
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
MaLCoN : Machine Learning analysis on Copyright Notices

Permalink
https://escholarship.org/uc/item/9vm6903r

Author
Kothari, Mohit Rajkumar

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9vm6903r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

MaLCoN: Machine Learning analysis on Copyright Notices

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in

Computer Science

by

Mohit Rajkumar Kothari

Committee in charge:

Professor Lawrence K. Saul, Chair
Professor Geoffrey M. Voelker
Professor Stefan R. Savage

2015

Copyright

Mohit Rajkumar Kothari, 2015

All rights reserved.

The Thesis of Mohit Rajkumar Kothari is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2015

iii

DEDICATION

To my parents.

iv

EPIGRAPH

The brain is a wonderful organ;
It starts working the moment you get up in the morning

and does not stop until you get into the office.

Robert Frost

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Abstract of the Thesis . xii

Introduction . 1

Chapter 1 A Study in DMCA . 3
1.1 Title II . 5

1.1.1 Who is a Service Provider? . 5
1.1.2 How to become Eligible for Limitation? . 6
1.1.3 Limitations and Mechanisms . 6
1.1.4 Counter-notices . 8

Chapter 2 Background . 11
2.1 Topic modeling . 12

2.1.1 Bag-of-words representation . 12
2.1.2 Multinomial distribution . 14
2.1.3 Dirichlet distribution . 15
2.1.4 Latent Dirichlet allocation . 15
2.1.5 Collapsed Gibbs sampling . 20

2.2 Clustering . 22
2.2.1 K-means clustering . 23

2.3 Classification . 27
2.3.1 Support vector machine . 28
2.3.2 Random forests . 31

Chapter 3 Why so Cold? . 35
3.1 Chilling Effects . 35
3.2 Notices . 36

3.2.1 Notice structure . 37

vi

3.3 Infringing URLs . 38
3.4 SOPA/PIPA effect . 39
3.5 Copyright holders . 40

Chapter 4 Topical Paradise . 42
4.1 Dataset . 42
4.2 Pre-processing . 43

4.2.1 Restricting to 200 OK . 43
4.2.2 Curating “stopword” list . 44
4.2.3 Cutting the tail . 45
4.2.4 Document length distribution . 46

4.3 Results . 47
4.4 LDA on notices . 48

Chapter 5 Clusters, Clusters, Everywhere . 51
5.1 Dataset . 54

5.1.1 HTML feature extraction . 55
5.1.2 Domain splitting . 56
5.1.3 Dimensionality reduction . 56

5.2 Results . 59

Chapter 6 Classifying Notices . 64
6.1 Dataset . 64
6.2 Feature extraction . 66

6.2.1 Claim description . 66
6.2.2 Tokenized URLs . 66

6.3 Classifiers . 67
6.4 Super Video category . 68
6.5 Experiments . 69
6.6 Results . 69

Chapter 7 Conclusion . 74

Appendix A Additional topics . 77

Appendix B EMPCA MATLAB code for PCA . 82

Bibliography . 86

vii

LIST OF FIGURES

Figure 2.1. An illustration of how a document comprises of different topics. . 13

Figure 2.2. An illustration of document-term matrix (Adapted from Do-kyum
Kim, 2014[23]). 14

Figure 2.3. Plate notation of LDA (Adapted from Blei et.al., 2009[6]) 16

Figure 2.4. Illustration of k-means clustering algorithm using randomly gener-
ated data. 25

Figure 2.5. Illustration of a linear support vector machine. 29

Figure 2.6. Illustration of a decision tree on car measurements dataset. 32

Figure 2.7. Illustration of a random forest. 34

Figure 3.1. A comparison of notices submitted per month by Google and Other
sources in Chilling Effects. 36

Figure 3.2. Number of URLs submitted per month. The trendline depicts the
exponential rise in recent years. 39

Figure 4.1. Distribution of HTTP response codes obtained after crawling 3
million URLs. 44

Figure 4.2. Word count distribution in the dataset showing presence of longtail. 45

Figure 4.3. A boxplot, without outliers, showing the document length distribu-
tion. 46

Figure 5.1. Example of a Not Found page present in filetram.com. It is a search
result of “mj fields jase” . 52

Figure 5.2. Example of another Not Found page present in filetram.com. It is a
search result of “tanya anne crosby perfect in my sight”. 53

Figure 5.3. Example of a valid search result page for filetram.com. 54

Figure 5.4. Screenshot of a parked page. 61

Figure 5.5. Screenshot of an age verification page. 62

viii

Figure 5.6. Screenshot of a page showing unavailability of content due to
copyright infringement. 63

Figure 6.1. Confusion matrix of SVM on all Heldout notices, providing moti-
vation for “Super Video” category. 68

Figure 6.2. Accuracies for Test datasets using different features. 70

Figure 6.3. Accuracies for Heldout datasets using different features. 70

Figure 6.4. Comparison of confusion matrices from random forest (RF) classi-
fier using 6 vs 7 categories . 73

ix

LIST OF TABLES

Table 2.1. Definition of symbols . 17

Table 3.1. Number of notices filed by different copyright holders along with
the meta-level category the holder belongs to. 40

Table 4.1. Top keywords of each topic learned by LDA with 10 topic configu-
ration on crawled URLs dataset. We try to figure out the meta-level
label of each topic by looking at the keywords. First rows shows
these labels and furthermore, we also highlight the important key-
words present in each topic. 49

Table 5.1. List of domains used for k-means clustering. 57

Table 5.2. Category wise distribution of 108 domains based on k-means clus-
tering. 62

Table 6.1. Set of labels used to classify the notices. 65

Table 6.2. Manual labels of copyright holders . 72

Table A.1. A subset of topics from the topic model learned on crawled URL
content and configured to find 50 topics. Some of these topics
represent different genres of “Music” and some of them are clearer
than those in smaller models with only 10 topics. 78

Table A.2. A subset of topics from the topic model learned on description of
notices and configured with 50 topics. Interestingly, these topics are
more coherent than their URL-related counterparts. 80

x

ACKNOWLEDGEMENTS

In the course of working towards this degree of Master of Science, I owe con-

siderable debt of gratitude to the countless people. First and foremost, I would like to

thank my advisors; Professor Lawrence Saul and Professor Geoffrey Voelker. Professor

Lawrence Saul always provided me with right guidance whenever faced with technical

roadblocks. Professor Geoffrey Voelker’s devotion to academia has been a powerful

source of inspiration for me. He was always there to calm me down and convince me that

the world has not ended, be it with distributed systems project or this work. The trio of

Lawrence Saul, Geoffrey Voelker and Stefan Savage is all you could ask for in mentors.

I wish to thank Gautam Akiwate, who also worked on this project. Working

alongside him has always been exciting and he brought a new perspective to the problems.

I would also like to thank Matt Der and Tristan Halvorson. Matt Der provided me

with the base code to scrape the HTML content and code to perform K-means clustering

algorithm. Tristan helped me with the use of distributed crawler to gather the data for the

project. Without both of them, I would still be working on my thesis.

All chapters, in part are currently being prepared for submission for publication

of the material. Kothari, Mohit. The thesis author was the primary investigator and author

of this material.

xi

ABSTRACT OF THE THESIS

MaLCoN: Machine Learning analysis on Copyright Notices

by

Mohit Rajkumar Kothari

Master of Science in Computer Science

University of California, San Diego, 2015

Professor Lawrence K. Saul, Chair

The adoption of digital computers and the digitization of record keeping marked

the onset of the Digital Revolution bringing us into the Information Age. Among other

things, the Internet is often regarded as a central force behind this revolution. As the name

suggests, it means a web of interconnected computer networks. In recent years it has

grown exponentially, allowing users to share and access information at an unprecedented

scale. This freedom has its own set of challenges; the Internet unfortunately is often

used for illegal sharing of copyrighted content and the traditional copyright laws were

not well equipped to handle such scenarios. Hence, the Digital Millennium Copyright

xii

Act was signed into law as an attempt to tackle these challenging issues. It provides

an extra-judicial process, Section 512, by which copyright holders can issue takedowns

notices of allegedly infringing material.

In this work we attempt to look at the takedown notices, available from online

repository like Chilling Effects, and try to analyze them in a systematic fashion. We

mainly focus on using machine learning techniques such as latent Dirichlet allocation,

k-means, support vector machines and random forests to find interesting patterns in the

dataset and try to reason about different challenges faced while working with this dataset.

xiii

Introduction

The Internet may well be regarded as the invention of the last century, giving

users a platform for creating, sharing, consuming, and accessing digital content at large

scale. Such ease of accessibility also presents a myriad of challenges to curb illegal

sharing or exchange of copyrighted materials such as movies, music, software, TV shows

and books. Traditional copyright laws were not well equipped to handle such cases.

Hence, in response to address these concerns and calm copyright holders, the Digital

Millennium Copyright Act was passed. The law itself consists of five “titles”, but we

will focus on Title II, also called Section 512, which lays out the mechanism by which

a copyright holder can request takedown of an allegedly infringed material, from the

Internet, bypassing the traditional judicial oversight. This extra-judicial process naturally,

also raises concerns of being biased towards copyright holders or being abused by them.

This work is an attempt to systematically look at the notices which are issued

under Section 512; in particular, we utilize data mining techniques to obtain insights into

the current state of the law and how effectively it is being used. We mainly try to answer

the following two questions:

1. Can we extract latent topics from the notices?

2. Can we automatically classify the notices?

The rest of thesis is structured as follows. Chapter 1 gives a brief overview of the

Digital Millenium Copyright Act and the mechanism laid out in Section 512 for taking

1

2

down an allegedly infringed content. In chapter 2, we provide some background on

different machine learning techniques used in this work, namely latent Dirichlet allocation

(LDA), k-means clustering, support vector machine and random forest classifiers. Chapter

3 describes the primary source of our dataset and the methodology used to gather the data.

We also present some interesting properties of the dataset. Furthermore, we tackle the

first question of finding latent topics by learning a topic model, described in chapter 4, on

top of the crawled dataset. We also present different challenges we encounter during this

experiment. This is followed by chapter 5, which describes our effort to remove some

“noisy” data, in order to get more coherent topics, from the dataset by performing k-means

clustering on per domain basis. Chapter 6 describes the classification experiment on

notices to tackle the second question of automated labeling. Finally, we conclude with

chapter 7.

Chapter 1

A Study in DMCA

In recent years, with the advancement in technology, the Internet has not only

changed the way people create, share and consume content but has also made it much

more accessible. The ease of copying and sharing in today’s digital age has only increased

the importance of copyright law. Some of the copyright issues include, sharing of

copyrighted digital content such as movies, music, and books; liability concerns by

copyright holders in an event of copyright infringement; establishment of internal polices

regarding copyright ownership; and issues at the intersection of copyright law, advancing

technology, and educational, research, and non-profit institutions1.

Furthermore, the issue of liability in cases of copyright violations became very

complicated because of the complex nature of sharing and involvement of multiple

entities in the eventual sharing of the content. With respect to the traditional copyright

laws, the Online Service Providers (OSPs), which includes Internet Service Providers

(ISPs), search engines (Google and Bing), libraries, educational institutions and others,

were held liable on behalf of copyright infringement of their end users (secondary

liability). They were primarily held liable because they facilitated the transmission of

digital content, namely the bits and bytes, that eventually translated to a third party

copyrighted material. Hence, OSPs faced a lot of ambiguity in determining when they

1http://www.asu.edu/counsel/brief/digital copyright.html

3

http://www.asu.edu/counsel/brief/digital_copyright.html

4

could be held liable for copyright infringement[38][26].

As a result, on one side of the ring were OSPs, trying to push for safe harbor

provisions in the copyright laws from the secondary liabilities and on the other-side

the copyright holders, who were trying to hold online service providers liable for the

infringement because of their relationship with the users, usage of their software and

infrastructure in aiding the infringement.

In response, on October 28, 1998, President Bill Clinton signed the Digital

Millennium Copyright Act (DMCA), limiting the liability of OSPs for copyright in-

fringement by their users. The law became effective in October, 2000 and it has been

incorporated into Title 17 of the United States Code. The primary goal of the law is

to “extend the reach of copyright, meet the demands of the Digital Age and to conform

U.S. law to the requirements of the World Intellectual Property Organization (WIPO)

and treaties signed in 1996.[4]”

The DMCA itself is divided into five major “titles” and addresses numerous

other copyright related issues, such as imposing rules prohibiting the circumvention of

technological protection measures (Digital Rights Management), mandating a study of

the effects of anti-circumvention protection rules on the “first sale” doctrine and others[4].

For the purposes of this work, we will focus on the Title II of the DMCA: Online

Copyright Infringement Liability Limitation Act (OCILLA), otherwise known as

“DMCA 512” or the “DMCA takedown provisions.” The Title II adds a new section to

the United States Copyright Act, Section 512, which puts in limitations on liability

for OSPs and lays down eligibility criterion for safe harbor in the event of copyright

infringement.

In essence, OCILLA tries to achieve a balance between “the rights of authors and

the larger public interest, particularly education, research and access to information”2 by

2http://www.wipo.int/treaties/en/text.jsp?file id=295166

http://www.wipo.int/treaties/en/text.jsp?file_id=295166

5

protecting OSPs from secondary liability, provided that OSPs adheres to the requirements

laid down in order to protect the rights of authors. These requirements are further

explained in section 1.1.3. Thus, OCILLA provides authors or copyright holders with

the tool and process that ensures the rapid removal of allegedly infringing material while

also providing safe harbor to the OSPs.

The remainder of this chapter tries to give a brief overview of Section 512 and

the process involved in taking down an allegedly copyright infringing material.

1.1 Title II

The OCILLA is codified as Section 512 in Title 17 of the United States Code

(Public Law No. 105-304, 112 Stat. 2860, 2877). Section 512 extends the limitations

on liability for OSPs, in case of copyright infringement, by adding 4 new sections.

These four new limitations are based on the nature of the services offered by the service

providers[24],

1. Transitory Digital Network Communications

2. System Caching

3. Information Residing on Systems or Networks At Direction of Users

4. Information Location Tools

Before we look at these limitations and the mechanisms, let’s first get an overview of

what qualifies as a service provider and how they become eligible for limitations.

1.1.1 Who is a Service Provider?

Since all of Section 512 is centered around the Online Service Provider, it is

imperative to understand who or what qualifies as a service provider that is seeking

6

the benefits of liability limitations under Title II. The definition differs based on the

kind of service offered by the provider, below we quote the definition provided in the

legislation[24].

For purposes of the first limitation, relating to transitory communications,
“service provider” is defined in Section 512(k)(1)(A) as “an entity offering
the transmission, routing, or providing of connections for digital online
communications, between or among points specified by a user, of material
of the user’s choosing, without modification to the content of the material
as sent or received.”

For purposes of the other three limitations, “service provider” is more
broadly defined in Section 512(k)(l)(B) as “a provider of online services
or network access, or the operator of facilities therefore.”

1.1.2 How to become Eligible for Limitation?

After the party or entity seeking benefits of safe harbor qualifies as a service

provider, the service provider must meet the following two general conditions[24, 38],

1. A service provider must adopt and reasonably implement a policy of terminating

the accounts of subscribers and account holders of the service provider’s system or

network who are “repeat infringers”3 under appropriate circumstances.

2. A service provider must accommodate and not interfere with standard technical

measures used by copyright holders to identify and protect copyrighted works.

Once these conditions are met, the service provider becomes eligible for the limitations

of liability stated in Section 512.

1.1.3 Limitations and Mechanisms

As stated earlier, Section 512 is usually best known for facilitating copyright

holders to ask OSPs to take down infringed material without the involvement of judicial
3The definition of “repeat infringers” is often debated. When does an alleged infringer becomes a

“repeat infringer”? After two complaints? More?

7

system. The safe harbor provisions acts as a strong incentive for OSPs to cooperate

with the copyright holders in their fight against piracy. To qualify for these provisions,

OSPs have to expeditiously takedown the allegedly infringed material in response to the

notices submitted by the concerned copyright holders[38]. The process and protections

differs based on the nature of service provider, as shown below,

1. Transitory Digital Network Communications

Also called Section 512(a), provides “safe harbor” for service providers which

provide transmission, routing or connections such as broadband, DSL, high-speed

Internet. For services falling under this section, there is no requirement to “take

down” material; the law simply gives them safe harbor from their users’ infringe-

ments as they are just acting as a basic conduit through which the content is flowing.

Example of such a service is an Internet Service Provider (ISP), like Time Warner

Cable (TWC).

2. System Caching

Aliased as Section 512(b), provides limitation of liability for the intermediate and

temporary storage of material on a system or network controlled or operated by

the service provider. OSPs qualifying under this section usually cache content

for improving system performance and usability. Such OSPs are required to

respond and remove or disable access to allegedly infringing material when certain

conditions are met. For these conditions to be met, the material from the originating

site must have been removed or atleast must have been ordered for removal. It is

expected that the copyright holder filing the notice must also give a notification

confirming the same to the service provider[24, 38]. Examples include Content

Delivery Networks (CDNs) such as Akamai or Amazon Cloudfront.

3. Information Residing on Systems or Networks At Directions of Users

8

Coded as Section 512(c), it limits the liability of service provider for hosting

the content at the direction of the user. Such services, upon receiving notices of

copyright infringement, are required to respond expeditiously by removing the

infringing content. Examples of such providers include content hosting services

and forums like Youtube and Blogger respectively.

4. Information Location Tools

Finally, Section 512(d) covers search engines, where a service provider is linking

or referring users to online location containing the infringed material. Popular

examples of such service providers include Google and Bing. The purpose of this

process is not to actually remove the content from the Internet but rather make it

more difficult to locate the alleged infringing content. The copyright holders have

to file a different notice under Section 512(c) with the service provider hosting the

content to remove it from the Internet.

1.1.4 Counter-notices

The procedure of expeditious removal of content upon receipt of takedown notice

raised many concerns among academic institutes and other entities. These concerns were

majorly related to the extra-judicial process proposed for expeditious removal of alleged

infringing content from the Internet. According to them, it violated the constitutional

provisions for due process of the claims. Hence, in an attempt to resolve these concerns,

Section 512(g) was added, containing the additional procedural protections.

As mentioned earlier, service providers who qualify under Section 512(c) have

to expeditiously remove the content upon receipt of a notice. In addition to the removal,

in accordance with Section 512(g), OSPs also have to notify the alleged infringer that

the material has been removed, and act as an intermediary for any further communication

between the complainant and the alleged infringer. Upon the receipt of the notice,

9

the alleged infringer can then file a counter-notice with the OSP which in turn has to

forward it to the complainant. If within 10-14 days, after the receipt of counter-notice,

the complainant has not notified the OSP regarding a lawsuit, the contested content or

material can then be reinstated by the OSP4. It is important to note that a valid counter

notice must include the following:

1. A physical or electronic signature

2. Identification of the material removed and its former location.

3. Statement under penalty of perjury that the user has a good faith belief the material

was mistakenly removed.

4. The user’s name, address, and phone number

5. Consent to the jurisdiction of Federal District Court

However, for OSPs qualifying under Section 512(d), according to Section 512(g)

they are not required to notify the alleged infringer of index removal as they likely have

no service relationship with the alleged infringer and in any case they would rarely have

the ability to notify. It is also important to note that the OSPs are exempt from the liability,

as per Section 512(g)(1), of a mistaken yet good faith removal of material based on a

notice from a copyright holder[24].

Interestingly, Section 512(h) of the DMCA provide provisions by which a clerk

of any United States district court can be requested, by the copyright holders, to issue

a subpoena to a service provider to identify an alleged infringer. In response, the

OSP is expected to expeditiously disclose the user’s personal identifying information in

accordance with a subpoena as long as it is accompanied by a valid notice[24][38].

4http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=1413&context=chtlj

http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=1413&context=chtlj

10

Looking back at the various sub-sections of Section 512, it appears to us that,

they often don’t address the deeper due processing concerns of the claims, demand

stringent requirements for maintaining safe harbor qualification, they don’t provide many

incentives to question the takedown notices and give second thoughts to the claims. All

of the above lead us to believe that there is a potential for abuse by copyright holders.

Chapter 2

Background

Text mining refers to the collection of techniques that extract and derive high-

quality information from large unstructured text such as emails and technical documents.

Today’s corpora often consist of millions of documents, and there arises a need to interact

with these documents in an automated fashion where a simple search is often not enough.

The following are some of the most common tasks in text mining:

1. Clustering

Finding similarities and relationships between subsets of documents representing

certain meta-level themes[16].

2. Classification

Classifying an unseen document to one of the known class of the document. An

important application is spam-classification of emails[21].

3. Topic Modeling

Uncovering the underlying semantic structure of a document collection[6].

4. Keyword extraction

Finding a set of relevant terms that are representative of the given document[5].

11

12

and there are many more, like summarizing a document and predicting trends over time.

This chapter gives a brief overview of some of the algorithms used for topic modeling,

clustering and classification.

2.1 Topic modeling

Topic modeling, as described earlier, tries to discover the main themes that

pervade a large and otherwise unstructured collection of documents. They often use

hierarchical Bayesian analysis of the original text to discover the underlying themes

present in the corpus. The discovered themes are represented as “topics” which signify

the hidden relationships between the documents and words in those documents. These

topics are just the probability distribution of words in the corpus and a document is

modeled as a mixture of topics consisting of different proportions of each topic.

Figure 2.1 represents a hypothetical distribution of topics over words and how a

document can be represented as a distribution of multiple topics and in-turn a distribution

over words. The dotted lines represent topic distribution and solid lines represent the

documents.

The rest of the section gives an overview of one of the topic models, latent

Dirichlet allocation (LDA)[7, 6], that has been used as basis for many other topic models.

It is based on the work of latent semantic indexing (LSI)[13] and probabilistic LSI[19].

2.1.1 Bag-of-words representation

The first hurdle for any text mining task is to come up with a representation

of the documents under consideration. Ideally, we would like to retain the semantic

information represented by the order of words in the document. However, this often

results in increased complexity of the algorithm. LDA relies on the the bag-of-words

assumption[7], which means that it does not preserve the ordering of the words in the

13

Figure 2.1. An illustration of how a document comprises of different topics.

document and represents a document as a “bag-of-words.” Given a document, the bag-of-

word representation is a feature vector of word counts in the document. The dimension of

the vector represents the vocabulary of the underlying corpus, namely the set of unique

words in the whole corpus. Using this representation, the corpus can be represented

as a 2-dimensional matrix D where each row represents a document and each column

represents a word. So any element of the matrix Di, j represents the count of word j in

document i. This matrix is often called document-term matrix (DTM) or term-document

matrix (transpose of DTM); figure 2.2 gives an illustration of the same.

Since the model works on counts of word, frequently occurring words can intro-

duce noise and reduce the quality of the algorithm. These words do not correspond to a

unique topic or don’t have a distinguishing factor. Hence, most of the applications pre-

process the documents by eliminating these so called “stop” words from the vocabulary.

Some of the examples include pronouns (you, he, it), connectives (and, because),

prepositions (to, the) and some applications curate their own “stop” words specific to

the corpus. In addition to stopword removal some applications also “stem” words, to

14

Figure 2.2. An illustration of document-term matrix (Adapted from Do-kyum Kim,
2014[23]).

further reduce the noise, by stripping the word to its root.

2.1.2 Multinomial distribution

Now that we have a representation of documents as bags-of-words and given our

assumption that a document consists of mixture of topics, we can model the document as

a sequence of words drawn from (a mixture of) topics. For this, LDA uses a multinomial

probability distribution. Mathematically this distribution is represented as,

p(d; δ̄) =
(Nd!

∏
V
j=1 d j!

)(V

∏
j=1

δ
d j
j

)
, (2.1)

where given a document d, δ j represents the probability of word j occurring in the

document, such that ∑
V
j=1 δ j = 1, Nd represents the length of the document, and d j is the

count of word j in the document.

15

The first factor of equation 2.1 is called “multinomial coefficient” which repre-

sents the total permutations of words in the document. The second factor is the probability

of any one of those permutations.

2.1.3 Dirichlet distribution

LDA makes a central use of the Dirichlet distribution[6], “the exponential family

distribution over the simplex of positive vectors that sum to one.” It is a multivariate

generalization of the beta distribution. The density function is given by,

p(γ̄|α1,α2, ...,αK) =
Γ(∑K

i=1 αi)

∏
K
i=1 Γ(αi)

K

∏
i=1

γ
αi−1
i , (2.2)

where ᾱ is K dimensional vector with αi > 0 ∀i ∈ 1..K and Γ(.) represents the Gamma

function, which is a real-valued generalization of the factorial function. Equation2.3

shows the integral for computing the gamma function:

Γ(z) =
∫

∞

0
tz−1e−tdt (2.3)

Dirichlet distribution is useful because it has finite dimensional sufficient statistics and

is conjugate to the multinomial distribution (see previous section) which helps with

inference and parameter estimation for LDA [7]. LDA uses a variant of the generalized

Dirichlet distribution, the symmetric Dirichlet, in which all the parameter components

have the same value. A greater sum of ᾱ leads to a sharper peak at the center whereas

low values result in peaks at the extremes of the simplex.

2.1.4 Latent Dirichlet allocation

LDA is based on the intuition of hidden variable model where the observed data

are the terms occurring in the documents and the hidden variables are the latent topics,

16

more specifically, the proportions of different topics present in each document. For a

collection of documents, the posterior distribution of unseen variables given the observed

data determines the topical decomposition of the collection. LDA models the way the

documents are generated as an imaginary random process and assumes a particular

interaction between the observed documents and hidden topical structure.

Table 2.1 describes meanings of the symbols used from now onwards. We now

describe the generative process of LDA (adapted from [6])

1. For each topic k:

(a) Generate a word distribution for that topic (φ̄k ∼ DirV (β)).

2. For each document d:

(a) Generate a topic distribution (θ̄d ∼ DirK(α)).

(b) For each word, wd,n:

i. Select a topic zd,n ∼Mult(θ̄d),zd,n ∈ (1, ...,K).

ii. For this topic, select a word (wd,n ∼Mult(φ̄zd,n ,wd,n ∈ (1, ...,V))).

Since, this is a repetitive graphical model, it can also be represented using plate

notation as shown in Figure 2.3. Here each node represents a random variable; shaded

node are observed entities whereas unshaded nodes are latent variables. Edges are the

dependence between nodes, and plates show repetition[11].

wd,nzd,nθdα φk β

Nd

D

K

Figure 2.3. Plate notation of LDA (Adapted from Blei et.al., 2009[6])

17

Table 2.1. Definition of symbols

Symbols Description

V Vocabulary size
D Corpus size
K Number of topics
d Auxiliary index for documents
Nd Number of words in document d
k Auxiliary index for topics
v Auxiliary index for word
md,k Number of times topic k is assigned in document d
qk,v Number of times topic k is assigned to word v in corpus
wd,n Word at position n in document d
w̄−(d,n) All the words of document d with wd,n removed
zd,n Assigned topic for word wd,n
z̄−(d,n) All the topic assignments of document d except zd,n
θ̄d Topic distribution for document d
φ̄k Word distribution for topic k
α Prior for symmetric Dirichlet over θ̄d
β Prior for symmetric Dirichlet over φ̄k
DirV (β) A V -dimensional Dirichlet
DirK(α) A K-dimensional Dirichlet

18

We can now deduce the joint probability distribution from the directed acyclic

graph represented by figure 2.3 and apply d-separation rules on the resulting Bayesian

network. Equation 2.4 represents the components of joint probability distribution of

hidden and observed variables given the priors for Dirichlet distributions[33].

p(θ̄ ,z,w, φ̄ |α,β) = p(θ̄ |α)× p(φ̄ |β)× p(z|θ̄)× p(w|z, φ̄) (2.4)

In equation 2.4, p(θ̄ |α) represents topic distribution of a document which is

drawn from a K-dimensional Dirichlet distribution with α as the prior, and we can also

apply conditional independence because all the documents are assumed to be independent

of each other. Equation 2.5 shows the computation:

p(θ̄1:D|α) =

D

∏
d=1

Γ(∑K
k=1 αk)

∏
K
k=1 Γ(αk)

K

∏
k=1

θ̄
αk−1
k . (2.5)

p(φ̄ |β) is word distribution per topic which is drawn from a V -dimensional

Dirichlet distribution give β as the prior. Equation 2.6 computes the probability:

p(φ̄ |β) =
K

∏
k=1

Γ(βk)

∏
V
v=1 Γ(βk,v)

V

∏
v=1

φ̄
βk,v−1
k,v . (2.6)

Moving on, p(z|θ̄) is topic to word assignments for the given collection of

documents. Here each word in document d (i.e. wd,n) is assigned a topic, and its

probability depends on the topic distribution θ̄d . Equation 2.7 computes the probability:

p(z|θ̄) =
D

∏
d=1

K

∏
k=1

θ̄
md,k
d,k . (2.7)

Lastly, p(w|z, φ̄) represents the probability of the term given the topic assignments

19

and topic distributions, in short the probability of given corpus:

p(w|z, φ̄) =
D

∏
d=1

V

∏
v=1

φ
qk,v
k,v . (2.8)

Combining eqs. (2.5) to (2.8) gives us the final joint distribution as shown in

equation 2.9.

p(θ̄ ,z,w, φ̄ |α,β) =

(M

∏
d=1

Γ(∑K
k=1 αk)

∏
K
k=1 Γ(αk)

K

∏
k=1

θ̄
αk−1
k

)

×
(K

∏
k=1

Γ(βk)

∏
V
v=1 Γ(βk,v)

V

∏
v=1

φ̄
βk,v−1
k,v

)

×
(D

∏
d=1

K

∏
k=1

θ̄
nd,k
d,k

)
×
(D

∏
d=1

V

∏
v=1

φ̄
nk,v
k,v

)

=

(M

∏
d=1

Γ(∑K
k=1 αk)

∏
K
k=1 Γ(αk)

K

∏
k=1

θ̄
αk+nd,k−1
k

)

×
(K

∏
k=1

Γ(βk)

∏
V
v=1 Γ(βk,v)

V

∏
v=1

φ̄
βk,v+nk,v−1
k,v

)
(2.9)

The key inferential problem that LDA needs to solve is the computation of

posterior distribution of the hidden variables given a document as shown in equation 2.10:

p(θ̄ ,z|w,α,β) =
p(θ̄ ,z,w|α,β)

p(w|α,β)
. (2.10)

This distribution in general is intractable to compute because of the normalization

constant in the denominator. To compute p(w|α,β) we have to marginalize over the

hidden variables and write it in terms of the model parameters, as shown in equation 2.11

and this equation is shown to be intractable due to the coupling between θ̄ and β . For

20

detailed explanation, refer to latent Dirichlet allocation by David Blei, Andrew Ng and

Jordan Michael[7, 15].

p(D|α,β) =

∫
φ̄

∫
θ̄
∑
z

M

∏
d=1

Γ(∑K
k=1 αk)

∏
K
k=1 Γ(αk)

K

∏
k=1

θ̄
αk+nd,k−1
k)×

K

∏
k=1

Γ(βk)

∏
V
v=1 Γ(βk,v)

V

∏
v=1

φ̄
βk,v+nk,v−1
k,v dθ̄dφ̄ (2.11)

Hence, the central computation problem for LDA is to approximate the posterior

distribution given in equation 2.10. Some of the techniques developed for this problem

are listed down below:

• Mean field variational inference[7].

• Collapsed Gibbs sampling[36].

• Collapsed variational inference[37].

• Expectation propagation[30].

Each method has its own pros and cons, and usually a selection is made based on different

trade offs like complexity, performance time, implementation difficulty, and accuracy.

In this work, we use MAchine Learning for LanguagE Toolkit (MALLET)[29], which

implements a distributed version of latent Dirichlet allocation using Collapsed Gibbs

sampling[31]. We now give an overview of the same.

2.1.5 Collapsed Gibbs sampling

Collapsed Gibbs sampling uses the concept of “Gibbs sampling”, a form of

Markov chain Monte Carlo (MCMC) sampling, to extract a pre-defined set of topics

from the underlying corpus. “MCMC refers to a set of approximate iterative techniques

21

designed to sample values from a high-dimensional distribution”[36]. Gibbs sampling

tries to sample low-dimensional subsets of variables, where each subset is conditioned on

the remaining set of variables, in order to approximate the high-dimensional distribution.

It is an iterative procedure which terminates when the target high-dimensional distribution

is fairly approximated.

In collapsed Gibbs sampling, direct estimates of φ̄k and θ̄d are not computed,

rather they are approximated using the posterior distribution of z̄.

For LDA, the algorithm takes into account each word token in the given corpus

and estimates the probability of assigning the current word to each topic, conditioned

on all the topic assignments except the current one. From this conditional distribution,

the algorithm samples a new topic and assigns it to the current word. This conditional

probability is given by p(zd,n = j|z̄−(d,n), w̄,α,β). A series of manipulation using Bayes

rule, marginalization and conditional independence, along with expansion gives the final

probability:

p(zd,n = j|z̄−(d,n), w̄,α,β) ∝

q′j,wd,n
+βwd,n

∑
V
v=1 q′j,v +βv

n′d, j +α j

∑
K
k=1 n′d,k +αk

(2.12)

where, q′j,wd,n
represents the number of times word wd,n is assigned topic j except the

current instance, minus 1, and n′m, j represents the number of times topic j is assigned

in the document d except the current instance, minus 1. Equation 2.12 represents an un-

normalized probability and the actual probability of assigning a word with topic j can be

obtained by dividing the value in equation 2.12 for topic k by the sum over all the topics

K[36]. For a more detailed explanation please refer to Steyvers and Griffiths[36, 17].

In a nutshell, the Gibbs sampling algorithm can be summarized as follows[33]:

1. Randomly initialize topic assignments for all the terms in the corpus

2. For each iteration of Gibbs sample:

22

(a) For each term in the document and across all the documents:

i. Decrement the matrices q′ and n′ by 1 corresponding to current topic

assignment.

ii. Sample a topic according to equation 2.12.

iii. Increment the matrices q′ and n′ by 1 corresponding to new topic assign-

ment.

iv. Update the topic assignment for the term.

3. Discard the initial Gibbs samples becuse they are poor estimates of the posterior

(called the burnin period)[36].

4. Repeat until a stable posterior distribution is reached.

Since, the Gibbs sampling algorithm gives the direct estimates of topics for every

term. The word-topic distribution (φ̄k) and topic-document distribution (θ̄d) can be

obtained from the count matrices q′ and n′[36], given by:

φk,i =
q′k,i +βi

∑
V
v=1 q′k,v +βv

∀i ∈ (1, ...,V) (2.13)

θd,i =
n′d,i +αi

∑
K
k=1 n′d,k +αk

∀i ∈ (1, ...,K) (2.14)

As a side note on runtime complexity, the standard approach to Gibbs sampling

described above takes O(MK) for one epoch. Here M is the total number of tokens/terms

in the corpus and K is the number of topics.

2.2 Clustering

As described earlier, clustering is a procedure for grouping data points or samples

into groups, such that the members of a particular group are very similar to each other

23

and different from the members of other groups[20]. It is an example of an unsupervised

algorithm which tries to automatically organize data and find hidden structure in the data.

For example, clustering might involve creating multiple groups of users such that users

in a single group share similar interests (like “automobiles”); which is different from the

the interests of other groups (“paintings”, “origami” etc.).

More formally, let the set of documents be represented as {x̄1, x̄2, ..., x̄D}, where

each document x̄d is a V dimensional vector, and suppose there exists a distance function,

dist(x̄d1 , x̄d2), capturing the distance between the two documents. Given this, we would

like to divide the corpus into K groups, different from K topics of LDA, such that every

document x̄d has exactly one label k ∈ (1,2, ...,K) and documents belonging to same

label have some semantic similarities between them. We now give a brief overview of

k-means clustering algorithm which uses “nearest mean” approach to cluster documents.

2.2.1 K-means clustering

K-means clustering is an example of a clustering algorithm, which can be used

to classify documents into pre-defined number of K groups such that each item belongs

to the cluster with the nearest mean. Each cluster is identified by a “centroid”. The

centroid is normally defined as “the center of mass of a geometric object of uniform

density,” though here, we’ll consider it to be the mean of the documents present in the

cluster. This results in clusters which are non-overlapping disjoint sets of items and

hence, such algorithms are called partition-based clustering algorithms.

Finding an optimal solution to k-means for an arbitrary input is computationally

NP-hard[1, 28]. However, there exist heuristic algorithms which converge quickly to

local optima. One of the most widely used algorithm is Lloyd’s algorithm [25], often

called k-means algorithms because of its popularity. It is an iterative approach which

minimizes within-cluster “sum of squares distances” and guarantees a local optima but

24

not a global one.

In a nutshell, the algorithm proceeds as follows:

1. Initialization

(a) For every document x̄d:

i. Choose initial cluster identities zd = k ∈ (1,2, ...,K).

(b) For every cluster k:

i. Compute the centroid of the cluster m̄k.

2. Repeat

(a) For every document x̄d:

i. assign x̄d to its closest cluster:

zd = argmini∈(1,..,K)dist(x̄d, m̄i),

where dist(x̄d, m̄i) = ||x̄d− m̄i||2.

(b) For every cluster k:

i. Compute the new centroid by taking mean of all the documents to that

cluster

m̄k =
1

Nk
∑

d:zd=k
x̄d.

3. Repeat until convergence: no changes in z̄1:D.

As an illustration, we generate random data over two dimensions and run k-means

(configured with K = 2) on top of it. Figure 2.4 shows the final cluster assignments of

the data and also plots the centroid of each cluster.

25

Figure 2.4. Illustration of k-means clustering algorithm using randomly generated data.

Comparison with LDA

Both, LDA and K-means are unsupervised learning algorithms requiring a pre-

defined K number of topics and clusters respectively. The main conceptual difference

between the two is in terms of topic assignment and partitioning. K-means create K

disjoint sets of documents whereas LDA works as a mixture membership model where

each document consists of mixture of more than one topic and this does not result in

disjoint set of documents.

Furthermore, it has been shown that the quality of the clusters largely depends on

the way initial clusters are assigned[32]. There exist multiple ways of selecting initial

clusters,

26

1. Randomly chosen

Almost self-explanatory, documents are initially assigned to the clusters randomly

with uniform probability.

2. Forgy method

K documents are randomly chosen with uniform probability and these K documents

then act as the initial centroids for the clusters[2].

3. Macqueen approach

K documents are randomly chosen and the rest of the documents are assigned,

following the occurrence order, to the cluster with the nearest centroid. In this

method, after each assignment a recalculation of the centroid is carried out[27].

For this work, we use MATLAB5 implementation of k-means which uses k-

means++ for initialization. According to Arthur and Vassilvitskii[3], k-means++ im-

proves the running time of k-means algorithm along with the quality of the final clusters.

K-means++ initialization has following steps,

1. Select a document x̄d uniformly at random. This document is the first centroid,

denoted by m̄1.

2. Compute distances from each document to m̄1,

dist(x̄d, c̄1).

3. Select the next centroid, c̄2 at random with probability proportional to the distance

from c̄1,
dist2(x̄d, c̄1)

∑
D
d′=1 dist2(x̄d′, c̄1)

.

5http://www.mathworks.com/help/stats/kmeans.html

http://www.mathworks.com/help/stats/kmeans.html

27

4. To choose center j:

(a) Compute the distances from each observation to each centroid, and assign

each observation to its closest centroid.

(b) For d ∈ (1, ...,n) and p ∈ (1, ..., j− 1), select centroid j at random with

probability:
dist2(x̄d, c̄p)

∑h;xh∈Cp dist2(x̄h, c̄p)
,

where, Cp is the set of all observations closest to centroid c̄p and x̄m belongs

to Cp. That is, select each subsequent center with a probability proportional

to the distance from itself to the closest center that you have already chosen.

5. Repeat until K centroids are chosen.

2.3 Classification

Classification is one of the most common problems in machine learning. Gen-

erally speaking, given a set D of items; {x̄1, x̄2, ..., x̄D} and a set C of distinct classes

{c1,c2, ...,cC}, the goal is to assign each instance in D to a unique class in C. Classifica-

tion refers to the construction of a model that is able to correctly assign the classes for an

observation not previously seen.

Some of the examples of classification include “click prediction” for web adver-

tising companies, “face recognition” or tagging, and text categorization[21]. A general

approach towards this problem is to “learn from data”, wherein the model learns (trains)

from a set of observations along with their “true” class (training data) and then uses

the trained parameters to “predict” classes of unseen data (test data). This approach of

learning from training data is also called supervised learning.

28

2.3.1 Support vector machine

The support vector machine (SVM) is an instance of a supervised learning

model which classifies observations by finding the best hyperplane that partitions the

observations into different classes. They were first introduced in the early 90s[12] and

gained popularity after their success for handwritten digit recognition[8]. Conventionally

they are used as “binary classifiers” but a multi-class SVM can be built based on a

“one-vs-rest scheme”, wherein a single classifier is trained for every class and while

predicting a class for an unseen observation, the base classifier produces a real-valued

score (confidence) for each class and based on this score the final class is predicted.

The remaining section will cover the basics of the binary SVM classifier. As

defined earlier, an SVM works by finding the hyperplane that provides the largest margin

between the two classes, wherein the margin is defined as the width of space parallel to

the hyperplane such that there are no observation within that space. The points that lie on

the boundary of the margin are called the support vectors. Figure 2.5 depicts a simple

linear SVM with its separating hyperplane and support vectors.

There are different formulations of SVM depending on whether the data is linearly

separable or not and whether there exists a linear hyperplane that separates the classes or

a non-linear version is needed. For the purposes of this work, we use a linear SVM. The

following section gives an overview of basic methodology behind the linear SVMs.

Linearly separable case

Let’s first define the terminology we use. For binary classification case, we will

assume Y = {+1,−1} to be the set of classes and X = {x̄1, x̄2, ..., x̄N} to be our training

set, where each x̄i is a V dimensional feature vector. Now, a general hyperplane can

be described by equation 2.15, where w̄ ∈ RV represents the parameters and b ∈ R is a

29

Figure 2.5. Illustration of a linear support vector machine.

constant6.

w̄T .x̄+b = 0 (2.15)

Formally, the problem of finding the best hyperplane can be defined as follows,

Minimize ||w̄||

Subject to yi(w̄T x̄i +b)≥ 1 ∀i.

Mathematically, we can change this to an equivalent problem of minimizing ||w̄||
2

2 ,

as this results in an equivalent quadratic optimization problem. This problem is referred

to as the Primal.
6The math has been adapted from http://www.mathworks.com/help/stats/support-vector-machines-svm.

html

http://www.mathworks.com/help/stats/support-vector-machines-svm.html
http://www.mathworks.com/help/stats/support-vector-machines-svm.html

30

However, it is computationally easier to solve the dual of the primal. Dual can be

obtained by using Lagrange multipliers αi for each observation. The resultant Lagrangian

for primal is:

LP =
||w̄||2

2
−∑

i
αi(yi(w̄T x̄+b)−1) (2.16)

Now, setting the gradient of LP = 0 and solving the equation, we obtain the

following solutions:

w̄ = ∑
i

αiyix̄i

∑
i

αiyi = 0

Substituting these values in equation 2.16 results into the following optimization

problem: dual of primal,

Maximize LD = ∑
i

αi−
1
2 ∑

i, j
αiα jyiy jx̄T

i x̄ j

Subject to αi ≥ 0,∑
i

αiyi = 0 ∀i.

This is a standard quadratic programming problem for which the global maxima

of αi can always be found[18]. The term (x̄T
i x̄ j) is called the “kernel” of the linear SVM.

For non-separable data, researchers often use “soft-margins” to solve the optimization

problems and for the cases where a simple hyperplane is not enough there exists several

non-linear transformations with the kernels[12].

After finding the optimal solution (ˆ̄w, b̂), the binary classification label of any

31

test observation can be predicted by looking at which side of the hyperplane does the

observation lie:

pred(t̄) = sign(ˆ̄wT x̄i + b̂).

2.3.2 Random forests

Random forests are another method for supervised learning used for classification

or regression. Initially developed by Breiman and Cutler[10], they perform classification

by constructing multiple decision trees during training and using the majority vote of

these decision trees to make new predictions. To further understand how random forests

work, we will first look at some terminologies.

Decision tree

A decision tree is a predictive model which uses a set of decisions on an obser-

vation, based on the features, in order to provide final prediction. Decision trees take

a finite number of classes as input. Once the decision tree is trained, the leaves of the

tree represent the final class prediction and each internal root consists of a rule used to

compare feature values and provide the direction for next level.

A simple decision tree is shown in figure 2.6, which is created using a MATLAB

sample dataset on car measurements7. Each node describes the decision rule, and the

leaf node represents the decision of the tree, which is the country of origin of the car.

Ensemble Learning

Ensemble learning methods usually involve learning multiple learners and using

them in some weighted combination or in a voting mechanism to come up with final

prediction. They usually combine a group of “weak learners” to form a “strong learner”.

7http://www.mathworks.com/help/stats/ bq9uxn4.html

http://www.mathworks.com/help/stats/_bq9uxn4.html

32

USA

Japan

USA

Germany

France Sweden

Cylinders = 4

MPG < 31.5

Model_Year in (70 76)

Horsepower < 82

Horsepower < 89

 Cylinders in (6 8)

 MPG >= 31.5

 Model_Year = 82

 Horsepower >= 82

 Horsepower >= 89

Figure 2.6. Illustration of a decision tree on car measurements dataset.

Here, “weak learners” are generally those classifiers which have very low accuracy, but

higher than that of random guessing 8.

Bagging

Bagging is an example of a meta-algorithm that helps to reduce the variance of a

model and avoid overfitting. It usually works by sampling the observations in the training

set uniformly at random by replacement and training the model on this subset. This has

been shown to improve the performance and stability of the resulting model[9].

In a nutshell, random forests are ensemble of decision trees, designed for classifi-

cation or regression tasks, which use bagging to select a random subset of features for

splitting and creating rules of decision trees, often referred to as “feature bagging.” Use

8https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/

https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/

33

of multiple decision trees avoid overfitting and feature bagging improves the stability and

performance of the model[10]. Generally, for feature bagging, out of V dimensions, a

subset of
√

V features is used in each split[9] and the quality of the split is measured by

Gini impurity[10] or Information gain.

Cross validation

As a side note, random forests don’t require cross-validation because an unbiased

estimate of the test set error is internally estimated by the algorithm. For every tree,

a different bootstrap sample (random subset with replacement) is obtained from the

training data and the heldout data is then used as test-set classification. This heldout data

corresponds to approximately one-third of the input data. As the number of trees grow,

this oob (out-of-bag) or heldout set helps in obtaining a running estimate of classification

error9.

Finally, during testing, given a test observation, its class is determined by the

majority vote prediction among all the trained decision trees. Figure 2.7 shows how a

random forest model classifies an observation.

9https://www.stat.berkeley.edu/∼breiman/RandomForests/cc home.htm

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

34

Figure 2.7. Illustration of a random forest.

Chapter 3

Why so Cold?

Equipped with the motivation to get some insights into the current state of the

Section 512 process, we started looking for a dataset to work on. Since the DMCA does

not mandate making takedown notices part of public record, general public or research

communities cannot analyse the effectiveness of the process in a well structured fashion.

As a result, it becomes difficult to perform analysis and correlate the results.

3.1 Chilling Effects

Chilling Effects is an attempt to provide some insights into the takedown process.

Among other things, it is primarily an online repository of the DMCA notices, initially

created by Wendy Seltzer in collaboration with Electronic Frontier Foundation (EFF)

and a consortium of law school clinics[38]. It is currently a project of Berkman Center

for Internet & Society 10 with an aim of providing general public with a source of “cease-

and-desist” letters, promoting research in this field and providing as much transparency

as possible regarding the Section 512 process.

The remainder of the chapter provides an overview and a brief analysis of the

datasets collected and created out of Chilling Effects.

10See https://www.chillingeffects.org for more information

35

https://www.chillingeffects.org

36

3.2 Notices

In the Chilling Effects repository, one of the primary sources of Section 512

notices is Google, which provides Section 512(c) and (d) notices submitted to them

via Web forms. Google started submitting notices back in 2002 and eventually became

the largest contributor of the notices as shown in figure 3.1. As an artifact, there is a

probability that the results we get are biased and do not extrapolate to the notices from

other sources.

Figure 3.1. A comparison of notices submitted per month by Google and Other sources
in Chilling Effects.

Chilling Effects API11 provides various formats in which the takedown notices

can be viewed or downloaded. For the purposes of this work, we use the JSON (JavaScript

Object Notation) format to download and parse the notices. In total, we crawl more than

2 million notices from repository. This becomes our primary dataset from which all
11More information on the API https://github.com/berkmancenter/chillingeffects/blob/master/doc/api

documentation.mkd

https://github.com/berkmancenter/chillingeffects/blob/master/doc/api_documentation.mkd
https://github.com/berkmancenter/chillingeffects/blob/master/doc/api_documentation.mkd

37

the remaining datasets are derived. We now briefly describe the structure of the DMCA

takedown notice.

3.2.1 Notice structure

Listing 1 provides the JSON structure of a typical notice obtained through the

Chilling Effects API. These fields are on the lines of a valid takedown notice as coded in

Section 512(c)(3)(A)[38].

Chilling Effects also tries to protect the privacy of the individual copyright

owners by redacting any information that might disclose their names or identities before

publishing any notice. Furthermore, as with any real world data, this dataset also presents

its own set of challenges in terms of incomplete and malformed data; we prune it by

skipping notices which contain malformed values in fields of our interest (for example,

“works” field of the notice).

Among all the fields, the following are especially worth noting and are also

important to us for further analysis:

1. Sender Name

The organization which filed the notice.

2. Principal Name

The organization claiming to be the copyright holder.

3. Recipient Name

The organization which received the notice (generally OSPs but not necessarily).

4. Works

The list of copyright claim(s) made by the copyright holder.

5. Description

A description of the work being infringed upon.

38

6. Infringing URLs

The list of infringing URLs per claim (works).

3.3 Infringing URLs

The second dataset that we use for this work is the raw HTML content of the

infringing URLs that are part of the takedown notices. For reference, the total number

of URLs present in all the crawled notices is 493,533,155 (approximately 500 million),

and figure 3.2 shows the number of URLs submitted per month and the corresponding

trendline depicts the exponential rise over past few years. As a starting point and before

diving deeper into all the URLs, we sample a random subset of 10,000 notices and

extract approximately 3 million URLs from those notices.

We then crawl these 3 million URLs using a distributed crawler, part of another

research project, which is written on top of the Hadoop framework12. In addition to

getting the raw HTML content of the URL, the crawler also captures a screenshot of

the completely loaded webpage (as seen on the Firefox browser), HTTP response status

codes and several other fields. This content is then stored in a Hadoop Distributed File

System (HDFS).

These two datasets, Takedown notices and Crawled Infringing URLs, now act

as a source of other smaller more tailored datasets used in the analysis and applications

of different machine learning techniques. These specialized datasets are further discussed

in the experimentation sections.

12For information: https://hadoop.apache.org

https://hadoop.apache.org

39

Figure 3.2. Number of URLs submitted per month. The trendline depicts the exponential
rise in recent years.

3.4 SOPA/PIPA effect

Figure 3.1 reveals an interesting correlation. If we examine the increase in notices

from March to April 2012, there is an approximately 124% increase in notices received

by Google (from 24371 to 59450). Interestingly, this is around the same period when

Stop Online Piracy Act (SOPA) and the PROTECT IP Act (PIPA)13 were benched

by the Congress (January, 2012). Copyright holders were lobbying for these laws to

get passed as they contained provisions in their favor. This shows a strong correlation

between this event and the drastic increase in DMCA notices being filed with Google,

which suggests that copyright holders started using the existing laws more aggressively.

However, we also see a dip appearing from October to November 2012, which we believe

is due to an increase in number of URLs being submitted per notice, but we are not

13http://en.wikipedia.org/wiki/Stop Online Piracy Act

http://en.wikipedia.org/wiki/Stop_Online_Piracy_Act

40

confident about this conclusion.

3.5 Copyright holders

From the dataset of more than 2 million notices, we take a closer look at the dif-

ferent copyright holders and the number of notices they filed; this additional information

helps us to create a more uniform dataset for the classification task as explained in section

6.1. Table 3.1 shows some of the top copyright holders from different categories. Here,

the copyright holders are manually labelled by using our own judgement. It is evident

that there is an inherent skewness in the distribution of notices for different categories,

and Music is the most dominant category.

Table 3.1. Number of notices filed by different copyright holders along with the meta-
level category the holder belongs to.

Copyright Owner Number of notices Category
BPI (British Recorded Music Industry) Ltd 254,910 Music

Froytal Services Ltd 36,181 Adult
Microsoft Corp. 19,181 Software

IFPI 16,114 Music
Paramount 7,524 Movies

Fox 6,170 Movies
BangBros.com Inc. 5,543 Adult
Home Box Office 5,423 TV Shows
Random House 4,778 Books

Shueisha 3,926 Manga

41

{

"dmca":{

"id":"ID within Chilling Effects",

"type":"DMCA",

"title":"Notice title",

"body":"Notice description (if any)",

"date_sent":"Send Date",

"date_received":"Receive Date",

"topics":["List of topics"],

"sender_name":"Filing organization",

"principal_name":"Copyright Holder",

"recipient_name":"Receiving entity",

"works":[

{"description":"Description of claim",

"infringing_urls":[

{"url":"Infringing URL"},

{"url":"Infringing URL"},

],

"copyrighted_urls":[

{"url":"Original work URL"},

]

}

],

"tags":["List of tags (unreliable)"],

"jurisdictions":["List of jurisdiction"],

"action_taken":"Yes/No",

"language":"Language of notice"

}

}

Listing 1. Chilling Effects notice structure.

Chapter 4

Topical Paradise

As a first step, we would like to look at the crawled URLs from the notices and

see what kind of latent topics are present in the dataset. Our initial hope is to get a

representative set of topics such as ones related to Music, Books/Magazines, Movies,

Comics and others. In order to do this, we learn a latent Dirichlet allocation model on

top of the crawled content of the infringing URLs.

The remaining chapter gives an overview of the toolkit, dataset, and several

pre-processing steps that we try in order to improve the results and final observations.

To learn the topic model, we use the LDA implementation from the MAchine

Learning for LanguagE Toolkit (MALLET)[29]. It implements a distributed version of

collapsed Gibbs sampling for learning. Collapsed Gibbs sampling has been explained in

section 2.1.5.

4.1 Dataset

As described in section 2.1.1, we need a bag-of-word representation of each

URL in order to learn the topic model. In order to achieve this, we use the Crawled

Infringing URLs dataset described in section 3.3 and scrape the raw HTML content to

extract words. Here, words represents the plain text present in the HTML content paring

42

43

the HTML tag related information. To process HTML efficiently, we use HTMLParser14,

a popular python library for parsing the “body” of HTML pages, which is quite robust on

real world HTML content.

4.2 Pre-processing

Our initial experimentation on the extracted content yielded very noisy and

nonsensical topics. For the sake of brevity, we don’t show these initial results. In an

effort to reduce this noise we perform several pre-processing steps.

4.2.1 Restricting to 200 OK

Ideally, we would like to look at all the webpages whose content has not changed

as a result of the DMCA notice. Since there is no practical way to know this, we make

the following assumption: if the server of the URL does not return an error or the URL

does not get redirected, we mark that URL as a valid one and restrict our dataset to only

those URLs. In order to better understand this, we look at the distribution of the HTTP

response codes that we obtain after crawling 3 million URLs. Figure 4.1 shows the overall

distribution of different response codes. As it is evident from the pie chart, approximately

28.9% of the crawled URLs are a result of redirects (response code 301,302) and 44.6%

of the crawled URLs are valid.

We now create our dataset by removing all the invalid URLs (HTTP response

code not equal to 200 OK), which also includes redirects. As a result, we are left with

approximately 1 million URLs.

14https://docs.python.org/2/library/htmlparser.html

https://docs.python.org/2/library/htmlparser.html

44

Figure 4.1. Distribution of HTTP response codes obtained after crawling 3 million
URLs.

4.2.2 Curating “stopword” list

Since we are working with a very specific dataset, we augment a secondary stop-

word list, beyond the standard list provided by MALLET. We look at the most frequent

words in our dataset and add those words that don’t contribute anything meaningful.

Some of the examples of such words are “mp3”, “downloads” and “login”. It is a chal-

lenging task to identify whether a word can be counted as a “stopword” or not, and for

this we rely on our own judgement. In total, we have approximately 1200 words long

“stopword” list.

45

4.2.3 Cutting the tail

In order to reduce the computational time of the model, we further try to reduce

the vocabulary of dataset. We start of by looking at the word count distribution. It

is evident from the figure 4.2 that there exists a longtail of words that have very low

frequencies. To get an idea of how long this tail is, we note that out of around 3.8

million words in the dataset, there are approximate 3.4 million words that have less than

10 occurrences. This constitutes around 88% of the total vocabulary size. Hence, we

heuristically choose 10 as our threshold frequency to mark a given word for removal

from the dataset.

Figure 4.2. Word count distribution in the dataset showing presence of longtail.

46

4.2.4 Document length distribution

Finally, we also look at the document length distribution to see if there are a large

number of documents which are either very small, in which case we can safely remove

them, or are very large, in which case they might introduce more noise. Figure 4.3 shows

a boxplot of the document length distribution. In this graph, we omit the outlier docu-

ments that have lengths on order of tens and hundreds of thousands. Based on this, we

heuristically choose our minimum document length to be 25 words (approximately 29%

of the documents) and maximum document length to be 15,000 words (approximately

0.03% of the documents) and discard all documents that don’t lie within this window.

Figure 4.3. A boxplot, without outliers, showing the document length distribution.

Our final dataset for topic modeling consists of 967,131 documents with a vocab-

ulary size of 457,723. Since LDA requires a pre-defined number of topics, we experiment

with 10, 20, 50 and 100 topics. We compare different models and get an idea of how the

47

topics change as the model is given more parameters to fit the dataset.

4.3 Results

Instead of showing topics from all the configurations, we present the results of

LDA when trained with 10 topics. Table 4.1 shows the top keywords of each topic when

LDA is run with a configuration of 10 topics. It is evident from the table that a lot of

these topics do not always make sense even after performing several pre-processing steps.

Many of these topics are either very generic or just simply random having no meta-level

theme. Nevertheless, when running with different configurations, we do get topics that

make more sense and have some high level theme which can be interpreted, but overall

most of the topics seem to be very generic. Interestingly, on some configurations we

do get different genres of music as different topics. We present some of these topics in

appendix A.

In general, there still seems to be lot of noise present in the dataset. Some of the

reasons that we believe might be causing the noise are:

1. Dominance of advertisement on the webpages

Many of these sites have 3rd party advertisements, and we think that these ad-

vertisements cause a lot of noise as the content itself doesn’t make any sense

and such kind of noise is difficult to identify and remove in the above mentioned

pre-processing phases.

2. Lack of textual content on the webpage

Sites having digital media, such as video streaming sites or sites hosting manga

comics, don’t really have lot of textual content in them; we hoped to utilize the

meta-data present as part of the digital content but overall it seems that this rich

content is hard to model.

48

3. Presence of “Error” or “Not Found” pages

There are mainly two categories of URLs that we believe fall under this group:

(a) Those URLs whose content has been taken down and are currently returning

a “generic page” or “error page” specific to their domains. It is important

to note that in such cases the HTTP response from the server is 200 OK,

which makes them valid URLs, but the content does not correspond to the

one targeted by the takedown notice.

(b) URLs that correspond to empty search results on their respective domains

and have no meaningful content in them. These URLs are directed towards

the search engine within the domain. An example of such a URL is:

http://torrentz.eu/search?f=the.newsroom.2012.s02e09.720p.hdtv.x264.

4.4 LDA on notices

As a side experiment, we also try running LDA on the descriptions of 50,000

notices. On one hand, these description don’t have different sources of noise as seen

with URLs, but on the other hand they are usually very short or generic because they

are not mandatory. Although the resulting topics are slightly more coherent (and topics

like “Books” also emerge), the majority of the topics still don’t make much sense. For

reference some of the interesting topics can be found in the appendix (table A.2).

To conclude, we believe that the current dataset needs to be refined further and

probably a modified LDA algorithm might be required to extract meaningful topics out

of it. In our next attempt to remove noise, we try to tackle the third issue of “Error” or

“Not found” pages using a different machine learning approach. This is further explained

in chapter 5.

http://torrentz.eu/search?f=the.newsroom.2012.s02e09.720p.hdtv.x264

49

Table 4.1. Top keywords of each topic learned by LDA with 10 topic configuration on
crawled URLs dataset.
We try to figure out the meta-level label of each topic by looking at the keywords. First
rows shows these labels and furthermore, we also highlight the important keywords
present in each topic.

50

G
en

er
ic

G
en

er
ic

G
en

er
ic

Fi
le

sh
ar

in
g?

To
rr

en
ts

M
an

ga
So

ft
w

ar
e?

G
en

er
ic

M
us

ic
G

en
er

ic
ag

o
lin

k
en

la
ce

ch
ec

k
pi

ra
te

pa
rt

pa
rt

ki
m

i
m

us
ic

w
ho

is
m

ov
ie

s
em

be
d

re
pr

od
uc

ci
n

ge
nr

e
ba

y
tr

ue
w

in
do

w
s

ha
na

re
m

ix
ic

an
n

tv
tr

ac
k

de
sc

ar
ga

r
ne

t
m

us
ic

m
an

dr
es

se
s

ka
m

is
am

a
m

ix
po

rn
tr

ac
ke

r
pl

ay
er

re
pr

od
uc

to
r

m
b

ga
m

es
m

an
ga

up
lo

ad
ed

ha
jim

em
as

hi
ta

fe
at

vi
de

o
w

av
co

de
cd

ig
o

se
ar

ch
pr

ox
y

w
ar

ad
ob

e
pa

ge
fa

ce
bo

ok
si

ze
vi

de
o

pl
ay

lis
t

lis
ta

fa
ce

bo
ok

sh
ar

ed
am

p
in

fo
rm

at
io

n
m

an
ga

or
ig

in
al

po
st

s
se

ar
ch

re
gi

st
ra

tio
n

aa
di

r
sh

ar
ed

be
ac

h
ni

gh
t

sp
ep

is
od

e
m

p
vi

de
os

an
no

un
ce

ed
it

si
tio

fil
et

ra
m

fa
ce

bo
ok

ka
ra

su
m

or
i

m
ic

ro
so

ft
fa

ce
bo

ok
lo

ve
hd

ga
m

e
di

ar
y

co
nt

ra
se

a
lin

k
fin

al
ly

m
as

am
or

i
ra

pi
dg

at
or

re
ad

so
ng

ne
t

hi
ka

ru
pl

ee
r

pi
st

a
ac

co
un

t
do

ck
ed

ye
ar

s
ul

tim
at

e
an

im
e

vi
de

o
do

m
in

io
xx

x
m

ax
pa

rk
co

m
po

si
ci

n
ra

pi
ds

ha
re

ko
pi

m
i

ch
an

ge
pr

o
m

ib
ne

t
ra

pi
dg

at
or

ud
p

m
es

sa
ge

ar
ch

iv
o

po
p

sh
ar

in
g

ag
o

sh
ip

pi
ng

ut
su

ho
dj

se
x

m
p

er
ro

r
re

gi
st

ra
rs

e
m

ed
ia

fir
e

se
ar

ch
om

ak
e

vi
de

o
its

uw
ar

ib
ito

so
ng

s
im

ag
e

m
on

th
s

bl
og

em
be

d
de

po
si

tfi
le

s
m

ov
ie

s
ze

kk
ai

ne
t

sp
ec

ia
l

vi
p

pa
rt

si
ze

tw
itt

er
in

se
rt

ar
hi

p
cl

ou
d

yo
sh

im
or

is
lin

ks
dr

am
a

de
ta

il
m

p
dv

dr
ip

lo
re

m
di

ar
y

so
ur

ce
vi

de
o

hu
m

an
si

te
ep

ra
di

o
po

st
vi

ew
ip

su
m

m
ax

pa
rk

fe
at

ap
pl

ic
at

io
ns

ch
ild

of
fic

e
im

ag
es

ho
us

e
xx

x
xv

id
liv

ej
ou

rn
al

pl
ee

r
en

gi
ne

tw
ee

t
bo

x
fu

ll
ho

m
e

liv
e

vi
ew

la
te

st
bl

og
ge

r
in

tr
pr

et
e

ho
pr

ap
bi

tt
or

re
nt

ca
st

le
pc

fo
ru

m
ba

ck
w

eb
si

te

Chapter 5

Clusters, Clusters, Everywhere

As previously discussed in section 4.3, one source of “noise” is the presence of

“Error” or “Not Found” pages, where the page itself does not have any meaningful content

in it or is polluted by other “generic” content. Here, by meaningful content we mean

the original content that was targeted by the copyright holder for removal. Identifying

whether the content on the page is actually the same content that was alleged to be

infringing is in itself a challenging problem, which can be tackled in the future.

Figure 5.1 shows an example of a Not Found page. It is evident that there is

no meaningful content on this page and that the page is polluted by “generic” content,

whereby “generic” content is defined as any content that is not relevant to the current

page and is present only to make sure the user stays on the page longer or gets redirected

to other pages. This image forms the basis of our motivation to experiment further.

We believe that these Not Found pages have more or less the same structure

and content. Figures 5.1 and 5.2 provide examples of Not Found pages present in

filetram.com. These figures not only show the structural similarities between the Not

Found pages but also the pollution by “generic” content. Another comparison between

figures 5.1 and 5.3 reveals that the Not Found pages differ significantly, both structurally

and textually, from other pages which have some meaningful content. We hope to

leverage this 2 properties by using clustering algorithms, like k-means, to form clusters

51

52

of Not Found pages and weed them out from the dataset.

Figure 5.1. Example of a Not Found page present in filetram.com. It is a search result of
“mj fields jase” .

53

Figure 5.2. Example of another Not Found page present in filetram.com. It is a search
result of “tanya anne crosby perfect in my sight”.

54

Figure 5.3. Example of a valid search result page for filetram.com.

We now look at the dataset created for this experiment and then discuss some of

interesting results obtained.

5.1 Dataset

One of the limitations of such kind of analysis is that it also depends on the

domain currently being looked at, because each domain has a different mechanism to

present a Not Found page. Hence, we can not perform clustering on the aggregated

dataset of crawled URLs and have to take a per domain approach.

As described earlier, in addition to leveraging the textual content of the crawled

55

URLs (section 4.1), we also want to capture the structure of the page as each domain

might be using a template to generate the Not Found page. Therefore, we create a new

dataset from the raw HTML content that tries to capture the structure of the web page.

5.1.1 HTML feature extraction

Given a domain, we believe that the Not Found pages have a similar DOM (Data

Object Model) structure15. We try to take advantage of this structural similarity to improve

the cluster quality on a domain. To achieve this, we use the the same methodology as

presented by Matt Der [14]. We extract HTML features using a bag-of-words approach

ignoring the ordering in which the HTML elements occur and create instances of tokens

out of the HTML tags. As an example, consider the following snippet of HTML code:

<img src="foo.jpg" alt="Bar pic"

height="100" width="200">

Using the feature extraction methodology on the above element, we get the

following 4 new tokens for the webpage:

img:src=foo.jpg

img:alt=Barpic

img:height=100

img:width=200.

Using these two feature extraction techniques, we now have the following two

datasets,

1. Only text content

Consisting of just the plaintext obtained from HTML content of the URLs.
15DOM represents the webpage in a hierarchical format

56

2. Text and HTML features

Captures the DOM structure of the HTML content along with the plaintext content

of the URLs.

5.1.2 Domain splitting

After creating the two datasets, we split them into sub-datasets on per domain

basis and restrict them to only those domains that have at least 1,000 documents. These

domains are extracted by parsing the URLs of the notices using python’s urlparse16

library. Table 5.1 lists all 108 domains that we select for our clustering experiment.

5.1.3 Dimensionality reduction

These datasets inherently have high dimensionality, therefore, we use Principal

Component Analysis (PCA)[22] to reduce the dimensionality; particularly, we capture

99% of the variance present in the features by picking 200 principal components after

normalizing each observation. This is done for all the domains, present in both the

datasets, separately.

The traditional PCA algorithm requires a covariance matrix which is an FxF

matrix where F is total number of features. On a large scale dataset this results in a

high computational overhead. In order to reduce this overhead, we use an Expectation

Maximization algorithm for PCA (emPCA)[35]. The MATLAB implementation of

emPCA17 normalizes the input data by subtracting the mean and since, our dataset is very

sparse, this step makes the algorithm memory inefficient. Using matrix manipulation we

make the code more memory efficient by moving the normalization step inside the EM

steps and doing some bookeeping. The modified code is present in appendix B.

16https://docs.python.org/2/library/urlparse.html
17http://www.cs.nyu.edu/∼roweis/code/empca2.tar.gz

https://docs.python.org/2/library/urlparse.html
http://www.cs.nyu.edu/~roweis/code/empca2.tar.gz

57

Table 5.1. List of domains used for k-means clustering.

58

D
om

ai
n

N
am

es
pl

ee
r.c

om
ka

tp
ro

xy
.c

om
ra

pi
ds

ha
re

m
ix

.c
om

w
w

w
.k

at
sh

or
e.

or
g

th
ep

ir
at

eb
ay

.n
et

.c
o

w
w

w
.4

sh
ar

ed
.n

et
w

w
w

.fu
lls

on
gs

.n
et

to
rr

en
tp

ro
je

ct
.s

e
w

ap
da

m
.n

et
ge

tw
ap

i.c
om

rs
s.

hu
.la

nu
nb

ay
.o

rg
w

w
w

.d
ow

nl
oa

ds
.n

l
m

p3
vi

p.
or

g
w

w
w

.to
rr

en
td

ow
nl

oa
ds

.m
e

fil
es

hu
t.c

om
ci

ty
m

an
ga

.c
om

se
ar

ch
.4

sh
ar

ed
.c

om
vk

.c
om

m
an

ga
bl

e.
co

m
m

an
ga

se
ve

n.
co

m
w

w
w

.s
ta

fa
ba

nd
.in

fo
v2

01
2.

m
an

ga
pa

rk
.c

om
w

w
w

.m
p3

zo
ne

.s
k

se
cu

re
up

lo
ad

.e
u

pr
ox

yp
ir

at
e.

eu
sh

ar
ed

ir.
co

m
m

uz
of

on
.c

om
vi

ds
po

t.n
et

w
w

w
.m

an
ga

w
in

do
w

.c
om

m
p3

fo
rt

e.
co

m
w

w
w

.m
an

ga
he

re
.c

o
m

p3
da

ys
.c

om
w

w
w

.m
an

ga
ta

nk
.c

om
w

w
w

.m
an

ga
ed

en
.c

om
te

ra
fil

e.
co

yo
uw

at
ch

.o
rg

m
p3

cl
an

.c
om

go
so

ng
.n

et
ki

ck
as

s.
is

oh
un

t.t
o

w
w

w
.8

8t
or

re
nt

.c
om

m
p3

sa
le

.ru
ex

tr
at

or
re

nt
.c

c
w

w
w

.m
an

ga
to

w
n.

co
m

m
p3

cl
an

.it
m

an
ga

.a
ni

m
ea

.n
et

za
m

ob
.c

om
bi

ts
no

op
.c

om
th

ep
ir

at
eb

ay
.s

l
bi

ts
ha

re
.c

om
w

ap
tr

ic
k.

co
m

tp
bu

nb
lo

ck
ed

.m
e

ka
t.w

or
ks

ki
ck

as
s.

to
ki

ck
as

su
nb

lo
ck

.n
et

w
w

w
.is

m
an

ga
.c

om
w

w
w

.s
um

ot
or

re
nt

.s
x

w
w

w
.to

rr
en

th
ou

nd
.c

om
ry

us
ha

re
.c

om
th

ep
ir

at
eb

ay
.s

e
vi

be
3.

co
m

ca
ts

ha
re

.n
et

m
p3

w
m

.c
om

se
ar

ch
.4

sh
ar

ed
-c

hi
na

.c
om

13
37

x.
to

fr
ea

ks
ha

re
.c

om
m

p3
yl

p.
co

m
5m

p3
.o

rg
ki

ck
as

st
or

.n
et

ch
om

ik
uj

.p
l

w
w

w
.to

rr
en

tr
ea

ct
or

.n
et

w
w

w
.to

rr
en

tb
it.

ne
t

do
w

nl
oa

d-
to

rr
en

ts
.o

rg
w

w
w

.u
pl

oa
da

bl
e.

ch
w

w
w

.c
ity

m
an

ga
.c

om
up

lo
ad

in
g.

co
m

w
w

w
.p

or
n-

w
.o

rg
ra

w
.s

en
m

an
ga

.c
om

w
w

w
.re

ad
m

an
ga

.e
u

m
rt

zc
m

p3
.n

et
ka

t.g
s

m
an

ga
w

al
l.c

om
w

w
w

.m
an

ga
bb

.m
e

w
ap

da
m

.c
o

vi
db

ul
l.c

om
w

w
w

.m
an

ga
st

re
am

.to
vo

dl
oc

ke
r.c

om
to

rr
en

tz
-p

ro
xy

.c
om

to
rr

en
tz

.tf
tu

rb
ob

it.
ne

t
h3

3t
.to

bt
di

gg
.o

rg
w

w
w

.v
id

eo
w

ee
d.

es
w

w
w

.m
on

ov
a.

or
g

al
lm

yv
id

eo
s.

ne
t

w
w

w
.d

ir
rt

yr
em

ix
es

.c
om

w
w

w
.b

ay
pr

ox
y.

nl
tr

ue
to

rr
en

t.c
om

to
rr

en
tz

.e
u

w
w

w
.g

en
er

al
fil

.e
s

w
w

w
.w

eb
la

gu
.c

om
to

rr
en

tu
s.

si
m

an
ga

do
om

.c
o

m
p3

cl
an

.n
et

w
w

w
.k

at
sh

or
e.

nl
vm

us
ic

e.
ne

t
ki

ck
as

st
or

re
nt

s.
lin

k
su

ke
be

i.n
ya

a.
se

.p
ro

xy
.d

cm
ys

.k
r

ex
tr

at
or

re
nt

.e
e

59

To perform the clustering, we use the MATLAB implementation of k-means18.

Since there may be other clusters present in the domain (such as valid search result pages

vs actual content pages), running k-means with 2 cluster configuration may not always

give a Not Found cluster even if there are such pages present within the domain. Hence,

we run k-means with 3 different configurations: K = 2,5 and 10.

Once we have the clusters, based on the distance from the cluster centroid, we

create a summarized page containing screenshots of the top 10, bottom 10, and random

10 URLs of each cluster. We use this output to perform further analysis.

5.2 Results

After clustering is performed, we manually look at the screenshot of the URLs

present in the cluster to identify whether they belong to the Not Found category or

otherwise. Based on this, we identify each domain as belonging/not belonging to the Not

Found category. Interestingly, during this analysis we also come across 3 other types of

domains related to parked pages, age verification and the DMCA compliance domains.

In all, we categorize each domain into the following 5 categories:

1. Parked pages

These represent domains which have been either completely shut down, have same

content on all the URLs, or is a parked domain: domains which have no services

associated with them or might be reserved for future development. Figure 5.4

shows an example of a parked page.

2. Age verification domains

A handful of torrent related URLs are presented as “age verification” pages before

they show the actual content. These pages gets clustered together and we mark such

18http://www.mathworks.com/help/stats/kmeans.html

http://www.mathworks.com/help/stats/kmeans.html

60

domains as “Age verification” domain. Figure 5.5 shows a sample age verification

page.

3. DMCA compliance

We also come across several domains which have URLs that show unavailability

of content due to a copyright infringement complaint and these URLs often get

clustered together because they have the exact same structure with minor differ-

ences in the content. We mark such domains as “DMCA compliance” domain.

Presence of such clusters show that the copyright holders are not only targeting

search engines to remove URLs from their search index but they are also targeting

the services that host the content of those URLs. Figure 5.6 shows an example of a

DMCA compliance page.

4. Yes “Not Found”

Domains in which there one or more clusters with Not Found pages.

5. No “Not Found”

Domains in which we cannot find any Not Found cluster. We believe these broadly

represent two kinds of categories:

(a) Domains that are not hosted in U.S. and therefore their content cannot be

targeted under Section 512. Example of such a domain could be a Japanese

manga related website.

(b) Domains that always return some content for a search query regardless of

its availability. Example of such a domain could be a music spamming site

which return links for any search query.

Table 5.2 shows the distribution of domains across categories based on manual

analysis. As expected, both the features perform equally well in identifying parked pages,

61

Figure 5.4. Screenshot of a parked page.

age verification, and DMCA compliance domains but HTML features are more helpful

in identifying domains with Not Found clusters. In conclusion, it seems that clustering

can help, but it is not scalable as there is no magic recipe to determine whether or not the

resulting clusters contains a Not Found cluster.

62

Figure 5.5. Screenshot of an age verification page.

Table 5.2. Category wise distribution of 108 domains based on k-means clustering.
``````````````̀Categories

Features Text only Text and HTML features

Parked pages 9 9
Age verification 5 5

DMCA compliance 7 7
Yes ”Not Found” 36 49
No ”Not Found” 51 38



63

Figure 5.6. Screenshot of a page showing unavailability of content due to copyright
infringement.



Chapter 6

Classifying Notices

Revisiting the notices that are crawled from Chilling Effects repository, we

now address the second question mentioned in the introduction, that is, we explore the

feasibility of labelling the notices in an automated fashion by training a classifier. The

primary motivation for this experiment is to obtain a good enough labeled dataset out of

notices in a completely automated fashion. We believe that this dataset might help to

learn a labeled variant of LDA[34], and that this labeled approach might reduce the noise

and improve the quality of topics.

6.1 Dataset

In order to perform this experiment, we must create a new dataset out of the

crawled notices from Chilling Effects. One of the prerequisites for training a classifier

is the availability of a labeled dataset, which we don’t have. Creating a labeled dataset

is challenging because there is no ground truth available to us as part of the notices;

moreover, we have no concrete idea about the total number of labels present in the

dataset.

To tackle these challenges, we try to make some heuristic assumptions. First,

as shown in table 6.1, we create a set of 7 labels which we think are more or less

representative of the dataset.

64



65

Table 6.1. Set of labels used to classify the notices.

Labels
Music
Movies

TV Shows
Books

Manga (Comics)
Software

Adult

Second, we manually label the notices among those 7 classes. We use the

“principal name” (copyright holder) field of notice for classification and in order to reduce

the manual effort, we classify all the notices under the same principal name as belonging

to the same class; for example, all the notices with Microsoft as the copyright holder are

labeled as Software.

As a sanity check, we manually label a small subset of notices from selected

copyright holders; this is done by looking at the content and then classifying it. The

results are the same for most of the copyright holders. In the end, we select 40 different

copyright holders and label them; table 6.2 contains the list of the copyright holders and

their corresponding labels.

Given this list we now split the copyright holders into two sets,

1. Train/Test Set

Consisting of copyright holders on which the classifier is trained. We also create a

validation set out of this to test the accuracy of the classifier on the same copyright

holders.

2. Heldout Set

Consisting of the remaining copyright holders which are not seen by the classifier

during the training. Since we would like to train the classifier on a small dataset

and use it to classify the remaining notices, the accuracy on the heldout set helps



66

to measure the ability of the classifier to generalize new and unseen notices.

Referring back to section 3.5, there is an inherent skewness in the dataset based

on the number of notices filed by copyright holders. In order to overcome this skewness,

we create a uniform dataset by selecting same number of notices from each label. In

all, we create the “Train/Test Set” with 5,000 notices from each label (total of 35,000

notices) and “Heldout Set” with 2,000 notices from each label (total of 14,000 notices).

6.2 Feature extraction

For this experiment, we continue using bag-of-word representation to extract

features from the notices. Furthermore, we create two different datasets by extracting

features from the description and URLs present in the claim(s) of the notices.

6.2.1 Claim description

For the first dataset, we tokenize the textual content of the descriptions in the

claims (works) provided by the copyright holders. Note that, the DMCA does not

mandate providing a detailed description of the claims; and hence, these descriptions

tend to be very short and generic (e.g.“This is a DMCA copyright infringement notice”)

or very short and specific (e.g. “The Lion King”).

Given a notice, we concatenate the description of all the claims, then tokenize

and sanitize them; we also perform the pre-processing steps defined in section 4.2 to get

the final feature vector. From here onwards, we refer to the dataset created using this

methodology as Description Only dataset.

6.2.2 Tokenized URLs

For the second dataset, we leverage the URLs present in the notice. Many of these

infringing URLs contain some information as part of their address itself. For example,



67

consider the following URL:

www.downtr.co/1526608-bbc-top-gear-magazine-uk-december-2012.html

Inspection of the URL itself gives some insight about the content it represents;

clearly this URL is related to the “Top Gear TV Show.” We try to capture this information

by tokenizing the URL and sanitizing it by removing “stopwords” and numbers. For the

above example, we get the following tokens:

downtr

bbc

top

gear

magazine

uk

december

Given a notice, we now concatenate the tokens from the URLs along with the

those obtained from the descriptions of the claims to form the final feature vector. From

here onwards, we refer to the dataset created using this methodology as URL Features

dataset.

6.3 Classifiers

We use the two very popular classification techniques; Support Vector Machines

(SVM) and Random Forests (RF), both of which have been briefly reviewed in sec-

tion 2.3. Instead of implementing the algorithm from scratch, we use an opensource

python framework, scikit-learn19, which has multi-class implementation of both the

algorithms.
19http://scikit-learn.org/stable/

http://scikit-learn.org/stable/


68

6.4 Super Video category

Our initial experimentation revealed that the classifier is getting confused between

TV Shows and Movies. Figure 6.1 shows a confusion matrix of the classifier on a heldout

set of copyright holders depicting a high confusion between TV Shows and Movies.

This is not totally surprising as both these meta-level classes represent media content.

Therefore, as an additional experiment, we combine these two labels into a single category

called “Super Video” and train/test our classifier on the above mentioned datasets. Overall,

we now have 2 new datasets, based on the feature extraction, comprising of only 6 labels.

We name them “Super Video Description only” and “Super Video URL Features.”

Figure 6.1. Confusion matrix of SVM on all Heldout notices, providing motivation for
“Super Video” category.



69

6.5 Experiments

Combining everything, we test the accuracy of each classifier (SVM and RF)

on 4 different feature related datasets (“Super Video Description only”, “Super Video

URL Features”, “Description only”, and “URL Features”). Each of these feature related

dataset have 2 different categories (“Train/Test” and “Heldout”). Furthermore, each

of these two category has two different versions, a “Smaller Dataset” which has same

number of notices for every label and a “Larger Dataset” which has all the notices for all

the labeled copyright holders. For “Larger Dataset”, “Train/Test” consists of a total of

332,894 notices and “Heldout” consists of 106,639 notices.

6.6 Results

Figure 6.2 shows the accuracies on the test set, which contains the same copyright

holders that is used to train the classifier and figure 6.3 shows the accuracies on the

heldout set. Looking at the graphs we make couple of observations,

1. As expected, we obtain fairly high accuracy when testing the classifiers on “Test

Set”. We get a maximum accuracy of 98.3% from SVM classifier on “Super

Video URL Features” test set. This result provides a sanity check as we expect the

classifier to correctly identify classes, with high accuracy, on the copyright holders

which it has already seen.

2. Figure 6.3 shows, however, that the classifiers do not perform that well on unseen

copyright holders. Introducing URL features has certainly helped improve the

accuracy but it is still under 80% on smaller datasets. On the other hand, if we

compare the accuracies of “Smaller Dataset” vs “Larger Dataset”, there seems to

be a significant improvement in the accuracy, for example a rise 56% to 86% for



70

the random forest classifier using “URL Features.” We attribute this rise to the fact

that there is an inherent skewness in the dataset as described in section 3.5 and if a

classifier is able to correctly identify classes with more notices, such as Music and

Adult, than the accuracy will naturally increase.

Figure 6.2. Accuracies for Test datasets using different features.

Figure 6.3. Accuracies for Heldout datasets using different features.

Furthermore, by looking at figures 6.4a and 6.4b we can compare the confusion

matrices before and after combining Movies and TV Shows into Super Video category

respectively. This comparison shows that fusion of the two categories does indeed help

reduce the confusion the random forest classifier.



71

In summary, we observe that there exist some categories such as Music and Adult

that are easy to classify and others such as Movies, Software and TV Shows that are

not. We believe that one of the factors might be insufficient training data, for example

Software category do not have lot of copyright holders; the dataset mainly consists of

notices from Microsoft and Adobe, hence the classifier is not performing on those labels.

Overall, we see that, SVMs outperform random forests in “Smaller Dataset(s)” and

“Description only” features, whereas, random forests takes the lead with “Larger Dataset”

and “URL Features.”



72

Table 6.2. Manual labels of copyright holders

Copyright Holder Name Label
BPI (British Recorded Music Industry) Ltd Music

Microsoft Corp. Software
RIAA member companies Music

BPI LTD MEMBER COMPANIES Music
The Publishers Association Books

Paramount Movies
Twentieth Century Fox Film Corporation Movies

BangBros.com Inc. Adult
Home Box Office TV Shows

Columbia Pictures Industries Inc Movies
Random House Books

Shueisha Manga
Microsoft Software

Paramount Pictures Corporation Movies
Hachette Livre Books

microsoft Software
Pearson Education, Inc. Books

Kodansha Manga
MARC DORCEL Adult
Pornostar Records Adult

Adobe Software
CBS TV Shows

Froytal Services Ltd Adult
CA Co., Ltd. Adult

IFPI Music
Reed Elsevier Books

Beggars Group Digital Ltd Music
TheEsa Software

Hydentra L.P Adult
Editis Books

Harper Collins Books
GGCash Adult
METI Manga

MX International Inc Manga
Sony Pictures Classics Inc Movies
Viacom Media Networks TV Shows

VIZ Media LLC Manga
Take Two Interactive Software

Musical Freedom Music
RCN TV TV Shows



73

(a) URL Features

(b) Super Video URL Features

Figure 6.4. Comparison of confusion matrices from random forest (RF) classifier using
6 vs 7 categories



Chapter 7

Conclusion

In this work, we take a systematic look at the Digital Millenium Copyright

Act, specifically Section 512 of DMCA, which provides an extra-judicial mechanism

for copyright holders to take down allegedly infringing material by issuing notices to

Online Service Providers. We crawl more than 2 million notices from Chilling Effects

repository; we then select a subset of 10,000 notices to crawl the content of approximately

3 million infringing URLs. We then apply different machine learning techniques in order

to find interesting patterns within the dataset.

First, we try to extract latent topics present within the URLs by learning a topic

model on the crawled content of the URLs. We perform several pre-processing steps,

like custom stopword removal, cutting the longtail of low frequency words and removing

very large and small documents, before learning the final model. The results show that

the dataset is still dominated by “noisy” content. In an effort to remove this “noise”, we

experiment with clustering techniques on per domain basis to identify Not Found (noisy)

clusters and remove them from the dataset. Our results reveal that not all domains have

Not Found clusters and the approach itself is not very scalable. However, this experiment

served as a proof of concept that with effort we can remove some “noisy” content from

the dataset.

Furthermore, we also try to automatically classify the notices based on features

74



75

extracted from the descriptions and the URLs of the claims. We find that, there exists an

inherent difficulty in curating the dataset for such an experiment because we do not have

ground truth labels or even know the total number of classes present in the dataset. Using

some heuristic approximations, we create a different datasets with 6 and 7 categories,

consisting of 40 different copyright holders. We obtain a maximum accuracy of around

86% on a heldout set consisting of copyright holders never seen by the classifier.

Overall, we conclude that applying machine learning techniques on this dataset

proved to be more challenging than we expected. We believe this is because of the

following inherent properties of the dataset:

1. Presence of heavy bias in terms of notices filed by copyright holders.

2. Lack of rich textual content in the notices as well as the URLs.

3. Dominance of “noise” in whatever content is available.

and many others. This in itself opens up lot of opportunities for future research.

Starting with classification, future research can involve:

1. Creating a more representative dataset by having more notices from under repre-

sented classes (Software, TV Shows and others).

2. Using an external signal for training, such as IMDB20 to get the list of Movies and

TV Shows.

3. Obtaining tags for URLs from services like AlchemyAPI21.

Clustering algorithms on this labeled dataset might be able to weed out Not Found

pages within a given category. Once the dataset is less “noisy”, topic models can be

20http://www.imdb.com
21http://www.alchemyapi.com/products/alchemylanguage/keyword-extraction

http://www.imdb.com
http://www.alchemyapi.com/products/alchemylanguage/keyword-extraction


76

learned on a per category basis to reveal more fine grained patterns within each category.

This in turn could answer some of the more interesting questions pertaining to the usage

of Section 512 by the copyright holders, for example:

1. What kind of music is mainly targeted by the copyright holders? Is it Rock,

Electronica or Pop? Are they targeting more recent hits than classics?

2. Is there any particular pattern according to which Movie production houses target

infringers? Like, what genre of movies are more heavily targeted? Are blockbuster

movies targeted more aggressively?

3. Is DMCA being abused by copyright holders to take down content of competitors

in order to gain an unfair advantage?

These and many more interesting questions are left for future work.



Appendix A

Additional topics

In this chapter we present additional topics that are learned by the topic models

covered in chapter 4. Table A.1 lists down some interesting topics discovered when the

topic model was configured with 50 topics. Table A.2 lists a subset of topics when we

learn a topic model on the description of the notices instead of crawled content of URLs.

77



78

Table A.1. A subset of topics from the topic model learned on crawled URL content and
configured to find 50 topics.
Some of these topics represent different genres of “Music” and some of them are clearer
than those in smaller models with only 10 topics.



79

D
J

M
us

ic
Po

p-
R

oc
k

M
us

ic
A

du
lt

M
et

al
/R

oc
k

M
us

ic
M

ov
ie

s
So

ft
w

ar
e/

G
am

es
So

ft
w

ar
e

Fi
le

Sh
ar

in
g

re
m

ix
bl

ac
k

po
rn

da
y

m
ov

ie
s

pa
rt

w
in

do
w

s
fil

et
ra

m
m

ix
m

an
se

x
gr

ee
n

bl
ur

ay
ga

m
e

pa
rt

se
ar

ch
or

ig
in

al
ni

gh
t

xx
x

de
ad

ac
ga

m
es

sp
fa

ce
bo

ok
fe

at
he

ar
t

bi
g

re
po

rt
xv

id
pc

m
ic

ro
so

ft
ac

co
un

t
dj

fir
e

an
al

eu
r

br
ri

p
ed

iti
on

ad
ob

e
ne

t
ra

di
o

ba
by

vi
de

o
si

ze
dv

dr
ip

re
pa

ck
pr

o
sh

ar
ed

cl
ub

ne
t

m
p

lin
k

m
ov

ie
so

ft
w

ar
e

ul
tim

at
e

en
gi

ne
ed

it
m

us
ic

hd
pl

ay
er

hd
ri

p
re

ad
of

fic
e

go
og

le
ho

us
e

w
an

na
sc

en
e

da
te

ag
e

se
ar

ch
bi

t
us

er
lo

ve
ki

ss
ho

t
m

et
al

lic
a

au
di

o
ra

pi
ds

ha
re

cs
lo

g
m

us
ic

br
itn

ey
an

ge
l

ni
rv

an
a

tr
an

sf
or

m
er

s
ra

pi
dg

at
or

kb
m

b
m

p
sp

ea
rs

as
s

fo
re

ve
r

ex
tin

ct
io

n
fu

ll
pr

of
es

si
on

al
te

rm
s

m
ar

tin
fa

ce
bo

ok
vi

de
os

qu
ee

n
ki

ll
up

lo
ad

ed
is

o
vi

de
o

va
n

st
ev

e
m

ov
ie

s
ae

ro
sm

ith
ci

ty
eb

oo
ks

ru
s

m
ed

ia
fir

e
al

ex
ki

ng
gi

rl
s

sy
st

em
vi

de
o

lo
ad

in
g

ph
ot

os
ho

p
si

gn
ex

te
nd

ed
co

ld
pl

ay
dv

dr
ip

w
eb

m
on

ey
bd

ri
p

w
ai

t
up

da
te

zi
pp

ys
ha

re
m

as
hu

p
br

ot
he

rs
fu

ck
ch

ec
ko

ut
lo

ck
e

xb
ox

ap
pl

ic
at

io
ns

fil
ep

os
t

da
vi

d
am

y
ev

il
pe

rf
ec

tm
on

ey
si

n
ps

m
ac

se
ar

ch
es

vk
ra

in
tit

s
jo

vi
po

st
ed

m
us

ic
le

tit
bi

t
ne

tlo
ad



80

Table A.2. A subset of topics from the topic model learned on description of notices and
configured with 50 topics.
Interestingly, these topics are more coherent than their URL-related counterparts.



81

B
oo

ks
Po

p-
R

oc
k

M
us

ic
R

oc
k

M
us

ic
G

en
er

ic
G

am
es

T
V

Sh
ow

s
A

lte
rn

at
iv

e
R

oc
k

A
du

lt
So

ft
w

ar
e

ja
m

es
br

itn
ey

sn
oo

p
pi

nk
lis

t
xb

ox
w

or
st

da
vi

d
de

m
ic

ro
so

ft
da

vi
d

sp
ea

rs
do

gg
pa

ul
re

pr
es

en
ta

tiv
e

ps
ru

nn
er

hi
ll

ad
ul

t
of

fic
e

ro
be

rt
br

uc
e

pu
m

pk
in

s
flo

yd
ur

l
nd

s
am

er
ic

an
co

ld
pl

ay
se

so
un

d
m

ic
ha

el
sp

ri
ng

st
ee

n
sm

as
hi

ng
pi

tb
ul

l
co

py
ri

gh
te

d
pc

m
en

cy
pr

es
s

ya
ng

ag
e

pa
tte

rs
on

br
ya

n
pa

tr
ol

lo
ve

w
eb

si
te

w
ii

fa
m

ily
bo

w
ie

da
n

ha
m

m
oc

k
st

ep
he

n
ad

am
s

sn
ow

of
fs

pr
in

g
ii

an
dr

oi
d

pl
an

et
da

ve
w

eb
si

te
or

ig
in

al
ki

ng
lo

ve
st

ev
e

ou
tk

as
t

of
fic

ia
l

ps
p

ap
es

lo
ve

on
lin

e
st

ar
jo

hn
br

ad
sh

ak
ir

a
ni

rv
an

a
in

cl
ud

es
io

s
si

m
ps

on
s

cr
an

be
rr

ie
s

ca
et

an
o

tr
ek

ka
re

pa
is

le
y

sy
st

em
ph

il
se

c
m

ar
io

ho
rr

or
cu

re
ve

lo
so

w
in

do
w

s
ka

no
bo

yz
sp

ic
e

ja
m

pu
rs

ua
nt

m
ac

da
y

cr
ai

g
en

te
rt

ai
nm

en
t

m
ov

ie
co

nn
el

ly
br

un
o

lo
ve

pe
ar

l
us

c
ds

da
ys

da
ug

ht
ry

gr
ap

hi
c

lif
e

de
an

m
ar

s
gi

rl
s

m
cc

ar
tn

ey
w

or
ks

su
pe

r
th

ie
f

m
at

th
ew

s
la

ng
ua

ge
pu

re
ni

ch
ol

as
bo

ne
sm

ith
s

oa
si

s
or

ig
in

al
fif

a
m

r
pu

nk
ac

tiv
ity

ru
s

nu
m

be
r

m
en

st
ev

ie
co

lli
ns

dv
d

gr
an

d
m

ot
he

r
cr

ee
de

nc
e

se
xu

al
de

ep
se

ri
es

ii
st

er
eo

ph
on

ic
s

pr
in

ce
te

le
vi

si
on

da
nc

e
bo

ok
cl

ea
rw

at
er

na
tu

re
sa

in
t

sp
ar

ks
th

ug
s

bo
y

pa
ra

m
or

e
br

oa
dc

as
ts

ra
ym

an
da

w
n

da
ft

nu
di

ty
re

d
ni

gh
t

jo
vi

su
m

di
re

ct
io

n
an

im
e

de
ad

st
or

y
re

vi
va

l
ex

pl
ic

it
go

ld
en

ba
ld

ac
ci

w
ow

so
un

dg
ar

de
n

bo
ys

re
le

as
es

w
ar

dr
ag

on
co

un
tin

g
de

sc
ri

pt
io

ns
tr

an
sf

or
m

er
s

m
ey

er
bo

w
lif

e
on

er
ep

ub
lic

llc
dr

ag
on

cl
ev

el
an

d
co

m
m

on
de

pi
ct

io
ns

gi
an

t



Appendix B

EMPCA MATLAB code for PCA

f u n c t i o n [ evec , e v a l ] = empca ef ( da t a , k , i t e r , C i n i t )
%[ evec , e v a l ] = empca ef ( da t a , k , i t e r , C i n i t )
%
% EMPCA E f f i c i e n t
% f i n d s t h e f i r s t k p r i n c i p a l components o f a d a t a s e t
% and t h e i r a s s o c i a t e d e i g e n v a l e s u s i n g t h e EM-PCA

a l g o r i t h m
% i n s t e a d of c r e a t i n g a n o r m a l i z e d ma t r ix , i t p e r f o r m s
% n o r m a l i z a t i o n a t e v e r y i t e r a t i o n and hence i s more

memory
% e f f i c i e n t when i n p u t d a t a i s i n s p a r s e f o r m a t
%
% I n p u t s : d a t a i s a m a t r i x h o l d i n g t h e i n p u t d a t a
% each COLUMN of d a t a i s one d a t a v e c t o r
% k i s # o f p r i n c i p a l components t o f i n d
%
% o p t i o n a l :
% i t e r s i s t h e number o f i t e r a t i o n s o f EM t o run

( d e f a u l t 20)
% C i n i t i s t h e i n i t i a l ( c u r r e n t ) g u e s s f o r C (

d e f a u l t random )
%
% O u t p u t s : evec h o l d s t h e e i g e n v e c t o r s ( one p e r column )
% e v a l h o l d s t h e e i g e n v a l u e s
%

82



83

[ d ,N] = s i z e ( d a t a ) ;

% s e t t i n g d e f a u l t p a r a m e t e r s
i f ( n a r g i n <4)

C i n i t = [ ] ;
end

i f ( n a r g i n <3)
i t e r =20;

end

% r u n n i n g t h e EM a l g o r i t h m
C = e m p c a i t e r ( da t a , C i n i t , k , i t e r ) ;

% e x t r a c t i n g t h e e i g e n v e c t o r s and e i g e n v a l u e s
[ evec , e v a l ] = e m p c a o r t h ( da t a , C) ;

f u n c t i o n [C] = e m p c a i t e r ( da t a , C i n i t , k , i t e r )
%[C] = e m p c a i t e r ( da t a , C i n i t , k , i t e r )
%
% EMPCA ITER
% ( r e ) f i t s t h e model
%
% d a t a = Cx + g a u s s i a n n o i s e
%
% wi th EM u s i n g x of d imens ion k
%
% I n p u t s : d a t a i s a m a t r i x h o l d i n g t h e i n p u t d a t a
% each COLUMN of d a t a i s one d a t a v e c t o r
% NB: DATA SHOULD BE ZERO MEAN!
% k i s d imens ion of l a t e n t v a r i a b l e s p a c e
% (# of p r i n c i p a l components )
% C i n i t i s t h e i n i t i a l ( c u r r e n t ) g u e s s f o r C
% i t e r s i s t h e number o f i t e r a t i o n s o f EM t o run
%
% O u t p u t s : C i s a ( r e ) e s t i m a t e o f t h e m a t r i x C
% whose columns span t h e p r i n c i p a l s u b s p a c e
%

% check s i z e s and s t u f f



84

[ p ,N] = s i z e ( d a t a ) ;
a s s e r t ( k<=p ) ;
i f ( i s e m p t y ( C i n i t ) )

C = rand ( p , k ) ;
e l s e

a s s e r t ( k== s i z e ( C i n i t , 2 ) ) ;
a s s e r t ( p== s i z e ( C i n i t , 1 ) ) ;
C = C i n i t ;

end

% c a l c u l a t e mean of d a t a
dmean = mean ( da t a , 2 ) ;

% b u s i n e s s p a r t o f t h e code - - l o o k s j u s t l i k e t h e
math !

t i c ;
f o r i =1 : i t e r

% e s t e p - - e s t i m a t e unknown x by random
p r o j e c t i o n

A = (C ' * C) \C ' ;
x = b sx fu n ( @minus ,A* da ta ,A*dmean ) ;
% m s t e p - - maximize l i k e l i h o o d wr t C g i v e n t h e s e

x v a l u e s
B = x ' / ( x*x ' ) ;
C = d a t a *B - ( dmean * ( ones ( 1 ,N) * B) ) ;
t o c

end

f u n c t i o n [ evec , e v a l ] = e m p c a o r t h ( da t a , C)
%[ evec , e v a l ] = e m p c a o r t h ( da t a , C f i n a l )
%
% EMPCA ORTH
%
% F i n d s e i g e n v e c t o r s and e i g e n v a l u e s g i v e n a m a t r i x C
% whose columns span t h e p r i n c i p a l s u b s p a c e .
%
% I n p u t s : d a t a i s a m a t r i x h o l d i n g t h e i n p u t d a t a
% each COLUMN of d a t a i s one d a t a v e c t o r
% NB: DATA SHOULD BE ZERO MEAN!



85

% C f i n a l i s t h e f i n a l C m a t r i x from empca .m
%
% O u t p u t s : evec , e v a l a r e t h e e i g e n v e c t o r s and e i g e n v a l u e s

found
% by p r o j e c t i n g t h e d a t a i n t o C ' s column s p a c e

and f i n d i n g and
% o r d e r e d o r t h o g o n a l b a s i s u s i n g a v a n i l l a pca

method
%

C = o r t h (C) ;
[ xevec , e v a l ] = t r u e p c a (C ' * d a t a ) ;
evec = C* xevec ;

f u n c t i o n [ e v e c t s , e v a l s ] = t r u e p c a ( d a t a s e t )
% [ e v e c t s , e v a l s ] = t r u e p c a ( d a t a s e t )
%
% USUAL WAY TO DO PCA - - f i n d sample c o v a r i a n c e and

d i a g o n a l i z e
%
% i n p u t : d a t a s e t
% note , i n d a t a s e t , each COLUMN i s a d a t a p o i n t
% t h e d a t a mean w i l l be s u b t r a c t e d and d i s c a r d e d
%
% o u t p u t : e v e c t s h o l d s t h e e i g e n v e c t o r s , one p e r column
% e v a l s h o l d s t h e c o r r e s p o n d i n g e i g e n v a l u e s
%

[ d ,N] = s i z e ( d a t a s e t )

mm = mean ( d a t a s e t ' ) ' ;
d a t a s e t = d a t a s e t - mm* ones ( 1 ,N) ;

cc = cov ( d a t a s e t ' , 1 ) ;
[ cvv , cdd ] = e i g ( cc ) ;
[ zz , i i ] = s o r t ( d i a g ( cdd ) ) ;
i i = f l i p u d ( i i ) ;
e v e c t s = cvv ( : , i i ) ;
cdd = d i a g ( cdd ) ;
e v a l s = cdd ( i i ) ;



Bibliography

[1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of
Euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

[2] Michael R Anderberg. Cluster analysis for applications. Technical report, DTIC
Document, 1973.

[3] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics,
2007.

[4] American Library Association. DMCA: The Digital Millennium Copyright Act.
http://www.ala.org/advocacy/copyright/dmca.

[5] Michael W Berry and Jacob Kogan. Text Mining. Applications and Theory. West
Sussex, PO19 8SQ, UK: John Wiley & Sons, 2010.

[6] David M Blei and John D Lafferty. Topic Models. Text Mining: Classification,
Clustering, and Applications, 10:71, 2009.

[7] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation.
The Journal of Machine Learning research, 3:993–1022, 2003.

[8] Léon Bottou, Corinna Cortes, John S Denker, Harris Drucker, Isabelle Guyon,
Lawrence D Jackel, Yann LeCun, Urs A Muller, Edward Sackinger, Patrice Simard,
et al. Comparison of classifier methods: a case study in handwritten digit recog-
nition. In International Conference on Pattern Recognition, pages 77–77. IEEE
Computer Society Press, 1994.

[9] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[10] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[11] Wray L. Buntine. Operations for Learning with Graphical Models. Journal of
Artificial Intelligence Research, 2:159–225, 1994.

86



87

[12] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[13] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by Latent Semantic Analysis. Journal of the
American Society for Information Science, 41(6):391–407, 1990.

[14] Matthew F Der, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Knock
it off: Profiling the Online Storefronts of Counterfeit Merchandise. In Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1759–1768. ACM, 2014.

[15] James M Dickey. Multiple Hypergeometric Functions: Probabilistic Interpretations
and Statistical Uses. Journal of the American Statistical Association, 78(383):628–
637, 1983.

[16] Weiguo Fan, Linda Wallace, Stephanie Rich, and Zhongju Zhang. Tapping the
Power of Text Mining. Communications ACM, 49(9):76–82, September 2006.

[17] Thomas L Griffiths and Mark Steyvers. Finding Scientific Topics. Proceedings of
the National Academy of Sciences, 101(suppl 1):5228–5235, 2004.

[18] Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and
R Tibshirani. The Elements of Statistical Learning, volume 2. Springer, 2009.

[19] Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 50–57. ACM, 1999.

[20] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data Clustering: a Review.
ACM Computing Surveys (CSUR), 31(3):264–323, 1999.

[21] Thorsten Joachims. Text Categorization with Support Vector Machines: Learning
with Many Relevant Features. Springer, 1998.

[22] Ian Jolliffe. Principal Component Analysis. Wiley Online Library, 2002.

[23] Do-kyum Kim. Topic Modeling of Hierarchical Corpora, 2014. Copyright -
Copyright ProQuest, UMI Dissertations Publishing 2014; Last updated - 2015-04-
06; First page - n/a.

[24] Legal Information Institute, Cornell Law University. 17 U.S. Code Section 512.
https://www.law.cornell.edu/uscode/text/17/512.

[25] Stuart Lloyd. Least squares quantization in PCM. Information Theory, IEEE
Transactions on, 28(2):129–137, 1982.



88

[26] Arnold P. Lutzker. Primer on the Digital Millenium. Lutzker & Lutzker LLP,
http://goo.gl/ISqamh, March 1999.

[27] J. MacQueen. Some Methods for Classification and Analysis of Multivariate
Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley, Calif.,
1967. University of California Press.

[28] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The Planar k-
means Problem is NP-hard. In WALCOM: Algorithms and Computation, pages
274–285. Springer, 2009.

[29] Andrew Kachites McCallum. Mallet: A Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu, 2002.

[30] Thomas Minka and John Lafferty. Expectation-Propagation for the Generative
Aspect Model. In Proceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence, pages 352–359. Morgan Kaufmann Publishers Inc., 2002.

[31] David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling. Distributed
algorithms for topic models. The Journal of Machine Learning Research, 10:1801–
1828, 2009.

[32] J.M Peña, J.A Lozano, and P Larrañaga. An empirical comparison of four initializa-
tion methods for the K-Means algorithm. Pattern Recognition Letters, 20(10):1027
– 1040, 1999.

[33] Martin Ponweiser. Latent Dirichlet allocation in R. 2012.

[34] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D Manning. La-
beled LDA: A supervised topic model for credit attribution in multi-labeled corpora.
In Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing: Volume 1-Volume 1, pages 248–256. Association for Computational
Linguistics, 2009.

[35] Sam Roweis. EM algorithms for PCA and SPCA. Advances in Neural Information
Processing Systems, pages 626–632, 1998.

[36] Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook of Latent
Semantic Analysis, 427(7):424–440, 2007.

[37] Yee W Teh, David Newman, and Max Welling. A collapsed variational Bayesian in-
ference algorithm for latent Dirichlet allocation. In Advances in Neural Information
Processing Systems, pages 1353–1360, 2006.



89

[38] Jennifer M. Urban and Laura Quilter. Efficient Process or Chilling Effects - Take-
down Notices under Section 512 of the Digital Millennium Copyright Act. Santa
Clara Computer & High Tech Law Journal, 621(22), 2005.


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	A Study in DMCA
	Title II
	Who is a Service Provider?
	How to become Eligible for Limitation?
	Limitations and Mechanisms
	Counter-notices


	Background
	Topic modeling
	Bag-of-words representation
	Multinomial distribution
	Dirichlet distribution
	Latent Dirichlet allocation
	Collapsed Gibbs sampling

	Clustering
	K-means clustering

	Classification
	Support vector machine
	Random forests


	Why so Cold?
	Chilling Effects
	Notices
	Notice structure

	Infringing URLs
	SOPA/PIPA effect
	Copyright holders

	Topical Paradise
	Dataset
	Pre-processing
	Restricting to 200 OK
	Curating ``stopword" list
	Cutting the tail
	Document length distribution

	Results
	LDA on notices

	Clusters, Clusters, Everywhere
	Dataset
	HTML feature extraction
	Domain splitting
	Dimensionality reduction

	Results

	Classifying Notices
	Dataset
	Feature extraction
	Claim description
	Tokenized URLs

	Classifiers
	Super Video category
	Experiments
	Results

	Conclusion
	Additional topics
	EMPCA MATLAB code for PCA
	Bibliography



