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Effects of ECT in treatment of depression: study
protocol for a prospective neuroradiological study
of acute and longitudinal effects on brain
structure and function
Leif Oltedal1,2*, Ute Kessler3, Lars Ersland4, Renate Grüner1, Ole A Andreassen5, Jan Haavik6, Per Ivar Hoff7,
Åsa Hammar3,8, Anders M Dale9,10, Kenneth Hugdahl1,3,8 and Ketil J Oedegaard2,3,6
Abstract

Background: Major depression can be a serious and debilitating condition. For some patients in a treatment
resistant depressive episode, electroconvulsive treatment (ECT) is the only treatment that is effective. Although ECT
has shown efficacy in randomized controlled trials, the treatment is still controversial and stigmatized. This can in
part be attributed to our lack of knowledge of the mechanisms of action. Some reports also suggest potential
harmful effects of ECT treatment and memory related side effects have been documented.

Methods/design: The present study will apply state of the art radiology through advanced magnetic resonance
imaging (MRI) techniques to investigate structural and functional brain effects of ECT. As a multi-disciplinary collaboration,
imaging findings will be correlated to psychiatric response parameters, neuropsychological functioning as well as
neurochemical and genetic biomarkers that can elucidate the underlying mechanisms. The aim is to document
both treatment effects and potential harmful effects of ECT.
Sample: n = 40 patients in a major depressive episode (bipolar and major depressive disorder). Two control groups
with n = 15 in each group: age and gender matched healthy volunteers not receiving ECT and patients undergoing
electrical cardioversion (ECV) for atrial fibrillation (AF). Observation time: six months.

Discussion: The study will contribute to our understanding of the pathophysiology of major depression as well as
mechanisms of action for the most effective treatment for the disorder; ECT.

Keywords: Electroconvulsive therapy, Magnetic Resonance Imaging, Depression
Background
Bipolar and major depressive disorder
Bipolar disorder and major depressive disorder (MDD)
are mental disorders with a 12-month prevalence in the
EU of about 1 and 7%, respectively [1]. They are associ-
ated with a reduced quality of life, an increased mortality
risk, and are a major cause of inability to work [2,3].
The management of depression includes psychosocial

treatment approaches, pharmacotherapy and, for the
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most severe and treatment resistant patients, electrocon-
vulsive treatment (ECT).
Electroconvulsive treatment
The idea that convulsions could treat mental illness can
be traced to the 16th century, when camphor oil was
used to induce convulsions. Seizure-induction by appli-
cation of electrical current to the human brain was
introduced by the Italians Cerletti and Bini in 1938 [4].
Since its introduction, ECT has been applied to various
psychiatric and some somatic conditions. Modern ECT
has fewer indications and has been developed with the
aim to reduce side effects [5].
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For some patients in a treatment resistant depressive
episode, ECT is the only treatment that is effective. ECT
is generally considered to be safe and has shown efficacy
in randomized controlled trials [6]. A recent randomized
controlled trial found ECT to be more effective than
pharmacological treatment for treatment-resistant bipo-
lar depression [7]. However, the treatment is still contro-
versial and stigmatized [8]. This can in part be attributed
to our lack of knowledge, since the mechanisms of
action is still largely unknown.
Some have compared ECT to lobotomy [9] or hypo-

thesize that ECT affects the brain in a manner similar to
severe stress or trauma [10]. Others regard it as a safe
treatment that is underused [11], and a systematic re-
view found no persistent cognitive deficits after ECT
[12]. A recent randomized controlled trial of right
unilateral ECT in treatment resistant depression found
no changes in general neurocognitive function, but
reduced autobiographical memory consistency after ECT
[13]. This finding is in line with subjective patient
reports [14], and further research is required.
The NICE guidelines states: “Consider ECT for acute

treatment of severe depression that is life-threatening
and when a rapid response is required, or when other
treatments have failed” [15]. This is in line with the
Norwegian national guidelines that recommend ECT in
major depression when other treatments have been inef-
fective (Evidence level A, [16]), and there has been an
increase in its use in recent years [17].
Increased knowledge gained through thorough scien-

tific investigations can reduce stigmata and inform
patients and health care providers to make appropriate
use of ECT. Better understanding of ECT and its mecha-
nisms of action may help patients to cope with side
effects and contribute to the development of new treat-
ment options.

Possible mechanisms of action of ECT
More than one hundred theories have been suggested
for the effects of ECT [5]. Although changes to brain
structure in major depression have been confirmed by
several meta-analysis [18-20] and ECT-induced struc-
tural and functional changes have been characterized
(for recent reviews see [21-23]) we still lack a unifying
theory for its mechanisms of action. The project will
focus on three suggested effects of ECT, each reflecting
proposed pathophysiological changes and mechanisms
of action, see below. As a multidisciplinary study, results
from the neuroradiological measures can be correlated
to biomarkers in blood and behavioral parameters; e.g.
improvement/remission after ECT should be correlated
to improved performance on neuropsychological testing.
For dichotic listening, improved scores in the forced left
condition would indicate better cognitive control.
Hippocampal volume
The human nervous system adapts to challenges. It can
be changed by learning as well as by pathological condi-
tions, such as psychiatric disorders. One structure that
has been studied in large detail in this regard is the
hippocampus; a structure that is important for learning
and memory. Hippocampal volumes are reduced in
major depressive disorder [19,24,25] and in a number of
other psychiatric and somatic disorders (reviewed in
[26]). The volume reduction of the hippocampus has
been associated with duration of untreated depression
[27]. On the other hand, increased hippocampal volumes
can occur after extensive learning, e.g. studying to be-
come one of London’s taxi drivers [28,29]. The increase
in hippocampal volumes may be related to neurogenesis,
which has been shown to occur in animal models
[30,31]. In primates, the proliferation of granular cells in
the dentate gyrus of the hippocampus was shown to be
reduced by stress [30]. Seizures induce neurogenesis in
rodents [32], and animal models have shown electrocon-
vulsive seizures to have effects on neurotransmitters,
gene expression, growth factors (such as Brain derived
neurotrophic factor - BDNF, Vascular endothelial growth
factor - VEGF, Fibroblast Growth Factor - FGF) and neu-
ropeptides (such as neuropeptide Y - NPY, Thyrotropin-
releasing hormone - TRH, VGF) and lead to synaptic re-
modeling and cellular proliferation (reviewed in [33]).
Research from animal models also indicate that ele-
ctroconvulsive shocks can reverse the effect of cortisol
and even cause an increase of hippocampal volumes
(reviewed in [5]).
Increased levels of BDNF has been reported following

ECT [34], and BDNF has been suggested as a potential bio-
marker for depression [35]. Neurogenesis has been shown
to occur in the dentate gyrus of the hippocampus in adult
humans [36], and ECT-induced neuroplasticity is gaining
more focus as a framework for understanding the effects
of ECT [23]. A few studies of humans have reported in-
creased hippocampal volumes and/or other structural
changes following ECT [37-41]. Nordanskog et al. [39,41]
performed manual segmentation without complete blind-
ing of the MRI time point that was traced (before or after
ECT), introducing a potential observer bias. Dukart et al.
[38] used voxel-based morphometry, while Tendolkar et al.
[40] and Abbot et al. [37] both used FreeSurfer [42] for
volumetric segmentation and analysis. Compared with
these studies we will recruit more patients, use state of the
art automatic segmentation procedures, and radiology
readers will be blinded to study group and the time point
of MRI scans. In addition, by applying multimodal imaging,
structural changes can be assessed with respect to changes
in diffusion properties, susceptibility weighted imaging
(SWI) and fluid attenuated inversion recovery (FLAIR) im-
aging. Our design will allow longitudinal tracking of brain
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changes; 1-2 hours after the first ECT, after treatment
completion and at 6 months follow up.

Gamma-Aminobutyric acid (GABA) and connectivity
ECT has anticonvulsive effects and is sometimes used in
the treatment of status epilepticus [43]. One hypothesis
suggests that the magnitude of increase in seizure
threshold, induced by ECT, is important for the anti-
depressant efficacy [44]. Drugs that enhance GABAergic
neurotransmission are known for their anticonvulsant
effect, and the role of amino acid neurotransmission
systems, particularly reduced function of GABAergic
neurotransmission has been increasingly appreciated in
major depression (for reviews, see [45,46]). Tiagabine,
a selective GABA reuptake inhibitor was shown to be
effective in treatment of depression with anxiety [47]. A
post mortem study of gene expression in elderly de-
pressed patients found alterations in GABA and glutam-
ate pathways markers indicating diminished activity in
the anterior cingulate cortex (ACC) [48]. A recent meta-
analysis suggested increased resting-state activity in the
rostral ACC as a biomarker for treatment response in
major depression, and a shift from GABA- to glutamate-
mediated modulation was suggested [49].
Interestingly, one early study found increased concen-

trations of cortical GABA after ECT in depressed pa-
tients by use of proton magnetic resonance spectroscopy
(1H-MRS) [50], however this finding has to our know-
ledge not been reproduced by other groups.
It has recently been suggested that “hyperconnectivity”

in networks involved in mood regulation can be reduced
after a course of ECT [51,52]. This finding may seem
contrary to findings of increased fractional anisotropy
(FA) in frontal limbic projections after a course of ECT
[53,54]. FA is often regarded as a measure of white mat-
ter tract integrity and increased axonal integrity may
seem contra-intuitive if one expects reduced connectiv-
ity after ECT. Possible explanations could be that the
projections that are “enhanced” by ECT are GABAergic,
or that improved integrity of certain projections may lead
to more coordinated electrical activity in these projections,
which overall is detected as “reduced connectivity”.
Our project will encompass measures of neurotrans-

mitters (GABA and glutamate by 1H-MRS) and diffusion
parameters (e.g. fractional anisotropy, mean diffusivity
and separation of restricted and hindered water by Re-
striction Spectrum Imaging, RSI [55]), enabling longitu-
dinal investigations of GABA- and glutamate levels as
well as white matter properties in the same patients.

ECT and harmful effects
ECT has been a controversial treatment from its intro-
duction. The most important side effects are related to
memory impairments [6] and it is recommended that
the patients’ cognitive functioning is monitored both dur-
ing and after treatment [16]. A recent randomized con-
trolled trial in treatment-resistant bipolar depression found
reduced autobiographic memory consistency after ECT
but no deterioration of general neurocognitive function
[13]. Structural damage to the human brain has to our
knowledge, never been documented to be caused by ECT.
Case studies with rare complications, such as subdural
hematoma, have been published [56], however a study
using cerebral Computer Tomography in 40 patients be-
fore and after ECT detected no changes caused by ECT,
even with convulsions lasting several minutes [57]. Both
conventional MRI and diffusion weighted imaging (DWI; a
sequence that is sensitive to edema) have failed to find
structural damage [58]. However, changes on DWI have
been shown for patients after status epilepticus [59]. If
brain injury occurs as a consequence of ECT, one may ex-
pect to find micro hemorrhages. SWI is extremely sensitive
to hemorrhages, and is routinely used in imaging of stroke
[60]. However, SWI, as an indicator of microvascular dis-
integrity, has to our knowledge never been applied after
ECT. In addition, by using 1H-MRS we will measure N-
acetylaspartate (NAA), which is primarily localized in neu-
rons and considered a marker for neuronal integrity [61].
Our project will use high field strength, state of the art

MRI and combine RSI, SWI and 1H-MRS which should
enable detection of more subtle post-ECT effects.

Hypotheses and aims
Based on the above discussions, the following main
hypotheses define the outline and aims of this project:

1. Hippocampal volumes increase after ECT treatment.
A) Specifically there is increased volume of the dentate
gyrus, which would suggest that the increase is caused
by neurogenesis. B) Changes in hippocampal structure
correlate with treatment response, neurocognitive
measures and increased concentrations of
neurotrophic factors in blood samples.

2. ECT causes increased levels of the neurotransmitter
GABA and changes the glutamate/GABA balance.
A) GABA concentrations correlate with treatment
response. B) Genes regulating GABA synthesis and
cycling are up-regulated or activated. C) A subset
of cortical projections is strengthened; a possible
mechanism causing reduced connectivity in frontal
areas.

3. ECT does not cause measurable signs of harmful
effects to the brain. A) No changes are detected on
microvascular (SWI) and microstructural (RSI)
imaging. NAA (measurend in the ACC) is
unaffected. B) Possible immediate post-ECT effects,
e.g. edema, that is detectable by diffusion weighted
imaging, are reversible.
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Methods and design
The study is prospective and observational, and all
patients will receive the standard ECT treatment, as it is
provided at the ECT-department at the Haukeland
University Hospital.
A flow chart of the study design is shown in Figure 1,

and details on study measures and variables are listed in
Table 1.
Relevant patients with depression are addressed in order

to establish whether they are willing to be screened for the
study. The patients must be assigned a patient number
and sign the consent form after receiving oral and written
information about the study prior to undergoing any study
procedures.

Patients
Forty patients accepted for ECT at Haukeland University
Hospital will be included. After inclusion of 8 patients,
the protocol was slightly revised and the remaining 32
patients will follow the protocol as described here.

Inclusion criteria
Patients (age > 18) referred to the ECT-unit and accepted
for treatment because of moderate and severe depression,
fulfilling the criteria for the following ICD-10 diagnoses:
Figure 1 Flow Chart of Study Design.
F31.3 and F31.4; F32.1 and F32.2 and F32.3; F33.1 and
F33.2 and F33.3. In addition the symptom intensity
must be verified by a score ≥ 25 on the Montgomery and
Åsberg Depression Rating Scale (MADRS). There is no
upper age for participation; however, the responsible
clinician will consider if patients are eligible for inclusion
(functioning, enable to give written informed consent).

Exclusion criteria
ECT treatment within the last 12 months. Pregnancy.
Patients unable to give written informed consent (ac-
cording to the responsible clinician or ECT responsible).
Patients who cannot participate in the MRI scanning
because of contraindications to MRI.

Control groups
There will be two control groups; a group of patients
undergoing ECV for AF (controls 1) and healthy controls
undergoing the same investigations as the ECT patient
group, but not receiving ECT or anesthesia (controls 2).

Controls 1
In order to control for the potential effect of anesthesia
on MRI images (particularly with regard to the spectros-
copy) and blood samples, 15 patients referred for ECV



Table 1 Variable overview

Study visit 1 2 3 4 5

Time point test <7 d of
first ECT

1– 2 h before
first ECT

1– 2 h after
first ECT

7 – 14 d after
last ECT

6 mo after
ECT-series

Informed consent X

Diagnostic interview MINI plus X

Clinical assessment Clinical examination X

Illness history, previous episodes and
ECT-treatment

X

Current and concomitant medication X X X

Symptom severity MADRS X X X

CGI X X X

Relapse Interview X

Overall cognitive function MMS X X X

Neuropsychological assessment WASI X X

CVLT-II, Rey, Digit span from WASI-R,
WCST, D-kefs: Color-Word interference
test, Word fluency, Tower, TMT, CPT,
Digit symbol WAIS-R, Pegboard

X X X

Autobiographical memory AMI-SF X X X

Everyday memory EMQ X X X

Cognitive control Dichotic listening X X X

Blood samples Full blood, EDTA and PAX-gen for
biobank

X1) X1) X1) X2)

Radiology MRI caput; T1 FSPGR, T2 CUBE FLAIR,
RSI, SWI, MRS, MEGAPRESS

X X X X

1)Before MRI.
2)Before and after MRI.
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of AF will be recruited. This is a patient group that re-
ceives similar anesthesia to ECT patients. This control
group will have 2 MRI scans; one 1-2 hours before ECV
and another MRI 1-2 hours after ECV. Blood samples
will also be collected for the biobank at time points indi-
cated in Figure 1. In addition to being a control group,
data that is acquired will be used in a pilot investigation
of potential effects of ECV of AF, if there are silent em-
boli to the brain. Such emboli would readily be detected
on the diffusion images. Antithrombotic treatment must
be Warfarin with an INR value above 2,0 at all measure-
ments for the last 3 weeks prior to DC cardioversion or
absolute compliant everyday use of Non-vitamin K an-
tagonist oral anticoagulants (NOACs) for 3 weeks. There
will be no changes in the treatment of their AF, patients
are only asked to participate in additional examinations
(MRI, blood samples) before and after ECV.

Controls 2
When analyzing longitudinal MRI data, it is important to
control for effects on imaging parameters that are a con-
sequence of repeated measurements/time, rather than
effects of the treatment. 15 healthy, age and gender-
matched volunteers will be recruited for repeated MR
imaging, blood samples and neuropsychological testing;
following the protocol for the ECT patients (see Figure 1)
but with no ECT or anesthesia.

ECT treatment
ECT will be administered with a Thymatron System IV
Somatics Inc. providing brief-pulse, square wave, con-
stant current.

Anesthesia
Anesthesia will be obtained with either the short acting
anesthetic thiopental or propofol. All patients will be
hyperoxygenated with oxygen-enriched air 1 to 2 mi-
nutes before and during the initiation of anesthesia to
optimize induction of seizures [62,63]. Other medication
necessary during anesthesia (e.g. for premedication or
termination of prolonged seizure) will be left to decision
by the anesthesiologist.

Stimulation electrodes placement
Stimulation electrodes will be placed ad modem d’ Elia
[64] (Right unilateral electrode placement, RUL), as high
dosage ECT with unilateral placement of stimulation
electrodes has shown to be as effective as bilateral place-
ment [65,66]. Three sessions per week will be given until
remission, with a maximum of 18 sessions.

Stimulus
The duration of the stimulus pulse will be set to 0.5 ms.
The initial stimulus energy will be determined by an age
based method, where the energy (E) is calculated as fol-
lowing [67]: Patient’s age in years × 5 ≅ stimulus charge
in mC. The Thymatron delivers a charge of 25.2 to 504
mC in 20 equal steps, set by the % Energy dial. Accord-
ing to the above formula this makes: Patient’s age in
years ≅% Energy. In order to consider gender specific
differences in seizure threshold, the % Energy was
adapted as following: For male patients: % Energy + 5 to
10%. For female patients: % Energy - 5 to 10%.
Seizure adequacy
The adequacy of each seizure will be evaluated by the
ECT-clinician based on seizure duration, δ-waves, re-
orientation time and clinical effect. The treatment should
be followed by a comatose state, from which conscious-
ness is gradually regained [68]. If a sufficient seizure was
not obtained in one session the patient will be either re-
stimulated in the same session or/and stimulus parameter
will be adjusted in the next session.
Clinical assessments and Neuropsychological tests
Clinical assessments and monitoring will be performed
largely in accordance with a recently used protocol [69],
as detailed below and summarized in Table 1.
Patients will be diagnosed on the basis of a clinical

interview supported by information from hospital re-
cords. The diagnoses will be subsequently verified by the
Mini-International Neuropsychiatric Interview (MINI;
specifically the MINI-Plus) [70]. Symptom intensity will
be measured with MADRS [71] and the Clinical Global
Impression (CGI) [72].
Patients will be assessed before the treatment, and

weekly during the ECT-series with the Mini-Mental
State (MMS) by their treating clinician.
A neuropsychological test battery that includes both

standardized and normalized tests and experimental
methods to assess memory, attention, psychomotor
speed and executive functions, will be applied at inclu-
sion, after treatment and at follow up, as listed in Table 1.
The neuropsychological assessment will consist of stan-
dardized tests measuring cognitive functioning within
verbal and visual memory with California Verbal Learn-
ing Test-II (CVLT-II) Rey Complex Figure Test (RCFT)
and Digit span from Wechsler Adult Intelligence Scale,
Revised (WAIS-R), executive functioning with Wisconsin
Card Sorting Test (WCST), and test from the Delis –
Kaplan Executive Function System (D-kefs): Color-Word
Interference Test (CWIFT), Verbal fluency (VF), Tower,
Trailmaking test (TMT), attention measured with Con-
ners’ Continuous Performance Test-II (CPT), Digit symbol
from WAIS-R and motor speed (Pegboard), in addition to
general levels of intellectual ability Wechsler’s Abbreviated
Scales of Intelligence (WASI). Autobiographical memory
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will be assessed by using the Autobiographical Memory
Interview-Short Form (AMI-SF).

Dichotic listening task
Placement of electrodes on the non-dominant side
(unilateral stimulation) is important to reduce cognitive
impairment as a side effect of ECT treatment [65,73].
Traditionally, hemispheric dominance is evaluated by
handedness measures, which however is a crude meas-
urement when it comes to subtle differences in func-
tion between the cerebral hemispheres. It is therefore
suggested to use a neuropsychological task, dichotic
listening, which has been shown to be comparable in
sensitivity to reveal functional differences between the
hemispheres to the Wada test [74,75]. We will apply
the Bergen dichotic listening test [76] both as a meas-
ure of language dominance and as an effect parameter,
i.e. as a measure of cognitive control since it has been
shown that varying instructions about attention focus
while performing the dichotic listening task reveals cap-
acity for cognitive control [77]. A recent development
makes it possible to deliver the test bedside, by use of
an application on a hand held device; iDichotic, Bergen
fMRI group [78]. The prediction is that treatment re-
sponse correlates with improved results for the instruc-
tion condition that requires highest cognitive control.

MRI acquisition and post processing
Imaging will be performed at 4 time points: ~1-2 hours
before and ~1-2 hours after ECT, ~ 7-14 days after
ended treatment and at follow-up 6 months after ended
treatment. The same MRI protocol will be applied at
each time point (Figure 1).

MRI Protocol
Initial imaging will be performed on a 3T GE Signa
HDxt system with 8 channel head coil, but most of the
subjects will be scanned on a 3T Discovery MR750 sys-
tem with 32 channel head coil. The protocol (details
specified for the MR750 system) includes a T1-weighted
fast spoiled gradient echo, FSPGR (TE/TR = 2.9/6.7 ms;
TI = 600 ms, flip angel = 8°; FOV = 25.6 cm; voxel size =
1.0 × 1.0 × 1.0 mm3, acquisition time = 10:32 min.); a T2-
weighted CUBE FLAIR sequence (TE/TR = 129/6000
ms; TI = 1855 ms; FOV = 25.6 cm; voxel size = 1.0 ×
1.0 × 1.0 mm3, acquisition time = 08:51 min.); for RSI, a
single-shot pulsed-field gradient spin-echo EPI sequence
(TE/TR = 85/7000 ms; FOV = 24 cm, matrix = 96 × 96 ×
55 with 4 b-values (b = 0, 500, 1000 and 4000 s/mm2

and 6, 6 and 15 unique directions for the nonzero b-
values, respectively), acquisition time = 3:30 min.); for
SWI a gradient recalled echo 3D Ax SWAN sequence
(TE/TR, 23/37 ms; slice thickness 2 mm; acquisition
time 3:30 min.). For 1H-MRS, both single-voxel point-
resolved spectroscopy, SV PRESS, and a spectral editing
method, MEGA-PRESS [79], will be used. The SV-PRESS
(TR = 1500 ms, TE = 35, 128 scans; acquisition time = 3:48
min.) voxel will measure 2 × 2 × 2 cm3 and the placement
alternate between right and left anterior cingulate cortex
(ACC) for each new patient. For MEGA-PRESS (TR =
1500 ms, TE = 68 ms, 192 scans, acquisition time = 10:06
min.) the voxel will measure 3 × 3 × 3 cm3 and cross the
mid-line, covering both right and left ACC in every
patient.

Image processing and analysis
Structural data will be analyzed using FreeSurfer [42]
and Quarc [80]. In a preprocessing step, structural
images will be corrected for distortions caused by
gradient non-linearity [81], diffusion weighted (DW)
images will be corrected for motion, eddy currents
and magnetic susceptibility artifacts [82,83] and the
DW volume will be co-registered to the structural
volumes. SWI data will be analyzed using Statistical
Parametrical Mapping (SPM8/SPM12) analysis soft-
ware package (Wellcome Department of Cognitive
Neurology) running under MATLAB (Mathworks).
RSI data will be analyzed using custom made soft-
ware and processing and/or with FSL [84,85] and
MRS data by using LCModel Software [86]. SPSS will
be used for statistical analyses.
Analysis methods and software may change if newer

versions or other software is found to be more suitable
than the above mentioned.

Blood samples and biobank
We will analyze multiple peripheral blood biomarkers
relevant for the hypotheses outlined in the introduction.
Due to the constant progress in the field, the decision
on the specific markers to analyze and how to perform
the analysis should not be taken too early. However, can-
didate markers include neurotrophic factors (e.g. BDNF),
pro-inflammatory cytokines, neurotransmitter related
amino acids, monoamines and related metabolites (e.g.
GABA, glutamate, kynurenines, neopterin) and S100B (a
marker of damage to the blood-brain barrier). Measure-
ments of peripheral biomarker levels will be supple-
mented by analyses of DNA variants and peripheral
blood mRNA levels (array based genome wide DNA
genotyping, methylation profiling of target genes and
real-time reverse transcription polymerase chain reac-
tion mRNA measurements). Blood samples (up to 30
ml) will be collected and stored as whole blood, serum
and on an RNA stabilization medium at -80°C for later
analysis. A dedicated research biobank “Imaging and
Depression - ImDep” has been generated for the project
using existing infrastructure (storage, alarm and registra-
tion) established in a previous project.
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Power analysis
Only one study has measured GABA changes after ECT
by MRS in humans, and found an increase from 0.85
(SD = 0.34) to 1.51 (SD = 048) mmol/kg brain tissue,
N = 8 [50]. Using a mean difference of 0.6 and a SD of
0.5, α = 0.05 and power of 0.8 the total sample size
needed would be 8 (calculated using G*Power 3.1.3,
paired t-test, two-tailed).
For analysis of hippocampal volumes, data from

Nordanskog et al. [41] were used. For the right hippo-
campus the mean difference in volumes after a course
of ECT was 133 μL with a SD of 123 μL, similar analysis
as above indicates that the sample size needs to be at
least 9.
We found no studies on SWI and DWI imaging that

could be used to estimate power of the suggested study
protocol. Based on the analysis above, a total of 10
patients is a minimum. Due to wide inclusion criteria,
expected heterogeneity of the sample population and in
order to increase the robustness we intend to include
40 patients.

Ethical considerations
The study is based on written informed consent. Patients
will receive standard ECT treatment. The study, and the
specific Biobank, are approved by the Regional Commit-
tee for Medical and Health Research Ethics, REC South
East, Norway.

For patients and controls
Participation in the project will for the patients include
MRI scans (4 time points) and blood samples (5 time
points) as well as neuropsychological testing (3 time
points) that are not part of the standard treatment regi-
men. For controls1 (AF-ECV) participation will include
MRI (2 time points) and blood samples (2 time points)
that is not part of the standard clinical treatment. For
controls2 participation will require MRI scans (4 time
points) and blood samples (5 time points) as well as
neuropsychological testing (3 time points). Controls2 will
be economically compensated for participating.
There are no known adverse effects related to MRI

scanning when standard safety procedures are followed.
However, scanners are noisy and scans will last up to
one hour. Blood samples will require venous puncture.
A neuroradiologist will screen the first MRI scan for
each participant. In the case of incidental findings of
relevant pathology, the participant will be offered refer-
ral to medical consultation.

For science and society
As health care professionals we are obliged to ensure
that our treatments are well documented and safe. Thor-
ough investigations of ECT effects will improve patients’
feeling of safety and possibly reduce stigmata related to
the condition. Depression is a common disorder with
substantial costs for individuals, employers, and health
and welfare systems. New knowledge about the patho-
physiology of major depression as well as mechanisms of
action and possible harmful effects of ECT is crucial and
may lead to new prospects for future treatments.
Discussion
By use of multimodal neuroradiological imaging as well
as multidisciplinary investigations spanning from genes
to behavior, the study aims at increasing knowledge
about what ECT does to the brain, such as: a) Does ECT
affect microvascular integrity? b) How are hippocampal
volumes related to ECT parameters and treatment ef-
fects? c) Does GABA-levels increase after ECT?
Several of the measures have to our knowledge never

before been applied in this setting, e.g. RSI, SWI, Di-
chotic listening, and a control group that receives a
similar anesthesia and electrical stimulation to the chest.
Strengths of the study are comprehensive investigations
and a moderately large sample size. Potential weaknesses
are the rather broad inclusion criteria and expected het-
erogeneity in the patients’ use of medications, both of
which may increase the variance in study measures.
However, ECT is an unspecific treatment and although
we expect that its effects on the brain and the human
physiology should be largely independent of diagnosis,
medication use and age, it will be interesting to see how
ECT-induced changes relate to treatment effects and
clinical parameters.
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