
discriminate old study items from new lures, with larger values indicating better discrimination. Figure 4 
shows d’ for consistent and anomalous items as a function of condition. The ability to discriminate 
consistent study items from similar but new robots was significantly better in the describe condition than 
the explain condition (t(148) = 2.24, p < 0.05). There was no difference in discrimination of anomalous 
study items (t(148) = 0.82, p = 0.41, Explain: 1.09, Describe: 0.81), although the interpretation of this 
null effect is limited by the fact that there were many fewer anomalous items than consistent items, and 
therefore greater variability in performance.  

One explanation for the memory difference is that participants who explained were more likely 
to discover the foot rule and then neglect the details of study items. An alternative is that the processing 
activities invoked by explaining are not as effective for encoding item details as are those invoked by 
describing. For example, it could be that describing allocates attention to details, that explaining exerts a 
cost on the resources available for encoding details, or both. To examine this issue, d’ for consistent 
items was examined as a function of basis for categorization as determined by explicit reports (see 
Figure 5). There was no significant difference in memory performance for those who explicitly cited the 
foot rule (t(30) = 0.88, p = 0.88) or the body rule (t(52) = 1.41, p = 0.16), but there was a significant 
difference in memory for participants coded in the “other” category (t(62) = 2.19, p < 0.05). This 
suggests that the memory difference across conditions is not due to discovery of the 100% rule leading 
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participants to ignore item details, but may stem from a difference between the efficacy of explaining 
and describing for encoding specific details. 

Coded Content of Explanations and Descriptions. 

Each of the 8 explanations (or descriptions) a participant provided was coded for whether a 
feature was mentioned (foot shape, body shape, and color), and if that feature was mentioned in an 
‘abstract’ or a ‘concrete’ way (for similar coding categories, see Wisniewski & Medin, 1994, and Chin-
Parker et al, 2006). References were coded as concrete if they cited the actual feature, e.g. 
triangle/square/L-shaped feet, square/round body, yellow/green color. References were coded as 
abstract if they characterized a feature in more general terms, which could be applied to multiple 
features, e.g. pointy/flat feet, big/strange body, warm/complementary colors. Two experimenters coded 
explanations and descriptions independently, with agreement of 97% (analyses used the first coder’s 
responses). Figure 6 shows the number of features mentioned in each coding category as a function of 
task. Two separate 2 (task: explain vs. describe) x 3 (feature: feet vs. body vs. color) ANOVAs were 
conducted on the total number of concrete (abstract) features mentioned by each participant. 
Participants in the explain condition cited a greater number of abstract features than those in the describe 
condition (a main effect of task, F(1,148) = 24.72, p < 0.001), while those in the describe condition cited 
more concrete features than those who explained (a main effect of task, F(1,148) = 164.65, p < 0.001). 
Individual t-tests confirmed that these two findings were reliable for all features (all ps < 0.05) except 
abstract references to body shape (t(148) = 0.82, p = 0.41).  

It is worth noting that participants who explained were more likely to discover the 100% rule, 
even though those who described made references to feet more frequently. The coding data provide 
evidence against an attentional account of the effects of explaining on discovery, but are consistent with 
an attentional explanation for the enhanced memory found in the describe condition. 

2.4.3. Discussion 
Relative to describing – a control condition matched for time, engagement, and verbalization – 

explaining promoted discovery of a subtle regularity underlying category membership. This was 
reflected in participants’ explicit reports about category structure, as well as in categorization accuracy 
on test and transfer items. Coding of actual explanations and descriptions revealed that explanations 
involved a greater number of feature references coded as ‘abstract’ (operationalized as being applicable 
to multiple feature instances), not just for feet, but also for color. Descriptions involved a greater number 
of references to features that were coded as ‘concrete’ (operationalized as identifying specific feature 
values), suggesting that although the specific foot shapes were attended to and referenced by participants 
who described, merely attending was insufficient for participants to discover the regularity about foot 
shape. Despite the advantage of explanation for discovery and generalization, describing led to better 
encoding of details for most items and improved performance on a later memory test.  

Critically, the category structure employed provides evidence for the role of subsumption and 
unification in explanation: participants in both conditions identified a generalization underlying category 
membership (the 75% rule or the 100% rule), but participants who explained were more likely to 
discover and employ the 100% rule, which accounts for category membership in a more unified way. 
The findings from Experiment 1 also contribute to existing work on the self-explanation effect by 
demonstrating that the effects of engaging in explanation can extend to learning artificial categories, and 
exceed the benefits of describing (a condition matched for time and attention) when it comes to learning 
category structure. Finally, the finding that participants generated more abstract references not only for 
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feet – which matched the category structure – but also for color – which did not – suggests that 
explaining facilitates the discovery of unifying regularities by encouraging explainers to represent the 
material being explained in more diverse or abstract terms. 

One potential concern is that the prompt to explain may exert implicit task demands such as 
cluing in participants that they should find a basis for category membership, or that they should seek 
features or rules that differentiate the categories. This predicts that overall rule discovery would be 
higher in the explain condition, but in fact there was no significant interaction between condition and 
discovery of a rule (collapsing the 75% and 100% rule to one cell: χ2(1) = 1.21, p = 0.27). Experiment 2 
takes further measures to address this and other potential issues with our interpretations of the findings 
from Experiment 1, and additionally explores the role of anomalies to the 75% rule in prompting 
discovery of the 100% rule. 

2.5. Experiment 2 
The first goal of Experiment 2 is to provide a stronger test of the hypothesis that explaining 

promotes discovery, building on the results of Experiment 1. Accordingly, Experiment 2 uses a think 
aloud control condition instead of the describe condition. In Experiment 1, it is possible that the 
difference between performance in the explain and describe conditions resulted exclusively from a 
tendency of description to inhibit discovery. Thinking aloud places fewer restrictions than describing on 
how participants engage with the task, while matching explaining aloud for verbalization. A second 
concern with Experiment 1 is that the prompt to explain may have exerted implicit task demands, such 
as providing a cue to participants that they should find a basis for category membership, or that the 
category was likely to have a sufficiently simple structure to permit accurate generalization. To address 
this issue, all participants in Experiment 2 are explicitly instructed that they will later be tested on their 
ability to remember and categorize robots in order to generate equivalent expectations about the task and 
category structure. If the benefits of explanation derive solely from these expectations, the participants 
who think aloud will have comparable benefits to those who explain, eliminating a difference between 
conditions. 

The second goal of Experiment 2 is to further investigate the process of discovery by examining 
the role of anomalous observations with and without explanation. Experiment 1 demonstrates that 
explaining category membership promotes discovery, but required explanations or descriptions for 
robots both consistent and inconsistent with the 75% rule. It is thus unclear whether noticing or 
explaining the category membership of items inconsistent with the 75% rule played a special role in 
discovery. 

One possibility is that participants who explained were more likely to realize that the anomalous 
items were inconsistent with the 75% rule, and that the recognition of exceptions was sufficient to reject 
the 75% rule and prompt discovery of the 100% rule. If this is the case, then drawing participants’ 
attention to the anomalies should match and eliminate the benefits of explaining. Another possibility is 
that engaging in explanation encourages participants to consider regularities they might not otherwise 
entertain, whether or not they are confronted with an item that is anomalous with respect to their current 
explanation. This hypothesis predicts that explaining will promote discovery whether participants are 
explaining consistent or anomalous items.  

A third possibility is that providing explanations will increase participants’ confidence in their 
explanations, reinforcing the use of features invoked in whichever explanation is first entertained. 
Because the 75% rule is more salient, participants who are prompted to explain items consistent with the 
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75% rule may perseverate in its use and ultimately discover the unifying 100% rule less frequently than 
those who think aloud about these items. 

A final possibility, and the one we favor, is that the conjunction of explaining and anomalous 
observations will lead to the greatest discovery by constraining learning such that participants are driven 
to discover a basis for category membership that subsumes the anomalies. Explaining anomalies may 
thus play a special role in discovery, beyond merely drawing attention to anomalies or explaining 
consistent observations. This possibility is supported by previous work suggesting that noticing 
anomalies is insufficient for belief revision (see Chinn & Brewer, 1993). Without engaging in 
explanation, anomalies may be ignored, discounted, or simply fail to influence learning.  

To investigate these issues the study phase in Experiment 2 was modified so that learners 
provided explanations (or thought aloud) for only two robots: a glorp and drent that were both either 
consistent or inconsistent (anomalous) with respect to the 75% rule. The result was a 2 x 2 between-
subjects design with task (explain vs. think aloud) crossed with observation type (consistent vs. 
anomalous). Participants viewed all of the robots and retained the sheet of 8 items, but the targets of 
explaining or thinking aloud were either consistent or anomalous observations. 

2.5.1. Methods 
Participants. 

240 undergraduates and members of the Berkeley community participated (60 per condition) for 
course credit or monetary reimbursement. 

Materials. 

The materials were the same as in Experiment 1, with minor changes to study items and a 
modified set of memory items: the number of consistent lures was reduced and the number of 
anomalous lures increased. There were 8 old items and 12 lures. 

Procedure.  

The procedure followed that of Experiment 1, with the following changes.  

Task Instructions. The initial instructions explicitly informed participants: “You will later be 
tested on your ability to remember the robots you have seen and tested on your ability to decide whether 
robots are GLORPS or DRENTS.” Participants were also reminded of this before explaining (thinking 
aloud) in the study phase.  

Pre-study exposure. After participants received and viewed the sheet of robots, the introduction 
phase was augmented by presenting each of the 8 robots onscreen. A block consisted of displaying each 
of the 8 robots for four seconds with its category label, in a random order. Three blocks were presented, 
with a clear transition between blocks. This portion of the experiment ensured that participants across 
conditions observed and attended to the 8 study items, although only 2 items were displayed onscreen 
for the explain or think aloud phase. 

Study phase. While participants provided explanations (descriptions) for all 8 robots in 
Experiment 1, the Experiment 2 study phase only presented two robots (one glorp and one drent) for 90 
seconds each, with a warning when 30 seconds were left. In the consistent condition the two robots were 
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randomly selected from the 6 consistent with the 75% rule, while in the anomalous condition the two 
robots were those inconsistent with the 75% rule.  

Instructions to explain and think aloud were provided before the robots were displayed, so the 
prompt accompanying each robot was omitted. Participants were instructed to explain out loud or think 
aloud, and their speech was recorded using a voice recorder. The explain instructions were identical to 
Experiment 1, while the think aloud instructions were: “You should say aloud any thoughts you have 
while you are looking at the robots on the screen or on the paper. Say aloud whatever you are thinking 
or saying in your head, whether you are having thoughts about the robots, memorizing what they look 
like, or anything at all -- even if it seems unimportant.”  

Test, Transfer & Memory. The test, transfer, and memory phases were identical to Experiment 1, 
except that the restriction that responses could only be made after 2 seconds was removed. 

Post-experiment questions about body shape. After the explicit report, participants were asked to 
recall how many glorps (drents) from the study items were square (round). Four questions were posed to 
elicit responses for each type of robot with each type of body shape, of the form “How many of the 
original GLORPS [DRENTS] had square [round] bodies?”. 

2.5.2. Results 
Basis for Categorization and Categorization Accuracy. 

Data on participants’ basis for categorization (as reflected by explicit reports) and categorization 
accuracy both provided evidence that explaining promoted discovery of the 100% rule more effectively 
than thinking aloud. Explicit reports were coded as in Experiment 1 and are shown in Table 3. 
Agreement between coders was 91%, with analyses based on the first coder. As in Experiment 1, the 
contingency table was analyzed by collapsing the coding of explicit reports to two categories, giving a 
discovery factor with two levels: (1) reports reflecting discovery and use of the foot rule, (2) all other 
responses. A hierarchical log-linear analysis with backwards elimination was carried out on the task x 
item type x discovery contingency table, revealing a highly significant interaction between task and 
discovery (χ2(1) = 21.91, p < 0.001): explaining was associated with discovery. With post-hoc tests 
comparing individual conditions, discovery was more frequent in both explain conditions than in either 
think aloud condition (χ2(1) = 8.71, p < 0.01, χ2(1) = 8.71, p < 0.01; and χ2(1) = 13.30, p < 0.001, χ2(1) 
= 13.30, p < 0.001). 

The benefit for explaining over thinking aloud was mirrored in categorization accuracy (see 
Figure 7). A 2 (task: explain vs. think aloud) x 2 (item type: consistent vs. anomalous) x 2 
(categorization measure: test vs. transfer) mixed ANOVA revealed a significant main effect of task 
(F(1,236) = 21.90, p < 0.001), with more accurate categorization in the explain condition. The effect of 
item type (F(1,236) = 3.35, p = 0.07), and the interaction between task and item type (F(1,236) = 3.35, p 
= 0.07) were marginal. There was additionally a significant effect of categorization measure (F(1,236) = 
14.38, p < 0.001), with test accuracy higher than transfer, and significant interactions between 
categorization measure and task (F(1,236) = 4.71, p < 0.05) and categorization measure and item type 
(F(1,236) = 4.71, p < 0.05), with transfer accuracy being a more sensitive measure of the differences 
between explaining and thinking aloud. Contrasts revealed that categorization accuracy was significantly 
higher in the explain-anomalous condition than in the explain-consistent condition (F(1,118) = 5.83, p < 
0.05) or in either think aloud condition (F(1,118) = 14.51, p < 0.001, F(1,118) = 12.68, p < 0.001). 
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As in Experiment 1, categorization accuracy scores were not normally distributed, so a non-
parametric analysis based on transfer accuracy was also carried out. The basis for categorization inferred 
from transfer accuracy (criterion for 100% rule: 7 or 8 of 8 transfer items correct) is shown in Table 4, 
and is referred to as inferred discovery. A log-linear analysis of task x item type x inferred discovery 
revealed an interaction between task and inferred discovery (χ2(1) = 18.59, p < 0.001), and also between 
item type and inferred discovery (χ2(1) = 3.91, p < 0.05). This suggests that both explaining and the 
presence of anomalies contributed to discovery.  The trend towards greater discovery in the explain-
anomalous condition than the explain-consistent condition was marginal (χ2(1) = 2.76, p = 0.10).  

Across all three measures (basis for categorization based on explicit reports, categorization 
accuracy, and basis for categorization based on transfer accuracy), explaining was significantly 
associated with facilitated discovery. However, only basis for categorization based on transfer accuracy 
revealed a reliable effect of anomalous observations, and only categorization accuracy revealed a 
reliable difference between the explain-anomalous and explain-consistent conditions, with the other 
measures providing consistent but marginal support.  

Explaining anomalies may have facilitated discovery, in part, by fostering the rejection of the 
75% rule. To analyze reliance on the 75% rule, the factor body use was created with two levels: (1) 
explicit report of using the 75% rule, (2) all other responses. A log-linear analysis revealed a significant 
three-way interaction between task, item type, and body use (χ2(1) = 4.35, p < 0.05). Reliance on the 
75% rule was more frequent in the explain-consistent than the explain-anomalous condition, 
approaching significance (χ2(1) = 3.68, p = 0.055), with no difference for the think aloud conditions 
(χ2(1) = 0.95, p = 0.33),  

Memory.  

Separate 2 x 2 ANOVAs were conducted on the discrimination measure d’ for both consistent 
and anomalous items. There was an effect of observation type on discrimination of anomalous items 
(F(1,236) = 21.53, p < 0.001), simply reflecting that discrimination of anomalous items was better in the 
anomalous conditions. No other effects were significant (all ps > 0.30). Memory for the original items 
did not appear to be differentially influenced by explaining versus thinking aloud. 

Post-experiment questions about body shape. 

Due to an experimental error, responses to the questions about how many robots in each category 
had a particular body shape only ranged over 1, 2, 3, and 4 (participants could not say ‘0’), and 
responses were only recorded for the final 103 participants. We therefore exclude a full analysis, and 
employ the data we do have only as an index of participants’ awareness of anomalies to the 75% rule 
across conditions. As a measure of whether a participant realized there were exceptions to the trend in 
body shape, if a participant stated that there were 4 square glorps or 4 round drents they were coded as 
not noticing the anomaly.4 According to this measure, the proportions of participants who noticed the 
anomalies were as follows: Think aloud-consistent, 65% (17 of 26); think aloud-anomalous, 64% 
(16/25); explain-consistent, 74% (20/27); explain-anomalous, 92% (23/25). This suggests that a sizeable 
number of participants noticed the anomalies in all conditions. In particular, the majority (more than 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

4 We interpret this data as suggesting that a sizeable proportion of participants noticed the 
anomaly, and so we used this measure because it is conservative: using a ‘4’ answer to both questions as 
the measure for not noticing the anomaly identifies even more people as having noticed the anomaly. 
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50%) of participants in the explain-consistent condition noticed and recalled the anomalies (χ2(1) = 6.26, 
p < 0.05). 

2.5.3. Discussion 
Building on the findings from Experiment 1, Experiment 2 found that engaging in explanation 

facilitated discovery relative to a think aloud control condition that exerted fewer restrictions on 
processing than describing. This effect of explanation occurred despite the fact that participants were 
informed that they would later have to categorize robots, and were given an opportunity to study each 
robot multiple times before the explain / think aloud manipulation.  

The difference across explanation conditions additionally provides some suggestive evidence 
that explaining anomalous observations may be more effective for accurate learning and generalization 
than explaining observations consistent with current beliefs. Explaining anomalies seems to have 
prompted participants both to reject conflicting beliefs (the 75% rule) and to discover broader 
regularities (the 100% rule), although the former effect was more reliable than the latter. As suggested 
by the questions about body shape, it is possible that larger or more reliable effects were not observed 
because participants in the explain-consistent condition overwhelmingly noted the anomalies, and 
examining the sheet of all 8 robots or recalling anomalies from the pre-study phase may have led 
participants in this condition to seek a more unifying explanation for category membership even while 
explaining consistent items.  

The two think-aloud conditions led to comparable rates of discovery, with hints of a benefit for 
thinking aloud while observing anomalies. However, even in the think-aloud–anomalous condition, 
discovery fell reliably short of that in the explanation conditions. Although attention was drawn to 
anomalies and the design provided implicit demands to incorporate these items into beliefs about 
category membership, only a small number of participants discovered and employed the 100% rule. This 
suggests that attending to, observing, and thinking aloud about anomalies is insufficient to promote 
discovery; a process like explaining is additionally required. 

There were no significant differences in memory between the explain and think aloud conditions. 
This could suggest that the memory difference in Experiment 1 was driven by description’s facilitation 
of memory, not a memory cost for explanation. However, a more conservative interpretation of the null 
effect may be warranted: participants received considerable exposure to study items outside of the 
explain vs. think aloud phase, potentially minimizing the effect of this manipulation on memory. 

2.6. Experiment 3 

The final experiment was a replication in which participants in the control condition were not 
instructed to perform a specific task, and all of the robots were simultaneously presented for study. This 
control condition aimed to address the possibility that the previous benefits of explanation were driven 
by describing and thinking aloud inhibiting discovery, not by explanation promoting discovery. If our 
interpretations of Experiments 1 and 2 are correct, explaining should promote discovery relative to a 
condition in which participants are not required to perform an alternative task.  

2.6.1. Methods 
Participants.   

Participants were 120 undergraduate students enrolled in a psychology course who received 
course credit for completing the experiment as part of an hour of online surveys. 
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Materials.  

Participants saw all 8 robots onscreen in an image that was identical to that in the previous 
experiments, except that each robot also had an associated number (the glorps were labeled 1 through 4, 
the drents 5 through 8).  Due to time constraints, fewer test, transfer and memory items were presented. 
Test items consisted of 1 item similarity probe, 1 75% rule probe, 1 item that received the same 
classification from all 3 bases, and 4 100% rule probes. There were 4 transfer items. Memory items 
consisted of 4 old items and 4 lures. 

Procedure. 

Participants completed the experiment online. The instructions informed them that they would be 
learning about alien robots and that they would later be tested on their ability to remember and 
categorize robots. An image appeared onscreen that showed all 8 robots along with labels and numbers, 
and informed participants: “These are 8 robots on ZARN. This image will be onscreen for 2 minutes.” In 
the explain condition participants were also told: “Explain why robots 1, 2, 3 & 4 might be GLORPS, 
and explain why robots 5, 6, 7 & 8 might be DRENTS.” and typed their response into a text box. In the 
free study condition participants were told: “Robots 1, 2, 3 & 4 are GLORPS, and robots 5, 6, 7 & 8 are 
DRENTS.” 

The image was fixed to be onscreen for 2 minutes. After it was removed, participants categorized 
test and transfer items, completed the memory test, and answered several additional questions. Question 
1 was “What do you think the chances are that there is one single feature that underlies whether a robot 
is a GLORP or a DRENT - a single feature that could be used to classify ALL robots?” and responses 
were 0, 25, 50, 75, or 100 %. Question 2 asked participants to report whether they thought there were 
noticeable differences between glorps and drents, and if they thought there were, what those differences 
were.  

Question 3 showed a green screen ostensibly placed in front of a robot, obscuring all features 
except for the edges of its arms that extended beyond the sides of the screen. Participants were shown 
four questions they could ask about the robot, and required to specify the order in which they would ask 
the questions if they had to decide whether the obscured robot was a glorp or drent. The options were 
ordered randomly, and were: 1. What color is it? 2. What does its body look like? 3. What do its feet 
look like? 4. I would not ask any more questions - they will not be helpful. (The results from question 3 
were redundant with other measures, and are hence not reported.) 

Question 4 asked participants to state which features of glorps and drents they used in 
categorizing robots.  

Question 5 asked “When the image of 8 numbered robots was onscreen, were you trying to 
explain why particular robots were glorps, and why particular robots were drents?” and the randomly 
ordered responses were “Yes”, “Not sure”, and “No”.   

Question 6 asked whether participants had previously been in an experiment that used these 
materials.5 

2.6.2. Results and Discussion 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

5 Three participants who indicated previous participation were dropped from the analysis. 
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Basis for categorization and categorization accuracy. 

Basis for categorization was coded from participants’ explicit reports and the features they 
reported using in categorization, and is shown in Table 5. As in previous experiments, the reports were 
independently coded by two experimenters: agreement was 87% and analyses are based on the first 
coder’s responses. Figure 8 shows test and transfer accuracy as a function of condition. 

Explaining was significantly associated with higher rates of discovery and use of the 100% rule, 
as revealed both in explicit reports (χ2(1) = 4.09, p < 0.05) and in categorization accuracy (a main effect 
of task in a task x categorization measure ANOVA, F(1,118) = 7.02, p < 0.01). Explaining was also 
significantly associated with reduced use of the 75% rule (χ2(1) = 4.66, p < 0.05).  

Memory.  

There was no significant difference in memory (as measured by discrimination, d’) for consistent 
items (t(118) = 1.60, p = 0.11: Explain: 0.89, Free study: 0.35) or anomalous items (t(118) = 0.26, p = 
0.80: Explain: 0.74, Free study: 0.62).   

Likelihood of underlying feature. 

There was no difference across conditions in how likely participants thought it was that there 
was a single feature underlying category membership (t(118) = 0.65, p = 0.52; Exp: 37.9, Con: 42.1). 
Moreover, there were no significant differences when the analysis was performed separately for each 
coded basis for categorization: feet, body shape, or “other” (all p’s > 0.12). This suggests that the effect 
of the prompt to explain was not simply to communicate to participants that there was a regularity 
present.  

Self-report of explaining. 

As expected, a greater number of participants reported explaining category membership in the 
explanation condition than in the control condition (see Table 6). However, there was not a significant 
association between condition and response cell (χ2(1) = 2.41, p = 0.30). It is interesting that the prompt 
to explain was effective even though a sizeable number of participants reported spontaneously trying to 
explain in the free study condition. It may be that explaining manifests its effects in a graded way: not 
simply as a function of whether or not participants attempt to explain, but in the frequency of generating 
explanations or in the degree to which participants persist in explaining. 

To analyze the independent roles of the prompt to explain and reported efforts to explain, a log-
linear analysis was performed on the following three factors: discovery (explicitly reported foot 
discovery, or not), task (explain vs. free study), and explain-report (‘yes’ response to question about 
explaining, vs. ‘not sure’ and ‘no’), provided in Table 7. There were significant interactions between 
task and discovery (χ2(1) = 4.17, p < 0.05), and also between explain-report and discovery (χ2(1) = 
13.96, p < 0.001). This suggests two additive effects, and provides further evidence for the importance 
of explaining in discovery. Prompts to explain tended to facilitate discovery, and to the extent that the 
prompt to explain was obeyed (in the explain condition) or that participants engaged in spontaneous 
explanation (in the free study condition), discovery was also promoted.  

2.7. General Discussion 
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Experiments 1-3 find that participants prompted to explain why items belong to particular 
categories are more likely to induce an abstract generalization (100% rule) governing category 
membership than are participants instructed to describe category members (Exp. 1), think aloud during 
study (Exp. 2), or engage in free study (Exp. 3). These findings provide evidence for a subsumptive 
constraints account of explanation’s effects: that explaining exerts constraints on learning which 
facilitate the discovery of regularities underlying what is being explained, and thereby support 
generalization.  

Our findings support an account of explanation that emphasizes subsumption and unification. If 
good explanations are those that show how what is being explained is an instance of a general pattern or 
regularity, then trying to explain category membership should drive participants to discover patterns and 
regularities. And if explanations are better to the extent they unify a greater number of observations, 
explaining should drive participants to induce broad generalizations that surpass the 75% accuracy 
afforded by body shape, and support generalization to new contexts.  

In addition to providing insight into the constraints exerted by explaining, Experiments 1 and 2 
suggest that the mechanisms by which explaining promotes discovery involve abstraction and 
anomalies. In Experiment 1, participants who explained not only generated more abstract feature 
references about foot shape than did those who described, but also did so about color, even though the 
category structure did not support obvious generalizations about color. This suggests that explaining 
encourages learners to redescribe the material being explained in terms of new and potentially abstract 
features, because this redescription helps satisfy the demands of explanation: greater unification. 
Consistent with this possibility, Wisniewski & Medin (1994) reported that people’s prior knowledge 
guided the construction of abstract features and hypotheses about category items. Explaining may 
invoke prior knowledge that guides such feature construction. 

Experiment 2 provided some evidence for the value of explaining anomalies in driving discovery 
and revising beliefs. Even though the think aloud-anomalous condition drew attention to anomalies, 
attending to anomalies did not promote learning as effectively as explaining them. Providing 
explanations for anomalies may ensure that information inconsistent with current beliefs is not ignored 
or discounted, but used in a way that drives discovery and belief revision (for related discussion see 
Chinn & Brewer, 1993). In particular, explaining anomalies may lead to the rejection of beliefs 
inconsistent with the anomalies in addition to promoting the construction of more unifying alternatives.  

While the reported experiments are the first to extend self-explanation effects to an artificial 
category learning task, we do not see this extension as the primary contribution of this work. After all, 
the powerful effects of explanation on learning and generalization have been well established in 
previous research using complex and educationally relevant materials. Rather, the current experiments 
help fill gaps in this previous research by testing a proposal about why explaining might play the role it 
does in generalization. Using a more controlled task and stimuli allowed a rigorous test of the hypothesis 
that explaining drives the discovery of regularities that support generalization, but necessarily reduced 
the richness of the explanations involved to concern a defining feature. Having established the current 
approach as a successful strategy for investigating explanation, an important direction for future research 
on explanation’s role in discovery and generalization will be to reintroduce real-world complexity while 
maintaining experimental control. 

Understanding why explaining promotes generalization has implications for both cognitive 
psychology and education. For example, the memory findings from Experiment 1 suggest that 



 

  27 
	  

explanation and description may be complementary learning strategies, with explanation promoting the 
discovery of regularities, and description supporting memory for item details. In many learning contexts 
encoding facts and details is essential, and may even be a prerequisite to future learning. For example, in 
domains where learners have insufficient knowledge to induce underlying regularities, explaining is 
unlikely to facilitate generalization through discovery. Engaging in activities like description, 
memorization or receiving directed instruction may be more useful and promote the acquisition of 
background knowledge that supports future discovery. It follows that in certain contexts, explaining may 
not be the most effective strategy for learning. 

In fact, one counterintuitive prediction of our account is that explaining should hinder learning 
under certain conditions. If explaining consistently exerts the constraint that observations are interpreted 
in terms of unifying patterns, it may be less helpful or even harmful in unsystematic domains, or when 
too little data is available (for recent evidence that explanations aren’t always beneficial, see Kuhn & 
Katz, 2009; Wylie, Koedinger, & Mitamura, 2009). In the absence of true regularities, explaining 
random observations may lead people to induce incorrect generalizations. An anecdotal example of this 
might be elaborate ‘conspiracy theories’. Explaining small samples of unrepresentative observations 
might also lead to the induction of incorrect patterns that do not generalize. Speculatively, this could be 
the case in inferring illusory correlations, such as in social stereotyping (e.g. Hamilton, 1981). One 
future direction is assessing whether documented biases or misconceptions can be understood from this 
perspective, and exploring the possibility that explaining can hinder accurate learning through “illusory 
discovery”.  

In the remainder of the discussion, we consider alternative interpretations for the effects of 
explanation and the relationship between explanation and other learning mechanisms. We conclude by 
highlighting a few promising future directions. 

2.7.1. Alternative interpretations of the effects of explanation 
An inherent difficulty in investigating the effects of prompts to explain is interpreting the 

differences between explaining and control conditions. In Experiment 1, it is possible that the difference 
between conditions was due to describing inhibiting discovery, with no benefit to explaining. However, 
explaining was also found to have an effect relative to thinking aloud (Exp. 2), which did not impose the 
restrictions that describing item features does, and relative to free study (Exp. 3). In Experiment 2, it is 
possible that thinking aloud distracted participants from crucial aspects of the task, but a difference was 
also found when participants were required to attend to items by describing (Exp. 1) or did not have to 
perform any potentially distracting task (Exp. 3). Finally, the findings from Experiment 3 might be 
explained in terms of explaining increasing attention to item features or requiring the use of language. 
But this kind of attentional account wouldn’t predict the differences observed in Experiment 1, and 
appeals to language or articulation are less plausible in light of the benefits for explaining found in 
Experiments 1 and 2. 

 In sum, while each finding may allow for alternative explanations, the plausibility of 
these alternatives is decreased in the context of all three experiments. Moreover, there are reasons to 
expect describing, thinking aloud, and free study to help discovery rather than hurt it: by promoting 
attention, requiring articulation, and allowing participants to select any learning strategy. It is 
noteworthy that explaining had a beneficial effect above and beyond all three of these comparison 
conditions, which arguably intersect with activities typically engaged in by students and other learners. 
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 Another set of alternative interpretations concern task demands. One possibility is that 
prompting participants to explain exerted its effects by indirectly communicating to participants that 
they should search for a basis for category membership. For example, the pragmatics of the explanation 
prompt might suggest the experimenter designed the categories to have differentiating features and 
expected participants to search for differences between categories. However, Experiments 2 and 3 
explicitly informed participants that they would have a later categorization test in both the explain and 
control conditions. If explanation’s only effect was to suggest to participants that they should find a 
feature that could be used to differentiate the categories, these instructions should have led to identical 
learning in the explanation and control conditions of Experiment 2 and 3. This alternative interpretation 
is also less plausible in light of the fact that participants in both the explain and control conditions 
identified body and foot shape features that figured in categorization rules: even without a prompt to 
explain participants sought differences between the categories. The critical difference was whether the 
differentiating rule they identified was the 75% rule or the 100% rule, which resulted in greater 
unification and subsumption.   

 Another task demand interpretation could be that being told to explain helps merely 
because it suggests to participants that they should find a defining feature underlying category 
membership. While this interpretation has some intuitive appeal, additional assumptions are needed in 
understanding why people would interpret a prompt to explain as concerning a defining feature, rather 
than some other structure. In fact, the subsumption account predicts that the prompt constrains learners 
to seek knowledge that shows how what they are explaining is an instance of a general pattern, which in 
this particular task could be knowledge about defining features or criteria that specify necessary and 
sufficient conditions for category membership. It is not clear that this particular ‘task demand’ 
interpretation competes with an account in terms of subsumptive constraints.  

2.7.2. Relationship between explanation and other cognitive processes 
In this section, we consider the relationship between explanation and other cognitive processes 

that could play a role in learning -- such as depth of processing, rule learning, hypothesis testing, and 
comparison.  

Interpreting the effects of explaining raises the question of its relationship to depth of processing 
in memory research (Craik & Lockhart, 1972). For example, do effects of explaining reflect a standard 
depth of processing effect? On this point, it is worth noting that participants who explained processed 
items in a way that resulted in worse memory than did those in the describe control condition. One way 
to relate explanation and depth of processing is to interpret this work as a specific proposal about what 
the deeper processing prompted by explaining comprises. What seems most important about the prompt 
to explain is that it drives learners to allocate attention to the right features and patterns and to process 
items in an appropriate way for discovering regularities that can be constructed on the basis of current 
knowledge. We would argue that explaining exerts constraints that drive deeper processing of a specific 
kind: processing that is directed towards satisfying the subsumptive properties of explanation and so 
results in the discovery of regularities.  

Some theories of category learning have emphasized the role of rules (e.g. Bruner et al, 1956), 
and aim to characterize the conditions under which categorization is more rule-like or more exemplar or 
prototype-based (Allen & Brooks, 1991; Sloman, 1996; Lee & Vanpaemel, 2008). It may be that the 
effect of explanation on category learning can be interpreted as increasing participants’ use of rule-based 
strategies. However, explaining does not merely encourage the use of rules per se, as it promoted 
discovery of the 100% rule above the 75% rule. Models of category learning that favor rules with the 
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fewest exceptions (Nosofsky, Palmeri, & McKinley, 1994; Goodman et al, 2008) predict this result and 
naturally correspond to explanation’s subsumption and unification constraints. More broadly, if it is the 
case that “good” rules are those that make for good explanations, research on explanation and research 
on rule-based models may be mutually informing. However, to the extent that explaining exerts 
constraints other than subsumption and unification (such as relating observations to prior causal 
knowledge), people’s learning about categories through explanation may be less amenable to rule-based 
accounts. 

In these experiments, we interpret the findings of enhanced discovery as a consequence of 
explainers converging on knowledge that satisfies properties of explanation like subsumption and 
unification. But these results could also be understood in terms of hypothesis testing. Perhaps 
participants in the explain condition formulated and tested hypotheses about category membership, 
which facilitated rejection of the 75% rule and discovery of the 100% rule. Another possibility is that 
participants in the explain condition engaged in the comparison of items, so that processes like structural 
alignment of item features facilitated the induction of the subtle 100% rule (e.g. Yamauchi & Markman, 
2000).  

Instead of regarding these possibilities as mutually exclusive alternatives, they can be thought of 
as complementary proposals about which cognitive processes are recruited by explainers to satisfy the 
demands of explanation. Constructing explanations exerts a specific constraint on learning: that 
observations be interpreted in terms of unifying patterns. In satisfying this constraint, explainers may be 
driven to test different hypotheses when current beliefs are found to provide inadequate explanations, 
and may engage in comparison and structural alignment of category members in the service of 
identifying unifying patterns. More generally, explaining may recruit a range of cognitive processes in 
order to produce explanations that satisfy particular structural properties. The cognitive processes 
recruited will likely correspond to those identified by previous research as effective in facilitating 
learning and discovery: logical, inductive, and analogical reasoning, comparison, hypothesis testing, and 
so on. In fact, Chi et al’s (1994) coding of self-explanations found that approximately one-third of 
explanations reflected the use of other learning mechanisms, such as logical and analogical reasoning.  

2.7.3. Future Directions & Conclusions 
These experiments suggest the utility of subsumption and unification, but there is a great deal of 

future research to be done in exploring how properties of explanation play a role in learning. A central 
question for future research concerns which kinds of patterns or regularities are judged explanatory, and 
hence likely to be discovered through explanation. Patterns that are consistent with prior knowledge and 
law-like are excellent candidates, but distinguishing law-like generalization from accidental 
generalizations is notoriously difficult (see, for example, Carroll, 2008 in philosophy, and Kalish, 2002 
for a relevant discussion from psychology). Theories of explanation from philosophy of science provide 
proposals about other important properties of explanations, such as identifying the causes relevant to 
bringing about what is to be explained. Does explaining especially privilege the discovery of causal 
regularities?  

Research in psychology has distinguished mechanistic and functional explanations (see 
Lombrozo & Carey, 2006; Lombrozo, 2009; Kelemen, 1999) and explored the role simplicity plays in 
the evaluation of explanations (see Lombrozo, 2007; Bonawitz & Lombrozo, under review). Do 
mechanistic and functional explanations play different roles in the acquisition of knowledge? Does 
people’s preference for simple explanations have consequences for learning? If a function of explanation 
is to support generalization (see Lombrozo & Carey, 2006, for a proposal to this effect), then 
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subsumption and unification may trade-off with other properties of explanations that support 
generalization.  

The focus in this paper has been on human learning, but the proposal that the subsumptive 
properties of explanation exert constraints that can contribute to discovery and generalization may also 
inform machine learning, where algorithms involving explanation have been proposed (e.g. Lewis, 
1988). Approaches in artificial intelligence referred to as “explanation-based learning” and 
“explanation-based generalization,” for example, provide algorithms for learning generalizations by 
explaining one or a few examples (e.g. Ahn, Brewer, & Mooney, 1992; Mitchell, Keller, Kedar-Cabelli, 
1986; DeJong & Mooney, 1986). These algorithms employ a circumscribed conception of explanation 
(as a process of deduction), but employing a broader notion of explanation that is informed by the kind 
of approach we adopt here may be useful in extending such algorithms. 

Our experiment is the first (that we know of) to draw on theory from philosophy of science and 
methodology in cognitive psychology to examine the effects of explaining on learning, a phenomenon 
empirically established in educational and developmental psychology. We believe that the integration of 
these disciplines has a great deal of promise. Theories of explanation from philosophy can provide novel 
insights into the role of explanation in learning and generalization. And by using artificial categories, a 
research strategy from cognitive psychology, one can control participants’ prior beliefs and provide a 
more precise characterization of the role of explanation in the discovery of generalizations. We hope that 
these experiments contribute to the utilization of philosophical work on explanation, and further 
explorations at the intersection of educational and cognitive psychology. Drawing on insights from each 
discipline offers the opportunity to gain a deeper understanding of the key role explaining plays in 
learning. 
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Figure 1.  Study items in Experiment 1. 

 

                

	  	  

	  
	  
	  

Figure 2. Examples of three types of test items from Experiment 1. 
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Figure 3. Categorization Accuracy on Test and Transfer Items in Experiment 1. 

 

 

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  

	  

Figure 4. Memory for consistent and anomalous items in Experiment 1. 
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Figure 5. Memory for consistent items as a function of basis for categorization in Experiment 1. 

	  

	  
	  

	  
	  
	  

	  

Figure 6. Coding of feature references in explanations and descriptions in Experiment 1. 
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Figure 7. Categorization accuracy in Experiment 2.  

	  

	  	   	  
	  
	  

	  
	  

Figure 8. Categorization accuracy in Experiment 3. 
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Table 1. Overview of experiments: key differences.  

	   Introduction	   Study	  Items	  
Control	  
condition	  

Exp.	  1	   Informed	  about	  two	  categories.	   8	  x	  50	  s	   Describe	  

Exp.	  2	  

Informed	  about	  two	  categories	  and	  
Memory	  &	  Categorization	  tests;	  3	  
blocks	  exposure	  

2	  x	  90	  s	  (Consistent	  vs	  
Anomalous)	   Think	  Aloud	  

Exp.	  3	  

Informed	  about	  two	  categories	  and	  

Memory	  &	  Categorization	  tests	   Sheet	  x	  120	  s	   Free	  study	  
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Table 2. Number of participants in Experiment 1 coded as providing each basis for categorization on the 
basis of explicit reports. 

	  

100%	  rule-‐

FOOT	  

75%	  rule-‐

BODY	  

Item	  

Similarity	   Other	  

Explain	   26	   14	   0	   35	  

Describe	   6	   40	   0	   29	  
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Table 3. Number of participants in Experiment 2 coded as providing each basis for categorization on the 
basis of explicit reports. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	  	   100%	  Rule	  
–	  foot	  

75%	  Rule	  –	  
body	  

Other	  

Explain	  –	  Consistent	   22	   19	   19	  

Explain	  -‐	  Anomaly	   26	   10	   24	  

Think	  Aloud	  -‐	  Consistent	   8	   17	   35	  

Think	  Aloud	  -‐	  Anomaly	   8	   22	   30	  
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Table 4. Number of participants in Experiment 2 corresponding to each basis for categorization as inferred 
from transfer accuracy. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	  	   100%	  Rule	  
–	  foot	  

NOT	  100%	  
rule	  

Explain	  –	  Consistent	   21	   39	  

Explain	  -‐	  Anomaly	   30	   30	  

Think	  Aloud	  -‐	  Consistent	   8	   52	  

Think	  Aloud	  -‐	  Anomaly	   13	   47	  
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Table 5.  Number of participants in Experiment 3 coded as providing each basis for categorization on the 
basis of explicit reports. 

	  

100%	  rule-‐

foot	  

75%	  rule-‐

body	   Other	  

Explain	   17	   9	   34	  

Free	  study	   8	   19	   33	  
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Table 6. Number of participants reporting attempts to explain category membership in Experiment 3. 

Engaged	  in	  
explanation?	   Explain	   Free	  study	  

Yes	   29	   23	  

Not	  sure	   20	   19	  

No	   11	   18	  
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Table 7. Number of participants in Experiment 3 coded as providing each basis for categorization on the 
basis of explicit reports, further subdivided by self-reported explaining. 

 

	  

Engaged	  in	  

explanation?	  

100%	  rule-‐

foot	  

75%	  rule-‐

body	   Other	  

Explain	   Exp-‐Yes	   14	   2	   13	  

	  	   Exp-‐Other	   3	   7	   21	  

Free	  study	   Exp-‐Yes	   5	   11	   7	  

	   Exp-‐Other	   3	   8	   26	  
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3. Explanation and Prior Knowledge Interact to Guide Learning  

3.1. Abstract 

How do explaining and prior knowledge contribute to learning? Four experiments explored the 
relationship between explanation and prior knowledge in category learning. The experiments 
independently manipulated whether participants were prompted to explain the category membership of 
study observations and whether category labels were informative in allowing participants to relate prior 
knowledge to patterns underlying category membership. The experiments revealed a superadditive 
interaction between explanation and informative labels, with explainers who received informative labels 
most likely to discover (Experiments 1 & 2) and generalize (Experiments 3 & 4) a pattern consistent 
with prior knowledge. However, explainers were no more likely than controls to discover multiple 
patterns (Experiments 1 & 2), indicating that effects of explanation are relatively targeted. We suggest 
that explanation recruits prior knowledge to assess whether candidate patterns are likely to have broad 
scope (i.e., to generalize within and beyond study observations). This interpretation is supported by the 
finding that effects of explanation on prior knowledge were attenuated when learners believed prior 
knowledge was irrelevant to generalizing category membership (Experiment 4). This research provides 
evidence that explanation can serve as a mechanism for deploying prior knowledge to assess the scope 
of observed patterns. 

3.2. Introduction 
Children, adults, and students of all ages face the common challenge of discovering useful 

information and then generalizing it to novel contexts. While learning and generalization engage a 
variety of cognitive processes, researchers across several fields have recognized an important role for 
explanation (Lombrozo, 2012). For example, prompting young children to explain observations that 
challenge their intuitive theories can accelerate conceptual development (e.g., Amsterlaw & Wellman, 
2006; Siegler, 1995), and prompting students to explain why a fact is true or why a solution to a problem 
is correct can improve both learning and transfer to novel problems (e.g., Chi et al., 1994). How and 
why does explaining have these effects? In particular, how does explaining guide discovery and 
generalization? 

We propose that explaining recruits a set of criteria for what constitutes a good explanation, and 
that these criteria in turn act as constraints on learning and generalization (Lombrozo, 2012). For 
example, explanations are typically judged better if they are simple (Lombrozo, 2007; Read & Marcus-
Newhall, 1993) and have what we refer to as broad scope – appealing to features, principles, or patterns 
that accurately apply to numerous instances across a range of contexts (Pennington & Hastie, 1992; 
Preston & Epley, 1995; Read & Marcus-Newhall, 1993). In this paper we focus on scope to consider 
whether the act of generating explanations makes learners more likely to discover and generalize 
patterns with broad scope. For example, in trying to explain why peafowl at the zoo vary in color, one 
might discover that males (peacocks) tend to be colorful while females (peahens) tend to be drab. This 
discovery and the reasoning behind it could in turn support inferences about unobserved peafowl, such 
as the generalization that all male and female peafowl are likely to conform to this pattern, and not just 
the particular species observed at the zoo. 
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The idea that explaining makes learners more sensitive to scope predicts that explaining should 
increase the extent to which learners consult prior knowledge.6  

Learning poses a challenging inductive problem, and prior knowledge can serve as an important 
cue to which patterns are likely to have broad scope. For example, an explanation for variation in 
peafowl coloration that appeals to a generalization over sex (males versus females) could be preferred 
over one formulated over size (larger versus smaller) because prior knowledge favors the former as 
more likely to generalize beyond the peahen sample observed. So if explaining changes the criteria that 
learners adopt in generating or evaluating hypotheses by leading them to privilege patterns with broad 
scope, then explaining should recruit prior knowledge in evaluating the scope of candidate patterns. In 
addition to testing this prediction, we consider whether such an effect (if found) results from a special 
relationship between explanation and prior knowledge or instead from a more general effect, such as a 
global increase in how much information explainers discover and retain. 

By focusing on the relationship between explanation and prior knowledge, we gain unique 
leverage in addressing two important questions in cognitive science: how explanation impacts learning 
and generalization, and when and how prior knowledge is brought to bear on learning. In addition to 
bridging research on explanation and prior knowledge, we bridge two research traditions by examining 
questions about explanation and learning (typically studied by educational psychologists) in the context 
of artificial category learning (typically studied by cognitive psychologists). In the remainder of the 
introduction we briefly review past work from each of these traditions before presenting the key theory, 
questions, and predictions that motivate the four experiments that follow. 

3.2.1. General and Selective Effects of Explanation on Learning 
Research in education has investigated the role of explanation in learning in the context of the 

“self-explanation effect”: the phenomenon whereby explaining, even to oneself, can improve learning. 
Effects of self-explanation have been documented in domains from biology to mathematics, from 
elementary school through university, and under a variety of methods for eliciting explanations (e.g., 
Aleven & Koedinger, 2002; Chi et al., 1989; Chi et al., 1994; Crowley & Siegler, 1998; Graesser et al., 
1994; Nokes et al., in press; Renkl, 1997; Rittle-Johnson, 2006; Siegler, 2002). This diversity is matched 
by a wide range of proposals concerning how explanation affects learning. For example, a prompt to 
explain could encourage the generation of inferences and invention of procedures (e.g., Chi et al., 1994; 
Renkl, 1997; Rittle-Johnson, 2006), boost metacognitive monitoring and help identify gaps in 
comprehension (e.g., Chi et al, 1989; Nokes et al, in press; Palinscar & Brown, 1984), and/or promote 
the revision of beliefs and strategies (e.g., Chi et al., 1994; Chi, 2000; Legare, Gelman, & Wellman, 
2010; Siegler, 2002; Rittle-Johnson, 2006). 

Many of these accounts are compatible with the idea that explaining effectively increases the 
same kind of cognitive processing that occurs in the absence of explanation. For example, some effects 
of explanation are attributed to an increase in learners’ attention, motivation, or processing time (e.g., 
Siegler, 2002), and one recent review of research on self-explanation proposes that explanation 
improves learning because it is a constructive activity, and that equivalently constructive activities have 
comparable effects (Chi, 2010). While explaining could be especially well-suited to increasing attention, 
engagement, or some other cognitive resource, the outcome of such an increase is likely to be “general” 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Throughout the paper we use the term “prior knowledge” to indicate a learner’s beliefs or 

commitments, whether or not they are true. That is, our use of the term “knowledge” is non-factive. 
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in the sense that it extends to many kinds of learning and is not selectively tuned to properties of 
explanation. 

A complementary approach is to focus on effects of explanation that are more “selective” in the 
sense that they derive from particular properties of explanation and have more targeted consequences. 
For example, research suggests that explaining encourages young children to focus on causal 
mechanisms at the expense of memory for color (Legare & Lombrozo, under review), and asking 
middle-school children to explain leads them to privilege causal hypotheses at the expense of observed 
covariation (Kuhn & Katz, 2009). Studies with adults additionally find that explaining worked examples 
can foster detailed verbal elaboration of concepts at the expense of procedural knowledge (Berthold et 
al., 2011) and promote insight problem solving at the expense of memory for what was studied 
(Needham & Begg, 1991). These examples indicate that explanation is not merely neutral with respect 
to some kinds of learning, such as memory for observed examples, but can even be harmful. 

Of course, explaining is likely to have both relatively general and more selective effects, and the 
difference is potentially one of degree rather than kind. Nonetheless, the distinction is useful in 
motivating a set of questions and analyses that allow us to more precisely specify how and why 
explanation is selective in the way that it is. For example, explaining could improve students’ learning 
by increasing general engagement, but in particular engage learners in searching for underlying patterns. 
More generally, selective effects can clarify how and why explaining helps learning by identifying what 
people are more engaged in, which beliefs are revised, what kinds of inferences are generated, and so on. 
Our goal in this paper is to more precisely specify what the effects of explanation are and why it is that 
explaining, in particular, produces those effects. Identifying selective effects of explanation – cases in 
which explanation impacts some kinds of learning but not others – is a useful strategy for doing so. In 
the experiments that follow, we therefore include more than one measure of learning, where we predict 
effects of explanation for some measures but not for others. 

3.2.2. Prior Knowledge and Explanation in Learning 
Only a few studies in educational settings have directly investigated the relationship between 

explanation, prior knowledge, and learning. These studies have examined how the efficacy of 
explanation prompts is influenced by a learner’s level of prior knowledge about the topic being learned. 
However, findings have been mixed (e.g., Best, Ozuru, & McNamara, 2004; Chi et al., 1994; Chi & 
VanLehn, 1991; McNamara, 2004; Renkl et al., 1998; Wong, Lawson & Keeves, 2002). One challenge 
for interpreting these inconsistent findings is the variation in how different studies assess and 
operationalize prior knowledge, explanation, and learning. Moreover, they rely on existing variation in 
learners’ knowledge, rather than using experimental manipulations that can more clearly isolate causal 
relationships between prior knowledge and learning.  

Taking a complementary approach to education research, a sizeable literature in cognitive 
psychology has investigated effects of prior knowledge on learning by experimentally manipulating a 
learner’s prior knowledge concerning artificial categories that are learned in the context of well-
controlled laboratory tasks (e.g., Heit, 2001; for reviews see Murphy, 2002; Ross, Taylor, Middleton, & 
Nokes, 2008; Wattenmaker et al., 1986; Wisniewski, 1995). Within this tradition, prior knowledge has 
typically been shown to facilitate learning (although see Murphy & Wisniewski, 1991), increase the rate 
at which novel categories are learned (e.g., Kaplan & Murphy, 1999), decrease prediction errors during 
learning (e.g., Heit & Bott, 2001), and make it possible for learners to acquire categories with a complex 
relational structure (Rehder & Ross, 2001). For example, Murphy and Allopenna (1994) had participants 
learn novel categories that either grouped features relevant to being a “space building” or an 
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“underwater building” or scrambled these features across categories. Participants in the former condition 
learned the categories more quickly and were more accurate in reporting the frequency with which 
different features appeared in each category. 

How might explanation affect whether and how prior knowledge influences category learning? 
Prominent theories of conceptual representation accord a central role to “explanatory beliefs” (Carey, 
1985; Murphy & Medin, 1985), a phrase that is often used synonymously with a learner’s prior 
knowledge (see also Ahn, 1998; Lombrozo, 2009; Rehder, 2003; Rips, 1989). However, research in 
these traditions has overwhelmingly focused on explanations as the outcome of learning, and not on the 
process of explaining as itself a mechanism for concept acquisition and revision. In fact, only one study 
(to our knowledge) has experimentally manipulated whether participants explained during category 
learning (Chin-Parker, Hernandez, and Matens, 2006). The study found that participants who explained 
were more successful than those who did not in learning diagnostic features of category membership 
that could be related to prior knowledge, but additionally learned arbitrary diagnostic features – 
consistent with the idea that explanation recruits prior knowledge through mechanisms with either 
general or selective effects. No studies (to our knowledge) have manipulated both whether learners 
explain and the extent or nature of their prior knowledge to directly investigate how explanation and 
prior knowledge interact. 

3.2.3. Explanation and Prior Knowledge: A Subsumptive Constraints Account 
 We propose a subsumptive constraints account of the relationship between explanation 

and prior knowledge in learning and test this account using the experimental methods of research on 
category learning. Our predictions follow from a commitment to what constitutes an explanation: To be 
explanatory, explanations must explicitly or implicitly appeal to a pattern or generalization of which the 
explanandum (what is being explained) is an instance. This idea is motivated by “subsumption” and 
“unification” theories of explanation in philosophy of science, according to which explanations subsume 
the explanandum under a law or explanatory pattern, and in so doing ideally unify disparate observations 
or phenomena under that law or pattern (Friedman, 1974; Kitcher, 1981; 1989; see Woodward, 2010 for 
review). In the context of everyday judgments, subsuming patterns can take the form of rules, causal 
relationships, or principles, among others. For example, explaining an object’s membership in one 
category rather than another could appeal to a rule concerning membership (e.g., “avocados are fruits 
rather than vegetables, because fruits contain the seed of their plant while vegetables do not”), 
explaining why someone has a particular characteristic could appeal to a causal regularity (e.g., “Anna is 
politically savvy because she comes from a family of activists”), and explaining the solution to a 
problem could appeal to a general principle (e.g., “The desired angle must be 30 degrees, because the 
sum of angles in a triangle is 180”). As a consequence, explaining will drive learners to seek underlying 
patterns, which then serve to guide learning and generalization. For example, in explaining why your 
friend Anna is so politically informed, you might note that she comes from a family of activists, and 
induce the general pattern that people who are raised by activists tend to be politically informed.  

 According to this account, explanations should be better to the extent that the patterns 
they invoke unify or subsume a large number of cases and are violated by few exceptions. Explaining 
should accordingly drive learners to seek patterns that match the greatest proportion of cases to which 
they can be applied. We refer to the number of (observed and unobserved) cases to which a pattern 
successfully applies as its “scope.” Because a pattern’s scope is rarely directly available, it must be 
inferred on the basis of several cues, including how many of the currently observed cases fall under the 
pattern, the proportion of cases from past experience to which it has successfully applied, and more 
generally, any prior knowledge that can inform inferences about the pattern’s likely extension. If the 
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subsumptive constraints account is correct, then explaining should not only make learners more likely to 
discover patterns, but also influence which patterns are discovered, with prior knowledge especially 
likely to be consulted as explainers evaluate the scope of candidate patterns. This generates the 
prediction that explaining will interact with prior knowledge relevant to assessing scope to guide 
discovery and generalization. Specifically, learners who are prompted to explain should consult prior 
knowledge to a greater degree than those who learn without explaining, and prompts to explain should 
accordingly have a targeted impact on measures of learning that track prior knowledge and scope, but 
not necessarily other measures of learning, such as the total number of patterns discovered or recalled. In 
contrast, if explanation’s primary effects are instead to increase attention, motivation, or even the overall 
search for underlying patterns, the effects of explanation and prior knowledge could be independent, and 
also generate more widespread consequences for learning. 

Williams and Lombrozo (2010) first proposed the subsumptive constraints account and reported 
evidence consistent with the idea that explanation drives learners towards patterns with broader scope. 
Participants learned about two categories of robots and were prompted to either explain the category 
membership of eight labeled examples or to engage in a control task, such as description or thinking 
aloud. Across three experiments, explaining promoted the discovery of a subtle pattern relating foot 
shape to category membership (i.e., that “Glorp” robots have pointy feet and “Drent” robots have flat 
feet), which accounted for the membership of every study observation. In the control conditions 
participants tended to discover a more salient pattern concerning body shape (i.e., that “Glorp” robots 
are typically square and “Drent” robots are typically round) that had lower scope (i.e., it only accounted 
for six of the eight examples) or to encode specific properties of the examples, such as their color. These 
findings provide initial evidence that seeking explanations promotes the discovery of patterns, and is 
consistent with the prediction that explaining favors patterns that account for a larger proportion of cases 
– in these experiments, eight out of eight observations as opposed to six out of eight. However, the 
experiments were not designed to test the broader issues of interest here concerning the role of prior 
knowledge in learning or the selectivity of explanation’s effects. 

In the four experiments reported below, we test the broader implications of the subsumptive 
constraints account. Specifically, we aim to address the following key questions. First, does explaining 
make learners more likely to consult prior knowledge in learning, and therefore to discover and 
generalize patterns consistent with prior knowledge? If so, is this the result of a general effect (e.g., 
boosting attention or the discovery of all kinds of patterns) or a selective effect (e.g., a constraint on 
which patterns are discovered)? And second, does explanation’s selectivity in part derive from the 
evaluation of the scope of candidate patterns, as our account implies? 

3.3. Overview of experiments 

To investigate whether and how explanation and prior knowledge interact to guide learning and 
generalization, we presented participants with a category learning task in which we manipulated both the 
extent to which learners explained and their ability to recruit relevant prior knowledge. We 
accomplished the former by prompting some participants to explain the category membership of 
category exemplars and others to engage in a control task (either free study or writing their thoughts 
during study). We accomplished the latter by providing category labels that were either “blank” (i.e., 
nonsense words) or meaningful and potentially relevant to particular category features.  

While most research on knowledge effects in category learning has manipulated prior knowledge 
through the features that make up novel categories (e.g., Murphy & Allopenna, 1994) or with explicit 
hints about relevant prior knowledge (e.g., Pazzani, 1991; Wattenmaker et al., 1986), the relatively 
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subtle manipulation of category labels has been shown to influence the prior knowledge learners can 
recruit in learning (e.g., Barsalou, 1985, Wisniewski & Medin, 1994). For example, Wisniewski and 
Medin (1994) gave participants a set of drawings from children identified as coming from a “creative” 
versus a ”noncreative” group, or from “group 1” versus “group 2,” and found that participants 
constructed different features to discriminate the categories across these conditions. Our experiments 
used a similar manipulation to influence whether participants could recruit prior knowledge relevant to 
the learning task. 

In the task we employed, participants were presented with category exemplars consistent with 
multiple patterns, only some of which were knowledge-relevant. For example, participants in all 
experiments were presented with sample robots from two categories, where those in one category had 
feet that were flat on the bottom and those in the other had feet that were pointy. The robots also varied 
across categories in other ways, including (in some experiments) the length of their antennae. When the 
robots received meaningful labels, such as “indoor robots” versus “outdoor robots,” the feature of foot 
shape was “label-relevant” in that a learner could plausibly relate flat versus pointy feet to use on 
different indoor versus outdoor surfaces, while a feature such as length of antennae was “label-
irrelevant.”  

With this simple experimental design and appropriate category structures, we examined whether 
and how explanation and prior-knowledge interacted in the discovery and generalization of patterns 
underlying category membership. In Experiments 1 and 2, we tested the prediction that prior knowledge 
is more likely to be recruited to guide discovery when learners engage in explanation. Specifically, we 
examined how discovery of the label-relevant pattern was influenced by informative labels in the 
absence of a prompt to explain (control + blank labels versus control + informative labels), and 
compared this effect to that obtained when learners were prompted to explain  (explain + blank labels 
versus explain + informative labels).  

Experiments 1 and 2 additionally considered the mechanisms by which explanation influenced 
discovery. If explaining increases pattern discovery through a general effect – such as a boost in 
attention, engagement, or motivation – then effects of explanation would likely extend to multiple 
measures of learning. In contrast, if explaining influences discovery through a more selective effect, 
then a prompt to explain could have more targeted consequences. To test the generality of explanation’s 
effects, we examined how a prompt to explain and the provision of informative labels influenced 
discovery of more than one pattern underlying category membership. 

Experiments 3 and 4 moved away from discovery to focus on generalization. First, when 
multiple patterns have been discovered, does explaining make a further contribution in 
guiding generalization? We predicted the same interaction for pattern generalization as for discovery, 
with explanation increasing the extent to which learners recruited prior knowledge to guide judgments. 
In addition, in Experiment 4 we more directly tested our claim that explanation recruits prior knowledge 
because it informs the assessment of scope.  

In sum, the four experiments we present below considered the ways in which explanation and 
prior knowledge interact to guide learning and generalization. In particular, we considered how both 
general and selective effects of explanation are influenced by a learner’s prior knowledge to better 
understand the role of explanation in learning and the relationship between explanation and prior 
knowledge.  

3.4. Experiment 1 



 

  48 
	  

Experiment 1 investigated the effect of constructing explanations (task: explain vs. free study) 
and possessing prior knowledge (label type: blank vs. informative) on discovery of label-relevant and 
label-irrelevant patterns underlying the category membership of study observations. Participants learned 
about two categories of alien robots by studying the eight observations shown in Figure 1. After study, 
novel robots were presented for classification in order to ascertain whether category membership was 
extended on the basis of the label-relevant pattern, the label-irrelevant pattern, or similarity to a studied 
observation.  

The design independently manipulated task (explain vs. free study) and prior knowledge (blank 
vs. informative labels) in order to examine the independent and joint effects of explanation and prior 
knowledge on: (1) the discovery of label-relevant and label-irrelevant patterns; (2) the number of 
patterns discovered; (3) the relationship between discovering the label-relevant and label-irrelevant 
pattern; and (4) the use of particular patterns in categorizing novel items. With these varied measures we 
could evaluate the selectivity of explanation’s effects. 

3.4.1. Methods 
Participants.  

Four-hundred-and-seven UC Berkeley undergraduate students participated for course credit or 
monetary reimbursement.7 

Materials. 

Study observations. Participants learned about eight alien robots from two categories, shown in 
Figure 1a. In the blank labels conditions, the first category was labeled “Glorp robots” and the second 
“Drent robots,” while in the informative labels conditions the first category was labeled “Outdoor 
robots” and the second “Indoor robots.”  

The category membership of these eight robots followed two patterns, identified as the label-
relevant pattern and the label-irrelevant pattern. The label-relevant pattern was that all four Outdoor 
(Glorp) robots had pointy feet while all four Indoor (Drent) robots had flat feet. These features were 
chosen with the assumption that participants could utilize prior knowledge to relate pointy versus flat 
feet to properties of Outdoor versus Indoor robots.8 The label-irrelevant pattern was that all four Outdoor 
(Glorp) robots had a shorter left antenna and all four Indoor (Drent) robots had a shorter right antenna; 
we expected that participants’ prior knowledge would less readily relate relative antenna length to 
properties of Outdoor versus Indoor robots. Each robot also varied in body shape and in left and right 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Experiments using related images were previously conducted with this participant pool, so after 

the study we asked participants if they might have seen the robots before, and excluded an additional 
124 participants who responded affirmatively. 

8 In order to verify that participants associated the informative labels with these features, we 
presented a separate group of participants from the same pool with the individual features of robots from 
Experiment 2 (see Figure 1b), which contained the features used in all four experiments. Ratings of how 
important the features were to which category a robot belonged to verified our assumptions: Foot shapes 
were rated as most important for robots labeled Outdoor/Indoor and antenna shapes as most important 
for robots labeled Receiver/Transmitter (these labels are used in Exp. 3 & Exp. 4).  
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colors, but these features were not diagnostic of category membership as they occurred equally often in 
each category. 

Categorization probes. To assess which features participants used in generalizing category 
membership from the study observations to novel robots, participants classified fifteen unlabeled robots. 
Participants could categorize these robots in at least three ways. First, participants could discover the 
label-relevant pattern about feet (pointy vs. flat feet) and categorize new robots based on foot shape. 
Second, participants could discover the label-irrelevant pattern about antennae (shorter left vs. shorter 
right antenna) and categorize based on antenna height. Finally, instead of using a pattern, participants 
could categorize new items on the basis of their similarity to individual study items, where similarity 
was measured by tallying the number of shared features across items.9 We refer to these bases for 
generalizing category membership as “label-relevant pattern,” “label-irrelevant pattern,” and “item 
similarity,” respectively. 

Ten of these novel robots pitted one basis for categorization against the other two and were 
constructed by taking novel combinations of features from study observations. Specifically, four label-
relevant pattern probes yielded one classification according to the label-relevant pattern and another 
according to both the label-irrelevant pattern and item similarity, with three label-relevant pattern probes 
and three item similarity probes that likewise isolated a single basis for categorization. Four addition 
label-relevant transfer probes also pitted the label-relevant pattern against the other two bases for 
generalization, but used previously unseen foot shapes that conformed to the pointy/flat pattern. Finally, 
there was one item for which all three bases yielded the same classification. As described later, 
participants’ bases for generalization were inferred from patterns of classifications across these fifteen 
probes. 

Procedure. 

Learning phase. Participants in both the explain and free study conditions were instructed that 
they would be looking at two types of robots on the planet Zarn and that they would later be tested on 
their ability to remember and categorize robots.  

The eight study observations were shown onscreen for two minutes. The robots were presented 
in a scrambled order, with category membership and identifying number (1 through 8) clearly indicated 
for each robot. Participants in the free study conditions were told, “Robots 1, 2, 3 & 4 are Outdoor 
(Glorp) robots, and robots 5, 6, 7 & 8 are Indoor (Drent) robots.” Participants in the explain conditions 
were told “Explain why robots 1, 2, 3 & 4 might be Outdoor (Glorp) robots, and explain why robots 5, 
6, 7 & 8 might be Indoor (Drent) robots.” Participants typed their explanations into a box onscreen.  

Test phase.  

Pattern discovery. For both the label-relevant (foot) pattern and the label-irrelevant (antenna) 
pattern, participants were asked if they could tell whether a robot was Outdoor (Glorp) or Indoor (Drent) 
by looking at its feet (antennae), and if they could, to state the difference(s) between categories. 

Basis for categorization. The categorization probes were presented in random order, with 
participants categorizing each robot as Outdoor (Glorp) or Indoor (Drent).  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

9 We have verified in previous work (Williams & Lombrozo, 2010) that this measure tracks 
participants’ similarity judgments for stimulus materials like those employed in the current experiment. 
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Explanation self-report. To examine effects of spontaneous explanation, all participants were 
asked if they were trying to explain category membership while viewing the eight robots, and responded 
“Yes,” “Maybe,” or “No.”  

Additional measures. To examine whether being prompted to explain changed participants’ 
assumptions about the likely presence of a pattern, they were asked, “What do you think the chances are 
that there is one single feature that underlies whether a robot is Outdoor (Glorp) or Indoor (Drent) - a 
single feature that could be used to classify ALL robots?” Participants responded on a scale from 0 to 
100.  

Participants were also asked to report any differences they noticed across categories and used in 
classification, and to rank the relative importance of each feature (feet, antennae, body, and color) in 
categorization. These questions were included in case participants reported unanticipated differences 
between categories, but as this very rarely happened the responses were redundant with the pattern 
discovery questions, and are not discussed further.  

Participants encountered the test measures in the following order: categorization probes, 
probability of pattern, category differences, discovery of label-irrelevant antenna pattern, explanation 
self-report, discovery of label-relevant foot pattern.  

3.4.2. Results 
Discovery of patterns.  

On the pattern discovery questions, participants were credited with discovery of the label-
relevant (foot) pattern and label-irrelevant (antenna) pattern if they accurately cited the corresponding 
diagnostic features. The primary coder’s reliability was confirmed by agreement of 98% with a second 
coder’s classification of 25% of the responses. Figure 2a reports discovery of the label-relevant and 
label-irrelevant patterns as a function of task and label type, and illustrates that discovery rates were 
higher for participants who explained, with the pattern most likely to be discovered dependent on the 
presence of informative labels. 

The effects of task and label type on discovery of the label-relevant pattern were explored using 
a log-linear analysis on task (explain, free study), label type (blank labels, informative labels), and 
discovery of the label-relevant pattern (discovered, not discovered). This revealed an interaction 
between task and discovery, c2(1, N = 407) = 11.65, p < 0.01, with higher discovery rates for 
participants who explained, as well as an interaction between label type and discovery, c2(1, N = 407) = 
11.61, p < 0.01, with higher discovery rates for participants who received informative labels. However, 
these interactions were superseded by a three-way interaction between task, label type, and discovery, 
c2(1, N = 407) = 3.98, p < 0.05: Discovery was highest among participants who explained and received 
informative labels. In fact, discovery of the label-relevant pattern was not significantly improved by 
explaining when blank labels were provided, c2(1, N = 207) = 1.43, p = 0.15, nor by providing 
informative labels in free study conditions, c2(1, N = 200) = 0.55, p = 0.52.  

 A parallel analysis on discovery of the label-irrelevant pattern also revealed a three-way 
interaction with task and label type, c2(1, N = 407) = 5.48, p < 0.05, superseding interactions between 
task and discovery, c2(1, N = 407) = 17.39, p < 0.001, and label type and discovery, c2(1, N = 407) = 
11.47, p < 0.001. However, this interaction was driven by elevated discovery of the label-irrelevant 
pattern by participants who explained with blank labels. In fact, explaining with informative labels led to 
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lower discovery of the label-irrelevant (antenna) pattern than explaining with blank labels, c2(1, N = 
207) = 17.98, p < 0.01. 

These findings suggest that explaining boosts the discovery of patterns underlying category 
membership, with prior knowledge influencing which pattern is discovered. When informative labels 
were provided, explaining boosted discovery of the label-relevant pattern. When blank labels were 
provided, explaining boosted discovery of the label-irrelevant pattern. 

Number of patterns discovered.  

Figure 2b indicates the proportion of participants who discovered neither pattern, exactly one 
pattern, or both the label-relevant and label-irrelevant patterns, and illustrates that participants in the free 
study conditions overwhelmingly discovered zero patterns, while those in the explain condition most 
often discovered exactly one, irrespective of label type. 

A log-linear analysis on task (explain, free study), label type (blank, informative), and number of 
patterns discovered (zero, one, two) revealed interactions between number of patterns discovered and 
task, c2(2, N = 407) = 80.97, p < 0.001, as well as between number and label type, c2(2, N = 407) = 8.53, 
p < 0.05. We therefore performed three separate log-linear analyses on whether or not a participant had 
discovered zero, one, or two patterns. Participants prompted to explain were less likely than participants 
in the free study conditions to discover zero patterns, c2(1, N = 407) = 71.52, p < 0.001, but more likely 
to discover exactly one, c2(1, N = 407) = 74.86, p < 0.001, which was also more likely among 
participants receiving blank labels, c2(1, N = 407) = 7.64, p < 0.01. There was no effect of explanation 
on discovering two patterns, although there was a marginal effect of label type, c2(1, N = 407) = 3.50, p 
= 0.062, with informative labels increasing discovery of two patterns.   

These results confirm the importance of explaining in pattern discovery, but it is notable that 
explaining did not boost the discovery of multiple patterns, instead driving participants to discover a 
pattern. 

Conditional pattern discovery.  

We additionally examined the discovery rate for one pattern given discovery of the other, which 
we call “conditional discovery” (see Figure 2c). Log-linear analyses were performed with task and label 
type crossed against (1) discovery of the label-irrelevant pattern given discovery of the label-relevant 
pattern (i.e., discovered label-relevant pattern, discovered both patterns) and (2) discovery of the label-
relevant pattern given discovery of the label-irrelevant pattern (i.e., discovered label-irrelevant pattern, 
discovered both patterns).  

Among participants who discovered the label-relevant pattern, the probability of also discovering 
the label-irrelevant pattern was lower in the explain than free study conditions, as revealed by a task by 
discovery interaction, c2(1, N = 42) = 7.10, p < 0.01. And among those who discovered the label-
irrelevant pattern, those in the explain conditions were less likely to have also discovered the label-
relevant pattern, c2(1, N = 69) = 6.73, p < 0.01. In other words, relative to free study, participants in the 
explain conditions who discovered either pattern were less likely to discover a second pattern. In 
addition, those in the informative labels conditions who discovered the label-irrelevant pattern were 
more likely to have also discovered the label-relevant pattern, c2(1, N = 200) = 11.88, p < 0.01), which 
was driven primarily by the free study-informative labels condition. No other effects were significant. 
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These findings reinforce the idea that explaining has selective effects, and even suggest that 
explaining can hinder discovery under some conditions. 

Basis for categorization.  

Participants’ basis for generalizing category membership to new robots was inferred from 
classification of the categorization probes – specifically, whether there were more judgments consistent 
with use of the label-relevant pattern, the label-irrelevant pattern, or item similarity, with ties coded as 
‘other.’ Table 1 reports the proportion of participants classified as using each basis for categorization.  

Effects of explanation were first analyzed with a log-linear test with three factors: task (explain, 
free study), label type (informative, blank), and basis for categorization (label-relevant pattern, label-
irrelevant pattern, item similarity). This analysis revealed interactions between task and basis, c2(3, N = 
407) = 92.02, p < 0.0001, as well as between label type and basis, c2(3, N = 407) = 17.34, p < 0.001, 
with a marginal three-way interaction, c2(3, N = 407) = 6.89, p = 0.07. To interpret these effects we 
performed log-linear analyses on task, label type, and each individual basis for categorization (target 
basis vs. all others). Overall, the results paralleled those for discovery. Explaining interacted with the 
provision of informative labels to promote use of the label-relevant pattern, c2(1, N = 407) = 7.27, p < 
0.01, superseding the effects of explanation, c2(1, N = 407) = 4.98, p < 0.05, and prior knowledge, c2(1, 
N = 407) = 4.21, p < 0.05. Task and label type also interacted with use of the label-irrelevant pattern, 
c2(1, N = 407) = 7.18, p < 0.05, with significant effects of task, c2(1, N = 407) = 17.39, p < 0.001, and 
label type, c2(1, N = 407) = 11.47, p < 0.01. One additional finding of note was that participants in the 
free study conditions were significantly more likely to generalize category membership by item 
similarity, c2(1, N = 407) = 3.90, p < 0.05. No other effects were significant. 

These findings mirror those for pattern discovery very closely, and could thus simply reflect the 
consequences of discovery. Alternatively, they could reflect independent effects of explanation and prior 
knowledge on how patterns are generalized. Effects of generalization that were not attributable to the 
consequences of discovery could in principle be detected by restricting analyses to just those participants 
who discovered both patterns. However, discovery of both patterns was sufficiently low to preclude a 
statistically reliable analysis (log-linear analysis typically requires that there be no fewer than five 
observations per cell). We revisit this question in Experiments 3 and 4, where we examine effect of 
explanation on generalization more directly. 

Self-reported explanation. 

Participants were credited with explaining if they answered “yes” to the explanation self-report 
question, resulting in the following rates of self-reported explanation: 65% for free study/blank labels, 
88% for explain/blank labels, 58% for free study/informative labels, and 82% for explain/informative 
labels. A significantly higher proportion of participants reported self-explaining after receiving explain 
than free study prompts, c2(1, N = 407) = 26.79, p < 0.001, although self-reported explanation was still 
considerable in free study. Label type did not impact self-reported explanation, c2(1, N = 407) = 1.21, p 
= 0.162. 

To examine the relationship between spontaneous explanation, pattern discovery, and 
generalization, we replicated the previous analyses, examining only the free study conditions and 
replacing the variable of “task” with “self-reported explanation.” Table 2 reports the data relevant to this 
analysis. Overall, the pattern of results for self-reported explanation paralleled the previous findings and 
suggest that spontaneous explanation in the free study condition had similar effects to prompted 
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explanation. Specifically, all two-way interactions from the analyses above (sections 3.2.1 and 3.2.4) 
reached significance (ps < .01), but the three-way interactions did not.10 In particular, the key interaction 
between explanation, label type, and discovery of the label-relevant pattern was not significant (p = .15), 
and that for explanation, label type, and use of the label-relevant pattern as a basis for categorization was 
marginal (p = .06). This could be due to the smaller number of participants and reduced statistical power 
in these analyses.  

Probability of pattern.  

Judgments of the probability that there was a single pattern underlying the category membership 
of all robots was (as expected) higher for participants who discovered a pattern (75%) than those who 
did not (36%), t(405) = 12.60, p < 0.001, d = 1.29. For participants who did not discover a pattern, a task 
by label type ANOVA with probability judgments as a dependent variable did not reveal significant 
effects of label type (blank labels: M = 32%, SD = 28%; informative labels: M = 41%, SD = 30%; F(1, 
150) = 2.68, p  > 0.10), or of task (explain: M = 45%, SD = 31%; free study: M = 34%, SD = 28%; F(1, 
150) = 3.40, p = 0.07), suggesting that effects of task on discovery were driven by engaging in 
explanation, and were not merely the result of task demands, such as inferences about the category 
structure resulting from the instruction to explain. 

Summary.  

Experiment 1 found that generating explanations interacted with the provision of informative 
labels to promote discovery of the label-relevant pattern. When blank labels were provided, explaining 
again interacted with label type, but in promoting discovery of the label-irrelevant pattern. In other 
words, explaining increased the rate at which participants discovered a pattern underlying category 
membership, but which pattern was discovered depended on the kinds of labels presented and their 
relationship to prior knowledge. These findings were closely mirrored by those concerning participants’ 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 Self-reported explanation was related to both discovering the label-relevant pattern, χ2(1, N = 

407) = 8.64, p < 0.01, and using it as a basis for categorization; χ2(1, N = 407) = 8.05, p < 0.01. 
Informative labels similarly increased discovery, χ2(1, N = 407) = 14.05, p < 0.01, and use, χ2(1, N = 
407) = 7.10, p < 0.01, of the label-relevant pattern. However, the interaction between self-reported 
explanation, prior knowledge, and discovery of the label-relevant pattern did not reach significance as it 
did for the previous analysis of explanation, χ2(1, N = 407) = 2.12, p = 0.15, nor did the interaction for 
basis use, χ2(1, N = 407) = 3.67, p = 0.06.  

The analysis for the label-irrelevant pattern found that self-reported explaining was associated 
with higher discovery, χ2(1, N = 407) = 16.63, p < 0.001, and use in categorization, χ2(1, N = 407) = 
7.84, p < 0.01, and when informative labels were provided both discovery, χ2(1, N = 407) = 10.46, p < 
0.01, and use in categorization, χ2(1, N = 407) = 12.52, p < 0.01, were lower. However, the interactions 
of explanation and informative labels with discovery and use were not significant (discovery: χ2(1, N = 
407) = 3.75, p = 0.06; use in generalization: χ2(1, N = 407) = 0.024, p = 0.88).  

A third analysis involving the use of item-similarity in generalizing category membership 
revealed that reliance on item-similarity was lower when participants self-reported explaining, χ2(1, N = 
407) = 30.71, p < 0.01, replicating the previous findings 
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bases for generalizing category membership to novel items, with suggestive evidence that spontaneous 
explanation in the free study conditions produced similar effects.  

These findings not only suggest that explaining increases the extent to which participants recruit 
prior knowledge to guide discovery, but additionally bear on the selectivity of explanation’s effects. 
While explaining increased the rate at which participants discovered one pattern, it had no beneficial 
effect – and in fact may have hindered – the discovery of a second pattern. 

3.5. Experiment 2 

Experiment 2 extended the findings from Experiment 1 in two important ways. First, the 
experiment compared a prompt to explain to a more demanding control condition: Participants were 
prompted to type their thoughts onscreen as they studied category members in the learning phase. This 
tests an alternative interpretation of the findings from Experiment 1: that effects of a prompt to explain 
resulted from greater engagement, the need to articulate thoughts in language, or some other 
consequence of generating written text during learning.  

Second, to provide a more stringent test of whether explaining in fact fails to influence or even 
impairs additional discovery beyond a single pattern, we increased the number of additional patterns 
from one to three. In addition to a label-relevant pattern and a label-irrelevant pattern that accounted for 
all observations (100% patterns), the study materials included two patterns that accounted for six out of 
eight observations (75% patterns).  

3.5.1. Methods. 
Participants.  

Five-hundred-and-fifty-four members of the Amazon Mechanical Turk workplace participated 
online for monetary compensation. Participation was restricted to users from the United States. 

Materials & Procedure.  

Study observations. Study observations were modified from those in Experiment 1 (see Figure 1) 
so that body shape (round vs. square) and antenna length were each partially diagnostic of category 
membership. Each feature accounted for six of eight study observations (75%), generating a 75% body 
pattern and a 75% antenna pattern, respectively. Foot shape served as a label-relevant pattern that 
accounted for all observations (100% foot pattern), with arm configuration as a new label-irrelevant 
pattern for all eight robots (100% arm pattern). The arms were either matching (both pointing up or 
down at the same angle) or mismatching (one pointing up and one pointing down). 

Learning phase. As in Experiment 1, participants studied the image of all eight robots for exactly 
two minutes, with one group prompted to explain why robots 1-4 might be Outdoor (Glorp) robots and 
robots 5-8 might be Indoor (Drent) robots, as in Experiment 1. However, in the write thoughts control 
condition, participants received the following prompt: “Write out your thoughts as you study and learn 
to categorize robots 1, 2, 3, 4 as Outdoor (Glorp) robots and robots 5, 6, 7, 8 as Indoor (Drent) robots.” 
In both conditions participants then typed responses onscreen. 

Test phase. After study participants were asked whether they could tell which category a robot 
belonged to by looking at its antennae, arms, body, and/or feet, responding “Yes,” “Maybe,” or “No.” If 
they indicated “Yes” or “Maybe,” they were asked to state how the categories differed.  
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3.5.2. Results & Discussion. 
Discovery of patterns.  

Figure 2d indicates the proportion of participants who discovered each of the four patterns as 
determined by a response of “Yes” or “Maybe” as to whether the corresponding features differed across 
categories. A log-linear analysis on task (explain, write thoughts), label type (blank, informative) and 
discovery of the label-relevant pattern (discovered, not discovered) revealed a three-way interaction, 
c2(1, N = 554) = 5.31, p < 0.05, which superseded the effects of task, c2(1, N = 554) = 7.00, p < 0.01, 
and label type, c2(1, N = 554) = 8.64, p < 0.01. As in Experiment 1, discovery of the label-relevant 
pattern was highest when participants explained and were provided with informative labels.  

Similar log-linear analyses involving task and label type were carried out for the label-irrelevant 
pattern, the antenna pattern, and the body shape pattern. Blank labels led to greater discovery of the 
label-irrelevant pattern than informative labels, c2(1, N = 554) = 5.02, p < 0.05. In addition, discovery of 
the body shape pattern was higher in the write thoughts than explain conditions, c2(1, N = 554) = 5.97, p 
< 0.05. No other effects were significant.  

Despite a more demanding control condition, these results replicate the key finding from 
Experiment 1 that explanation and prior knowledge interact to guide discovery of a label-relevant 
pattern.  

Number of patterns discovered.  

Figure 2e indicates the proportion of participants who did not discover any patterns, who 
discovered exactly one pattern, or who discovered multiple patterns (two or more). A log-linear analysis 
on task (explain, write thoughts), label type (informative, blank), and number of patterns discovered 
(none, one, multiple) revealed effects of task, c2(1, N = 554) = 16.22, p < 0.01, and label type, c2(1, N = 
554) = 13.44, p < 0.01, on how many patterns were discovered. The effect of task and label type on each 
discovery outcome was therefore examined using three further log-linear analyses. Participants in the 
write thoughts conditions were more likely to fail to discover any patterns, c2(1, N = 554) = 3.88, p < 
0.05, while those in the explain conditions were more likely to discovery exactly one pattern, c2(1, N = 
554) = 9.30, p < 0.01. However, engaging in explanation and writing thoughts did not differ 
significantly in promoting discovery of multiple patterns, c2(1, N = 554) = 2.76, p = 0.10. There were no 
additional significant effects. 

Conditional pattern discovery.  

Figure 2f indicates the probability of having discovered another pattern given that the label-
relevant pattern or the label-irrelevant pattern was discovered. Given discovery of the label-relevant 
(foot) pattern, participants in the explain conditions were less likely to discover additional patterns than 
those in the control conditions, c2(1, N = 88) = 6.05, p < 0.05. Similarly, given discovery of the label-
irrelevant (arm) pattern, participants in the explain conditions were less likely than control participants 
to discover additional patterns, c2(1, N = 203) = 4.56, p < 0.05. There were no other significant effects 
(all ps > 0.10). 

These findings again mirror Experiment 1: A prompt to explain did not boost discovery of 
additional patterns, and in fact lowered the probability that participants would discover another pattern 
given that either the label-relevant or label-irrelevant pattern was discovered.  
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Written responses.  

Because all participants in Experiment 2 were prompted for written responses, we could compare 
these to see whether the explain and write thoughts conditions were effectively matched in terms of 
overall engagement and attention to category labels, which should roughly be tracked by response length 
and mention of category labels, respectively. Some participants left responses blank and are not included 
in these analyses; The proportion of participants who left items blank did not differ significantly across 
the explain (15.9%) and the write thoughts conditions (22.2%), c2(1, N = 554) = 3.55 , p = 0.06. 

A task by label type ANOVA on the number of words per response revealed that response length 
did not differ significantly between the explain conditions (M = 18.1 words, SD = 11.0) and the write 
thoughts conditions (M = 19.5 words, SD = 12.5), F(1, 443) = 1.51, p = 0.22. However, participants 
wrote more when provided with informative labels (M = 20.0 words, SD = 12.6) than with blank labels 
(M =  17.4 words, SD = 10.1), F(1, 443) = 5.27, p < 0.05. There were no other significant results. 

A log-linear analysis found that the proportion of participants who mentioned one or more 
category labels was not significantly influenced by explaining versus writing out thoughts (explain: 
64%; write thoughts: 58%; c2(1, N = 447) =1.14, p = 0. 29). However, for participants in both study 
conditions, informative labels were mentioned more frequently than blank labels (informative: 67%; 
blank 55%; c2(1, N = 447) = 6.78, p < 0.01). These findings make it unlikely that the effects of 
explanation documented above can be attributed to verbalization, greater engagement with the task, or 
greater attention to category labels. 

Summary.  

Experiment 2 replicated the key findings from Experiment 1 with a more demanding control 
condition (“write thoughts”) that was well matched in terms of engagement and attention to category 
labels, and with a more complex category structure involving additional patterns. The findings 
nonetheless support the claim that explanation increases the extent to which learners consult prior 
knowledge in learning, and that explanation has relatively selective effects rather than producing a 
global or all-purpose boost to learning. 

3.6. Experiment 3 

Experiments 1 and 2 provide evidence that explaining magnifies the role of prior knowledge in 
pattern discovery, with additional effects (in Experiment 1) on how patterns are generalized to novel 
category members. However, this raises the question of whether explanation’s role in generalization is 
simply a consequence of its role in discovery. Does explaining guide generalization directly, even when 
it confers no advantage for discovery? To address this question we modified the study materials to 
increase the rate of discovery and to directly evaluate effects of explanation and prior knowledge on 
generalization when multiple patterns are discovered.  

Experiment 3 also went beyond the preceding experiments in three notable ways. First, to more 
directly assess whether explanation changes the role of prior knowledge in assessing a candidate 
pattern’s scope, the experiment included additional measures of generalization that corresponded more 
closely to how broadly a pattern was extended. Participants still classified novel items that pitted 
patterns against each other, thus tracking the diagnosticity of different features. But Experiment 3 also 
asked participants how frequently each pattern-related feature occurred in members of each category – a 
measure of category validity, or the probability of a feature given category membership. This provides 
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an additional and potentially more direct measure of beliefs concerning a pattern’s scope than binary 
classifications. Second, Experiment 3 counterbalanced whether feet or antennae featured in the label-
relevant pattern (and therefore what the informative labels were), ensuring that our findings did not 
result from a unique property of the foot pattern or the Indoor/Outdoor labels. And finally, the study 
observations were modified to create uncertainty about whether the label-relevant pattern subsumed all 
of the observed cases, allowing us to assess whether explaining recruits prior knowledge in 
generalization even when prior knowledge conflicts with an alternative cue to scope: the number of 
explained examples to which a pattern is known to apply. 

3.6.1. Methods 
Participants.  

Two-hundred-fifty-eight UC Berkeley undergraduates participated in the lab for course credit 
and two-hundred-eighty-five members of the Amazon Mechanical Turk workplace from the United 
States participated online for monetary compensation, yielding a total of 543 participants.  

Materials.  

The adapted robots are shown in Figure 3, and were modified from Experiment 1 to facilitate 
discovery of the antenna and foot patterns: All members of a given category were given the same feet 
and antennae shapes, the size of these features was increased to make them more salient, and the 
features were changed to solid black. To manipulate uncertainty concerning the patterns’ scope, the 
features for one of the patterns (which in the informative labels condition would always be the label-
relevant pattern) were only shown for three of the four robots in each category, with the feature for the 
fourth item in each category hidden behind a box labeled “unknown.” As a result the label-irrelevant 
pattern subsumed eight out of eight observations (100%), while the label-relevant pattern only applied to 
six out of eight observations (75%) with certainty. We counterbalanced across two sets of materials: (1) 
the informative labels were “Indoor/Outdoor” and feet figured in the label-relevant pattern (Fig. 3a), or 
(2) the informative labels were “Receiver/Transmitter” and antennae figured in the label-relevant pattern 
(Fig. 3b).  

 “Glorp/Drent” labels were used in all blank labels conditions. Although the labels were not 
informative with respect to either pattern, we counterbalanced materials to match the informative labels 
conditions. This means that in the blank labels condition the “label-relevant pattern” refers to the pattern 
with potentially narrower scope (two relevant features “unknown”) and “label-irrelevant” to the pattern 
that applied to all study examples.  

Procedure.  

The learning phase was identical to Experiments 1 and 2, except that participants were informed 
before study that information that was not known about the robots would be indicated with an 
“unknown” box, and the robots were displayed by category to facilitate pattern discovery (exactly as in 
Fig. 3). After the learning phase participants were informed that the robots they had seen were just eight 
of the thousands on planet ZARN and made the following judgments. The order of these blocks was 
randomly chosen and did not have any effect in later analyses.  

Pattern discovery. Participants responded “Yes,” “Maybe,” or “No” as to whether there were 
differences in the feet, antennae, and colors of robots in each category. They also reported these 
differences and indicated how many of the eight study robots exhibited these differences.  
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Basis for categorization. The original image with the study observations was reproduced on 
screen during classification to eliminate memory demands. Participants classified two novel robots for 
which the label-irrelevant and label-relevant patterns generated opposite classifications. For example, 
one item involved pointy feet (associated with Outdoor/Receiver/Glorp) paired with a shorter left 
antenna (associated with Indoor/Transmitter/Drent). The robot’s face and body were concealed by an 
“unknown” box such that only the antennae and feet were visible. Confidence ratings on a scale from 1 
(not at all confident) to 7 (extremely confident) were also collected. 

Beliefs about pattern scope. The original image with the study observations was reproduced on 
screen and a robot that was identified as novel was presented behind an “unknown” box such that a 
single feature was visible. For each of the features (a pair of antennae with a shorter left side, a pair of 
antennae with a shorter right side, triangle feet, or square feet) participants were shown a corresponding 
robot and asked: (1) “Out of every 100 Outdoor (Receiver/Glorp) robots on ZARN, how many do you 
think have antennae (feet) like the robot above?” (2) “Out of every 100 Indoor (Transmitter/Drent) 
robots on ZARN, how many do you think have antennae (feet) like the robot above?” Responses were 
made on a scale from 0 to 100. An identical block of transfer questions included four features that were 
novel antennae and feet following the same abstract patterns: shorter right/left antenna and pointy/flat 
feet. 

3.6.2. Results & Discussion 
Pattern discovery.  

The majority of participants discovered both patterns: Only 11% of participants reported that 
there were no feature differences across categories. Task and label type had no significant effects on 
whether participants reported that they did not detect any differences (all ps > 0.10, free study/blank 
labels, 12%; explain/blank labels, 11%; free-study/informative labels, 13%; explain/informative labels, 
8%). These participants are included in subsequent analyses, as excluding them did not change the 
results.  

A majority of participants reported differences in color (80%), with no effect of condition. 
Participants noticed that the label-relevant pattern applied to six observations and the label-irrelevant 
pattern to eight (these were the modal responses), with no significant effects of condition (all ps > 0.10).  

Basis for categorization.  

High rates of discovery made it possible to examine the effects of explanation on the selection of 
patterns as a basis for categorization. Figure 4a indicates the proportion of novel robots (out of two) 
classified by using the label-relevant pattern as opposed to the competing label-irrelevant pattern. An 
ANOVA with this proportion as a dependent measure and task (explain, free study) and label type 
(informative, blank) as between subjects factors revealed a significant interaction between task and label 
type, F(1, 539) = 3.92, p < 0.05, which superseded main effects of task, F(1, 539) = 6.05, p < 0.05, and 
label type, F(1, 539) = 7.51, p < 0.01. Participants who explained with informative labels privileged the 
label-relevant pattern to a greater degree than those in any other condition (the explain/blank labels 
condition, t(262) = 3.30, p < 0.01, d = 0.41, the free study/informative labels condition, t(260) = 2.98, p 
< 0.01, d = 0.37, and the free study/blank labels condition, t(267) = 3.77, p < 0.001, d = 0.46). 
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While there were additional effects of population and materials, neither factor interacted with the 
variables of interest, nor did including them in analyses change the significance of reported results.11 
This indicates that explanation’s effects depended on whether the labels favored one pattern over the 
other, not the particular labels and materials used in the previous studies.  

Inferred and relative pattern scope.  

To represent participants’ inferences about how broadly a pattern in study observations would 
extend to the entire category, we computed an aggregate measure of inferred pattern scope from 
participants’ judgments about the prevalence of the foot and antenna features in each category. Each 
response about how many unobserved category members (out of 100) would have a particular feature 
serves as an intuitive estimate of a feature’s category validity – the probability that a member of the 
category has the feature. To create an aggregate across these judgments, we added the number of 
estimated pattern-consistent robots and subtracted the number of estimated pattern-inconsistent robots. 
So, for example, suppose a participant reported that 90 out of 100 Outdoor robots have triangular feet 
and 90 out of 100 Indoor robots have square feet, consistent with the study pattern, but that 5 out of 100 
robots of each type have the opposite type of feet, violating the study pattern. The average pattern-
inconsistent judgment (5) would be subtracted from the average pattern-consistent judgment (90) to 
create a composite score of 85 for this participant.12 

Inferred pattern scope is presented in Table 3 for the label-relevant and label-irrelevant patterns. 
Additionally, Table 3 reports a conversion of these judgments into relative pattern scope, which is 
calculated as the inferred pattern scope for the label-relevant pattern minus inferred pattern scope for the 
label-irrelevant pattern.        

Mirroring our analysis of basis for categorization, a task (explain, free study) by label type 
(blank, informative) ANOVA was performed on relative pattern scope. Overall, participants believed 
that the label-irrelevant pattern (which applied to all eight study observations) had broader scope than 
the label-relevant pattern (for which the status of two observations was uncertain), as relative pattern 
scope was significantly less than zero, F(1, 539) = 84.79, p < 0.01. However, there was one additional 
significant effect: an interaction between task and label type,  

Participants who were prompted to explain and received informative labels penalized the label-
relevant pattern (relative to the label-irrelevant pattern) less than those in other conditions, t(262) = 2.70, 
p < 0.01, d = 0.33, presumably because prior knowledge played a larger role in informing their 
judgments. Interestingly, in the blank labels conditions there was a marginal trend for explaining to have 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 The effect of population was as follows: Lab participants tended to generalize the label-

relevant pattern more than online participants, t(541) = 2.70, p < 0.01,  d = 0.23. There was also an 
effect of materials: The label-relevant pattern was more likely to be generalized when the pattern and 
labels concerned feet than when they concerned antennae, t(541) = -2.77, p < 0.01, d = -0.24. However, 
including population and materials as factors in the reported analysis did not alter the statistical 
conclusions or reveal any interactions with task or label type. 

12 While we could have converted participants’ judgments into an estimate for the probability of 
a pattern-relevant feature given category membership, doing so required division and multiplication, so 
estimates of zero posed a problem. However, the aggregate measure we employed produced the same 
pattern of results as calculating category validities by dropping zero scores or replacing them with 0.5. 
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the opposite effect, t(259) = -1.67, p = 0.097, d = -0.21, more strongly favoring the label-irrelevant 
pattern, which accounted for more observed cases with certainty. Such an effect would be consistent 
with the idea that explaining increases reliance on all cues to scope. 

Finally, recall that the experiment additionally asked participants how many robots would have 
novel “transfer” features. However, the majority of participants, 55%, reported that none of the transfer 
features would be present in any unobserved category member, and so we do not analyze this measure 
further. 

Summary.  

Experiment 3 examined which of two discovered patterns was utilized in classifying novel 
category members and believed to generalize to unobserved category members. Classification judgments 
revealed an interaction between task (explain vs. free study) and label condition (blank vs. informative), 
with participants who explained with informative labels using the label-relevant pattern more often than 
participants in any other condition, and doing so to a degree that exceeded the summed, independent 
effects of explanation and label type. This impact of explaining with informative labels was mirrored by 
participants’ beliefs about whether more category members – observed and unobserved – conformed to 
the label-relevant or label-irrelevant pattern.  These findings mirror those from Experiments 1 and 2, 
with generalization driven by a parallel interaction between explanation and prior knowledge. Unlike 
Experiment 1, however, we can be confident that effects on generalization were not merely a 
consequence of discovery, as most participants discovered both patterns.  

3.7. Experiment 4 

Experiments 1, 2, and 3 found that explaining can influence discovery and generalization by 
recruiting the knowledge cued by informative category labels. We proposed a subsumptive constraints 
account of explanation as the basis for predicting and interpreting these effects. Specifically, we 
suggested that explanations are better to the extent that they invoke patterns with broad scope, and that 
prior knowledge is recruited to infer the scope of candidate patterns. 

Experiment 4 provided a more direct test of the idea that prior knowledge is recruited in 
explanation as a cue to the scope of candidate patterns. We accomplished this by creating a situation in 
which participants possessed semantically-relevant prior knowledge that was not in fact a reliable cue to 
scope. If prior knowledge is not a reliable cue to scope, then participants prompted to explain should be 
no more likely than participants in control conditions to rely on prior knowledge. To create this 
situation, participants in a random labels condition were presented with study examples with 
informative labels (e.g., Indoor, Outdoor) that could be related to particular features of the examples 
(e.g., foot shape), but – crucially – they were told that the labels were assigned based on the outcome of 
a random coin flip. As a result, the features of observed category members should not be correlated with 
category membership, making prior knowledge an unreliable cue to whether patterns that effectively 
differentiate study items generalize to the robot population. In this situation, explaining should not lead 
to greater reliance on prior knowledge as a cue to scope. 

In addition to the random labels condition, we also included a representative labels condition, 
which matched previous experiments: Participants were not told how labels were assigned to examples, 
but could reasonably assume that study observations were representative of their respective categories. 
Including both the random and representative labels conditions also introduced a second cue to the scope 
of diagnostic patterns, roughly “method of label assignment,” since diagnostic patterns across study 
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observations (whether or not they relate to prior knowledge) should only generalize to the population in 
the representative labels condition.  If explanation heightens people’s sensitivity to all cues to scope – 
and not just to prior knowledge – then participants in the explain condition should be more responsive to 
this manipulation than those in the control condition. 

Experiment 4 also aimed to replicate the key findings from Experiment 3 while addressing two 
potential concerns. First, the task differences found in Experiment 3 are subject to the same concern as 
Experiment 1, namely that the control task was less demanding than explanation in some relevant 
respect. Experiment 4 introduced the stronger control condition used in Experiment 2, requiring 
participants to write out their thoughts during study and therefore matching the explain condition along 
more dimensions. Second, the manipulation of label type in Experiment 3 was confounded with the 
presence of “unknown” features, which were always involved in the label-relevant pattern. The 
interaction between explanation and label type could therefore have been produced by the presence of 
the “unknown” features, with a prompt to explain encouraging participants to focus on and draw 
inferences concerning these features. Experiment 4 avoided this concern by testing whether the 
interaction between explanation and label type occurred even when all features were visible.  

Finally, Experiment 4 provided two additional extensions to previous experiments. The 
comparison of informative and blank labels in Experiments 1-3 provided one way of examining the 
effects of prior knowledge, namely by increasing the knowledge available to some participants. 
Experiment 4 instead manipulated the content of available prior knowledge by comparing two sets of 
informative labels: Outdoor/Indoor versus Receiver/Transmitter.13  We predicted that explanation and 
label pair would interact to determine the extent to which category membership was generalized on the 
basis of the foot versus antenna pattern. The second extension in Experiment 4 was to evaluate whether 
the previous findings would generalize to learning contexts with extremely sparse observations. Instead 
of four examples from each category, Experiment 4 presented participants with only one. Forming 
generalizations from such limited information is a valuable inductive capacity, and one for which 
explanation and prior knowledge could be especially critical (Ahn, Brewer, Mooney, 1991).  

3.7.1. Methods 
Participants.  

Six-hundred-and-eighty-two members of the Amazon Mechanical Turk workplace from the 
United States participated online for monetary compensation. 

Materials & procedure.  

Participants studied just two robots, one from each category (robots 1 and 8 in Fig. 3), and no 
features were hidden with “unknown” boxes. The learning phase was adapted from Experiment 3 with 
the following changes. First, we manipulated learning task through prompts to explain versus write 
thoughts, as in Experiment 2. Second, we used only the two label pairs from the informative labels 
conditions of Experiment 3 (Outdoor/Indoor or Receiver/Transmitter). And finally, we added an 
additional factor, label assignment, by changing the cover story about how labels were assigned to 
produce representative labels or random labels.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

13 This comparison across informative label pairs was technically possible in Experiment 3, 
which likewise employed both sets of labels, but would be problematic to interpret given that a pattern’s 
label-relevance was confounded with its inclusion of an “unknown” feature. 
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For all participants, the cover story mentioned that the robots were created by the aliens living on 
the planet, and included information about their function that was appropriate to the label pair, either 
“Outdoor robots work on outdoor terrain and Indoor robots work inside houses,” or “Receiver robots 
receive messages and Transmitter robots send messages.”  

In the representative labels conditions, participants received no additional information. In the 
random labels conditions, participants were additionally told: “The aliens decide which robots are 
Outdoor (Receiver) robots and which robots are Indoor (Transmitter) robots when they are 
manufactured. When a robot comes off the assembly line at the robot factory, a coin is flipped. If the 
coin lands heads, the robot is declared an Outdoor (Receiver) robot. If the coin lands tails, the robot is 
declared an Indoor (Transmitter) robot.”  

As in Experiment 3, participants classified robots and answered questions about the prevalence 
of features, as detailed below.  These two tasks occurred in randomized order after the learning phase. 

Basis for categorization. Participants classified six different robots, making their ratings on a six-
point scale from “Definitely an Indoor (Transmitter) robot” to “Definitely an Outdoor (Receiver) robot.” 
Two robots looked exactly like the original study items, two robots involved the same features but 
introduced a conflict between the two patterns (i.e., the feet from one category but the antennae from the 
other), and the final two presented the same conflict with novel “transfer” features (i.e., novel feet that 
were pointy versus flat, and novel antennae that were longer on the right or left). 

Inferred pattern scope. Participants answered 16 questions (8 judgments for each category), 
which all asked how likely it was that a randomly selected Outdoor/Indoor robot (or 
Receiver/Transmitter) would have a particular feature, a picture of which was shown. The eight features 
were: the two foot shapes observed at study, the two observed antenna configurations observed at study, 
two previously unseen transfer foot shapes following the foot pattern, and two previously unseen 
transfer antenna configurations following the antenna pattern. Responses to these questions were used to 
calculate inferred pattern scope, as in Experiment 3. 

3.7.2. Results 
We first examine the effects of explanation and label assignment on categorization and inferred 

scope of the label-relevant and label-irrelevant patterns, collapsing across the two label sets. We then 
consider individual effects of the Outdoor/Indoor versus Receiver/Transmitter label pairs and 
characteristics of participants’ written responses. 

Basis for categorization.  

Figure 4b reports the average ratings for the categorization task, with responses coded such that 
higher numbers correspond to judgments consistent with the label-relevant pattern. This measure was 
analyzed in an ANOVA with task (write thoughts, explain) and label assignment (random, 
representative) as independent variables. The critical finding was a task by label assignment interaction, 
F(1, 678) = 5.40, p < 0.05, which superseded a main effect of label assignment, F(1, 678) = 27.51, p < 
0.001. Relative to the write thoughts condition, explaining promoted categorization consistent with the 
label-relevant pattern in the representative labels condition, t(341) = 2.35, p < 0.05, d = 0.25, but had no 
effect in the random labels condition, t(337) = 0.97, p = 0.33, d = 0.11. Moreover, the effect of label 
assignment was greater when participants engaged in explanation, t(332) = 5.21, p < 0.001, d = 0.58, 
than when they wrote their thoughts, t(357) = 2.28, p = 0 < 0.05, d = 0.24. These results were not 
changed by including label pair (Outdoor/Indoor, Receiver/Transmitter) as a between-subjects factor and 
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categorization item (original observations, conflict items pitting patterns against each other, conflict 
items with novel features) as a within-subjects factor in the analysis..  

These findings are consistent with the prediction that explanation does not recruit prior 
knowledge as a basis for judgment when it is an unreliable cue to scope (i.e., in the random labels 
condition), and also the prediction that explanation heightens participants’ sensitivity to additional cues 
to scope – in this case, the method of label assignment. 

Inferred pattern scope.  

Table 4 reports participants’ beliefs about the scope of the label-relevant and label-irrelevant 
patterns. These were calculated using the same procedure as Experiment 3 in order to reflect 
participants’ implicit beliefs about how likely the patterns in study observations would be to apply to the 
entire category.  

We analyzed inferred pattern scope as the dependent measure in a mixed ANOVA, treating 
pattern type (label-relevant, label-irrelevant) as a within-subjects factor, and task (write thoughts, 
explain) and label assignment (random, representative) as between-subjects factors. There was a main 
effect of label assignment, F(1, 678) = 22.93, p < 0.001, with higher ratings of pattern scope in the 
representative than random labels conditions, and a main effect of pattern type, F(1, 678) = 92.26, p < 
0.001, with higher ratings for the label-relevant pattern. However, these effects were qualified by three 
two-way interactions. First, as predicted, there was an interaction between task and label assignment, 
F(1, 678) = 9.49, p < 0.01, with participants prompted to explain more sensitive to the manipulation of 
label assignment than those in the control condition: In the explain condition, representative labels led to 
judgments of greater pattern scope than random labels, t(322) = 5.83, p  < 0.001, d = 0.65, with no effect 
of labels in the write thoughts condition, t(356) = 1.04, p  = 0.30, d = 0.11 (see “pooled pattern scope” in 
Table 4). Second, there was an interaction between task and pattern type, F(1, 678) = 15.02, p < 0.001, 
with participants who explained more strongly differentiating the scope of the label-relevant and label-
irrelevant patterns. Finally, label assignment also interacted with pattern type, F(1, 678) = 7.10, p < 
0.01, with the two patterns more strongly differentiated in the representative labels conditions than in the 
random labels conditions. Including kind of feature (original, transfer) and label pair in analyses did not 
change these results.  

These findings again support the prediction that explanation increases participants’ sensitivity to 
a novel cue to scope: method of label assignment. The interaction between task and pattern type is also 
consistent with our previous results in that participants who explained were more sensitive to prior 
knowledge than those who wrote thoughts. However, we did not find that explanation’s effects on prior 
knowledge were eliminated with random labels (which would have been reflected in a three-way 
interaction between task, pattern type, and label assignment) to mirror the predictions and findings for 
categorization Instead, participants inferred a broader scope for the label-relevant pattern than the label-
irrelevant pattern for both explain conditions. 

Effects of label pair.  

The representative labels conditions in Experiment 4 varied from the preceding experiments in 
using two different label pairs in otherwise identical conditions. These conditions allow us to assess 
whether explanation and prior knowledge interact when the content rather than amount of prior 
knowledge is manipulated.  
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Average categorization ratings were therefore analyzed with a task (write thoughts, explain) by 
label pair (Indoor/Outdoor, Receiver/Transmitter) ANOVA, but restricted to the representative labels 
conditions and with ratings coded such that higher numbers indicated consistency with the foot pattern. 
This analysis revealed main effects of task, F(1, 678) = 5.47, p < 0.05, and label pair, F(1, 678) = 
100.16, p < 0.001, and a task by label pair interaction, F(1, 678) = 4.09, p < 0.05. Average 
categorization ratings were higher (more consistent with the foot pattern) for the two Outdoor/Indoor 
labels conditions (write thoughts: M = 4.6, SD = .5, explain: M = 4.6, SD = .6), and lower for the 
Receiver/Transmitter labels (write thoughts: M = 4.2, SD = .6, explain: M = 3.9, SD = .5). Although 
labels affected categorization judgments for participants in both groups (write thoughts: t(356) = 5.95, p 
< 0.001, d = 0.63, explain: t(322) = 8.07, p < 0.001, d = 0.90), the effect was still more pronounced for 
those prompted to explain. 

Analyses of inferred pattern scope mirrored these findings. Table 5 reports inferred pattern scope 
for the foot and antenna patterns in the representative labels conditions, as well as relative pattern scope, 
the difference between them, with positive numbers corresponding to higher relative scope for the foot 
pattern. A task x label pair ANOVA on relative pattern scope found a main effect of label pair, F(1, 678) 
= 53.79, p < 0.001, and a task by label pair interaction, F(1, 678) = 16.00, p < 0.001. Participants in both 
study conditions inferred a broader scope for feet than for antennae with the Indoor/Outdoor labels, and 
the reverse pattern held true with Receiver/Transmitted labels, but the magnitude of the difference 
across label pairs was greater for participants prompted to explain. Nonetheless, the effect of label pair 
was still independently significant in the write thoughts condition, t(356) = 2.45, p < 0.05, d = 0.26. 

Written responses.  

Analyses of written responses were restricted to participants who did not leave responses blank; 
the proportion of participants who did so did not differ significantly across conditions (all ps > 0.10) and 
was less than 1%. An ANOVA on response length with task and label assignment as between-subjects 
factors revealed that typed responses were longer when participants were asked to write thoughts than to 
explain (explain: M =  28.2, SD = 15.5; write thoughts: M = 33.4, SD = 18.5; F(1, 678) = 15.6, p < 
0.001), substantiating the trend observed in Experiment 2. Responses were also longer in the 
representative labels conditions (M = 32.21, SD = 18.1) than the random labels conditions (M = 29.7, SD 
= 16.5), F(1, 678) = 3.84, p < 0.05.  

The proportion of participants who mentioned label was influenced by a task by label assignment 
interaction, c2(1, N = 682) = 4.82, p < 0.05. When the labels were randomly assigned, participants in the 
explain condition mentioned them less frequently than participants who wrote out thoughts (explain: 
34%; write thoughts: 47%, c2(1, N = 339) = 5.80, p < 0.05), while no such difference existed for 
representative labels (explain: 41%; write thoughts: 37%; c2(1, N = 343) = 0.47, p = 0.51).  

These findings suggest that the effects of explanation on generalization reported above are 
unlikely to derive from differences in general engagement or attention to labels across conditions.  

Summary.  

Experiment 4 went considerably beyond the previous experiments in manipulating a novel cue to 
the scope of patterns across study observations: whether observed category members had features that 
could be assumed to correlate with category membership or were assigned labels at random. When 
labels were assigned at random, such that prior knowledge was no longer a reliable cue to the scope of 
diagnostic patterns, prior knowledge differences between the explain and write thoughts conditions were 
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eliminated when it came to categorization. The manipulation of label assignment also interacted with 
explanation analogously to the previous manipulations of prior knowledge: Participants prompted to 
explain were more sensitive to this cue to pattern scope, with greater differentiation of the representative 
and random conditions for both the classification of novel robots and the extension of observed features 
to unobserved category members. The fact that explanation had a comparable impact on a quite distinct 
cue to scope bolsters our interpretation that effects of informative labels in the preceding experiments 
are best understood as a consequence of the fact that explaining directs learners to assess patterns’ 
scope, where the number of current observations consistent with a pattern, prior knowledge, and how 
categories are formed (i.e., method of label assignment) are all cues to scope. 

Finally, Experiment 4 also addresses potential concerns about the preceding results. First, key 
findings from Experiment 3 replicated without “unknown” features, with a stronger control condition, 
and with sparser data, showing that explaining can promote the recruitment of prior knowledge to guide 
generalization with just one or two category observations. Second, Experiment 4 found that label type 
had a significant effect on participants in control conditions. This finding helps address a concern with 
the previous experiments – that superadditive effects of explanation and labels are restricted to 
conditions under which participants do not spontaneously consult labels in the absence of explanation. 
This alternative explanation is less plausible, since explanation and label type had superadditive effects 
even when label type had significant effects independently.   

3.8. General Discussion 

Four experiments examined how generating explanations and possessing prior knowledge (cued 
by informative category labels) influenced what participants learned and inferred about novel categories 
from examples. Experiments 1 and 2 found that explaining increased the extent to which participants 
relied on prior knowledge in learning, leading to elevated discovery of a pattern related to the 
informative labels when they were provided. However, the effects of explaining were selective: 
Explaining increased the rate at which participants discovered one pattern without increasing the 
discovery of additional patterns. In fact, when just those participants who had discovered at least one 
pattern were considered, discovery of additional patterns was lower for participants prompted to explain 
than for those in control conditions. These results were replicated in Experiment 2 despite the inclusion 
of four patterns and a more demanding control condition that required participants to write their 
thoughts during study. 

Experiments 3 and 4 examined whether explaining could directly impact which patterns were 
generalized beyond study observation. Although seeking explanations had no impact on pattern 
discovery (which was near ceiling), participants prompted to explain with informative labels were more 
likely to categorize novel items using the label-relevant pattern, and more likely to believe that the label-
relevant pattern applied to unobserved category members. Experiment 4 additionally found that 
explaining increased sensitivity to an additional cue to the scope of patterns across observed category 
members: whether category members were drawn from randomly assembled populations. 

Jointly, the results from Experiments 1-4 provide strong support for the idea that explaining can 
increase the extent to which learners consult prior knowledge to guide discovery and generalization. The 
findings also shed light on the mechanisms by which explaining generates these effects. First, several 
results challenge the idea that explaining affects learning through a general increase in attention or 
engagement, or even through a global increase in the extent to which people seek patterns. Instead, 
effects of explanation were quite selective (Experiments 1-2), and extended to cases in which multiple 
patterns were available to learners and needed to be preferentially applied to new cases (Experiment 3-
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4). Second, the results support our proposal that explaining increases learners’ consultation of prior 
knowledge as a cue to patterns’ scope. Explaining magnified the role of informative labels on estimates 
of a label-relevant pattern’s scope in Experiments 3 and 4, with a parallel impact on a completely 
different cue to scope (random versus representative category labels) in Experiment 4. 

We interpret these findings in terms of the subsumptive constraints account. To briefly review, 
the account maintains that people prefer explanations that appeal to patterns with broad scope, with the 
result that explaining constrains learners to identify patterns and make use of cues to patterns’ scope. 
Our experiments manipulated two distinct cues to scope, prior knowledge (through informative labels) 
and method of label assignment (random versus representative), finding the predicted effects of 
explanation in each case. Combined with previous work (Williams & Lombrozo, 2010) demonstrating 
comparable effects of explanation on a third cue to scope – the number of explained observations to 
which a pattern applies – there is good reason to think that explanation’s effects are truly tracking cues 
to scope, and not alternative features of each manipulation. 

 While an important relationship between explanation and prior knowledge is often 
endorsed (for discussion see Lombrozo, 2006), little empirical work has tried to characterize which 
knowledge is consulted and why it is brought to bear through explanation. One reason may be the 
challenge posed in relating explanation to the range of beliefs that count as “prior knowledge.” The 
current work suggests that explaining will invoke knowledge relevant to evaluating whether an observed 
pattern extends to novel cases and contexts. But explaining should play a smaller role in deploying other 
kinds of knowledge, such as idiosyncratic facts about examples or information that serves a purely 
mnemonic purpose. The present account also predicts that the influence of prior knowledge must trade-
off against other cues to scope, which suggests that when alternative cues to scope are very strong, 
explaining could actually decrease the role of prior knowledge in learning. This paradoxical prediction 
can make sense of an otherwise puzzling feature of explanation: that explaining an anomalous 
observation can sometimes lead to “explaining away” and the preservation of current beliefs  (Chinn & 
Brewer, 1993; see also Bott & Murphy, 2007; Hayes, Foster, & Gadd, 2003), but at other times presage 
deep conceptual change (e.g., Amsterlaw & Wellman, 2006). 

3.8.1. Alternative explanations 
Our experiments were designed to assess and rule out a few alternative explanations for the 

results. First, effects of explanation could potentially be attributed to task demands if explanation 
prompts somehow communicated to participants that the experimenter intended for them to find a 
pattern or take category labels seriously. Counter to this view, however, spontaneous explanation in the 
control condition from Experiment 1 had comparable effects to prompted explanation, and explain and 
free study participants who did not discover a pattern were equally likely to believe one existed.  

More generally, while each individual experiment is prone to alternative interpretations, these are 
rendered less plausible by the systematic effects of explanation and prior knowledge across four 
experiments that differed in various ways. For example, in Experiments 1 and 3, participants in the free 
study condition could have been less engaged and paid too little attention to the labels to benefit from 
prior knowledge, with explaining simply increasing attention or engagement past some threshold where 
prior knowledge could have an effect. But the key results from these experiments were replicated when 
using the more engaging control condition of typing thoughts (Exp. 2 & 4), where we found that 
participants in the explain and control conditions were equally likely to mention informative category 
labels, and when simplified stimuli in Experiments 3 and 4 reduced the attentional resources required to 
notice patterns and labels.  
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We do acknowledge that the experiments can only provide indirect evidence that explaining 
recruited prior knowledge in the service of assessing patterns’ scope. However, it is notable that 
explaining had comparable effects on multiple cues to scope: the availability of prior knowledge 
(Experiments 1, 2, and 3), the content of prior knowledge (Experiment 4), whether category labels were 
randomly assigned (Experiment 4), and the number of study observations conforming to a pattern 
(Williams & Lombrozo, 2010). This convergence supports our appeal to scope. In other words, we take 
the broad scope of our scope explanation as evidence in its favor.  

3.8.2. Implications for Category Learning 
 The current findings shed light on how explaining could play a distinctive role in 

category learning, much as classification and inference learning each do (Chin-Parker et al., 2006; 
Markman & Ross, 2003). In particular, our account predicts that explaining should encourage learners to 
focus on patterns underlying category membership that are expected to have broad scope. When scope is 
assessed only in terms of the examples encountered in training, then explaining should result in the 
reduction of classification error on examples, a core mechanism underlying category learning 
(Kruschke, 2008). In fact, the findings from Williams & Lombrozo (2010) are consistent with the idea 
that explanation can have this effect, and prior knowledge likely does influence learning by reducing 
training error (Rehder & Murphy, 2003). However, the number and proportion of study items 
accommodated by a given pattern is only one cue to scope. The consequences of explaining category 
membership could therefore diverge from error-driven learning when learners have access to additional 
cues to scope, such as prior knowledge. Along these lines, we have found that prompting 5-year-olds to 
explain can actually make them less likely than children in a control condition to favor a pattern that 
accounts for all observations, but is inconsistent with prior knowledge (Walker, Williams, Lombrozo, & 
Gopnik, 2012, under review). The findings from Experiment 3 have a similar flavor: Explaining led 
adults to less strongly favor a pattern that accounted for all observations with certainty over an 
alternative that accounted for only 75%, but was more congruent with informative category labels.  

It is also possible that spontaneous explanation during learning can help explain characteristics 
of learning in prior research. In particular, explaining could be a cause or consequence of the learning 
mode employed, shifting learners towards a rule-based system (Ashby & Maddox, 2004; Nosofsky & 
Palmeri, 1994), or to prototypical rather than exemplar-based representations (Griffiths et al., 2007; 
Smith & Minda, 1998; Vanpaemel & Storms, 2008). More broadly, explaining could constrain learning 
to be more explicit (Maddox & Ing, 2005; Matthews et al., 1989), intentional (Love, 2002) and reliant 
on language and abstract construals (Lupyan & Rakison, 2007; Trope & Liberman, 2010). 
Undocumented effects of spontaneous explanation are especially plausible in cases where learning is 
sensitive to prior knowledge and cannot be fully explained through the reduction of classification error 
(for examples, see Bott, Hoffman & Murphy, 2007; Kim & Rehder, 2011). Our demonstration of the 
powerful role of explanation in category learning indicates the value of not only experimentally 
manipulating explanation, but also tracking spontaneous explanation through verbal protocols or post-
test questions (as in the explanation self-report measure from Experiment 1). 

Spontaneous explanation might also play a role in cases where categorical judgments diverge 
from statistical learning. For example, Murphy and Spalding (1999) found that participants who learned 
knowledge-consistent (“integrated”) categories were less sensitive to the frequencies of category 
features than those who learned arbitrary (“nonintegrated”) categories when it came to judgments of 
typicality (see also Murphy & Allopenna, 1994; Wisniewski, 1995), consistent with the effect in 
Experiment 3, where participants who explained with informative labels were least sensitive to the 
difference in frequency between the features that appeared in the 75% and 100% patterns when it came 
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to inferring pattern scope. However, Spalding and Murphy also found that participants who learned 
knowledge-consistent categories were more accurate in their estimates of feature frequencies when they 
were simply asked to report them.  One speculative possibility is that judgments that require people to 
relate features to each other or to category membership, such as categorization and typicality ratings, are 
more likely to trigger spontaneous explanation than judgments that involve descriptive reporting, such as 
feature frequency estimates (see also Murphy & Medin, 1985; Rips, 1989). Spontaneous explanation 
could also play a larger role in more open-ended and constructive categorization tasks, such as 
Wisniewski and Medin’s (1994) paradigm, which required participants to construct novel features and 
rules to differentiate complex stimuli, and to explain while they did so. 

Although explanation likely contributes to previous findings concerning the role of prior 
knowledge in category learning, our findings also provide suggestive evidence that explaining and prior 
knowledge can play quite different roles when it comes to learning material that is knowledge-irrelevant. 
Many studies have found – perhaps surprisingly – that learning a category that is only partially 
consistent with prior knowledge does not hinder learning of knowledge-irrelevant features, and may 
even generate improvements relative to learning categories that are not related to prior knowledge (Heit, 
Briggs, & Bott, 2004; Kaplan & Murphy, 2000; see Murphy, 2002 for discussion). In our own data, 
there was a marginal effect (in Experiment 1, p = .062) for participants who received informative labels 
to be more likely than those who received blank labels to discover more than one pattern, and a 
significant effect where those who discovered the label-irrelevant pattern were more likely to have also 
discovered the label-relevant pattern, consistent with the idea that prior knowledge facilitates learning of 
knowledge-relevant and knowledge-irrelevant patterns. In contrast, explaining did not increase the rate 
at which participants discovered more than one pattern, and in fact decreased the probability that a 
second pattern was discovered given discovery of an initial pattern (Experiments 1 and 2). These 
findings suggest that explanation and prior knowledge might impose unique constraints on learning. 
Where explaining recruits constraints that privilege patterns with broad scope (potentially at the expense 
of other patterns or kinds of structure), prior knowledge could have mnemonic or other processing 
benefits that extend to knowledge-irrelevant features. 

Of course, these are empirical hypotheses in need of further support. An additional dimension 
worth exploring concerns the nature of the subsumptive relationship between an explanation and 
category membership. Here we have considered cases in which patterns are better or broader if they 
account for the category membership of more items. An alternative sense of scope, however, concerns 
the number of features of individual members that can be explained by appeal to category membership. 
For example, one pattern (pointy versus flat feet) could successfully differentiate many robots, while 
another pattern (features relevant to working in space versus underwater) could apply to fewer robots, 
but explain a larger number of features for those robots (e.g., why they are a particular color, made of a 
particular material, and of a particular size). Research on knowledge effects in category learning has 
varied both the number of items and the number of features to which themes apply; Similar variation 
would be fruitful to examine within our paradigm, especially as a way to understand whether and how 
these two factors trade-off when learners explain. It is also likely that not all items or features are equal 
when it comes to assessing scope. For example, explaining could favor patterns that account for more 
diverse cases (Kim & Keil, 2003) or more ideal cases (Barsalou, 1985), even when doing so does not 
account for the largest number of items or features. 

We also expect that the content of explanation prompts (i.e., what it is that people actually 
explain) should influence which patterns are relevant, and therefore which patterns are discovered and 
evaluated for scope. In our experiments, participants explained why an object belonged to one category 
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(as opposed to another). Successful explanations therefore invoked patterns that were “diagnostic” in the 
sense that they identified features that differentiated members from the two categories, and our 
experiments correspondingly assessed whether diagnostic patterns were discovered and generalized. 
However, categories can involve additional patterns that could be targeted by other explanation prompts. 
For example, having participants explain why two features might co-occur in members of a given 
category should instead affect the discovery and generalization of “co-occurrence” patterns, with the 
relevant sense of scope concerning which co-occurrences are likely to generalize beyond observed cases 
to unobserved category members.  

Nonetheless, explanation might not have comparable effects for all kinds of scope. People prefer 
explanations with broader scope in the sense that the explanation can account for more actual 
phenomena (e.g., Preston & Epley, 2005) or actual observations (e.g., Read & Marcus-Newhall, 1993), 
but people prefer explanations with narrow “latent scope” – that is, that are committed to fewer potential 
observations that have not been made (Khemlani, Sussman, & Oppenheimer, 2011). An important 
question for future research is whether and when this preference for narrow latent scope manifests in 
effects of explanation on learning. One possibility is that a benefit for patterns with broad scope will be 
tempered when those patterns involve a commitment to entirely new kinds of observations (e.g., a novel 
kind of feature that has not been observed, such as hats on robots) as opposed to new instances of 
features that have already been observed (e.g., pointy feet on unobserved robots). 

 Finally, our account generates the counterintuitive prediction that under some conditions, 
explaining will hinder category learning. In particular, explaining could divert effective learning when 
categories lack underlying patterns or involve “unexplainable” exceptions. Under these conditions, 
explaining could reinforce broad patterns that make sense in light of prior knowledge at the expense of 
effectively tracking the world. Our ongoing research supports this prediction (Williams, Lombrozo, & 
Rehder, 2010, 2011, under review), and helps explain why participants in control conditions may not 
have always explained spontaneously or engaged in equivalent processing: it is not always beneficial to 
do so (see also Berthold et al., 2011; Kuhn & Katz, 2009). 

3.8.3. Implications for Education 
In the introduction we identified several proposals concerning the effects of explanation on 

learning, including the ideas that explaining can increase a learner’s attention or motivation (e.g., 
Siegler, 2002) or help identify gaps in understanding (e.g., Chi et al., 1989; Nokes et al., 2011), among 
others. The current work was not designed to directly challenge these account or arbitrate between them. 
In fact, we see our findings as importantly complementary. If we are correct that explaining imposes a 
set of criteria for what constitutes a good explanation, and that these criteria constrain discovery and 
generalization, then the factors we identify should inform how learners direct their attention, what they 
are motivated to discover, which gaps in understanding are most problematic, what kinds of inferences 
must be drawn, and so on. An important direction for future research is thus to combine the richness of 
past research on explanation and learning from education with the kind of experimental control afforded 
by artificial category learning, allowing the selectivity of explanation’s effects to be studied in more 
complex and real-world environments.  

Our account can also shed new light on past findings from self-explanation. For example, 
previous research has noted that one consequence of self-explanation is increased awareness of 
principles and laws, whether learning about physics (Chi et al., 1989), probability (Renkl, 1997), or 
arithmetic (Rittle-Johnson, 2006). A subsumptive constraints account helps explain why this is the case: 
Constructing successful explanations for a fact or problem solution should direct learners towards broad 
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patterns, and principles and laws are prime examples of such patterns. However, our account also 
predicts pedagogically relevant conditions under which subsumptive constraints on explanation can 
impair learning. For example, for students without the requisite background to generate accurate 
generalizations, or who have not encountered enough counterevidence to erroneous beliefs for such 
observations to trump prior knowledge as a cue to scope, a prompt to explain could reinforce existing 
misconceptions (see also Walker, Williams, Lombrozo, & Gopnik, 2012, under review; Williams, 
Lombrozo, & Rehder, 2010, 2011, under review). Our findings can therefore inform future research 
aimed at testing the conditions under which explanation is most beneficial for learning in educational 
contexts. 

3.8.4. Conclusion 
Four experiments on learning categories provided evidence that explanation and prior knowledge 

interact in promoting the discovery and generalization of patterns underlying category membership. The 
findings support a subsumptive constraints account of explanation and learning, according to which 
explaining drives learners to seek underlying patterns and to consult prior knowledge in assessing the 
scope of such patterns – that is, how broadly the patterns apply within and beyond study observations. 
Our findings and account provide insight into how constraints on explanation influence the role of 
observations and prior knowledge in guiding learning and generalization, and suggest that explaining 
can act as a mechanism for bringing prior knowledge to bear in learning.  
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Figure 1.  Study observations in Experiments 1 and 2. (a) Experiment 1 observations organized by category. (b) Experiment      
2 observations organized by category.  
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Figure 2. Results from Experiment 1 (a to c) and Experiment 2 (d to f). Error bars represent one standard error of the 
mean in each direction. Pattern Discovery (a & d):  Proportion of participants who discovered the label-relevant 
and label-irrelevant patterns, and for Experiment 2, the additional partially reliable body shape and antenna patterns. 
Number of Patterns Discovered (b & e): Proportion of participants who discovered no patterns, exactly one 
pattern, or two or more patterns. Conditional Discovery (c & f): Of participants who discovered either the label-
relevant or label-irrelevant pattern, the proportion that also discovered an additional pattern.  
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Figure 3. Study observations from Experiment 3: (a) when the foot pattern was the label-relevant pattern, (b) when 
the antenna pattern was the label-relevant pattern.  
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Figure 4. Extent to which the label-relevant pattern was used as a basis for generalizing category membership, as a 
function of task and label type, in Experiments 3 and 4. (a) Proportion of classifications consistent with label-
relevant pattern in Experiment 3. (b) Average classification rating in Experiment 4, where higher numbers on 1-6 
scale indicate greater consistency with the label-relevant pattern. Error bars correspond to one standard error of the 
mean in each direction. 
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Table 1. Proportion of participants classified as using each basis for categorization in Experiment 1. 

 

 
Blank Labels Informative Labels 

Pattern Use Free Study Explain Free Study Explain 

Label-Relevant (100% Feet) 0.36 0.32 0.30 0.61 

Label-Irrelevant (100% Antenna) 0.21 0.60 0.16 0.30 

Item Similarity 0.42 0.07 0.50 0.07 

Other 0.01 0.01 0.04 0.02 
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Table 2. Proportion of participants discovering each pattern in the free study conditions from Experiment 
1 as a function of label type and self-reported explanation. 

 

 

Blank Labels Informative Labels 

 

 

 

Reported seeking explanations? 

Pattern Discovered No Yes No Yes 

Both 0.04 0.06 0.03 0.14 

Label-Relevant (100% Foot) 0.13 0.28 0.21 0.38 

Label-Irrelevant (100% Antenna) 0.14 0.39 0.03 0.29 

Neither 0.61 0.28 0.69 0.29 
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Table 3. Inferred pattern scope and relative pattern scope as a function of task and label type (blank vs. 
informative labels), in Experiment 3. Means are followed by standard deviations. 

 

 

Blank Labels 
(Glorp/Drent) 

 

Informative Labels 

(Outdoor/Indoor or 
Receiver/Transmitter) 
 

Inferred Pattern Scope Write 
Thoughts Explain Write 

Thoughts Explain 

Label-Relevant (75%) 69.2 (30.0) 68.3 (33.1) 63.8 (34.5) 71.3 (31.9) 

Label-Irrelevant (100%) 80.3 (32.4) 85.4 (28.4) 82.0 (31.3) 77.8 (32.8) 

Relative Pattern Scope -11.1 (32.2) -17.0 (38.5) -18.3 (37.8) -6.5 (33.7) 
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Table 4. Inferred pattern scope, relative pattern scope, and pooled pattern scope as a function of task and 
label assignment (random vs. representative labels), in Experiment 4. Means are followed by standard 
deviations. 

 

 
Random Labels Representative Labels 

Inferred 
Pattern Scope 

Write 
Thoughts Explain Write 

Thoughts Explain 

Label-
Relevant Pattern 31.7 (60.2) 27.2 (66.8) 37.4 (58.1) 46.7 (62.7) 

Label-
Irrelevant 
Pattern 

28.2 (60.4) 15.9 (53.6) 28.3 (54.6) 29.8 (58.6) 

Pooled 
Pattern Scope 29.9 (60.3) 21.6 (60.2) 32.9 (56.3) 38.2 (60.6) 

Relative 
Pattern Scope 3.5 (60.3) 11.3 (60.6) 9.1 (56.4) 16.9 (60.7) 
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Table 5. Inferred pattern scope, relative pattern scope, and pooled pattern scope as a function of task and 
label pair, in the representative labels conditions of Experiment 4. Means are followed by standard 
deviations. 

 

 

Receiver/Transmitter 

Labels 

Outdoor/Indoor 

Labels 

Inferred Scope Write 
Thoughts Explain Write 

Thoughts Explain 

Foot Pattern 37.6  (36.2) 40.8  (35.6) 52.4  (36.3) 63.7  (32.2) 

Antenna Pattern 41.5  (36.9) 51.3  (36.4) 40.1  (39.9) 38.4  (37.5) 

Pooled Scope 39.6  (36.6) 46.1  (36.0) 46.3  (38.1) 51.1  (35.0) 

Relative Scope -3.9  (31.4) -10.4  (34.) 12.3  (37.3) 25.3  (33.6) 
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4. The hazards of explanation: overgeneralization in the face of exceptions 
 

4.1. Abstract 

Seeking explanations is central to science, education, and everyday thinking, and prompting 
learners to explain is often beneficial. Nonetheless, in two category learning experiments across artifact 
and social domains, we demonstrate that the very properties of explanation that support learning can 
impair learning by fostering overgeneralizations. We find that explaining encourages learners to seek 
broad patterns, hindering learning when patterns involve exceptions. By revealing how effects of 
explanation depend on the structure of what is being learned, these experiments simultaneously 
demonstrate the hazards of explaining and provide evidence for why explaining is so often beneficial. 
For better or for worse, explaining recruits the remarkable human capacity to seek underlying patterns 
that go beyond individual observations. 

4.2. The hazards of explanation 

People often have the impression of understanding something better after explaining it to 
someone else, whether it’s why a person behaved the way she did or the solution to a math problem. In 
fact, prompting students to explain while they study can improve learning (e.g., Fonseca & Chi, 2010), 
and prompting children to explain can improve generalization to new problems (e.g., Amsterlaw & 
Wellman, 2006; Siegler, 2002). What is it about explaining that so effectively fosters learning? And if 
explaining is so beneficial, why don’t people spontaneously explain more often? 

Educational, developmental, and cognitive psychologists have proposed many answers to the 
first question. For example, explaining could increase attention, motivation, or engagement (e.g., Chi, 
2009; Siegler, 2002), help learners identify and fill gaps in knowledge (e.g., Chi, 2000), or improve 
learning by facilitating the integration of novel information with prior beliefs (e.g., Chi et al, 1994; 
Lombrozo, 2006; Wellman & Liu, 2007). Given that these processes are demanding, people could fail to 
explain spontaneously – even when doing so would be beneficial – to avoid what they see as inessential 
costs in cognitive processing (e.g., see Fiske & Taylor, 1984; Gigerenzer, 2004).  

Despite its appeal, a view of explanation as globally beneficial but inconsistently applied is at 
best incomplete. For one thing, such a view cannot account for previously-documented hazards of 
explanation. Needham and Begg (1991) found that participants prompted to explain solutions to riddle-
like problems outperformed those prompted to memorize the solutions when it came to analogical 
transfer, but performed more poorly on memory for studied examples. Kuhn and Katz (2009) found that 
students prompted to explain causal claims were more likely to subsequently justify claims by appeal to 
potential mechanisms, ignoring relevant evidence from covariation. Finally, Berthold et al. (2011) found 
that a conceptually-oriented explanation prompt improved conceptual learning, but impaired procedural 
learning. These findings suggest that explanation does not have universally beneficial effects, and 
additionally highlight the need to specify more precisely what explanation directs attention or processing 
towards and precisely why it does so. 

We propose that the very properties of explanation that make it a powerful mechanism for 
learning under some conditions lead to systematic errors under others. Specifically, we propose that 
explaining privileges broad generalizations over learning about individual instances, making learners 
susceptible to erroneous overgeneralizations. This idea is motivated from unification theories of 
explanation in philosophy, which propose that a good explanation is one that subsumes the fact or 
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observation being explained as an instance of a broad pattern or generalization (e.g., Friedman, 1974; 
Kitcher, 1981, 1989). Explaining should therefore drive people to search for patterns that support 
satisfying explanations. In line with this prediction, we have found that explaining makes people more 
likely to discover patterns that account for a broad range of observations, even when alternative patterns 
are more salient (Williams & Lombrozo, 2010).  

Here we test a novel and counterintuitive prediction of this account: that explaining can impair 
learning by leading to erroneous overgeneralizations when patterns involve exceptions. Such a finding 
would not only challenge the idea that explanation merely boosts processing or attention, but also shed 
light on what explanation directs effort and attention towards, and ultimately why explaining is so often 
beneficial for learning.  

4.3. Experiment 1 

Experiment 1 investigated effects of explanation in learning novel categories. Participants were 
prompted to explain or “think aloud” while studying ten labeled exemplars, where the underlying 
category structure involved a “reliable” pattern without exceptions or a “misleading” pattern with two 
exceptions. The exemplars additionally involved unique features that supported perfect classification. If 
explaining encourages learners to discover and privilege broad patterns in the face of exceptions, then 
participants who explain should fare more poorly than those who think aloud when the pattern is 
misleading.  

The inclusion of a “think aloud” condition with an identical learning task was crucial to 
discriminate effects of explanation from previously-documented effects of verbalization or intentional 
learning, which can impair some kinds of category learning, memory, and implicit grammar acquisition 
(e.g., Ashby & Maddox, 2004; Love, 2002; Mathews et al., 1989; Toth, Reingold, & Jacoby, 1994). 
Experiment 1 can therefore isolate distinctive contributions of explaining to the specific impairment we 
predict: ignoring individual instances in favor of generalizations.  

4.3.1. Methods 
Participants.   

Participants were 240 undergraduates and members of the UC Berkeley community who 
participated in exchange for pay or course credit.  

Materials and procedure.  

Learning phase. Participants learned to classify 10 novel objects (vehicles) into two categories 
through repeated classification, feedback, and study (see Figure 1). Participants received instructions 
and then completed a study trial consisting of (1) classifying an unlabeled object as “Dax” or “Kez” 
based on its description (e.g., blue, lightly insulated, etc.), (2) receiving feedback on category 
membership, and (3) studying the labeled object. During study, participants in the explain condition 
were prompted by a sentence on the screen to explain why the item might be a Dax [Kez], while those in 
the think aloud condition were prompted to say out loud whatever they were thinking.14 This process 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 Voice recorders were set up for both groups of participants in both Experiments 1 and 2, but unfortunately the 
data from all but a handful of these was lost due to a computer error. 
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was repeated for all ten items to form a single “block,” and participants repeatedly classified blocks until 
achieving perfect classification or reaching the maximum of 15 blocks. 

Each object description included one unique color feature, one feature relevant to a pattern 
(suitability for hot versus cold climates), and three features that were not diagnostic of category 
membership (see Table 1; materials were adapted from Kaplan & Murphy, 2000, by the addition of the 
unique color features). Participants could thus classify by remembering the ten unique features (e.g., 
“the red one is a Dax”) or by finding a pattern in the ten pattern-related features (e.g., “a Dax is a 
vehicle for warm climates”). We manipulated whether this pattern was reliable (no exceptions, as in 
Kaplan & Murphy, 2000) or misleading (two exceptions in ten, created by randomly switching two 
pattern-related features in each block). We chose two exceptions as the most minimal manipulation of 
pattern reliability. 

Post-learning measures. To investigate effects of explanation and pattern reliability on learning 
about category membership via unique versus pattern-related features, we included several post-learning 
measures (see Figure 1). 

Individual feature classification. Each unique and pattern-related feature was presented 
individually in a random order. Participants were asked which category an item with that feature would 
belong to.  

Conflict classification. Participants classified 10 “conflict items” which paired a pattern-related 
feature and a unique feature that corresponded to opposite classifications. 

Reported differences. Participants reported differences across categories, typing their responses. 

4.3.2. Results 
Learning time.  

A 2 (study condition: explain, think aloud) x 2 (pattern reliability: reliable, misleading) ANOVA 
on the mean number of blocks to reach the learning criterion revealed that participants learned more 
quickly when the pattern was reliable than misleading, F(1,236) = 44.5, p < 0.001, ηp = 0.26 (see Figure 
2a). However, this effect was qualified by an interaction between study condition and pattern reliability, 
F(1,236) = 6.3, p < 0.05, ηp = 0.03.15 We therefore evaluated effects of explanation separately for each 
pattern.  

When the pattern was reliable, there was a trend for the explain group to learn faster than the 
think aloud group, t(118) = 1.43, p = 0.16, d = 0.26. When the pattern was misleading, however, 
participants in the explain condition were significantly slower to reach the learning criterion, t(118) = 
2.1, p < 0.05, d = 0.38.16 In fact, 52% of participants from the misleading/explain condition never 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15	  To address concerns about non-normality, this analysis was repeated with a non-parametric test. We sorted the 
number of blocks to learning into five bins of three block increments and performed an ordinal regression with 
study condition and pattern reliability as factors. This analysis also revealed a significant interaction. 

16 To address concerns about non-normality, all t-tests reported in this experiment were checked with non-
parametric Mann-Whitney U tests, which supported the same conclusions. 
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achieved perfect classification – significantly more than the 25% who failed to do so in the 
misleading/think aloud condition, χ2(1) = 5.4, p < 0.05.  

Individual feature classification.  

Performance was analyzed with a mixed ANOVA with study condition (2) and pattern reliability 
(2) as between-subjects factors, and feature type (2: unique, pattern-related) as a within-subjects factor 
(see Figure 2b). This analysis revealed an interaction between study condition and feature type, F(1, 
236) = 12.79, p < 0.001, ηp = 0.05: explaining resulted in fewer errors on pattern-related features, t(238) 
= 3.10, p < 0.01, d = 0.40, but more errors on unique features, t(238) = -2.37, p < 0.05, d = -0.31. This 
interaction was independently significant when the pattern was reliable and supported learning as well as 
when the pattern was misleading and hindered learning, ps < .05.   

There were also main effects of pattern reliability, F(1, 236) = 7.10, p < 0.01, ηp = 0.03, and 
feature type, F(1, 236) = 24.00, p < 0.001, ηp = 0.09, which were superseded by an interaction, F(1, 236) 
= 15.04, p < 0.001, ηp = 0.06. Participants in the reliable pattern conditions classified pattern-related 
features more accurately than those in the misleading pattern conditions, t(238) = 4.44, p < 0.001, d = 
0.58, with a slight trend in the opposite direction for unique features, t(238) = -1.43, p = 0.15, d = -0.19.  

Conflict classification.  

A 2 (study condition) by 2 (pattern type) ANOVA revealed that a greater proportion of conflict 
items were classified in line with pattern-related features (as opposed to unique features) when the 
pattern was reliable rather than misleading, F(1, 236) = 26.62, p < 0.001, ηp = 0.10, and when 
participants explained rather than thought aloud, F(1, 236) = 13.43, p < 0.001, ηp = 0.05. The latter 
effect was independently significant for each pattern type, ps < 0.05 (see Figure 1c). 

Reported differences.  

Participants’ typed reports about category differences were independently coded (with 84% 
agreement) for mention of the hot/cold pattern and/or the unique color features (see Figure 2d). Mention 
of the pattern was more frequent in the explain than think aloud conditions, whether the pattern was 
reliable, χ2(1) = 4.04, p < 0.05, or misleading, χ2(1) = 9.79, p < 0.05. However, mention of color 
differences was less frequent in the explain than think aloud conditions (pattern reliable: χ2(1) = 4.82, p 
< 0.05, misleading: χ2(1) = 4.48, p < 0.05). 

4.3.3. Discussion 
 Experiment 1 confirmed our prediction that explaining can impair learning when patterns 

are misleading, with participants who were prompted to explain requiring more study time to reach the 
learning criterion than those who thought aloud. The findings additionally shed light on the basis for this 
impairment: Relative to thinking aloud, explaining improved learning of features that supported patterns 
but impaired learning of features unique to particular instances.  

4.4. Experiment 2 

Experiment 2 investigated effects of explaining on categorizing people's behavior, an important  
extension to Experiment 1 and past work on explanation in categorizing novel objects (Williams &  
Lombrozo, 2010). Because behavior is arguably explained in terms of unique features (Malle, 2011; 
Master, Markman, & Dweck, 2012) more readily than is the category membership of objects, finding an 
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impairment here would bolster the evidence that explaining drives people towards broad patterns at the 
expense of idiosyncratic particulars.  

 Experiment 2 also went beyond Experiment 1 in comparing effects of generating explanations 
during study to a control condition in which participants anticipated having to later generate 
explanations. Expectations about the viability of explanations were thus matched while manipulating the 
degree to which participants explained during study. In addition, learning was evaluated by examining 
errors during a learning session of fixed time, avoiding the variability generated by learning to criterion.  

4.4.1. Methods  
Participants.  

Participants were 164 undergraduates and members of the UC Berkeley community who 
participated in exchange for pay or course credit. 

Materials and procedure.  

Learning phase. Participants were instructed to learn whether each of ten hypothetical 
individuals rarely or frequently donated to charities (see Figure 3). Explain participants were told to 
explain each individual’s behavior during study, while control participants were told that they would 
explain each individual’s behavior at a later point. Participants then read a description of each individual 
and had 10 seconds to judge whether the individual rarely or frequently donated before receiving the 
correct answer and studying the individual for another 10 seconds. This process was repeated five times 
for each of the 10 individuals, with learning assessed by the proportion of errors over these trials.  

Each description included the person’s (ostensible) picture, name, and age, as well as a 
personality descriptor (e.g., friendly) and two additional features, college major and geographic location, 
which were not correlated with behavior (see Table 2). The unique picture and name supported perfect 
predictions concerning behavior (e.g., “Laura rarely donates”), while the age and personality features 
conformed to patterns that correlated with behavior (e.g., “younger people rarely [frequently] donate,” 
“people with extraverted traits rarely [frequently] donate”).17 Using two patterns (age and personality) 
created a more complex learning context than Experiment 1, which involved a single pattern. In the 
reliable patterns conditions, the patterns involving age and personality correlated perfectly with 
behavior. In the misleading patterns conditions, each pattern involved two exceptions.  

4.4.2. Results  
Learning error was computed as the proportion of errors made during the learning phase, and 

was analyzed with an ANOVA that included study condition (2: explain, control) and pattern reliability 
(2: reliable, misleading) as between-subjects factors. This analysis revealed more errors in the 
misleading patterns conditions than the reliable patterns conditions, F(1,160) = 32.41, p < 0.001, ηp = 
0.25, as well as the critical interaction between study condition and pattern reliability, F(1,160) = 4.63, p 
< 0.05, ηp = 0.03 (see Figure 4a). Explaining had no significant effect on errors when the patterns were 
reliable, t(75) = 0.35, p = 0.73, d = 0.08, but increased errors when the patterns were misleading, t(85) = 
2.50, p < 0.05, d = 0.54. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 The direction of the association between age, personality, and behavior was counterbalanced across conditions, 
but this manipulation had no effect and is not discussed further. 
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To examine whether errors in the explain condition resulted from overgeneralizing patterns to 
exceptions, we performed an additional ANOVA on errors in the misleading patterns condition that 
considered two additional within-subjects factors: item type, where items were identified as pattern-
consistent if the individual’s behavior conformed to the age and personality patterns, and as exceptions if 
not (see Figure 4b), and learning block (see Figure 4c). The inclusion of item type and learning block 
did not alter the key finding that explaining increased errors relative to control, F(1, 83) = 5.12, p < .05, 
ηp = 0.06. However, there was additionally a main effect of learning block, F(4,80) = 37.42, p < .001, 
with errors decreasing over time, a main effect of item type, F(1, 83) = 16.45, p < .001, ηp = 0.32, with 
more errors for exceptions, and a (marginal) interaction between study condition and item type, F(1, 83) 
= 3.82, p = 0.054, ηp = 0.04: Participants in the explain condition made significantly more errors than 
those in the control condition for exception items, F(1, 83) = 5.12, p < 0.05, ηp = 0.06 (this difference 
was significant by block two, p < 0.05, and was still significant in block five, p < 0.05), with a similar 
but non-significant trend for pattern-consistent items, F(1, 83) = 1.44, p = 0.23, ηp = 0.02. We speculate 
that participants prompted to explain did not outperform control participants on pattern-consistent items 
because they may have switched between patterns (age versus personality) in the face of exceptions 
instead of abandoning patterns altogether. 

4.4.3. Discussion 
Experiment 2 replicated the key prediction that explaining can impair learning when patterns are 

misleading, extending the finding from Experiment 1 to a novel domain, a new measure of learning, and 
a different control condition. The analysis of error types suggests that explaining impaired learning 
through rapidly formed overgeneralizations that persisted in the face of repeated counterevidence.  

4.5. General Discussion 

Our findings reveal the double-edged nature of explanation. While explaining can be beneficial, 
it can also make learners vulnerable to overgeneralizations when categorizing artifacts (Experiment 1) or 
behaviors (Experiment 2), and for measures of both learning speed (Experiment 1) and learning 
accuracy (Experiment 2). In Experiment 1, explainers more accurately learned pattern-related features 
and less accurately learned unique features than those who thought aloud. In Experiment 2, explainers 
were especially inaccurate when it came to categorizing exceptions, and this effect emerged early in 
learning and persisted throughout training. These findings suggest that explainers focused on features 
that supported patterns at the expense of idiosyncratic information about individual items, and that they 
perseverated in seeking or applying broad patterns despite evidence against their generality.  

Just as visual illusions shed light on the mechanisms by which visual perception is so often 
accurate, our findings shed light on why explanation is so often beneficial. In particular, our findings 
suggest that explaining “why?” recruits evaluative criteria for what constitutes a good explanation, 
directing learners to seek broad patterns that can accommodate what is being explained (see also 
Williams & Lombrozo, 2010; Lombrozo, 2012). Explaining can therefore support the remarkable human 
capacity to discover patterns and construct generalizations from sparse observations, but this capacity 
has associated risks: disregarded exceptions and overgeneralization. 

Our findings also rule out the idea that explaining simply increases attention or processing to 
yield global improvements, and can help make sense of the seemingly disjointed set of negative effects 
of explanation reviewed in the introduction. For example, relative to instructions to remember examples, 
explanation promotes analogical transfer at the expense of memory (Needham & Begg, 1991), and this 
effect makes sense if explaining highlights broad patterns over individual examples. Similarly, 
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explaining could encourage learners to invoke causal mechanisms over particular observations in 
justifying causal claims (Kuhn & Katz, 2009) because doing so relates what is being explained to 
broader regularities. Finally, explaining could encourage learners to draw generalizations over 
conceptual rather than procedural aspects of a domain when the content of what they are explaining is 
conceptual (Berthold et al, 2011).  

Our finding that explanation can promote erroneous overgeneralizations goes beyond these 
previous results in isolating a prediction of our account, but additionally suggests that effects of 
explanation are not a simple consequence of directing limited attention or processing to the target of a 
particular study prompt (e.g., memory, causal mechanisms, or conceptual knowledge) at the expense of 
alternatives (e.g., relational structure, covariation, or procedural knowledge). Nothing about the content 
of our explanation prompts highlighted broad patterns over properties of individuals. If anything, a 
prompt to explain the category membership or behavior of a specific instance could have directed 
attention or processing to the particulars of that instance. Instead, the results support our proposal that 
explaining “why?” is inherently linked to patterns, with the content of the question potentially affecting 
the nature of the patterns considered (e.g., whether they involve conceptual or procedural regularities; 
see also Williams & Lombrozo, 2013). 

Our account also predicts conditions under which explanation should have minimal effects. For 
example, explanation prompts could have no effect when learners can successfully identify and apply 
broad generalizations without explaining (e.g., because they receive rich and effective instruction) or 
when learners lack the requisite knowledge to generate reasonable hypotheses about underlying patterns 
(for related discussion, see Matthews & Rittle-Johnson, 2009; Rittle-Johnson, 2006).   

In their search for patterns, participants who explained could have recruited a host of well-
documented processes, including verbal reasoning (e.g., Meissner & Memon, 2002; Schooler, 2002) and 
analogical comparison (Gentner, 2010), or triggered a more explicit and deliberative (Mathews et al, 
1989), analytic and rule-based (Shanks & John, 1994; Ashby & Maddox, 2005), or intentional (Dienes 
et al, 1991; Reber, 1989) mode of learning. Given our closely matched study conditions, it’s likely that 
these processes and strategies were also triggered in participants in control conditions, if to a lesser 
degree. Our account is not in conflict with these views concerning cognitive mechanisms or 
architectures, but instead suggests that if explanation did recruit these mechanisms or systems, it was in 
the service of finding broad patterns, and it is this feature of explanation that explains our results. 

 While we specifically designed conditions conducive to an explanation impairment using 
feature lists in a laboratory context, a range of real-world situations involve similarly sparse 
observations and unreliable patterns. For example, explaining a single (potentially unrepresentative) 
observation can generate the kinds of beliefs that underlie stereotypes (Risen, Gilovich, & Dunning, 
2007), and trying to explain chance events could reinforce superstitious beliefs or conspiracy theories. 
Future work can investigate these hazards of explanation, and additionally aim to reconcile them with 
cases where explaining exceptions is useful in discovering novel regularities, as when anomalies presage 
scientific theory change (Kuhn, 1962; Chinn & Brewer, 1993) or guide children’s causal learning 
(Legare, Gelman, & Wellman, 2010).  

Finally, we should note that ignoring exceptions may sometimes help learning. For example, 
when there is substantial variability in observations, exceptions could erroneously lead learners away 
from noisy but reliable patterns. Moreover, there are many settings, such as those in mathematics and 
science education, where explaining has proven beneficial, for which the benefits of erring on the side of 
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overgeneralization can outweigh minor costs. Providing a unified account of the positive and negative 
effects of explanation can not only help avoid the hazards of explanation, but also maximize and extend 
its benefits, whether in everyday, educational, or scientific contexts. 
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Figure 1. Schematic presentation of the learning task from Experiment 1. Steps 1-3 in the study phase were repeated 
for each item in each block, with participants repeating blocks until they achieved perfect classification or reached the 
maximum of 15. 
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Figure 2.  (a) Average learning time from Experiment 1 as a function of study condition and pattern type; 
(b) Average accuracy in classifying individual features after training; (c) Proportion of pattern-consistent 
classifications for conflict items after training; (d) Explicitly reported differences across categories. Error 
bars correspond to one standard error of the mean in each direction. 
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Figure 3. Schematic presentation of the learning task from Experiment 2. Steps 2-3 were repeated for each 
of the ten items in each block, with participants repeating each block five times. 
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Figure 4.  (a) Average proportion of errors during learning for Experiment 2 as a function of study 
condition and pattern type; (b) Errors during learning for the misleading patterns conditions as a function 
of study condition and item type; (c) Errors from the misleading patterns condition for pattern-consistent 
and exception items as a function of training block number. Error bars correspond to one standard error of 
the mean in each direction. 
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Table 1. Stimuli from the reliable pattern condition in Experiment 1. In the misleading pattern 
condition a set of pattern-related features was randomly switched across the Dax/Kez 
categories. 
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Table 2. Stimuli from Experiment 2. In the misleading pattern condition the age and picture of the 
fourth and eighth individuals were switched, as were the personality features of the fifth and 
tenth individuals. 
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5. Conclusion 
The preceding three chapters presented the novel Subsumptive Constraints account of 

why generating explanations is key to learning and transfer, and provided empirical tests of three 
of its core predictions. The central idea is that explaining “why?” exerts a subsumptive constraint 
that drives people to seek underlying patterns and generalizations. Explaining why a fact is true 
constrains how learners reason, guiding them to understand the fact as an instance of a broader 
pattern – in other words, to subsume the fact as an instance of a generalization. Although past 
studies have identified patterns and principles in unstructured self-explanations (e.g., Chi et al, 
1994; Renkl, 1997), the preceding chapters provide empirical evidence that explaining “why?” 
directly drives their discovery and construction.   

The nine experiments reported in this dissertation provide evidence for the Subsumptive 
Constraints account’s distinctive set of predictions about the effects of seeking why-
explanations. Respectively: (1) Chapter two provided evidence that explaining “why?” 
selectively drives people to discover underlying patterns, particularly favoring broad, unifying 
generalizations. (2) Chapter three reported studies showing that explanation’s constraint to prefer 
broader patterns also extends to those patterns that learners’ prior beliefs suggest are likely to 
apply to a range of novel contexts. Explaining thus increases learners’ consultation of their prior 
knowledge in guiding the discovery and generalization of patterns beyond what is being 
explained. (3) Chapter four suggests that although the constraint to seek patterns is helpful in 
many contexts, when regularities are spurious or misleading, explaining can impair learning 
through overgeneralization.  

In this concluding chapter, I briefly review the evidence each chapter provided for its 
corresponding claim, considering the implications of each finding for existing research, practical 
applications, and future directions. I then close with a consideration of future research directions 
that build on the body of work presented in this dissertation. 

5.1.  Subsumptive Constraints on explaining are what drive the discovery of broad patterns 
that support generalization.  

Chapter two explicated the Subsumptive Constraints account, testing the prediction that 
explaining “why?” drives people to search for underlying patterns. While the complex materials 
in past research attest to the consequential effects of explanation, the complexity poses a 
challenge in characterizing the underlying mechanisms. The work reported in Chapter two 
complements such work by using controlled stimuli in a laboratory context. We explored 
category learning because of its extensive study in past research and its potential generality – 
people learn novel categories across domains from mathematics to biology.  

The learning task involved studying examples from two categories of novel alien robots. 
These could be partially categorized using an imperfect but salient pattern, or perfectly 
categorized using a broader but difficult to detect pattern. Prompts to explain why a robot 
belonged to the category it did promoted discovery of the subtle but broader pattern, as well as 
the generalization of this pattern to examples that had not been studied before. A comparison to 
closely matched control conditions revealed that explaining “why?” generated greater discovery 
than prompts to describe the robots (chosen to increase attention and verbal elaboration) and 
prompts to think out loud (chosen to promote metacognitive monitoring and awareness of 
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thoughts through explicit verbalization). However, there was no advantage in memory for 
examples, and in some cases explaining even impaired memory. 

This research indicates that explaining “Why?” does not serve simply as a generally 
elaborative or all-purpose boost to learning engagement, it can be useful in promoting induction 
or comprehension of underlying principles and causal patterns, rather than increasing memory or 
retention of facts– unless these are tied to underlying principles.  

The effect of explaining may also be greater for domains in which underlying principles 
are key for learning and can be induced by the learner– previous demonstrations of explanation’s 
effects in learning physics or theory of mind may occur precisely because these are such 
domains. 

Moreover, the current findings suggest that successful identification of principles and 
generalizations should stem from asking “why?” more than from other questions that increase 
general levels of elaboration and monitoring. One context in which this finding could be further 
tested would be learning from worked examples of problems in a cognitive tutor. One testable 
implication of the current dissertation work is that prompts to explain why an answer is correct 
might be most effective in constructing abstract generalizations, while explaining one’s 
reasoning should be less helpful for such generalizations, even if it were to make a greater 
contribution to metacognitive benefits. 

5.2. Explanation & prior knowledge interact to guide learning.   
The third chapter uses the Subsumptive Constraints account to provide novel insight into 

how explanation and prior knowledge interact in learning. Past research has found mixed results 
as to whether explaining helps more with low or high prior knowledge learners, possibly because 
this work has examined multiple kinds of explanations and numerous types of “prior 
knowledge”. 

The prediction tested was that when learners evaluate explanations, they are driven to 
consult prior knowledge that is relevant to assessing how broad or unifying a pattern is. Two 
explanations might account equally well for the specific facts being explained, but prior beliefs 
can favor one as more likely to account for a diverse range of additional facts. The experiments 
manipulated whether or not people were prompted to explain the category membership of 
examples, and whether or not the category labels provided information favoring the more subtle 
of two patterns that both perfectly categorized all the examples. Neither explaining nor receiving 
this knowledge was sufficient to promote discovery of the subtle pattern, but together they 
interacted in increasing its discovery. Even when the patterns were made equally salient and 
discovery equated, a similar interaction was found in determining which pattern was generalized 
to novel examples, and participants’ judgments of how many novel examples the pattern would 
apply to.  

Explaining may therefore promote learning by deploying prior knowledge that is relevant 
to discovering broad generalizations, preventing such knowledge from lying inert and failing to 
influence learning. This sheds light on what kind of knowledge is relevant to successful 
construction of “why?” explanations. Providing knowledge that helps students understand how a 
principle applies – to what is being explained and to related contexts – could support students’ 
construction of explanations.  
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5.3. The hazards of explanation: Overgeneralization in the face of exceptions.  
Chapter four tested a unique prediction of the Subsumptive Constraints account: By 

driving learners to seek patterns, explaining “why?” can impair learning when patterns are 
misleading or violated by exceptions. We explored this in both the context of learning people’s 
behavior and learning about object categories. Prompts that increased learners’ search for 
explanations (relative to thinking aloud, or anticipating having to explain) impaired learning 
when patterns were misleading because exceptions to these patters existed. Poorer learning 
occurred because explaining drove people to ignore specific observations in favor of 
overgeneralizations (such as imperfect relationships between an individuals’ age and donations 
to charity). 

This finding provides strong evidence that explaining “why?” selectively constrains the 
search for generalizations, rather than producing an all-purpose boost to motivation or 
metacognition (which could still underlie the effects of other kinds of explanation prompts).  

The finding that explaining carries both benefits and hazards provides a compelling case 
that explaining does not simply provide a general processing boost, and that closer investigation 
of its underlying processes and most effective pedagogical use is warranted. Not only can this 
avoid potential impairments, but it can elucidate which contexts and kinds of knowledge are 
especially well suited to learning by explaining “why?” 

The importance of selecting cases that highlight relevant subsuming generalizations can 
be explored in future work. For example, in an educational setting, cases may need to be 
sufficiently diverse to target an abstract rather than shallow underlying generalization, but not so 
broad that explaining them requires induction of a subsuming generalization beyond the learner’s 
current knowledge or reasoning capacity. In everyday learning contexts, explaining may be more 
likely to drive people towards misleading generalizations when they explain small data sets of 
observations, but useful for discovering true regularities when explaining is directed at 
sufficiently representative observations. This could be the case in phenomena such as detecting 
illusory correlations, forming stereotypes, or detecting systematicity in random data. 

The findings also suggest a way to reconsider the role that students’ unprompted and 
covert explanations might play in “buggy” reasoning in mathematics – where overgeneralization 
and undergeneralization from examples of mathematics problems and solutions results in 
systematic errors. Consideration of students’ spontaneous explanations might also shed light on 
misconceptions or alternative conceptions in science education, and suggest which explanation 
prompts could avoid or revise those beliefs. Understanding might be best achieved by combining 
“why?” questions with other kinds of explanation prompts, and varying what knowledge is 
communicated through instruction. This will require both basic research – comparing the effects 
of different explanatory questions and providing different kinds of instructional explanations – as 
well applied projects that consider how best to combine them.  

5.4. Future directions 
The Subsumptive Constraints account provides a new framework within which to 

interpret past instances of explanation’s effects, accounting for the importance of explanation in 
discovering principles that support generalization to novel contexts. It also adds precision to the 
operationalization of “explanation” by focusing on explanations that are responses to “Why?” 
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questions. By articulating a specific account of explanation and learning – that brings together 
research on explanation across education, cognitive psychology, development, philosophy, and 
artificial intelligence – this dissertation work also provides a fruitful framework for a number of 
future research directions. I now consider several of these.  

5.4.1. Explanation’s role in learning and revising beliefs in the face of anomalous observations. 
 In the more practical and educational context of learning about z-scores, current work (in 

collaboration with Caren Walker, Sam Maldonado, and Tania Lombrozo) is finding that 
prompting people to explain observations that conflict with their beliefs can revise existing 
knowledge, even though asking people to articulate their thoughts about these anomalous 
observations yields minimal learning benefits.  

5.4.2. Children’s causal learning through explaining.  
In a collaboration led by Caren Walker (and including Tania Lombrozo, Alison Gopnik, 

and Cristine Legare), we have been testing whether children as young as five might be sensitive 
to Subsumptive Constraints when they explain “why?” Despite having less knowledge and 
language abilities than adults, we find that prompting children to explain novel causal outcomes 
makes them more likely to access their prior knowledge, and to use it in generalizing causal 
relationships.  

5.4.3. Relationship between explanation and other cognitive processes. 
 The Subsumptive Constraints account identifies explaining as establishing the implicit 

goal of finding patterns, and so predicts that explaining will recruit other cognitive processes to 
do so. This suggests a fruitful exploration of the relationship between explanation and 
comparison of examples – a related and educationally-relevant instructional strategy. I have been 
collaborating with Brian Edwards, who is in examining the relative and joint effects of 
generating explanations and making comparisons on learning about patterns, using the materials 
first developed for the research reported in the second and third chapters. 

5.4.4. Benefits of generating and receiving explanations. 
 One challenge I anticipate in learning from explaining is that the benefits of prompting 

students to explain may be only partially realized without additional support for constructing 
explanations. A straightforward way of providing the knowledge that helps people to construct 
an explanation may in fact be to also provide a correct explanation. Teachers and other educators 
might expect this to be redundant or find it strange for a student to be asked to both generate and 
be given an explanation. But if this is beneficial and can be done in a natural way, its ease of 
implementation could yield substantial practical benefits.  For example, students could be asked 
to generate an explanation, and then asked to compare their self-generated explanation to a 
different explanation that was ostensibly generated by another student (although it could in fact 
be the correct or normative explanation, designed to instruct them). 

   This issue could be explored in the context of online education – adding explanation 
prompts and instructional explanations to improve students’ learning from interactive online 
mathematics exercises. In addition to exploring the relative and joint impact of generating and 
receiving explanations, computational analyses and Natural Language Processing can be used to 
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maximize learning by tailoring the explanations students are provided with to the explanations 
they generate.  

5.5 Conclusion 

The work presented in this dissertation has shed light on why explaining promotes 
learning – by driving people to seek and discover underlying patterns. This was shown to 
produce benefits – like discovering subtle regularities and increasing use of existing knowledge – 
as well as costs – ignoring individual contradictory observations and overgeneralizing. By 
fruitfully bridging cognitive psychology and education, this body of research provides a 
foundation for future work the blends theoretical research and practical applications for 
explanation. A particularly promising direction is to use online educational contexts to continue 
to bring together rigorous experimental studies, statistical modeling, and large practical impact in 
real-world settings.  
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