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Abstract: Non-alcoholic fatty liver disease is a multifaceted disease that progresses through multiple
phases; it involves metabolic as well as structural changes. These alterations can be measured directly
or indirectly through blood, non-invasive imaging, and/or tissue analyses. While some studies
have evaluated the correlations between two sets of measurements (e.g., histopathology with cross-
sectional imaging or blood biomarkers), the interrelationships, if any, among histopathology, clinical
blood profiles, cross-sectional imaging, and metabolomics in a pediatric cohort remain unknown.
We created a multiparametric clinical MRI–histopathologic NMR network map of pediatric NAFLD
through multimodal correlation networks, in order to gain insight into how these different sets of
measurements are related. We found that leptin and other blood markers were correlated with many
other measurements; however, upon filtering out the blood biomarkers, the network was decomposed
into three independent hubs centered around histopathological features, each with associated MRI
and plasma metabolites. These multi-modality maps could serve as a framework for characterizing
disease status and progression and could potentially guide medical interventions.

Keywords: metabolomics; biological networks; systems analysis; magnetic resonance imaging;
multimodal correlation network

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) remains a significant issue, with prevalence
nearing 10%; the percentage is reportedly as high as 34% in pediatric obesity clinics [1]. It
is the leading cause of liver disease in children [2]. Although NAFLD is ultimately a disease
of hepatic dysfunction, its development and progression are systemic, involving multiple
organs [3]. Blood enzymes and proteins are the mainstays of the clinical measurements
used for the management of the disease; however, the serum’s small metabolite profiling
likely offers a rich yet incompletely characterized means for assessing disease severity and
treatment response [4,5].

Histopathology presents the gold standard for diagnosis [6] and information gained
from liver biopsies can be used to systematically characterize architectural and structural
features, such as ballooning, fibrosis, and the degree of steatosis, summarized in non-
alcoholic steatohepatitis (NAS) scores [7]. Even when relying on the histopathological
diagnosis, the classification and subtypes of non-alcoholic steatosis continue to expand,
with a notable differentiation between adult and pediatric subtypes [8]. Although liver
biopsies are relatively low-risk procedures, they are not ideal for tracking the progression
of disease over time or following treatment response longitudinally. Hence, there has
been a need for non-invasive methods of monitoring disease status. As the diagnosis and
classification of NAFLD has evolved in past decades, magnetic resonance imaging (MRI)
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has emerged as a powerful non-invasive means of disease characterization, particularly
steatosis [9,10]. Many studies have understandably focused on lipid-related changes in
NAFLD and NASH [11,12], but given the metabolic and structural changes involved in the
progression of NAFLD, the metabolic alterations are unlikely to be strictly confined to a
single area of metabolism. The human plasma metabolome is profoundly complex [13],
but if the underlying changes in the metabolomic profiles can be unraveled, the potential
for diagnosing, tracking, and treating diseases that involve metabolic derangements is pro-
found [4]. Small molecular metabolomics can provide more nuanced changes with regard
to systemic metabolism compared to individual proteins or enzymes; although the com-
plexity and significance of the different patterns of metabolomic alterations are not yet fully
understood, more studies are beginning to decipher these patterns in NAFLD/NASH [14].

Since different measurement modalities are used to diagnose and track the course
of this disease and its treatment (in particular, tissue biopsies, blood enzymes, and MRI),
it is non-trivial to infer how these different types of measurements are interconnected.
The lack of knowledge about how different measurement modalities are related is a gap
that can be filled through an integrative, system-based analysis; this highlights the need
to explore the potential relationships between measurement modalities in order to better
appreciate the extent to which they can detect and track the progression of the disease using
a systems medicine approach [15,16]. We sought a systems view of NAFLD by integrating
deep sets of disparate measurements along four different axes: clinical (blood biomark-
ers), multiparametric MRI, multi-dimensional histopathology, and small molecule plasma
metabolomics in a pediatric NAFLD cohort (Figure 1). These datasets were integrated
through the construction of multimodal correlation networks (MCNs). MCNs provide a
means for integrating disparate data types; graphical exploration of these networks can
provide insights into how metabolomics, structural physiology (MRI), tissue architecture
(histopathology), and standard clinical measurements are interrelated in NAFLD.

Liver biopsy

Blood profile

Liver MRI

Plasma NMR spectra

Figure 1. Four different modalities and measurements (ranging from non-invasive MR to blood
draws and minimally invasive procedures) were obtained from pediatric subjects with NAFLD.

2. Materials and Methods

This study involves a prospective analysis (i.e., plasma NMR profiling) of a retro-
spective cohort of pediatric subjects (clinical blood profiling, such as liver function tests,
and MRIs).
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2.1. Samples

Histopathological and clinical characterizations of liver biopsies (n = 65 across
18 variable measurements), liver MR imaging (n = 26 across 6 variable measurements),
and NMR plasma profiling (n = 48 across 30 metabolite measurements) of children (8 to
17 years old), were conducted with parental consent and subject assent (in accordance with
the Declarations of Helsinki and Istanbul; the review and approval of the protocol were
under UCSD IRB number 050377). None of the participants took experimental medications
or were enrolled in any other study at the time of the sample acquisition. Venipuncture
fasting blood samples were obtained, spun down for 10 min at 3000 rotations per minute at
20 ◦C, and further processed as previously described [17].

2.2. Experimental Measurements

All subjects were confirmed to have NAFLD via biopsy and underwent liver MR
imaging, which involved the calculation of hepatic fat fraction and the use of Liver Imaging
of Phase-Interference Signal Oscillation and Quantification (LIPO-Quant), derived from a
multi-peak fat spectral model averaging values from three separate regions of interest,
as previously described [18], in addition to diffusion-weighted spin-echo echo-planar and
T2 single-shot fast spin-echo images. Supernatant samples were filtered using (Nanosep
3K Omega, Cytiva, Marlborough, MA, USA) microcentrifuge filter tubes followed by the
addition of internal standards (Chenomx, Inc., Edmonton, AB, Canada) prior to their
transfer to nuclear magnetic resonance (NMR) tubes for profiling. Proton spectra were
obtained from the plasma aliquots of these samples using a Varian INOVA 600 MHz
NMR (Chenomx, Inc., Edmonton, AB, Canada). The identification and quantification of
metabolite peaks were carried out using the Chenomx NMR Suite 6.0 (Chenomx, Inc.,
Edmonton, AB, Canada).

2.3. Analysis

T-test comparisons between fibrosis and body mass index (BMI) were calculated with
Welch’s t-test, given the unequal variance between the variables with a significance cutoff
of p < 0.05. A systematic, unsupervised analysis of the individual datasets was performed
with principal component analysis (PCA). This provided an unbiased assessment of the
variation and the dependence (or independence) of the variables within each dataset.
We proceeded to integrate the datasets in order to elucidate any potential associations
between the different measurement modalities through the construction of MCNs. Briefly,
significant pairwise Pearson correlations were used to construct the initial network maps
of the variables (the nodes correspond to a measured variable and the links correspond to
the statistically significant (p < 0.05) correlations). More explicitly, for a set of individual
measurements, i in α and j in β, with {τ, p} ∈ R1, the connectivity, χ ∈ Nixj, is given by

χ(αi, β j) =


1 if c(αi, β j) ≥ τc & p < σc,
−1 if c(αi, β j) ≤ −τc & p < σc,
0 otherwise.

(1)

in which α and β correspond to any two of the four datasets (clinical profile, histopathology,
MRI, and metabolomic), respectively, for all unique combinations (irrespective of order),
such that α 6= β; c(·, ·) is the correlation function (e.g., Pearson’s correlation function). Since
a small number of measurements involved ordinal variables (e.g., histopathology NAS
scores), Spearman coefficients were also calculated, which confirmed that the same set
of variables met the significance criterion. Subsequent filtering was performed to further
refine the network based on connectivity and correlations (cutoff τc = 0.3) and significance
(cutoff σc = 0.05) (Supplementary Table S1). The connectivity coefficients for the individual
nodes within each MCN are calculated as the diagonal elements of abs(χ) · abs(χT).
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Data analysis and processing were performed with Mathematica (v12, Wolfram Re-
search, Inc., Champaign, IL, USA), Matlab (R1026b, The MathWorks, Natick, MA, USA),
and Python scripts (v3.0).

3. Results

The mean age of the subjects was 14 ± 2 years with a BMI of 36 ±6 kg/m2 (Figure 2;
see Supplementary Table S2 for other clinical variables). The violin plots for the male
and female cohorts are qualitatively similar for these measurements. A BMI greater than
30 kg/m2 is considered obese and over 40 kg/m2 is considered severe/massive obesity.
The majority of subjects (37) were obese (BMI 30–40 kg/m2), in addition to 16 subjects
who were massively obese. There is a reported correlation between fibrosis and BMI in the
pediatric NASH population [19]. We tested a binary association for BMI versus fibrosis;
the results were statistically significant by Welch’s t-test in both directions. For a cohort
comparison of massively obese versus not massively obese BMIs, there was an associated
difference in histopathologic fibrosis scores with a t-statistic of 2.4 (p = 0.03). Conversely,
for fibrosis scores greater than or equal to 2 versus less than 2 (on a scale of 0–5, with
0 being no fibrosis), there was an associated difference in the BMI with a t-statistic of 2.5
(p = 0.03).

Figure 2. Violin plots for the age (A) and BMI (B) of the participants.

In order to characterize the main sources of variation and the dimensionality of the
individual datasets, an unsupervised analysis of each dataset was performed. Principal
component analysis (PCA) of the individual datasets offers an evaluation of the variation
and interdependence of the variables within each data type (Figure 3) and also helps
to identify the key variables accounting for most of the variations within the datasets.
Interestingly, many of the individual variables are nearly aligned with orthogonal axes,
suggesting that they are largely independent of one another, and in turn may track different
pathophysiological processes.

Additionally, one can appreciate the dependence versus independence of each of the
measurements within the datasets when comparing two or more combinations of mea-
surements (‘alternative, equivalent groups of variables’). For example in the histopatho-
logical dataset, fibrosis, ballooning, and lobular inflammation will essentially provide
the same amount of information as steatosis, ballooning, and lobular inflammation or
fibrosis, ballooning, and NAS score. Interestingly, the different histopathological mea-
surements had quantitatively and qualitatively different histograms (see, for example,
Supplementary Figure S1), further supporting the independence of these measurements,
although when combined (e.g., with the NAS score), they began to more closely approxi-
mate a normal distribution. For the MRI dataset, the most informative group of measure-
ments consisted of the mean fat percentage, high T2 signal, and low T2 signal. The top
six principal components are highlighted for the metabolomics dataset (Figure 3, panels D
and E). Interestingly, the top principal components are described by only three metabolites
(glucose, citrate, and lactate). These metabolites are all ‘key’ or characteristic metabolites
in central metabolism involving glycolysis and the citric acid cycle, notably the ’decision
point’ for the metabolism of pyruvate (whether it will be oxidized to enter the citric acid
cycle or reduced to lactate). The next three principal components involve glycerol and
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amino acids. Glycerol and beta-hydroxybutyrate are closely linked to fatty acid metabolism
(particularly tri-, di-, and monoglyceride fatty acids).
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Figure 3. PCA was used to characterize the structure and variation among variables within each of the
four datasets: (A) MRI, (B) histopathological variables, (C) clinical blood tests, and (D,E) metabolomics.
The first three principal components account for at least 94% of the variation in each of the individual
datasets. Principle components are commonly composed of linear combinations involving numerous
variables; however, interestingly, these align well with just a few variables for each of the datasets.
For example, in clinical data, the transaminases (ALT and AST), free fatty acids, and triglycerides
are nearly mutually orthogonal. In a similar vein, the histopathological measurements (NAS score,
fibrosis, and ballooning) are nearly orthogonal. Abbreviations: 3-HB: 3-hydroxybutyrate, ALT: L-alanine
aminotransferase, AST: L-aspartate aminotransferase, FFA: free fatty acids, TG: triglycerides.

Observing that the independent dimensionalities of the datasets are relatively low,
the next step was to integrate these four datasets into a single, comprehensive network,
through the construction of MCNs (see Section 2.3). Moreover, 45 variables with 62 nominal
significant associations were identified, enabling the construction of a multiparametric
clinical MRI–histopathologic NMR network map of pediatric NAFLD. Looking at the entire
network (all four datasets together) reveals a complex web of associations/interactions
(Figure 4). Across all of the variables (network nodes) with significant associations, leptin
had the highest connectivity coefficient (cc = 11) followed by AST (cc = 7) and fibrosis
(cc = 6). Interestingly the nodes corresponding to the different types of measurement
modalities (clinical, metabolic, histopathology, and MRI) are distributed throughout the
entire network. There are no focal clusters in each data type, reflecting the potential
interdependence among the different measurement modalities.

The interconnectedness of the multiparametric association network (Figure 4) necessi-
tated a means to filter some of the nodes and linkages of the network in order to identify
any clusters or sub-networks. Given the high connectivity of leptin and other clinical blood
measurements, such as transaminases, in order to decompose the global network, remove
potentially obfuscating linkages, and delineate meaningful sub-networks, the clinical vari-
ables were removed; only the MRI, NMR (plasma metabolomics), and histopathological
data were focused on. The result is a set of three disjoint networks (Figure 5) corresponding
to fibrosis, lobular inflammation/steatosis, and ballooning. Each of these sub-networks
centered around histopathological features have associated MRI measurements and plasma
metabolites (with a total 19 links/associations).
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Figure 4. Fully integrated network map built upon nominal significant associations among clinical,
MRI, histopathological, and metabolomic measurements. Each node in the network corresponds to
measured variables and links between the nodes, reflecting significant correlations. The correlation
directions (blue versus red for positive versus negative, respectively) and the number of different
correlations for each node provide a glimpse into how the histopathological features relate to the
plasma metabolomics, quantitative MRI features, and clinical blood measurements. Leptin provides
the highest level of connectivity with a positive correlation with lobular inflammation but negative
correlations with numerous metabolites, including amino acids, carnitine, and organic acids (hydrox-
ybutyrates and acetate along with its associated derivatives). The histopathology features are largely
independent, as highlighted by PCA (Figure 3), and are correlated with different groups of metabo-
lites. The transaminases link steatosis, NAS, ballooning, and lobular inflammation. The remaining
network nodes are connected to the rest of the network via fibrosis.

Figure 5. Network construction of the MRI, histopathology, and metabolomic datasets reveals three
disjoint sub-networks centered around fibrosis, fat percentage, and ballooning, respectively. These
three sub-networks provide a context to appreciate the underlying structure of the global network in
Figure 4. The sub-networks support the concept that the progression of this disease involves different
states and some variables will track some of the stages (e.g., primary inflammatory versus steatosis
versus fibrosis) more closely than others; some variables will be more specific for particular stages
of the course of disease progression. For example, ballooning and steatosis (observed to be nearly
orthogonal to one another in the PCA plots in Figure 1B) are in different sub-networks. Analogously,
the T2 signal and fat percentage on the MRI are independent in the PCA plots and are in different
sub-networks. However ballooning and T2 are co-correlated, as are fibrosis and fat percentage.
Vertices, link annotations, and labels are described in Figure 4.



Metabolites 2023, 13, 929 7 of 12

4. Discussion

Pediatric NAFLD is a multi-factorial disease with complex metabolic and structural
alterations; the fact that it develops decades earlier in pediatric populations, in comparison
to adult populations with different histological patterns of progression, suggests that this
disease must be studied independently in these populations [20]. The use of different
measurement modalities to make the initial diagnosis (i.e., biopsy as the gold standard)
and other less-invasive measurements to track disease status longitudinally add to the
confusion and potential confounding effects when the relationships between different
measurement modalities are not known. The MCN analysis and network maps presented
herein provide a context to understand different histopathological-based characterizations
of pediatric NAFLD with corresponding MRIs, blood proteins, and metabolomic measure-
ments. To our knowledge, such a map that integrates these data has not been performed
in pediatric NAFLD. From the initial MCN network (Figure 4), the dominance of leptin
is clearly apparent; however, it also obscures the appreciation of potential sub-networks
built around different aspects of the pathophysiological state of the disease. The PCA
results also indicated that the dataset variations could be accounted for by a small number
of the measurements; the blood/clinical measurement dataset was filtered out and the
resulting MCN revealed three independent sub-networks, each with an associated set of
metabolites, histopathologic features, and MR markers (Figure 5). These maps set the stage
for characterizing different aspects of NAFLD pathophysiology and how they may relate
to medical interventions, disease status/progression, and prognosis.

Different surrogates may be more helpful for tracking different aspects of disease;
for example, fibrosis may potentially be tracked via high ADC (MRI) and isobutyrate,
whereas steatosis may be more directly tracked through fat percentage (MRI) and/or
transaminases (AST/ALT). Studies evaluating the efficacy of different therapeutic drug
treatments for NAFLD have identified differences in treatment responses in terms of
transaminase levels versus fibrosis versus steatosis versus NAS [21–24]. The long-term
morbidity complications from NAFLD largely yield from sequelae related to late-stage
fibrosis [3]; however, other histopathological components, such as steatosis and ballooning,
are also important. The metabolic states/alterations over the course of the disease are
not uniform derangements; they involve shifts in different metabolic states. For example,
later cirrhotic stages involve inflammatory processes and reactive oxygen species (ROS)
production, whereas earlier steatotic states involve adaptive mitochondrial mechanisms
(antioxidant defense, mitophagy, and mitochondria biogenesis) [25].

In metabolic investigations on the pathogenesis and progression of NAFLD, lipid
metabolism is commonly focused on [11,26]; there is evidence that metabolic alterations
involve more than just lipid and ketone metabolism, but also glycolysis, the citric acid cycle,
the urea cycle, and purine metabolism [14]. Ketone bodies, particularly β-hydroxybutyrate,
have been associated with inflammasome inhibition and IL-18 production [14]; the MCN
map implies an indirect negative correlation with fibrosis, which is consistent with non-
alcoholic steatosis-related patterns of fibrosis [27]. The association between fibrosis, isobu-
tyrate, and L-glutamate has also been previously reported [28]. Interestingly, acetate and
hydroxybutyrate were not found in the same subnetworks (Figure 5), with the former being
associated with ballooning. Urea was not directly measured in the metabolite panel; how-
ever, the negative associations between creatine and L-arginine and lobular inflammation
indirectly implicate the urea cycle, which is noted to be disrupted in NAFLD/NASH [14].

In our cohort, we evaluated a pediatric population with histologic NAFLD diagnoses;
thus, the focus was on identifying potential metabolite correlates with different stages of
progression, as opposed to differentiating normal versus NAFLD individuals. Additionally,
our study focused on the NMR profiling of core metabolite sugars, amino acids, and organic
acids, and did not include fatty or bile acids. The associations between different amino
acids with different histological features for the different subnetworks (Figure 5) is interest-
ing, but potential mechanistic pathways are not immediately obvious (e.g., L-arginine was
negatively correlated with lobular inflammation while fibrosis was negatively correlated
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with isobutyrate but positively correlated with L-aspartate). Thus, these findings provide
an area to test in other independent datasets and further explore potential causal mecha-
nisms. The interpretation challenge is contributed to by the fact that metabolomic plasma
measurements reflect changes from the entire body (including the microbiome) as opposed
to liver metabolomics. Measurements enabling targeted, tissue-specific metabolomics, such
as clinical MR spectroscopy, may help address this in the future.

The NAS score is a summation of four individual measurements: steatosis, lobular
inflammation, ballooning, and fibrosis. Different patterns of disease have been noted in the
development and changes during the progression of the disease and have, in turn, led to
different types and subtypes of the disease being recognized, including the differentiation
between pediatric and adult manifestations of the disease. Apart from the epidemiological
differences between adult and pediatric NASH, there are histopathological differences.
Notably, pediatric NASH involves portal fibrosis, portal inflammation (more frequently
than lobular inflammation), and periportal steatosis in contrast to adult NASH, which
involves perisinusoidal fibrosis, lobular inflammation, and perivenular zone steatosis [29].
Ballooning is also apparently less commonly seen in the pediatric NAFLD population.
These differences, notably steatosis with ballooning and perisinusoidal fibrosis, along with
sparing of the portal tracts, contrast with steatosis accompanied by portal inflammation
and fibrosis but without ballooning. The former has been referred to as adult (NASH type
1) and the latter as pediatric (NASH type 2) [29].

Since the constituent measurements comprising the NAS score do not move in tan-
dem together, the different patterns of histopathologic alterations have contributed to the
changing landscape of non-alcoholic liver steatosis diseases [30]. In addition to chang-
ing/revising the nomenclature due to new patterns of histopathological descriptions, there
are also considerations regarding nomenclature and potential stigmatization results from
the description of the disease. In 2020, an international expert consensus group proposed
the name metabolic dysfunction-associated fatty liver disease (MAFLD) for non-alcoholic
liver disease, as defined by hepatic steatosis, with at least one other factor, such as obesity,
type 2 diabetes mellitus, or other metabolic dysregulation evidence [31]. An important point
highlighted by the new name is that MAFLD is a standalone disease, and its diagnosis does
not exclude the coexistence of other potential contributors to liver dysfunction [32]. More
recently, a consensus study of over 200 hepatologists, gastroenterologists, pediatricians,
endocrinologists, and hepatopathologists representing the American Association for the
Study of Liver Diseases, the European Association for the Study of the Liver, and the Aso-
ciacion Latinoamericana para el Estudio del Higado, voted on revising the nomenclature to
replace the NAFLD/MAFLD abbreviation with metabolic dysfunction-associated steatotic
liver disease (MASLD), and in the process, maintained the relevant pathophysiological
descriptor (e.g., steatosis) without any associated stigmatizing descriptors [33].

In our study, MCNs have shown that individual histopathologic features comprising
the NAS score are correlated with different MR and metabolomic alterations. Treatments
targeted at different phases of the disease may have different effects dependent on the
degree/stage of progression in NAFLD; thus, it may be prudent to consider changes that may
ameliorate the current stage, but also counteract progression to the subsequent stage. Given
the significant role that metabolic dysfunction plays in pediatric NAFLD, diet and lifestyle
changes will likely play important roles in treating the disease [29,32,34]. This multi-modality
map of pediatric NAFLD provides a context for potentially understanding the different
effects of medications on the disease course and progression, such as vitamin E versus PPAR-
γ agonists, chemokine receptor antagonists, and other emerging medications [6,22,24].
In order to achieve these applications, further exploration of the potential causality between
the links needs to be explored.

One potentially promising area of active research involves glucagon-like peptide-1
(GLP-1), which may be able to treat multiple aspects of NAFLD/MAFLD. An increasing
number of studies have been exploring the application of glucagon-like peptide-1 receptor
agonists (GLP-1 RAs) in patients with NASH/NAFLD, as type 2 diabetes and obesity are
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so highly associated with this disease [35]. While the outcome measures in these different
trials have varied (from weight reduction to hepatic steatosis reduction to liver enzyme
changes), the use of GLP-1 RAs to treat the spectra of non-alcoholic fatty liver diseases
has shown some encouraging and interesting results. It provides a unique potential to
treat multiple histopathological and clinical manifestations of nonalcoholic liver-associated
dysfunction. A meta-analysis by Mantovani et al. [36] recently evaluated the current state
of randomized clinical trials for GLP-1 RA for the treatment of NAFLD/NASH, focusing
on six placebo-controlled and five active-controlled studies. Although the results were
mixed for study outcomes based on liver enzymes, a preponderance of studies showed
improvement in steatosis and histologic resolution of NASH [36].

A few additional areas in which further investigations are warranted include,
(1) employing genome-scale metabolic networks for the mechanistic analysis of metabolism
with omics data [37–39] and assessing correlations with the other measurements described
(e.g., MRI and histopathological measurements), (2) incorporating other measurement
modalities, such as PET/MR, as a means for non-invasive metabolomics [40], and (3) fur-
ther exploring and developing other non-invasive measurement modalities, such as MR
and ultrasound elastography [41]. Finally, it is important to recognize that disease pro-
gression does not follow a linear course and these maps are likely not static structures,
but dynamic, with differences in the links potentially affected by particular genotypes as
well as treatment modality and responses. For example, although the NAS score is a linear
composition of its individual constituent measurements, each individual measurement
varies along the course and progression of the disease in a non-linear fashion; thus, any
analysis that focuses on identifying linear correlations over time will have difficulty in gen-
eralizing to all possible pediatric NAFLD populations. Thus, any “fixed” statistically-based
association will likely change over time. Looking forward, future work exploring dynamic
MCNs to identify robust associations versus transient ones will be of great interest. This
approach could inform the pathologic course of NAFLD and provide further insight into
strategies for diagnosis, tracking, and treating NAFLD/MAFLD/MASLD.

5. Conclusions

In summary, we presented a top-down analysis across multiple, disparate data types
that was enabled through the construction of MCNs, which in turn provided insights
into the complementary and independent nature of different types of measurements. The
results have implications for the phenotypic characterization of MAFLD/MASLD, as well
as provide strategies for the longitudinal evaluation of disease progression and treatment
response.
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ADC apparent diffusion coefficient
GLP-1 glucagon-like peptide-1
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MCN multimodal correlation network
MRI magnetic resonance imaging
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