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Abstract

Background—Survival after heart transplantation (HTx) is limited by complications related to 

alloreactivity, immune suppression, and side effects of pharmacological therapies. We hypothesize 

that time-dependent phenomapping of clinical and molecular datasets is a valuable approach to 

clinical assessments and guiding medical management to improve outcomes.

Methods—We analyzed clinical, therapeutic, biomarker, and outcome data from 94 adult HTx 

patients and 1557 clinical encounters performed between January 2010 and April 2013. 

Multivariate analyses were employed to evaluate the association between immunosuppression 

therapy, biomarkers, and the combined clinical endpoint of death, allograft loss, retransplantation, 

and rejection. Data were analyzed by K-means clustering (k=2) to identify patterns of similar 

combined immunosuppression management, and percentile slopes were computed to examine the 

changes in dosages over time. Findings were correlated with clinical parameters, HLA antibody 

titers, peripheral blood mononuclear cell gene expression of the AlloMap test genes, and an 

intragraft, heart tissue gene co-expression network analysis was performed.

Results—Unsupervised cluster analysis of immunosuppressive therapies identified two groups, 

one characterized by a steeper immunosuppression minimization, associated with a higher 
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likelihood for the combined endpoint, and the other by a less pronounced change. A time-

dependent phenomap suggested that patients in the higher event rate group had increased HLA 

class I and II antibody titers, higher expression of the FLT3 AlloMap gene, and lower expression 

of the March8 and WDNR40A AlloMap genes. Intramyocardial biomarker-related co-expression 

network analysis of the FLT3 showed an immune system-related network underlying this 

biomarker.

Conclusion—Time-dependent precision phenotyping is a mechanistically insightful, data-driven 

approach to characterize patterns of clinical care and identify ways to improve clinical 

management and outcomes.

Introduction

Despite medical advances in heart transplantation (HTx), the median survival is only 13 

years.1 Survival is limited by effects of the immune system on the cardiac allograft and by 

clinical consequences related to immunosuppression.2 Infection, rejection, malignancy, and 

cardiac allograft vasculopathy (CAV) are common complications after HTx.3,1 The 

mechanisms driving these diseases are not well understood, but they generally involve 

immune-mediated responses against the cardiac allograft. Antibodies to cardiac donor 

allograft antigens are risk factors for ACR, CAV, and cardiac allograft failure, compromising 

survival.4,5,6

The effect of immunosuppression on determinants of graft survival is not well understood, 

and current therapies have not been effective in preventing the development and progression 

of ACR, CAV, and cardiac allograft failure.7,8,9 Typically, management of 

immunosuppression involves down-titration of one or more drugs over time, with various 

combinations of drugs and dosages making it difficult to assess the effects of these 

combinations.10,11 Studies that involved combination therapy have shown differential 

incidences of CAV,12,13 and studies using monotherapy have been linked to similar 

outcomes and lack of CAV progression.14 Changes in the management of various drugs are 

also associated with differential effects on the immune system of the host.15 Although 

physicians strive to make clinical decisions based on the knowledge embodied in medical 

literature, in the absence of sufficient research guiding clinical practice, decision-making is 

challenging. Each encounter requires an individualized decision-making process to avoid 

complications caused by activation, suppression, and positive or negative modulation of the 

immune system.

The use of noninvasive biomarkers to provide information on the individualized immune 

response after HTx has guided decision-making and improved clinical care. Yet, no single 

biomarker is sufficient. Enabled by sophisticated computational tools and algorithms, 

precision medicine aims to improve prevention and treatment strategies.16,17 Cluster analysis 

with dense phenotypic data, “phenomapping,” has been introduced to improve classification 

of complex heterogeneous phenotypes.18,19,20 Reports on utilizing large datasets to identify 

clinical or immune-related biomarkers to guide management optimization after HTx are 

lacking.

Bakir et al. Page 2

J Heart Lung Transplant. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We aimed to improve characterization of longitudinal phenotypes for guiding clinical 

management, hypothesizing that time-dependent variation in the management of 

immunosuppression is associated with differential clinical outcomes. We assessed the 

individual and time-dependent variation in the management of immunosuppression, 

classifying each patient using an unsupervised, machine-learning algorithm and comparing 

the relationship of the classification to a predefined composite clinical outcome. 

Subsequently, we analyzed the immune-specific phenotype by evaluating the differential 

clinical and biomarker profiles associated with the variation in time-dependent management 

of immunosuppression.

Methods

Study Population

Data from all adult patients who underwent HTx at the University of California Los Angeles 

between January 2010 and April 2013 were prospectively collected and retrospectively 

analyzed. Patients who were not followed regularly after transplant at our program were not 

included in the analysis. Medical records were accessed to collect variables obtained from 

each of outpatient HTx clinic visits. Data was obtained manually by a single investigator and 

through queries of structured data obtained from the electronic health records. Raw data for 

the AlloMap gene expression test was obtained from the manufacturer of the test. There 

were a total of 152 adult heart transplants between 2010–2013. Included in the analysis were 

94 adult HTx recipients who had their post-transplant follow up at our center. Overall, these 

patients contributed 1,557 clinical encounters. A significant number of patients during the 

study period transferred their care to another institution either following their healthcare 

plan’s standard practice of transitioning after 45 days post-HTx or to continue their care 

under a different care team. For these patients (n= 58), data was not available and therefore 

could not be included in the study. The number of encounters used in each step of the 

analysis varies based on data availability as described below. The study was approved by our 

Institutional Review Board, and a waiver of informed consent was requested given the 

retrospective nature.

Clinical, Laboratory and Biomarker Data

Clinical and immune-related variables were collected at baseline and longitudinally during 

post-HTx follow-ups as part of our standardized allograft and immune monitoring protocol, 

which includes endomyocardial biopsies, brain natriuretic peptide (BNP) measurements, 

calcineurin inhibitor (CNI) levels, mycophenolate (MMF) and prednisone doses, anti-HLA 

class I and class II antibody screening by flow panel reactive antibodies (PRA), DSA single-

antigen determinations by MFI, CD4 T-Cell ATP measurements (Viracor Eurofins, Lee’s 

Summit, MO), and a molecular classifier (Allomap Molecular Test, CareDx Inc. Brisbane, 

CA).

Immunosuppression management was accomplished following a standard regimen with a 

CNI (typically tacrolimus), an antimetabolite (mycophenolate mofetil or MMF), and 

steroids. Immunosuppression minimization followed a standard protocol in addition to the 

clinical judgment of the treating clinician.21 Medication doses for patients treated with either 
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cyclosporine or controlled-release mycophenolic acid were converted to equivalent levels or 

doses of either tacrolimus or MMF, respectively.

Endomyocardial biopsies are typically performed during the first 3–6 month post-transplant 

and are graded by a panel of cardiac pathologists following the consensus guidelines.22 For 

clinically stable patients, non-invasive rejection surveillance is implemented using AlloMap 

gene expression test.

Post-transplant Luminex PRA testing (Gen-Probe, San Diego, California) is usually 

performed at weeks 1, 2, 3, 4, and 6; months 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 21, and 24; and 

quarterly thereafter.11 For patients with positive antibody screening, Luminex bead-based 

mean fluorescence intensity (MFI) assays (One Lambda, Inc., Canoga Park, CA) are used to 

detect antibodies against single anti-HLA class I and class II antigens. The presence of CAV 

is routinely assessed by coronary angiograms and intravascular ultrasounds (IVUS), 

typically at 6 weeks, 1 year, and yearly thereafter during the first 3 to 5 years after HTx, with 

variations according to clinical criteria. CAV was graded by interventional cardiologists and 

independently verified by one of two transplant cardiologists and a member of the research 

team following published guidelines.23

Information on expression profiling of AlloMap (CareDx Inc, CA) molecular test genes 

were available after day 56 post-HTx and was obtained monthly during the first year post 

HTx and generally every 3 months during the 2nd and 3rd years. AlloMap testing entails 20 

genes, 9 control and 11 informative genes. A molecular score is obtained through the 

combined analysis of these genes, which run in triplicate including IL1R2, FLT3, ITGAM, 

MARCH8, WDR40A, PF4, C6orf25, ITGA4, PDCD1, RHOU, and SEMA7A.24,25,26 We 

focused this analysis on expression of the individual genes.

Assessment of Clinical Outcomes

We evaluated the combined endpoint of time to either biopsy-proven ≥2R acute cellular 

rejection (ACR), grades 1 or 2 antibody-mediated rejection (AMR), ≥ISHLT 1 CAV1, death, 

allograft failure or re-transplantation.

Statistical Analyses

To characterize the study population and to make comparisons between groups, descriptive 

statistics (counts, percentages, means, and standard deviations) were generated for baseline 

demographic and clinical information. Trajectories of the medications and biomarkers were 

characterized by use of a mixed-effects linear regression model with a linear random and 

fixed effect for time since transplant (in days) nested within a patient random intercept. 

Patients were assigned values for their intercepts and slopes based upon the fixed effect 

intercepts (or slopes) and their individual deviations from the mean value. The intercept 

values represented the starting levels for the patients, and the slopes the rates of change. 

These values were estimated by empirical Bayesian posterior means. A Cox proportional 

hazards model was used to assess the association between clinical endpoints and the 

estimated slopes and intercepts. These models were fit using data from > 30 days post-HTx 

until the event time. Since there was no standard measure of the long-term exposure to 

immunosuppression, the slope and intercept of the time-dependent exposure measure (either 
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dose for MMF or prednisone or serum level for CNI) were combined by evaluating the 

percentage of maximum dosage for MMF (max = 3,000 mg), prednisone (max = 20 mg), 

and CNI serum level (max = 15 ng/ml). After conversion to percentiles, values > 100 percent 

were rounded to 100. The mixed model was used to create a slope and intercept for each 

patient for the combined percentile biomarker. Subsequently, K-means clustering (k=2) was 

used to identify patterns of similar immunosuppression management among patients, based 

on the MMF, CNI, and prednisone percentile slopes. These analyses and the aforementioned 

descriptive statistics were conducted using Stata version 14 (StataCorp LP, College Station, 

TX).

Immunophenomap, the visual arrangement of directly or indirectly involved clinical and 

immune monitoring variables was performed in GeneSpring 12.6 (Agilent, Santa Clara, 

CA).27 The unpaired Mann-Whitney U-test was used to identify statistically significant 

differences among AlloMap genes over time. A two-sided p-value < 0.05 was considered 

statistically significant. For residual missing data, imputation was performed on <10 % of 

the data using the multiple imputation method in the statistical analysis software package, 

SPSS (IBM Corp, New York, USA). The data were further organized into time-dependent 

groups, including information for single patients per time points in each group (as available) 

organized into 8 time points using the first single patient encounter information per time 

group (timepoint 0 < 30 days; timepoint 1, 30–50 days; timepoint 2, 50–100 days; timepoint 

3, 100–150 days; timepoint 4, 150–200 days; timepoint 5, 200–300 days; timepoint 6, 300–

365 days; and timepoint 7, ≥365 days). These groups included 76, 82, 89, 70, 66, 66, 54, and 

66 patients from timepoints 0 to 7, respectively. There were 94 patients and 561 encounters 

available to generate clinical and immune-related phenomaps, and 82 patients and 361 

encounters for the AlloMap gene expression test genes’ phenomap. The number of 

encounters per patient may vary and not be the same for each patient.

Biomarker-based intramyocardial gene expression network

To correlate clinical findings with intramyocardial gene expression, we used tissue samples 

collected from 52 HTx patients: 20 patients from the same cohort and 32 independent 

patients who provided a total 64 heart tissue samples. A description of the methods and 

cohort is provided in the supplementary material section.

Results

Baseline Characteristics of the HTx Recipients

Data on 94 adult patients who received a HTx were collected. The major demographic and 

clinical characteristics of the population are summarized in Table 1. Most patients were male 

(n=71, 73%), with a predominant proportion of Whites (54%). The mean age was 54.9 

± 13.4 years. Of the population, 8.5 % (n=8) had histological evidence of varying degrees of 

ACR, AMR, or both. There were 6 episodes of AMR, and 3 patients had clinically 

significant (≥2R) ACR. The mortality rate for patients included in the study was 4% at a 

median follow-up of 461 days (Table 4).
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Relationship between Immunosuppression, Biomarkers, and Clinical Outcomes

The slope for CNI was associated with time to the defined combined endpoint (Table 2); 

with each 1-unit increase in the slope (i.e., slower rate of minimization) of CNI level, there 

was a 20% decrease in risk of developing the combined clinical endpoint adjusted by age 

and gender (hazard ratio 0.80 [0.66, 0.96] p=0.018) (Table 2). Although, in unadjusted 

models, a slower rate of decline for prednisone was associated with an increased risk of the 

endpoint (HR=1.05, p=0.036), this was not seen after accounting for the effects of 

covariates. The prednisone intercept had low variability and could not be modeled. Neither 

the slopes nor intercepts for the other biomarkers alone were associated with the risk of 

having the combined endpoint.

Cluster Trends of Immunosuppression

Cluster analyses of the percentile slopes for MMF, CNI, and prednisone were conducted 

using 2 clusters (k=2), patient groups 1 and 2. A summary of the slope differences between 

clusters defined for each biomarker is presented in Table 3. The results indicated that group 

1 (faster rate of immunosuppression minimization) also had the highest incidence of the 

combined endpoint (Table 4). The probability of occurrence of the combined endpoint in 

group 1 was 80% and 67% in group 2 (Table 4). A Kaplan-Meier analysis showing event-

free survival is presented in Figure 1. Differences between the groups were compared using 

a Cox regression model, adjusting for age and sex. These showed that patients with faster 

rates of immunosuppression minimization (group 1), had a greater risk for the combined 

endpoint (p<0.01) compared to those with a slower rate (group 2). There was no significant 

association with patient groups and occurrence of de novo donor-specific antibodies 

(dnDSA), ACR (2+), AMR (1+), and mortality. Development of CAV was significantly 

associated with the patient group, suggesting that the rate of immunosuppression 

minimization may be involved in the development of allograft-related endpoints. The 

probability of developing CAV detected through angiography and IVUS was, respectively, 

73.6% in group 1 for angiography; 89.2% in group 1 for IVUS; 60% in group 2 for 

angiography; and 92.9% in group 2 for IVUS (Table 4) with higher time to event rates. All 

deaths occurred in Group 1, and they were mainly of cardiac allograft origin.

Time-Dependent Phenomapping of Patient Groups

Correlation of the different clinical variables used to guide clinical management and the 

differences between the two groups are provided in Figure 2. Compared to group 1, group 2, 

at the time of transplant, had elevated HLA antibodies, which could lead to a slower taper in 

immunosuppression. For HLA class II antigens, most DRB locus antigen levels had the 

highest MFI levels; most DP and DQ antigens had intermediate strength; and most HLA 

class I A, B, C, and Cw had lower levels over time compared to group 1 (Figure 3). In the 

figures, data is visually displayed as heatmaps, representing only a small subset of patients 

with no statistical significance. The changes in immunosuppression minimization across 

patient groups is also provided as a heatmap showing the clinical management of 

immunosuppression for each group over time. Levels of BNP and CD4-T cell ATP over time 

are also depicted. There were no statistical differences between the groups, but patterns in 

the data trends are suggested (Figure 2). Assessment of genes that are part of the AlloMap 
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Gene Expression Test was accomplished for a subset of 435 samples. Among the 11 

AlloMap genes (Table 6), patients in the steep management group were more likely to have 

higher levels of the FLT3 gene and lower levels of March8 and WDR40A genes (Figure 4).

Evaluation of the FLT3 Molecular Network in Heart Tissue Biopsies

We explored the WGCNA 64 heart tissue biopsy network (described in supplementary 

material), focusing on the FLT3 gene network, which was upregulated in patients with 

rejection. In this network, highly correlated genes were aggregated into modules following 

the WGCNA algorithm and consisted of 19 modules, with each module having several 

hundred genes. The FLT3-related network was largely part of an immune system module 

linked to more than 600 genes with over 8800 interactions enriched by genes described in 

the pathophysiology of the immune response associated with transplantation (Figure 5). 

Nodes related to FLT3 included the genes CD69, FCGR1C, PTPRCAP, CIITA, and 

MIR21.28,29,30 Analysis of the expression of the intramyocardial MIR21 target gene of 117 

experimentally proven targets (either by reporter assay, Western blots, or qPCR) showed 

increased mRNA abundance for 54 targets (46.1%, Figure 6).

Discussion

This study, which involved a complex dataset of various clinical parameters, was designed to 

understand the multivariable and time-dependent assessment of the relationship between 

biomarkers and clinical outcomes. An unsupervised cluster analysis was used to group 

patients into different time-dependent immunosuppressive strategies and to evaluate time-

dependent changes in immune markers. Within this cohort, we differentiated two groups of 

patients with different event-free survival rates and longitudinal therapeutic and 

immunophenotypic profiles. Patients with higher event rates had more pronounced 

immunosuppression minimization and were possibly more likely to have HLA class I or 

class II antibodies, upregulation of the FLT3 gene, and down regulation of March8 and 

WDR40A genes. As determined in a heart biopsy dataset, intragraft gene expression of the 

FLT3 biomarker revealed a well differentiated inflammatory network with genes well known 

to be associated with cardiac allograft rejection.

A limitation in clinical studies is the ability to reconstruct or predict the effect of an 

intervention, reflecting the common pattern of practice in which a combination of drugs is 

used and minimized over time. In clinical medicine, predictive models tend to be 

assessments at a single point in time, rather than a longitudinal time-based information. To 

overcome this limitation, we conducted an unsupervised cluster analysis to capture 

information related to the therapeutic management of these patients on combined 

immunosuppressive therapies. Time-dependent clustering showed that a steeper (faster) 

decrease in immunosuppression was associated with an increased incidence of the combined 

endpoint of clinically significant cardiac allograft rejection, CAV, death, or re-

transplantation. While these findings do not claim causality, they capture the practice of 

immunosuppression management over time and provide insights that can be helpful to 

design data-driven personalized care to guide long-term follow-up after transplantation.
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Although immunosuppression minimization after HTx is a common goal of clinical practice, 

it may be associated with unwanted allograft effects. In the TICTAC study, treatment with 

the single agent tacrolimus was non-inferior to a combination of tacrolimus and 

mycophenolate.31 In a subset of these patients, there was no evidence of greater 

development of vasculopathy, suggesting that single agent strategy is as safe and effective as 

standard care. In our study, there were molecular changes in the blood of patients with 

different management of immunosuppression. These changes included changes in anti-HLA 

antibody detection over time, mainly due to anti-HLA class II antibodies. Various types of 

HLA class I and II antibodies have been implicated in rejection and other immune-related 

diseases.32,33,34 There was also variability in the expression of the IL2Ra, FLT3, MARCH8, 

and WDR40A genes. The IL2Ra gene is involved in immune regulation by controlling T 

cells.35 Murine heart donors lacking the FLT3 ligand exhibit prolonged survival.36,37 In 

patient group 2, the IL1R2 and FLT3 genes were down-regulated during the early period 

post-transplant. Conversely, in group 1, the MARCH8 gene, which is involved in control of 

HIV-1 infections,38 and the WDR40A (DCAF12) gene, which is involved in protein 

ubiquitination,39 were down-regulated in a more pronounced way. These findings were 

evident in the early post-HTx period, at least after the second month. Intramyocardial FLT3 

gene expression network revealed the relationship between biomarker and allograft biology.
28,29,30,40

Our study does not claim causality or provide a standardized framework to guide 

immunosuppression management. Instead, we reveal patterns hidden in the data and provide 

the initial step towards personalized, data-driven clinical care. To guide clinical 

management, time-dependent models and decision support algorithms should be further 

developed to allow better informed clinical decision making. These models, which would 

facilitate the transition to a more preventive rather than reactive clinical care, are 

incrementally perfectible, as more observations and contextual information is obtained while 

building on a natural experimental framework.41

For natural experimentation, clinical scenarios and outcomes are used to automate the 

creation of these experiments. Data driven approaches of cumulative information extracted 

from clinical records will contribute to improvement in machine learning and personalized 

medicine. Eventually, this needs to be validated, and the strategy should be randomly tested 

in a control clinical trial or replicated independently at the least. Our study provides the first 

introspection into the complexity of multiscale analysis of clinical data and to the value of 

data science which can help inform clinical decision making.

Limitations

Our study has to be interpreted in the context of several limitations which include a small 

sample size, observational study design, variability in the evaluation of rejection and CAV, 

the variable number of samples in the evaluation, and the inability to support causation. The 

reason behind each clinical decision is a very important but challenging task to precisely 

capture in a retrospective, observational study and requires further development. Yet, our 

findings should be carefully thought as they reveal a group with higher allograft related 
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event rate characterized by an overall reduced exposure to immunosuppression when 

observed overtime.

Conclusion

Our data demonstrate that time-dependent experiments allow assessment of the differential 

clinical outcomes and distinctive characteristics of the underlying immune biology of 

patients undergoing HTx. Noninvasive phenomapping, a meta-level approach, can produce 

information to support clinical decision making. Time-series phenomapping is helpful for 

categorization and identification of trajectories of natural and clinical variables. Such 

immunophenomapping, combined with other clinically related variables and real-time 

translational experimentation, is promising for early identification and prediction of clinical 

events.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Associations of clusters (patient groups) with time to individual events and the 
combined endpoint
Kaplan-Meier curves. Differences between patient groups adjusted for age and sex were 

assessed by Cox regressions. Panel A, dnDSA Outcome; B, ACR 2+; C, AMR 1+; D, Death; 

E, Angio 1+; F, IVUS 1+; G, Combined Endpoint.
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Figure 2. Phenomap of clusters (patient groups) and immune variables over time
Phenotype Heatmap (PhenoMap) of immune variables over time. Columns represent 

individual patients in clusters and time. Rows represent individual phenotypes. 0, < 30 days; 

1, 30–50 days; 2, 50–100 days; 3, 100–150 days; 4, 150–200 days; 5, 200–300 days; 6, 300–

365 days; and 7, ≥365 days. Patient Group 1: Patients assigned to this cluster based on 

unsupervised statistical analysis; Patient Group 2: Patients assigned to this cluster based on 

unsupervised statistical analysis. Red=increased value of phenotype; Blue: decreased value 

of phenotype; HLA human leukocyte antigen; Cylex denotes Immuknow.
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Figure 3. Phenomap of clusters (patient groups) and HLA genes over time
Phenotype Heatmap (PhenoMap) of anti human leukocyte antigen (HLA) antibody levels 

over time. Columns represent individual patients in clusters and time. Rows represent single 

antigens. “0, < 30 days; 1, 30–50 days; 2, 50–100 days; 3, 100–150 days; 4, 150–200 days; 

5, 200–300 days; 6, 300–365 days; and 7, ≥365 days.” Patient Group 1: Patients assigned to 

this cluster based on unsupervised statistical analysis; Patient Group 2: Patients assigned to 

this cluster based on unsupervised statistical analysis. Red=increased value of phenotype; 

Blue=decreased value of phenotype Single Antigen Bead MFI for each HLA locus and 

alleles assessed. Only higher order denominations provided. Number of samples for each 

locus and alleles are variable. DQA, human leukocyte antigen class II; Allomap, molecular 

expression testing; and A, B, C, Cw, human leukocyte antigen class I Clinical variables (*) 

are provided for referenced and provided in more detail in figure 2.

Bakir et al. Page 14

J Heart Lung Transplant. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Phenomap of clusters (patient groups) and Allomap genes over time
Phenotype Heatmap (PhenoMap) of Allomap genes over time. Columns represent individual 

patients in clusters and time. Rows represent individual genes. “1, 50–70 days; 2, 70–100 

days; 3, 100–150 days; 4, 150–200 days; 5, 200–300 days; 6, 300–365 days; and 7, ≥365 

days.” Patient Group 1: Patients assigned to this cluster based on unsupervised statistical 

analysis; Patient Group 2: Patients assigned to this cluster based on unsupervised statistical 

analysis. Red=increased value of phenotype; Blue: decreased value of phenotype subset of 

patients and encounters for whom a sample of the AlloMap molecular test was available. 

HLA class I and class II average % for each group at different timepoints are provided.

Bakir et al. Page 15

J Heart Lung Transplant. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Intramyocardial FLT3 coexpression network
Intramyocardial FLT3 first-neighbor co-expression network, where nodes are genes and 

edges represent interactions among them. Size of the node reflects the degree or number of 

connections and the color denotes the gene’s network connectivity as inferred by gene co-

expression network analysis. Visualization was accomplished in Cytoscape. Second 

neighbors were removed for clarity.
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Figure 6. Intramyocardial gene expression of MIR21 targets for patients with and without 
rejection
Gene expression of MIR21 targets are differentially expressed in patients with cardiac 

allograft rejection and those without.
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Table 1

Characteristics of the population

Characteristic All (N=94) Patients Patient Group 1 (N=64) Patient Group 2 (N=30)

Age, mean ± SD 54.9 ± 13.4 54.6 ± 12.6 53.1 ± 13.8

Sex

 Male, no. (%) 67 (71.3) 47 (73.4) 20 (66.7)

Race/Ethnicity

 White, no. (%) 51 (54.3) 35 (54.7) 16 (53.3)

 Hispanic, no. (%) 16 (17.0) 10 (15.6) 6 (20.0)

 African American, no. (%) 12 (12.8) 8 (12.5) 4 (13.3)

 Asian/Southeast Asian, no. (%) 12 (12.8) 9 (14.1) 3 (10.0)

 Others, no. (%) 3 (3.2) 2 (3.1) 1 (3.3)

Induction therapy, no (%) 26 (27.6) 17 (25.7) 9 (32.1)

Desensitization no (%) 3 (3.2) 2 (3.0) 1 (3.6)

Steroid duration 355 ± 224 269 ± 128 538 ± 272

Tacrolimus 9.85 ± 4.00 9.81 ± 3.70 9.93 ± 4.65

Mycophenolate Survival Outcome 1 1,811 ± 716 1,818 ± 631 1,795 ± 882

 Survived, no. (%) 90 (95.7) 60 (93.8) 30 (100.0)

Infections. † 1

 Yes, no. (%) 28 (33.3) 14 (25.0) 14 (50.0)

CMV/IgG 1

 Yes, no. (%) 33 (42.9) 18 (35.3) 15 (57.7)

Rejection. † 2

 Yes, no. (%) 8 (8.5) 6 (9.4) 2 (6.7)

Donor specific antibodies anti-HLA Class 1

 None, no. (%) 77 (84.6) 54 (88.5) 23 (76.7)

 HLA class I only, no. (%) 1 (1.1) 1 (1.6)

 HLA class II only, no. (%) 7 (7.7) 3 (4.9) 4 (13.3)

 Both HLA class I & II, no. (%) 6 (6.6) 3 (4.9) 3 (10.0)

Notes:

1
Total sample size less than 94;

2
Rejection, either AMR only, ACR only, or both.

CMV, Cytomegalovirus (the data denotes CMV serology and not CMV viremia); HLA, human leukocyte antigen, values above 15% and those 
increased above 15% after 120 days included; infection includes any type of viral, bacterial, or fungal infection.

†
The data is not baseline and reflects the differences in the number of patients included in each step of the analysis related to the availability of 

information.
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Table 2

Biomarker Slope and Intercept Associations with Time to Combined Endpoint

Unadjusted Adjusted for Age and Sex

HR (95% CI) P HR (95% CI) P

MMF

 Intercept 1.06 (0.82, 1.36) 0.658 1.01 (0.78, 1.32) 0.918

 Slope 0.97 (0.78, 1.19) 0.752 0.96 (0.77, 1.19) 0.697

Prednisone

 Intercept‡

 Slope 1.05 (1.00, 1.10) 0.036 1.03 (0.95, 1.11) 0.538

CNI

 Intercept 1.00 (0.82, 1.20) 0.967 0.95 (0.78, 1.16) 0.615

 Slope 0.77 (0.65, 0.92) 0.004 0.80 (0.66, 0.96) 0.018

BNP

 Intercept 0.95 (0.75, 1.21) 0.690 0.95 (0.73, 1.24) 0.703

 Slope 0.85 (0.68, 1.07) 0.173 0.84 (0.66, 1.08) 0.173

Creatinine

 Intercept 0.84 (0.62, 1.13) 0.252 0.79 (0.58, 1.08) 0.137

 Slope 1.16 (0.81, 1.67) 0.413 1.20 (0.79, 1.81) 0.386

WBC

 Intercept 0.98 (0.79, 1.20) 0.816 0.96 (0.77, 1.20) 0.743

 Slope 0.89 (0.75, 1.05) 0.151 0.90 (0.77, 1.06) 0.204

Immuknow

 Intercept 0.90 (0.72, 1.13) 0.377 0.92 (0.72, 1.18) 0.519

 Slope‡

Notes: Effects are reported per 1 standard deviation increase in intercept or slope.

HR, hazard ratio; CI, confidence interval

‡
Insufficient variability in the intercept/slope for modeling
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Table 3

Slope differences between clusters (patient groups) defined for the combined endpoint. Note that, although 

untransformed slopes are presented, patient groups were defined based upon slopes of the change in biomarker 

percentile.

Biomarker Patient Group 1 (N=64) Patient Group 2 (N=30)

‡ MMF slope, mg/90 Days −133 ± 60 −84 ± 68

‡ Prednisone slope, mg/90 Days −2.0 ± 0.3 −1.3 ± 3.0

‡ CNI slope, ng per ml/90 Days −0.61 ± 0.06 −0.58 ± 0.14

BNP slope, pg per ml/90 Days −26.2 ± 12.1 −20.3 ± 29.0

Creatinine slope, mg per dL/90 Days 0.013 ± 0.195 0.005 ± 0.049

WBC slope, # x 109 per L/90 Days −0.15 ± 0.04 −0.11 ± 0.09

‡
indicates biomarkers used to define the patient groups
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Table 4

Observed Probability of Events among patient groups

Events Patient Group 1 (N=64) Patient Group 2 (N=30)

dnDSA, no. (%)1 (6) 10.0% (4) 13.8%

ACR 2+, no. (%) (3) 4.7%

AMR 1+, no. (%) (4) 6.3% (2) 6.7%

Death, no. (%)1 (4) 6.3%

CAV by Angio 1+, no. (%)1 (39) 73.6% (15) 60.0%

CAV by IVUS 1+, no. (%)1 (33) 89.2% (13) 92.9%

Combined Endpoint, no. (%) (51) 79.7% (20) 66.7%

Notes:

1
Total sample size less than 94;

dnDSA indicates Donor Specific Antibodies, CAV Cardiac Allograft Vasculopathy, Angio, angiogram; ivus, intravascular ultrasound; combined 
end point is defined as time to either death, re-transplantation, ACR, 2+, AMR, 1+, ISHLT CAV 1+ by angiogram, or ISHLT CAV 1+ by 
intravascular ultrasound.
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Table 5

CAV by Angiogram and IVUS

Events Patient Group 1 Patient Group 2

CAV by Angio:

 Normal, no. (%) 14 (26.4) 10 (40.0)

 Mild, no. (%) 36 (67.9) 14 (56.0)

 Moderate, no. (%) 3 (5.7)

 Severe, no. (%) 1 (4.0)

CAV by IVUS:

 Normal, no. (%) 4 (10.8) 1 (7.1)

 Mild, no. (%) 27 (73.0) 12 (85.7)

 Moderate, no. (%) 5 (13.5) 1 (7.1)

Severe, no. (%) 1 (2.7)

Notes: CAV indicates Cardiac Allograft Vasculopathy, Angio angiogram; ivus, intravascular ultrasound;
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