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ABSTRACT OF THE DISSERTATION

Forecasting and the Price of Risk in Commodity and Bond Markets

by

Irina Yurieva Zhecheva

Doctor of Philosophy in Economics

University of California, San Diego, 2017

Professor James Hamilton, Chair

In the first two chapters of my dissertation, I study the pricing of risk in

commodities futures and bond markets. In the first chapter, I provide a new way

to characterize risk in commodities futures markets. I apply my framework to

the natural gas futures market and study the consequences of changes in regime

on the risk premium. In the second chapter, I study risk pricing in bond yields

and investigate whether regime shifts are important for our understanding of

bond risk premia and the term structure. I produce novel empirical estimates to

characterize risk premia and the term structure of bond yields and natural gas

xii



futures contracts. I also propose a new method for estimating Gaussian affine term

structure models subject to regime switching, which solves the serious numerical

difficulties encountered by other methods in the literature. The third chapter

of my dissertation investigates whether forecast aggregation helps in forecasting

commodity prices.
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Chapter 1

Pricing of Risk in Natural Gas
Futures Contracts: A New Ap-
proach to Affine Term Structure
Models Subject to Changes in
Regime

Abstract

Commodities alternate between periods of contango, when the near month

futures trade at a discount to back month futures, and backwardation, when near

month futures are priced higher than back month futures. Market participants

(hedgers and speculators) are exposed to substantial risk due to the possibility

of the market switching from one state to the other. I provide a new way to

characterize these risks in commodities futures markets. I apply this framework

to the natural gas futures market where these risks are particularly substantial,

and study the consequences of changes in regime on the risk premium. Motivated

by the historically observed switches of the natural gas market between states of

contango and backwardation, I propose and estimate a Markov regime-switching

Gaussian affine term structure model and estimate the states of the market from

1
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the data. I find very strong evidence that there are regimes in the data, using a

dataset of prices from 1995 to 2014. Moreover, the regimes correspond precisely to

historically observed periods of contango and backwardation. I find that the market

acts as if regimes are more persistent than they really are, which could be a result of

hedging pressure. Moreover, I find that regime switching risk is priced. Calculating

expected returns conditional on each regime confirms the claim that agents face

significant risks from the possibility of a change in the regime. The maximum

likelihood based methods common in the literature for estimating Gaussian affine

term structure models with regime switching pose significant numerical challenges.

A separate contribution of this paper is to propose a new approach to estimating

this type of models. My approach avoids these numerical difficulties and allows for

computationally fast estimation.

1.1 Introduction

Commodities alternate between periods when the spread between the longer

term and shorter term futures contracts is positive and periods when it is negative.

When the spread between the longer term and the shorter term contracts is positive,

commodities futures are said to be in contango, whereas when that spread is negative,

they are said to be in backwardation. Participants in commodities futures markets

are exposed to substantial risks due to the possibility of the market switching from

one state to the other. This paper provides a new way to characterize these risks

in commodities futures markets using a regime switching approach.

As futures contracts approach expiry, investors who want to stay long in a

given contract roll their position, i.e. sell their position and buy the next month

contract. In backwardation, investors can often earn a positive return by rolling

their position, i.e. selling out of the contract at a higher price than what they



3

initially paid1, and reinvesting at a lower price. That is why a common trading

strategy in backwardation is to be long in a futures contract and roll your position

each month. In contango, investors sell out of the contract at a lower price than

what they initially paid.2 Hence, a common trading strategy in contango is to be

short in a futures contract and roll your position each month. As long as the market

continues to be in backwardation, an investor may be getting a positive return by

being long, but if the market unexpectedly switches to contango, the investor would

likely experience a significant loss. Therefore, investors in commodities futures face

significant risk due to the possibility of the market switching from one state to the

other, and it is crucial to be able to determine the turning points.

Natural gas futures prices are very volatile, and the risks faced by market

participants due to the possibility of switching from one state to the other are

particularly substantial. Thus, the natural gas market is a useful setting for studying

this type of risk. Natural gas is one of the most heavily traded commodity futures

contracts in the United States. The natural gas futures market is highly liquid with

daily open interest of up to about 300,000 contracts for the one month contract

and total open interest of up to 1,400,000 contracts. The second contribution of

this paper is to characterize these risks in the natural gas futures market. The

method I develop is particularly well suited for identifying these risks in this

setting. Motivated by the historically observed switches of natural gas futures

prices between states of contango and backwardation, I propose and estimate a

Markov regime-switching Gaussian affine term structure model and estimate the

1This is the case if the term structure of futures prices has approximately the same level
and slope at time t when the contract was bought and time t+ 1 when investors sell out of the
contract.

2This is the case if the term structure of futures prices has approximately the same level
and slope at time t when the contract was bought and time t+ 1 when investors sell out of the
contract.
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states of the market from the data. In my model, the level and volatility of natural

gas futures are allowed to switch with the regime. The risk premium is also regime

dependent. I choose a model with two regimes in order to be able to see how the

regimes estimated from the data are related to the two states of contango and

backwardation observed in the market. I find that the estimated regimes correspond

exactly to periods of contango and backwardation observed in the data. Moreover,

I find very strong statistical evidence that there are regimes in the data. I also find

that regime shift risk is priced.

I provide empirical estimates to characterize risk premia and the term

structure of natural gas futures. I find that expected futures returns change sign

depending on which regime we are conditioning on.3 For example, I find that

in the backwardation regime, an investor with a long position in the 9-month

contract would on average earn a positive expected monthly holding return of 2.5%.

However, in the contango regime, the investor would earn a negative expected

monthly holding return of about -0.5% on average. Thus, as long as the market

is in backwardation, the investor would on average profit from being long in the

9-month contract. However, if the regime switches to contango, the investor would

experience a substantial loss. This is consistent with the claim that agents face

significant risks from the possibility of a change in the regime.

The third contribution of this paper is methodological. I propose a new

approach to the estimation of Markov regime-switching Gaussian affine term

structure models, which solves the numerical issues encountered by other estimation

methods in the literature. Most methods for estimating Gaussian affine term

structure models in the literature are based on maximum likelihood and exploit both

the distributional assumptions and the no-arbitrage restrictions. These methods

3This holds for all contracts except for the 6-month contract.
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estimate latent pricing factors jointly with the model parameters by explicitly

imposing the cross-equation no-arbitrage restrictions. As a result, these methods

rely on numerical optimization, are computationally intensive, and pose significant

numerical challenges, which become especially severe when there is the possibility of

changes in regime. Estimation difficulties commonly arise due to highly non-linear

and badly behaved likelihood surfaces, which are flat along many directions of

the parameter space, and it is hard to achieve convergence. These problems can

make estimation by MLE very difficult or infeasible. These difficulties have been

documented by multiple researchers such as Kim and Orphanides (2005), Duffee

(2002), Ang and Piazzesi (2003), Kim (2008), Duffee and Stanton (2008), Duffee

(2009), and Ang and Bekaert (2002). To facilitate estimation of my model, I propose

a new estimation method for Markov regime-switching affine term structure models.

I use a regression based method to estimate the reduced-form parameters in the first

stage, and then estimate the prices of risk and risk-neutral transition probabilities via

minimum-chi-square estimation in the second stage. The no-arbitrage restrictions

are not used or imposed in the first-stage reduced-form estimation, but are exploited

in the second stage of the estimation. The minimum-chi-square procedure chooses

the values of the structural parameters so that the values for the recursive pricing

parameters implied by the no-arbitrage restrictions most closely fit the unrestricted

first-stage estimates. This approach is asymptotically equivalent to full information

maximum likelihood. The numerical component in the second stage is far simpler to

implement than the one associated with other maximum likelihood based methods

in the literature. In this way, I bypass the numerical difficulties encountered by

other methods and have no problem achieving convergence. Another advantage

of the minimum-chi-square approach is that the value of the objective function

provides a way to test whether the no-arbitrage restrictions are consistent with the
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data. I show how to price the time series and cross-section of the term structure of

commodities futures prices in the case of regime switching, and apply my approach

to estimate my model.

The class of Gaussian affine term structure models was originally developed

by Vasicek (1977), Duffie and Kan (1996), Dai and Singleton (2000), Duffee

(2002), and Piazzesi (2010) to characterize the relation between yields on bonds

of different maturities. The Gaussian affine term structure framework is based on

the assumptions that the pricing kernel is exponentially affine, prices of risk are

affine in the state variables, and innovations to the state variables are conditionally

Gaussian. Under these assumptions, the price process is affine in the state variables,

and no-arbitrage restrictions constrain the coefficients on the state variables.

Hamilton and Wu (2014) adapt this class of models to commodities. They

show that an affine factor structure of commodity futures prices can result from

the interaction between arbitrageurs and commercial producers seeking hedges or

financial investors seeking diversification. Schwartz (1997), Schwartz and Smith

(2000), and Casassus and Collin-Dufresne (2006), among others, also develop related

models to describe commodity futures prices.

Regime-switching models for the term structure of interest rates have been

proposed and estimated by Dai, Singleton, and Yang (2007), Bansal and Zhou

(2002), and Ang and Bekaert (2002) among others. Dai, Singleton, and Yang (2007)

and Ang and Bekaert (2002) use maximum-likelihood based methods based on an

iterative procedure developed by Hamilton (1989). Bansal and Zhou (2002) use a

two-step efficient method of moments estimator. These methods are subject to the

numerical issues mentioned earlier, which this paper resolves.

Almansour (2016) models the futures term structure of crude oil and nat-
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ural gas using a convenience yield model.4 He extends the two-factor stochastic

convenience yield model of Gibson and Schwartz (1990) to allow the convenience

yield level as well as other parameters to be regime dependent. He uses a two-factor

model with the log of the spot price and the convenience yield as latent factors.

The main advantages of my framework over his is that my framework gives a clear

way to test the underlying model assumptions, while Almansour’s does not. I

provide results of a test of the underlying assumptions, and show that they are

satisfied. Moreover, I provide tests of a number of hypotheses about the differences

in regime, which he does not. Furthermore, Almansour does not allow the average

values of the historic regime-switching transition probabilities (which he assumes to

be time-varying) to differ from the risk-neutral transition probabilities, and I show

that is key for risk pricing in the natural gas futures market. Another difference is

that I discuss the implications for investment strategy and hedging, whereas he

does not.

Adrian, Crump and Moench (2013) and Diez de los Rios (2015) have recently

proposed regression based algorithms for estimation of single-regime affine term

structure models that avoid the numerical difficulties associated with maximum

likelihood estimation. The approach I propose in this paper allows for regime-

switching and combines regression based and numerical calculations.

1.1.1 Background on the natural gas market

Natural gas accounts for 30% of U.S. electricity generation and is predicted

to account for an even larger proportion in the future. This commodity has gained a

lot of attention in recent years with the discovery of shale gas and the advancement

of drilling technology.

4Convenience yield is the benefit derived from holding the underlying physical commodity
rather than the futures contract.
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Some of the potential reasons for the existence of the two market states of

contango and backwardation are shortages, weather concerns, or geopolitical events.

Contango can result from trader perceptions of future shortage or short-term supply

glut, whereas backwardation can result from near term shortage or future supply

glut. For example, if there is a hurricane that is expected to disrupt supply only

for a short time, the near term futures may spike while the longer term futures can

be relatively unaffected. This unanticipated weather event would induce a period

of backwardation.

The transitions from one market state to another are in part due to seasonal

changes in supply and demand conditions. Natural gas production is relatively

constant throughout the year, but consumption tends to peak during the winter

heating season (November through March) as home heating use rises and tends to

be moderate in other seasons. In general, there is often a shortage of natural gas

in the winter as supply is often unable to react quickly to short-term increases in

demand, so winter months are often characterized by backwardation. At the same

time, the inventory stored for the winter can help to meet demand, and if there is

no current shortage, the market may not be in backwardation in the winter. In the

remaining seasons when supply and demand are in balance or there is short-term

oversupply, the market can often be in contango. Other factors affecting supply

and demand can also affect whether the market is in contango or backwardation.

On the supply side, amount of gas in storage, pipeline capacity, and imperfect

information about storage can affect the state of the market.

Most of U.S. natural gas consumption is from domestic production. U.S. dry

production has been steadily increasing since 2006. It reached its highest recorded

annual total in 2015 and is still rising during 2016. The increases in production

were due to more efficient, cost-effective drilling techniques which have allowed for
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horizontal drilling in shale formations. This has led to an unprecedented surge in

supply. As a result, since around 2009, the natural gas market has been in contango.

This observation is captured by my model, which classifies the data sample post

2009 as being in the contango regime.

The fluctuations in the amount of natural gas in storage and the expec-

tations of future oversupply or shortage can cause the market to switch between

contango and backwardation. Although the fluctuations of prices between periods

of contango and periods of backwardation have a seasonal component, they are far

from deterministic. In some years there is virtually no shortage of natural gas in

the winter, while in others there could be shortage well beyond the winter months.

Thus, backwardation does not always occur in the winter, and other seasons are

not always characterized by contango. The duration of episodes of contango and

backwardation also varies from year to year. The type of nondeterministic seasonal-

ity observed in the natural gas market cannot be fully captured by seasonal dummy

models or other methods for modeling deterministic seasonality. To capture these

historically observed fluctuations, I model the level and volatility of natural gas

futures using a Markov regime-switching affine term structure model and estimate

the states of the market from the data.

The uncertainty about gas prices introduces the possibility that commercial

producers or commercial users may at times make significant use of natural gas

futures contracts for purposes of hedging. If commercial producers believe that the

price of natural gas may fall in the future, they can take a short position in futures

to secure a higher selling price for the natural gas they produce. Conversely, if

commercial users think that the price of natural gas may rise in the future, they can

take a long position in futures to lock in a lower price for natural gas. Natural gas

futures are also traded by speculators, who are willing to assume the price risk that
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hedgers try to avoid in return for a risk premium. I find evidence that commercial

users and commercial producers use natural gas futures contracts for purposes of

hedging. I find that in the contango regime, commercial producers may be trying

to hedge their short positions in natural gas by selling 4-6 month contracts, while

in the backwardation regime, commercial producers may be trying to hedge their

short positions by selling 6-9 month contracts. I obtain analogous implications

for commercial users. Hamilton and Wu (2014) show how variation in hedging

pressure could influence the term structure of commodity futures prices. I study

the consequences of changes in regime on the risk premium by generalizing the

futures-pricing model in Hamilton and Wu (2014) to allow for changes in regime.

The rest of the paper is organized as follows. Sections 1.2 and 1.3 present

the model framework, Section 1.4 describes the estimation approach, Section 1.5

gives empirical results for a one factor model of natural gas futures prices from

1995 to 2014, and Section 1.6 concludes.

1.2 Model

Let F
(n)
t be the price of a futures contract with maturity n at time t. I

assume that the log of the price is a function of a factor Xt that follows a Gaussian

autoregression:

Xt+1 = µst + ΦXt + vt+1 , vt+1|st ∼ N(0, σ2
st) (1.1)

I find that a one factor model using the first principal component of the log of the

futures prices with maturities 3 months to 9 months as a factor describes the data

well.5 Thus, in my empirical application Xt will be a scalar. I find that shorter

5In section 1.5.2 I provide some evidence on why a one factor model is appropriate.
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term contracts have a systematically different behavior and do not fit well in my

framework together with the long term contracts.

The intercept parameter is regime switching, and st denotes the regime at

time t, st ∈ {1, 2}. I assume that the slope parameter Φ is regime independent.6

The no-arbitrage assumption implies the existence of a pricing kernel Mt,t+1

such that

F
(n)
t = EP

t

[
Mt,t+1F

(n−1)
t+1 |st = j

]
(1.2)

if the regime at time t is j. Following Dai et al. (2007), I assume that the pricing

kernel is exponentially affine and takes the following form:

Mt,t+1 = exp

[
−Γst,st+1 −

1

2
λ2
t,st − λt,stσ

−1
st vt+1

]
(1.3)

where Γst,st+1 is the market price of regime shift risk, λt,st is the market price of

factor risk, and vt+1 is the innovation from the factor equation (1.1). Γst,st+1 is

referred to as the market price of regime shift risk because it can be interpreted as

the log expected return per unit of regime shift risk exposure as I show in equation

(1.29) in section (1.5.2). I also assume that the market price of factor risk λt,st is

an affine function of the state variable:

λt,st = σ−1
st (λ0,st + λ1Xt) (1.4)

Here the market price of factor risk λt,st is time-varying and regime-dependent. I

assume that λ1 does not depend on the regime.7 No arbitrage implies the existence

6I also estimated a version of the model with Φ allowed to vary with regime, but found that
this led to only a trivial increase in the log likelihood for the system in equations (1.14)-(1.17)
that I estimate. Since the equations are simpler and more intuitive with Φ constant, I only discuss
the simpler case in this paper.

7When I estimated a version of the model in which Φ varies with the regime, I also allowed λ1
to vary with the regime, denoting it λ1,st . I failed to reject the hypothesis that λ1,1 − λ1,2 = 0.
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of an equivalent martingale measure - the risk neutral measure Q. The historic

measure P and the risk-neutral measure Q are related through the pricing kernel

Mt,t+1. The price P (Xt) of an asset with payoff g(Xt+1) in regime j can be computed

as

P (Xt) = EP
t [Mt,t+1g(Xt+1)|st = j] = EQ

t [g(Xt+1)|st = j] (1.5)

Under the Q-measure, the factor Xt follows a Gaussian autoregression:

Xt+1 = µQ
st + ΦQXt + vQt+1 (1.6)

where

µQ
j = µj − λ0,j (1.7)

and

ΦQ = Φ− λ1 (1.8)

and vQt+1|st = j ∼Q N(0, σ2
j ). The above relations are derived in Appendix 1.7.1.

Let f
(n)
t ≡ lnF

(n)
t . Equations (1.1), (1.2), and (1.3) together imply that the

log of the futures price is affine in the state variable:

f
(n)
t = A(n)

st +B(n)Xt + u
(n)
t (1.9)

From equation (1.8) and equation (1.39), it follows that the factor loadings B(n)

are regime independent. This ensures exact closed-form solutions for the futures

prices, and is consistent with Dai et al. (2007). The intercept term is allowed to

change with the regime.

Let rx
(n−1)
t+1 denote the one-month log holding return of a futures contract

Hence, I consider the simpler model in which λ1 is regime independent.
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maturing in n months:

rx
(n−1)
t+1 = f

(n−1)
t+1 − f (n)

t (1.10)

The holding return is the return on buying an n-month futures contract in month t

and then selling it as an (n− 1)-month futures contract in month t+ 1.

In my application, I assume that there are 2 regimes that govern the dynamic

properties of the factor Xt. The unobserved regime variable st is presumed to

follow a 2-state Markov chain, with the risk-neutral probability of switching from

regime st = j to regime st+1 = k given by πQjk , 1 ≤ j, k ≤ 2, with
∑2

k=1 π
Qjk = 1,

for j = 1, 2. I assume that the risk-neutral transition probabilities πQjk and the

real-world transition probabilities πPjk are regime independent. I allow πPjk 6= πQjk .

Agents are presumed to know the regime they are currently in, as well as the history

of the factor Xt and of the regime. The econometrician does not observe the regime.

The Markov process governing regime changes is assumed to be conditionally

independent of the Xt process for tractability.

1.3 No arbitrage conditions for futures contract

prices

Under my assumptions, the log of the futures price is affine in the factor Xt:

f
(n)
t = A(n)

st +B(n)Xt + u
(n)
t (1.11)

My model implies the following cross-equation non-arbitrage restrictions on the

parameters A
(n)
j , j = 1, 2 and B(n) characterizing the futures contract price:

A
(n)
j = log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+B(n−1)(µj − λ0,j) +

1

2
B(n−1)2σ2

j (1.12)
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for j = 1, 2 and

B(n) = B(n−1)(Φ− λ1) (1.13)

Equations (1.12) and (1.13) are derived in Appendix 1.7.2 in equations (1.38)

and (1.40). They are very similar to the standard recursions for affine term structure

models in the bond pricing literature (see for example Ang and Piazzesi (2003)). In

bond pricing, the recursion for the intercept adds a term δ0 corresponding to the

interest earned each period. For commodities, such a term does not appear since

there is no initial capital investment. The recursions above represent non-linear

cross-equation no arbitrage restrictions. These restrictions are not used or imposed

in the initial reduced-form estimation, but are exploited in the second stage of

inference described below.

1.4 Estimation procedure

I assume that the factor Xt is observed, and it is the first principal component

extracted from the demeaned log prices of the futures contracts with maturities

from 3 months to 9 months.8 Based on equations (1.9) and (1.1), I propose the

following two-step method for estimating the parameters of the model.

8I treat the first principal component extracted from futures prices as observed. Internal
consistency between actual and model-implied principal components requires h′Aj = −k for
j = 1, 2 and h′B = 1 where h is the 7×1 vector of principal component coefficients, Aj is the 7×1

vector of model-implied values of the coefficients A
(n)
j from equation (1.12) (for n = 3, . . . , 9), B

is the 7× 1 vector of model-implied coefficients B(n) from equation (1.13) (for n = 3, . . . , 9), and

k =
−h′

∑T
t=1 ft

T , where ft =
(
f
(3)
t , f

(4)
t , f

(5)
t , f

(6)
t , f

(7)
t , f

(8)
t , f

(9)
t

)′
. I do not impose these internal

consistency conditions in the estimation. However, I find that they are satisfied to a very large
degree of accuracy, and any inconsistency is negligible. Specifically, I find that h′A1 = 3.7861,
h′A2 = 3.7875, k = −3.7868, h′B = 1.0021, so that h′A1 ≈ −k, h′A2 ≈ −k, and h′B ≈ 1.
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1.4.1 Estimation of reduced-form parameters via regime-
switching VAR’s

First, I estimate the following regime-switching regressions:

f
(n)
t = A(n)

st +B(n)Xt + u
(n)
t , n = 3, . . . , 9 (1.14)

where 

u
(3)
t

u
(4)
t

u
(5)
t

u
(6)
t

u
(7)
t

u
(8)
t

u
(9)
t



|st ∼ N(0,Ω) (1.15)

and

Ω ≡



Ω(3) 0 0 0 0 0 0

0 Ω(4) 0 0 0 0 0

0 0 Ω(5) 0 0 0 0

0 0 0 Ω(6) 0 0 0

0 0 0 0 Ω(7) 0 0

0 0 0 0 0 Ω(8) 0

0 0 0 0 0 0 Ω(9)



(1.16)

jointly with the regime-switching regression for Xt:

Xt+1 = µst + ΦXt + vt+1 , vt+1|st ∼ N(0, σ2
st) (1.17)
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as a vector system of regime-switching equations. The time-series regressions

in equation (1.14) estimate exposures of the futures prices with respect to the

contemporaneous pricing factor. The regime-switching regression in equation (1.17)

serves to decompose the pricing factor into a predictable component and a factor

innovation by regressing the factor on its lagged level.

The estimation is done via the EM algorithm and is explained in detail

in Appendix 1.7.3. The general vector version of the EM algorithm is found in

Hamilton (2016).

1.4.2 Minimum-chi-square estimation of structural pa-
rameters

I use a minimum-chi-square approach to estimate the price of risk parameters

λ0,1, λ0,2, and λ1 and the risk-neutral probabilities πQ11 and πQ22 . The procedure

chooses the values of λ0,1, λ0,2, λ1, π
Q11 , and πQ22 so that the values for the

recursive pricing parameters A
(n)
j and B(n) implied by the no-arbitrage restrictions

in equations (1.12) and (1.13) most closely fit the unrestricted first-stage estimates

from equation (1.14). Minimum-chi-square estimation in the setting of single regime

Gaussian affine term structure models is described in Hamilton and Wu (2012).

Let π denote the vector of reduced-form parameters (VAR coefficients,

variance of the factor, measurement error variances, and P-measure regime-switching

probabilities). Let L(π;Y ) denote the log likelihood for the entire sample, and let

π̂ =arg max L(π;Y ) denote the full-information maximum likelihood estimate. If

R̂ is a consistent estimate of the information matrix,

R = −T−1E

[
∂2L(π;Y )

∂π∂π′

]
(1.18)
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then θ can be estimated by minimizing the chi-square statistic

T [π̂ − g(θ)]′ R̂ [π̂ − g(θ)] (1.19)

As noted by Hamilton and Wu (2012),the variance of θ̂ can be approximated with

T−1(Γ̂′R̂Γ̂)−1 for Γ̂ = ∂g(θ)
∂θ′
|θ=θ̂.

In my case, I want to minimize the distance between the unrestricted

maximum likelihood estimates of the coefficients A
(n)
j and B(n) (from the regime-

switching regressions) and the values of A
(n)
j and B(n) implied by the no arbitrage

restrictions. According to equations (1.12) and (1.13), these are predicted to be

functions of θ, a vector of structural parameters summarized in equation (1.22)

below. Let π̂ be the vector of the unrestricted maximum likelihood estimates from

the regime-switching VAR:

π̂ =
(
µ̃1, µ̃2, Φ̃, vec(Ã′), vec(B̃), σ̃2

1, σ̃
2
2, Ω̃(3), Ω̃(4), Ω̃(5), Ω̃(6), Ω̃(7), Ω̃(8), Ω̃(9), π̃

P11 ,

π̃P22
)′

(1.20)

where µ̃1, µ̃2, Φ̃, σ̃2
1, and σ̃2

2 are the unrestricted maximum likelihood estimates of

the parameters µ1, µ2, Φ, σ2
1, and σ2

2 from the regime-switching autoregression for
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the factor in equation (1.17),

Ã =



Ã
(3)
1 Ã

(3)
2

Ã
(4)
1 Ã

(4)
2

Ã
(5)
1 Ã

(5)
2

Ã
(6)
1 Ã

(6)
2

Ã
(7)
1 Ã

(7)
2

Ã
(8)
1 Ã

(8)
2

Ã
(9)
1 Ã

(9)
2



(1.21)

and B̃ =
(
B̃(3), B̃(4), B̃(5), B̃(6), B̃(7), B̃(8), B̃(9)

)′
are the unrestricted maximum

likelihood estimates of the coefficients of the regime-switching regressions for the

futures prices in equation (1.14), Ω̃(n), n = 3 . . . 9 are the unrestricted maximum

likelihood estimates of the measurement error variances Ω(n), n = 3 . . . 9 in equation

(1.16), and π̃P11 and π̃P22 are the unrestricted maximum likelihood estimates of the

regime switching probabilities πP11 and πP22 from the regime-switching VAR.

Let

θ =
(
µ1, µ2,Φ, A

(3)
1 , A

(3)
2 , B(3), σ2

1, σ
2
2,Ω(3),Ω(4),Ω(5),Ω(6),Ω(7),Ω(8),Ω(9), π

P11 , πP22 ,

λ0,1, λ0,2, λ1, π
Q11 , πQ22

)′
(1.22)

and

g(θ) =
(
µ1, µ2,Φ, vec(A

′(θ)), vec(B(θ)), σ2
1, σ

2
2,Ω(3),Ω(4),Ω(5),Ω(6),Ω(7),Ω(8),Ω(9),

πP11 , πP22
)′

(1.23)
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Here

A(θ) =



A
(3)
1 A

(3)
2

A
(4)
1 A

(4)
2

A
(5)
1 A

(5)
2

A
(6)
1 A

(6)
2

A
(7)
1 A

(7)
2

A
(8)
1 A

(8)
2

A
(9)
1 A

(9)
2



(1.24)

and B(θ) =
(
B(3), B(4), B(5), B(6), B(7), B(8), B(9)

)′
. A

(n)
j in vec (A′(θ)) and B(n)

in vec (B(θ)) for n = 4, . . . , 9 are defined by the no arbitrage restrictions from

equations (1.12) and (1.13):

A
(n)
j = log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+B(n−1)(µj − λ0,j) +

1

2
B(n−1)2σ2

j (1.25)

for j = 1, 2 and

B(n) = B(n−1)(Φ− λ1) (1.26)

For n = 3, g(A
(3)
1 ) = A

(3)
1 , g(A

(3)
2 ) = A

(3)
2 , and g(B(3)) = B(3). Then θ̂ is obtained

as

θ̂ ≡ argminθ{T [π̂ − g(θ)]′ R̂ [π̂ − g(θ)]} (1.27)

In this way I obtain estimates of the prices of risk λ0,1, λ0,2, and λ1 and of the

risk-neutral transition probabilities πQ11 and πQ22 as part of the vector θ̂. I also

obtain second-stage estimates of µ1, µ2, Φ, σ2
1, σ2

2, πP11 , πP22 , A
(3)
1 , A

(3)
2 , B(3), and

Ω(n), n = 3 . . . 9. By using the estimators for λ0,1, λ0,2, λ1, πQ11 and πQ22 outlined

above, I obtain the price of risk parameters and risk-neutral transition probabilities

so that the values of A
(n)
j and B(n) implied by equations (1.25) and (1.26) most
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closely fit the unrestricted estimates from equation (1.14).

1.5 Empirical results

1.5.1 Data

I estimate a one factor model using data on prices of natural gas futures

contracts traded on NYMEX with maturities 3 months to 9 months for the period

from January, 1995 to June, 2014. The factor is constructed as the first principal

component extracted from the demeaned log prices of these contracts. The data is

obtained from Datastream. Natural gas contracts expire three business days prior

to the first calendar day of the delivery month. Figure 1.1 shows the log of the

observed 3-month futures price. I use a cross-section of N = 7 maturities in my

estimation. I estimate the reduced-form parameters {Aj, µj, σ2
j} for j = 1, 2, B, Ω,

and Φ, and the probabilities πP11 , πP22 , and ρ1 in the first step of the estimation

procedure, and then estimate the prices of risk λ0,j and λ1 and the risk-neutral

probabilities πQ11 and πQ22 in the second step. Here ρ1 is the probability that the

initial state is regime 1. Since the longest maturity contract I use in my estimation

is the 9-month contract, whereas the shortest term contract I use is the 3-month

contract, I define the market as being in contango if the price of the 9-month

contract is higher than the price of the 3-month contract. Conversely, I define the

market as being in backwardation if the price of the 9-month contract is lower than

the price of the 3-month contract.

1.5.2 Estimation results

The first principal component used as factor in my model captures 98.73%

of the variation in futures prices. I use the Eigenvalue Ratio and Growth Ratio

tests proposed in Ahn and Horenstein (2013) (described in Appendix 1.7.6) in order
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to estimate the number of factors in my model. Both of these tests yield 1 as the

number of factors that need to be used. This justifies my use of a one factor model.

Table 1.1 shows the estimates of the reduced-form parameters and the

historical transition probabilities from the first stage of the estimation. Table

1.2 shows second stage estimates, including the estimates of the market prices

of factor risk and the risk-neutral transition probabilities. The value of the chi-

squared objective function from the second stage estimation has an asymptotic

χ2(q) distribution under the null hypothesis that the model-implied no-arbitrage

restrictions are satisfied by the data. Here q is the number of reduced-form

parameters in the first stage, which is equal to 35. In my estimation, the value

of the objective function is 14.5270, which indicates that we fail to reject the null

hypothesis. Hence, I conclude that the no-arbitrage restrictions are satisfied by the

data.

I find that the factor is very persistent, with Φ̂ = 0.9785. The factor is a

stationary stochastic process under the P-measure. The loadings of the futures

prices on the first principal component are basically constant across maturities.

Thus, the factor essentially represents a parallel change in prices. Because of its

effect on price levels, I refer to this factor as the level factor. This is commonly

done in the literature using principal component factor models.

Table 1.3 shows Wald t-statistics for the hypothesis tests testing whether

there is regime switching in the various parameters. I find very strong evidence

that there are regimes in the data. The null hypotheses that the level of the factor

µ and the levels A(3), A(4), A(5), A(7), A(8), A(9) of the contracts are not regime

switching are strongly rejected. The level µ of the factor is higher in regime 1 than

in regime 2, and µ1 − µ2 is statistically significantly different from 0. The levels

of the contracts with maturity 3-5 months are statistically significantly lower in
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regime 1, while the levels of the contracts with maturity 7-9 months are statistically

significantly higher in regime 1. The estimated variances in the two regimes are

not statistically significantly different. The coefficients B̂ and the variance of the

measurement errors Ω̂ are regime independent by assumption. Figure 1.2 shows

the spread between the 9-month contract and the 3-month contract plotted against

the smoothed probability of regime 2. It can be seen that in regime 1 the spread is

higher and is almost always positive, whereas in regime 2 the spread is lower and is

almost always negative. Thus, I find that the estimated regimes correspond to the

previously defined market states of contango and backwardation. Regime 1 (the

positive spread regime) represents contango, while regime 2 (the negative spread

regime) represents backwardation. Figures 1.3 and 1.4 show the log of the observed

3-month futures price and the factor, respectively, with shaded areas representing

the backwardation regime.

Figure 1.5 shows the expected monthly holding returns for each contract

conditional on the contango regime and the backwardation regime, respectively,

averaged over each regime. Here I define the expected monthly holding return on the

n-month contract conditional on being in regime j at time t as
EP

t [F
(n−1)
t+1 −F (n)

t |st=j]
F

(n)j
t

.9

The fact that the expected holding returns for all contracts (except the 6-month

contract) change sign depending on the regime and are large in magnitude in each

regime shows that agents face very substantial risk due to the possibility of changes

in regime. For instance, in the backwardation regime, an investor holding a long

position in the 9-month contract would on average earn a positive expected monthly

holding return of 2.5%. On the other hand, in the contango regime, the investor

9The formula for
EP

t [F
(n−1)
t+1 −F (n)

t |st=j]

F
(n)j
t

is derived in equation (1.45) in Appendix 1.7.2. In Figure

1.5, I am not reporting the expected monthly holding return on the 3-month contract conditional

on the regime, since calculating that requires using values for A
(2)
j and B(2), which I am not

obtaining from my model.
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would earn a negative expected monthly holding return of about -0.5% on average.

Thus, as long as the market is in backwardation, the investor would on average

earn a profit, but if the regime switches, he would experience a significant loss.

From Figure 1.5, we can also see that in the contango regime, buying the

4-6 month contracts today and selling them next month on average yields a profit.

So does shorting the 7-9 month contracts today and closing out the position next

month. In the backwardation regime, shorting the 4-5 contracts today and closing

out the position next month on average yields a profit. So does going long on the

6-9 month contracts today and selling them next month. Thus, on average it is

profitable to be long in the 4-6 month contracts in the contango regime, whereas it

is profitable to be long in the 6-9 month contracts in the backwardation regime.

The fact that there is a positive return to a long position in the 4-6 month

contracts in the contango regime suggests that there is demand for short positions

in futures. This could mean that in the contango regime, commercial producers

are trying to hedge their short positions in natural gas by selling 4-6 month futures

contracts. Moreover, in the contango regime there is a positive return to a short

position in the 7-9 month contracts, which could indicate demand for long positions

in these contracts. In turn, this could indicate that commercial users are trying to

hedge their long positions in natural gas by buying 7-9 month contracts. Similarly,

in the backwardation regime there is a positive return to a long position in the 6-9

month contracts, which could be a result of commercial producers trying to hedge

their short positions by selling 6-9 month contracts. Moreover, in the backwardation

regime there is a positive return to a short position in the 4-5 month contracts,

which could be a result of commercial users trying to hedge their long positions by

buying 4-5 month contracts.

By allowing for πP 6= πQ in my model, I have another channel through which
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risk preferences can affect expected returns. I test the restrictions πP11 = πQ11 and

πP22 = πQ22 , and find that they are rejected. Thus, my results suggest that πP 6= πQ.

I find that πQ
11 > πP

11 and πQ
22 > πP

22. This suggests that investors act as though

regimes are more persistent than they really are. This is consistent with what we

see in reality, as market participants often just act as if the current state of the

market will continue next period. This overestimation of the persistence of the

regimes by investors could be a result of hedging pressure, which I discuss later in

this section.

The expected log holding return EP
t

[
rx

(n−1)
t+1 |st = j

]
is related to the risk

premium investors demand in regime j for holding a futures contract maturing

in n months for 1 month. The expression for the expected log holding return of

the n-month contract conditional on the regime EP
t

[
rx

(n−1)
t+1 |st = j

]
, derived in

equation (1.41) in Appendix 1.7.2, is

EP
t

[
rx

(n−1)
t+1 |st = j

]
=

2∑
k=1

πPjkA
(n−1)
k − log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+B(n−1)λ0,j+

B(n−1)λ1Xt −
1

2
B(n−1)2σ2

j (1.28)

From the formula, we can see that nonzero expected returns arise in part due to the

difference between the historic probabilities πPjk and the risk-neutral probabilities

πQjk . The difference between πPjk and πQjk accounts for a large proportion of

expected returns.

It can be shown that the market price of regime shift risk Γj,k = log
(
π
Pjk

π
Qjk

)
(see equation (1.31) in Appendix 1.7.1 for derivation). Since πPjk and πQjk are

statistically significantly different, the market price of regime shift risk is nonzero,

i.e. regime shift risk is priced. To motivate the labeling of Γst,st+1 as the market

price of regime shift risk, consider a security which pays $1 if the regime switches
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from regime st = j in month t to regime sk+1 = k in month t + 1. This security

has payoff 1{st+1=k} and has exposure only to the risk of shifting from regime j in

month t to regime k in month t+ 1. Conditional on the current regime st = j, its

current price is

P j
t = EQ

t [1{st+1=k}|st = j] = πQjk

Therefore, its log expected return is

log
EP
t [1{st+1=k}|st = j]

P j
t

= log

(
πPjk

πQjk

)
= Γj,k (1.29)

Thus, Γj,k gives the log expected return per unit of regime shift risk exposure, and

can therefore be interpreted as the market price of regime shift risk associated with

switching from regime j to regime k.

For instance, a security which pays off $1 if the regime switches from regime

2 (backwardation) today to regime 1 (contango) next month is priced at

P
(2)
t = EQ

t [1{st+1=1}|st = 2] = πQ21 = 1− πQ22 = $0.0187

Thus, investors are willing to pay only about 2 cents to hedge against the regime

switching from backwardation to contango next month. The expected payoff of the

security is

EP
t [1{st+1=1}|st = 2] = πP21 = 1− πP22 = $0.1944

So the security pays off about 19 cents on average. The price investors are willing

to pay to hedge against regime shift risk is very low, reflecting the fact that they

think the backwardation regime is considerably more persistent than it actually is.

Similarly, a security which pays off $1 if the regime changes from regime 1
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(contango) today to regime 2 (backwardation) next month is priced at

P
(1)
t = EQ

t [1{st+1=2}|st = 1] = πQ12 = 1− πQ11 = $0.0224

Thus, investors are willing to pay about 2 cents to hedge against the risk of the

regime switching from contango today to backwardation next month. On average,

the security pays off

EP
t [1{st+1=2}|st = 1] = πP12 = 1− πP11 = $0.0930

i.e. about 9 cents. Once again, the price investors are willing to pay to hedge

against the risk of the regime changing is low, but it is closer to the actual expected

payoff of the security. To summarize, I find that agents act as if both regimes are

more persistent than they are, with the perceived overestimation of the regime

persistence being even higher for the backwardation regime.

Why is the security which pays off $1 if the regime switches from regime 2

(backwardation) today to regime 1 (contango) next month so cheap? The potential

seller of this security could be using it as a hedge against risk, if the state of the

world when the seller would have to pay $1 is one in which the seller will profit from

other sources, and the state of the world when the seller keeps the dollar is one when

even a little more money would be helpful. For example, a commercial user who

buys natural gas with 3-month contracts would benefit from selling this security.

He would have to pay on the contract if the regime shifts from backwardation to

contango. But if the regime shifts, he would profit by from then on being able to

buy futures at a lower price. Hedging pressure could cause the price to fall below

the 19-cent valuation.
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The price of risk λ1 is statistically significant and negative, and the loadings

B(n) are positive. From equation (1.28), we can see that this implies that an increase

in the level of futures prices (as measured by the factor Xt) decreases the expected

log holding returns on the 4-9 month contracts in each regime. The expected log

holding return loading for the n-month contract is B(n−1)λ1. According to my

estimates, a positive one standard deviation shock to the level factor reduces the

expected log holding return on the 4-9 month contracts in each regime by about

0.88%.

The estimates of the prices of risk λ0,1 and λ0,2 are not statistically significant.

Moreover, using a Wald test I find that λ0,1 − λ0,2 is not statistically significantly

different from 0. Thus, I do not find considerable differences in the market pricing

of factor risk in the two regimes.

1.6 Conclusion

In this paper I have provided a new way of characterizing risk in commodities

futures markets, which tend to switch between periods of contango when the spread

between the longer term futures and the shorter term futures is positive, and

backwardation when the spread between the longer term futures and the shorter

term futures is negative. I apply my framework to the natural gas futures market,

where the risk agents face due to the possibility of switching between the two states

of the market is particularly substantial. Motivated by the historically observed

switches of natural gas futures prices between states of contango and backwardation,

I propose and estimate a Markov regime-switching Gaussian affine term structure

model with two regimes and estimate the states of the market from the data. In my

model, the level and volatility of natural gas futures, as well as the risk premium,

are regime dependent. I study the consequences of changes in regime on the risk
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premium, and produce novel empirical estimates to characterize risk premia and

the term structure of natural gas futures contracts. I find very strong evidence

that there are regimes in the data. Moreover, I find that the regimes in my model

correspond precisely to historically observed periods of contango and backwardation.

I also find that regime switching risk is priced. I find that expected futures returns

for most contracts change sign depending on which regime we are conditioning on.

This is consistent with the claim that agents face significant risks from the possibility

of a change in the regime. My results show that the market acts as if regimes are

more persistent than they really are, which could be a result of hedging pressure.

I find evidence that commercial users and commercial producers use natural gas

futures contracts for purposes of hedging. In the contango regime, commercial

producers may be trying to hedge their short positions in natural gas by selling

4-6 month contracts, while in the backwardation regime, commercial producers

may be trying to hedge their short positions by selling 6-9 month contracts. I

obtain analogous implications for commercial users. A separate contribution of the

paper is to propose a new method for estimating Gaussian affine term structure

models subject to regime-switching. My approach allows for computationally fast

estimation and avoids the numerical difficulties that are common when using other

maximum likelihood based methods in the literature.
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1.7 Appendix

1.7.1 Relation between P-dynamics and Q-dynamics

By no arbitrage, an asset with payoff g(Xt+1) has a price in regime j equal

to

P (Xt) = EP
t [Mt,t+1g(Xt+1)|st = j] = EQ

t [g(Xt+1)|st = j] (1.30)

πQjk =EQ
t

[
1{st+1=k}|st = j

]
= EP

t

[
1{st+1=k}Mt,t+1|st = j

]
= EP

t

[
1{st+1=k} exp

(
−Γst,st+1 −

1

2
λ2
t,st − λt,stσ

−1
st vt+1

)
|st = j

]
= EP

t

[
exp

(
−1

2
λ2
t,st − λt,stσ

−1
st vt+1

)
|st = j

]
×

EP
t

[
1{st+1=k} exp

(
−Γst,st+1

)
|st = j

]
= exp

(
−1

2
λ2
t,j

)
EP
t

[
exp

(
−λt,stσ−1

st vt+1

)
|st = j

]
πPjk exp(−Γj,k)

= exp

(
−1

2
λ2
t,j

)
exp

(
1

2
V art(−λt,stσ−1

st vt+1|st = j)

)
πPjk exp (−Γj,k)

= exp

(
−1

2
λ2
t,j

)
exp

(
1

2
λ2
t,jσ
−2
j σ2

j

)
πPjk exp (−Γj,k) = πPjk exp (−Γj,k)

Therefore,

Γj,k = log

(
πPjk

πQjk

)
(1.31)

By no arbitrage, an asset with payoff g(Xt+1) has a price in regime j equal
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to

P (Xt) = Et [Mt,t+1g(Xt+1)|st = j]

= Et

[
exp

(
−Γst,st+1 −

1

2
λ2
t,st − λt,stσ

−1
st vt+1

)
g(Xt+1)|st = j

]
= exp

(
−1

2
λ2
t,j

)
EP
t

[
exp

(
−Γst,st+1 − λt,stσ−1

st vt+1

)
g(Xt+1)|st = j

]
= exp

(
−1

2
λ2
t,j

)[ 2∑
k=1

πPjk exp(−Γj,k)

]
×

EP
t

[
exp

(
−λt,stσ−1

st vt+1

)
g(Xt+1)|st = j

]
= exp

(
−1

2
λ2
t,j

)[ 2∑
k=1

πPjk
πQjk

πPjk

]
EP
t

[
exp

(
−λt,stσ−1

st vt+1

)
g(Xt+1)|st = j

]
= exp

(
−1

2
λ2
t,j

)[ 2∑
k=1

πQjk

]
EP
t

[
exp

(
−λt,stσ−1

st vt+1

)
g(Xt+1)|st = j

]
= exp

(
−1

2
λ2
t,j

)
EP
t

[
exp

(
−λt,stσ−1

st vt+1

)
g(Xt+1)|st = j

]
= exp

(
−1

2
λ2
t,j

)
EP
t

[
exp

(
−λt,stσ−1

st (Xt+1 − µst − ΦXt)
)
g(Xt+1)|st = j

]
= exp

(
−1

2
λ2
t,j

)∫
g(Xt+1) exp

(
−λt,jσ−1

j (Xt+1 − µj − ΦXt)
)

(2π)−1/2σ−1
j

exp

(
− 1

2σ2
j

(Xt+1 − µj − ΦXt)
2

)
dXt+1

= (2π)−1/2σ−1
j

∫
g(Xt+1) exp

(
−1

2

[
1

σ2
j

(Xt+1 − µj − ΦXt)
2+

+ 2λt,jσ
−1
j (Xt+1 − µj − ΦXt) + λ2

t,j

])
dXt+1
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= (2π)−1/2σ−1
j

∫
g(Xt+1) exp

(
−1

2

[
1

σj
(Xt+1 − µj − ΦXt) + λt,j

]2
)
dXt+1

= (2π)−1/2σ−1
j

∫
g(Xt+1) exp

(
−1

2

[
Xt+1 − µj − ΦXt + σjλt,j

σj

]2
)
dXt+1

= (2π)−1/2σ−1
j

∫
g(Xt+1) exp

(
− 1

2σ2
j

[Xt+1 − µj − ΦXt + σjλt,j]
2

)
dXt+1

= (2π)−1/2σ−1
j

∫
g(Xt+1) exp

(
− 1

2σ2
j

[Xt+1 − µj − ΦXt + λ0,j + λ1Xt]
2

)
dXt+1

= (2π)−1/2σ−1
j

∫
g(Xt+1) exp

(
− 1

2σ2
j

[Xt+1 − (µj − λ0,j)− (Φ− λ1)Xt]
2

)
dXt+1

= EQ
t (g(Xt+1)|st = j)

where in the last line I used equation (1.30).

Therefore, under the Q-measure,

Xt+1|st = j ∼Q N((µj − λ0,j) + (Φ− λ1)Xt, σ
2
j ) (1.32)

or, equivalently,

Xt+1|st = j ∼Q N(µQ
j + ΦQXt, σ

2
j ) (1.33)

where

µQ
j ≡ µj − λ0,j (1.34)

and

ΦQ ≡ Φ− λ1 (1.35)

Hence, under the Q-measure, Xt+1 follows the dynamics

Xt+1 = µQ
j + ΦQXt + vQt+1 (1.36)
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where vQt+1|st = j ∼Q N(0, σ2
j ) under the Q-measure.

1.7.2 Calculating expected returns

EP
t

[
rx

(n−1)
t+1 |st = j

]
= EP

t

[
f

(n−1)
t+1 − f (n)

t |st = j
]

= EP
t

[
A(n−1)
st+1

+B(n−1)Xt+1 − A(n)
st −B

(n)Xt|st = j
]

= EP
t

[
A(n−1)
st+1

+B(n−1)(µst + ΦXt + vt+1)− Ast−

B(n)Xt|st = j
]

= πPj1A
(n−1)
1 + πPj2A

(n−1)
2 +B(n−1)µj+

(B(n−1)Φ−B(n))Xt − A(n)
j (1.37)

The futures price is

F
(n)j
t = eA

(n)
j +B(n)Xt

f
(n)j
t = logF

(n)j
t = logEQ

t

[
F

(n−1)
t+1 |st = j

]
=

= log

(
2∑

k=1

πQjkEQ
t

[
F

(n−1)k
t+1 |st = j

])

= log

([
2∑

k=1

πQjkeA
(n−1)
k

]
EQ
t

[
eB

(n−1)Xt+1|st = j
])

= log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+ logEQ

t

[
eB

(n−1)Xt+1|st = j
]

= log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+ logEQ

t

[
eB

(n−1)(µQj +ΦQXt+vt+1)|st = j
]

= log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+ log

[
eB

(n−1)(µQj +ΦQXt)+
1
2
B(n−1)2σ2

j

]
= log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+B(n−1)(µQ

j + ΦQXt) +
1

2
B(n−1)2σ2

j
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Therefore,

f
(n)j
t = A

(n)
j +B(n)Xt = log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+B(n−1)µQ

j +
1

2
B(n−1)2σ2

j+

B(n−1)ΦQXt

The above equation implies the following recursions:

A
(n)
j = log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+B(n−1)µQ

j +
1

2
B(n−1)2σ2

j

or equivalently

A
(n)
j = log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+B(n−1)(µj − λ0,j) +

1

2
B(n−1)2σ2

j (1.38)

and

B(n) = B(n−1)ΦQ (1.39)

or equivalently

B(n) = B(n−1)(Φ− λ1) (1.40)
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EP
t

[
f

(n−1)
t+1 |st = j

]
=

2∑
k=1

πPjkEP
t

[
f

(n−1)k
t+1 |st = j

]
=

2∑
k=1

πPjkEP
t

[
A

(n−1)
k +B(n−1)Xt+1|st = j

]
=

2∑
k=1

πPjk

(
A

(n−1)
k +B(n−1)EP

t [Xt+1|st = j]
)

=
2∑

k=1

πPjk

(
A

(n−1)
k +B(n−1)EP

t [µst + ΦXt|st = j]
)

=
2∑

k=1

πPjk

(
A

(n−1)
k +B(n−1)(µj + ΦXt)

)
=

2∑
k=1

πPjkA
(n−1)
k +

(
2∑

k=1

πPjk

)
B(n−1)(µj + ΦXt)

=
2∑

k=1

πPjkA
(n−1)
k +B(n−1)(µj + ΦXt)

EP
t

[
rx

(n−1)
t+1 |st = j

]
= EP

t

[
f

(n−1)
t+1 − f (n)

t |st = j
]

= EP
t

[
f

(n−1)
t+1 |st = j

]
− f (n)j

t

=
2∑

k=1

πPjkA
(n−1)
k +B(n−1)(µj + ΦXt)−

log

(
2∑

k=1

πQjkeA
(n−1)
k

)
−B(n−1)(µQ

j + ΦQXt)−
1

2
B(n−1)2σ2

j

=
2∑

k=1

πPjkA
(n−1)
k +B(n−1)(µj − µQ

j ) +B(n−1)(Φ− ΦQ)Xt−

log

(
2∑

k=1

πQjkeA
(n−1)
k

)
− 1

2
B(n−1)2σ2

j

=
2∑

k=1

πPjkA
(n−1)
k − log

(
2∑

k=1

πQjkeA
(n−1)
k

)
+B(n−1)λ0,j+

B(n−1)λ1Xt −
1

2
B(n−1)2σ2

j (1.41)
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EP
t

[
rx

(n−1)
t+1 |Ft

]
=

2∑
j=1

EP
t

[
rx

(n−1)
t+1 |st = j

]
P (st = j|Ft)

=
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[ 2∑
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πPjkA
(n−1)
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πQjkeA
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k
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+B(n−1)λ0,j+

B(n−1)λ1Xt −
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2
B(n−1)2σ2

j

]
× P (st = j|Ft)

We can also derive an expression for
EP

t [F
(n−1)
t+1 |st=j]
F

(n)j
t

.

F
(n)j
t = EQ
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πQjkEQ
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=
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=
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=
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j (1.42)
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Then
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F
(n)j
t

=

[∑2
k=1 π

PjkeA
(n−1)
k

]
eB

(n−1)(µPj+ΦPXt)+
1
2
B(n−1)2σ2

j[∑2
k=1 π

QjkeA
(n−1)
k

]
eB

(n−1)(µQj +ΦQXt)+
1
2
B(n−1)2σ2

j

=

[∑2
k=1 π

PjkeA
(n−1)
k

]
[∑2

k=1 π
QjkeA

(n−1)
k

]eB(n−1)(µPj−µ
Q
j )+B(n−1)(ΦP−ΦQ)Xt

=

[∑2
k=1 π

PjkeA
(n−1)
k

]
[∑2

k=1 π
QjkeA

(n−1)
k

]eB(n−1)(λ0,j+λ1Xt)

=

[∑2
k=1 π

PjkeA
(n−1)
k

]
[∑2

k=1 π
QjkeA

(n−1)
k

]eB(n−1)σjλt,j (1.44)
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Therefore,

EP
t [F

(n−1)
t+1 − F (n)

t |st = j]

F
(n)j
t

=
EP
t [F

(n−1)
t+1 |st = j]− F (n)j

t

F
(n)j
t

=
EP
t [F

(n−1)
t+1 |st = j]

F
(n)j
t

− 1

=

[∑2
k=1 π

PjkeA
(n−1)
k

]
[∑2

k=1 π
QjkeA

(n−1)
k

]eB(n−1)σjλt,j − 1 (1.45)

1.7.3 EM algorithm for first stage estimation

In the first stage I estimate the system of equations (1.14) and (1.17). It

is known that in the absence of regime-switching, maximum likelihood estimation

of this system is equivalent to OLS estimation equation by equation. Conditional

on parameters, the inference about the regime Pr(st = j|FT )10 can be obtained

using the Hamilton filtering and smoothing algorithm. This suggests estimation

via the EM algorithm. Let θ denote the vector of parameters to be estimated,

θ ≡ {vec(A′), vec(B),Φ,Ω, {µj, σj}2
j=1} where vec(A′) and vec(B) are as defined

in Section 1.4.2. First, I initialize the algorithm with an initial guess for the

vector of parameters, and compute the corresponding smoothed probabilities. Then

each iteration l of the algorithm proceeds as follows. First, I update inference

for the regression parameters equation by equation. An updated estimate θ̂(l) is

derived as a solution to the first-order conditions for maximization of the likelihood

function, where the conditional regime probabilities Pr(st|Y, θ) are replaced with

the smoothed probabilities Pr(st = j|Y, θ(l−1)) computed in the previous iteration,

for Y = {Yt1, Yt2, Xt}Tt=1 defined below. Conditional on knowing the smoothed

probabilities, a closed form solution for the regression parameters of each regime-

10FT represents information available up to time T
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switching equation can be obtained by linear regression in which the observations

are weighted by the smoothed probability that they came from the corresponding

regime. Details are shown below. Next, I update inference about the smoothed

probabilities Pr(st = j|Y, θ(l)), where I am conditioning on the parameter vector

estimate obtained in the current iteration instead of the unknown parameter vector

θ.

The regime-switching system I estimate is of the form

Yt1
(1×1)

= µst
(1×1)

+ Φ
(1×1)

Xt
(1×1)

+ εt
(1×1)

εt|st ∼ N(0, σ2
st) (1.46)

Yt2
(7×1)

= Ast
(7×1)

+ B
(7×1)

Xt
(1×1)

+ ut
(7×1)

ut|st ∼ N(0,Ω) (1.47)

Equation (1.14) when stacked across all maturities n = 3, . . . , 9 is of the

form of the above equation (1.47) with Yt2 = (f
(3)
t , f

(4)
t , f

(5)
t , f

(6)
t , f

(7)
t , f

(8)
t , f

(9)
t )′,

while equation (1.17) is of the form of equation (1.46) with Yt1 = Xt+1.

I estimate the vector system using a partially restricted algorithm equation

by equation. The algorithm for a single equation is described in Appendix 1.7.4.

Suppose at the previous iteration of the algorithm I have estimates θ(`) and Pr(st =

j|θ(`), Y ) for Y = {Yt1, Yt2, Xt}Tt=1. Iteration (` + 1) of the algorithm works as

follows.

Step 1. Update inference for Yt2 regression parameters.

1a) Taking each n = 1, . . . , 7 one at a time starting with n = 1, construct

ω2(`)
n = row n, col. n element of Ω(`)

λ
(`)
nt1 =

√
Pr(st = 1|Y, θ(`))

ω
(l)
n
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λ
(`)
nt2 =

√
Pr(st = 2|Y, θ(`))

ω
(l)
n

Y
(n)
t2 = nth element of Yt2

A
(`)
in = nth element of A

(`)
i

B(`)
n = nth element of B(`)

For t = 1, . . . , T , define

ỹ
(`)
nt = λ

(`)
nt1Y

(n)
t2

x̃
(`)
nt = λ

(`)
nt1Xt

z̃
(`)
n1t = λ

(`)
nt1

z̃
(`)
n2t = 0

and

ỹ
(`)
n,T+t = λ

(`)
nt2Y

(n)
t2

x̃
(`)
n,T+t = λ

(`)
nt2Xt

z̃
(`)
n1,T+t = 0

z̃
(`)
n2,T+t = λ

(`)
nt2

Conditional on knowing λ
(`)
nt1 and λ

(`)
nt2, a closed-form solution for (Â

(n)
1 , Â

(n)
2 , B̂(n))′

can be found by performing an OLS regression on an artificial sample of size 2T ,

ỹ
(`)
nt = A

(n)
1 z̃

(`)
n1t + A

(n)
2 z̃

(`)
n2t +B(n)x̃

(`)
nt + ũnt, t=1, 2, . . . , 2T
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Construct

û
(`+1)
nt1 = Y

(n)
t2 − Â

(`+1)
1n − B̂(`+1)

n Xt

û
(`+1)
nt2 = Y

(n)
t2 − Â

(`+1)
2n − B̂(`+1)

n Xt

1b) For each n = 1, ..., 7 calculate

ω(`+1)
n =

{
1

T

(
T∑
t=1

û
2(`+1)
nt1 Pr(st = 1|Y, θ(`)) +

T∑
t=1

û
2(`+1)
nt2 Pr(st = 2|Y, θ(`))

)}1/2

Step 2. Update the inference for the Yt1 parameters. This involves the

analogous steps to those above using the partially restricted algorithm for a single

equation as described in Appendix 1.7.4. The factor variance is updated as

σ
2(`+1)
1 =

∑T
t=1 Pr(st = 1|Y, θ(`))(Yt1 − µ(`+1)

1 − Φ(`+1)Xt)
2∑T

t=1 Pr(st = 1|Y, θ(`))

σ
2(`+1)
2 =

∑T
t=1 Pr(st = 2|Y, θ(`))(Yt1 − µ(`+1)

2 − Φ(`+1)Xt)
2∑T

t=1 Pr(st = 2|Y, θ(`))

Step 3. Update the inference about the transition probabilities. The

transition probabilities are updated as

π̂Pij(`+1) =

∑T
t=2 Pr(st = j, st−1 = i|YT , θ(`))∑T

t=2 Pr(st−1 = i|YT , θ(`))

Specifically,

π̂P11(`+1) =

∑T
t=2 π

P11(`) Pr(st=1|YT ,θ(`))Pr(st−1=1|Yt−1,θ(`))

Pr(st=1|Yt−1,θ(`))∑T
t=2 Pr(st−1 = 1|YT , θ(`))

π̂P21(`+1) =

∑T
t=2 π

P21(`) Pr(st=1|YT ,θ(`))Pr(st−1=2|Yt−1,θ(`))

Pr(st=1|Yt−1,θ(`))∑T
t=2 Pr(st−1 = 2|YT , θ(`))
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Step 4. Update the inference about smoothed probabilities. This step calculates

the smoothed probabilities Pr(st = j|Y, θ(l+1)) using the Hamilton filtering and

smoothing algorithms, which are described in Appendix 1.7.5. The initial probability

vector ρ is updated as

ρ
(l+1)
j = Pr(s1 = j|YT , θ(`))

1.7.4 EM algorithm for scalar regression

Here I present the general form of the EM algorithm I use for estimation of

each equation from my regime-switching vector system. Suppose the variances and

some but not all of the parameters change with the regime, that is

yt = x′tβ + z′tcst + σstvt

for yt a scalar, xt an (m× 1) vector, zt an (r × 1) vector, and vt ∼ N(0, 1). Thus

ηt =

 1√
2πσ2

1

exp
{
−(yt−x′tβ−z′tc1)2

2σ2
1

}
1√
2πσ2

2

exp
{
−(yt−x′tβ−z′tc2)2

2σ2
2

}


∂ log ηt
∂β′

=

 (yt−x′tβ−z′tc1)x′t
σ2
1

(yt−x′tβ−z′tc2)x′t
σ2
2

 (1.48)

∂ log ηt
∂c′1

=

 (yt−x′tβ−z′tc1)z′t
σ2
1

0


∂ log ηt
∂c′2

=

 0

(yt−x′tβ−z′tc2)z′t
σ2
2
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∂ log ηt
∂σ2

1

=

 − 1
2σ2

1
+

(yt−x′tβ−z′tc1)2

2σ4
1

0


∂ log ηt
∂σ2

2

=

 0

− 1
2σ2

2
+

(yt−x′tβ−z′tc2)2

2σ4
2

 .
The MLE for θ = (β′, c′1, c

′
2, σ

2
1, σ

2
2)′ satisfies

T∑
t=1

(
∂ log ηt
∂θ′

)′
ξ̂t|T = 0.

Define  λt1

λt2

 =

 σ−1
1

√
Pr(st = 1|Y )

σ−1
2

√
Pr(st = 2|Y )


for Y = {yt, xt, zt}Tt=1 the full set of observed data. Then the FOC associated with

choice of β (using equation (1.48)) can be written

(
T∑
t=1

xtytλ
2
t1 +

T∑
t=1

xtytλ
2
t2

)
=

(
T∑
t=1

xtx
′
tλ

2
t1 +

T∑
t=1

xtx
′
tλ

2
t2

)
β

+

(
T∑
t=1

xtz
′
tλ

2
t1

)
c1 +

(
T∑
t=1

xtz
′
tλ

2
t2

)
c2.

Take the analogous FOC for choice of c1 and c2 and stack the three equations
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together:


(∑T

t=1 xtytλ
2
t1 +

∑T
t=1 xtytλ

2
t2

)
(∑T

t=1 ztytλ
2
t1

)
(∑T

t=1 ztytλ
2
t2

)
 = (1.49)


(∑T

t=1 xtx
′
tλ

2
t1 +

∑T
t=1 xtx

′
tλ

2
t1

) (∑T
t=1 xtz

′
tλ

2
t1

) (∑T
t=1 xtz

′
tλ

2
t2

)
(∑T

t=1 ztx
′
tλ

2
t1

) (∑T
t=1 ztz

′
tλ

2
t1

)
0(∑T

t=1 ztx
′
tλ

2
t2

)
0

(∑T
t=1 ztz

′
tλ

2
t2

)


β

c1

c2

 .

Conditional on knowing λt1 and λt2, a closed-form solution for (β̂′, ĉ′1, ĉ
′
2)
′

can be found by performing a single OLS regression on an artificial sample of size

2T ,

ỹt = x̃′tβ + z̃′t1c1 + z̃′t2c2 + ṽt t = 1, 2, ..., 2T,

where for t = 1, 2, ..., T I have defined

ỹt = ytλt1

x̃t = xtλt1

z̃t1 = ztλt1

z̃t2 = 0

whereas the next T observations (denoted T + t for t = 1, ..., T ) are from

ỹT+t = ytλt2

x̃T+t = xtλt2
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z̃T+t,1 = 0

z̃T+t,2 = ztλt2.

The OLS coefficients from this artificial system are given by


β̂

ĉ1

ĉ2

 =


∑2T

t=1 x̃tx̃
′
t

∑2T
t=1 x̃tz̃

′
t1

∑2T
t=1 x̃tz̃

′
t2∑2T

t=1 z̃t1x̃
′
t

∑2T
t=1 z̃t1z̃

′
t1

∑2T
t=1 z̃t1z̃

′
t2∑2T

t=1 z̃t2x̃
′
t

∑2T
t=1 z̃t2z̃

′
t1

∑2T
t=1 z̃t2z̃

′
t2



−1 
∑2T

t=1 x̃tỹt∑2T
t=1 z̃t1ỹt∑2T
t=1 z̃t2ỹt



=


(∑T

t=1 xtx
′
tλ

2
t1 +

∑T
t=1 xtx

′
tλ

2
t2

) (∑T
t=1 xtz

′
tλ

2
t1

) (∑T
t=1 xtz

′
tλ

2
t2

)
(∑T

t=1 ztx
′
tλ

2
t1

) (∑T
t=1 ztz

′
tλ

2
t1

)
0(∑T

t=1 ztx
′
tλ

2
t2

)
0

(∑T
t=1 ztz

′
tλ

2
t2

)



−1

×


(∑T

t=1 xtytλ
2
t1 +

∑T
t=1 xtytλ

2
t2

)
(∑T

t=1 ztytλ
2
t1

)
(∑T

t=1 ztytλ
2
t2

)



which will be recognized as a closed-form solution to the FOC for the MLE as given

in equation (1.49).

Thus an EM algorithm would work as follows. At the previous step I have

calculated estimates σ̂2
1, σ̂

2
2, ξ̂t|T , from which I can construct λt1 and λt2. I then use

these to construct {ỹt, x̃t, z̃t1, z̃t2}2T
t=1 and do an OLS regression of ỹt on x̃t, z̃t1, z̃t2

to get new estimates of β, c1, c2.

Taking first order conditions for σ2
1 and σ2

2 results in the following expressions

for the next step estimates:

σ̂2
1 =

∑T
t=1(yt − x′tβ̂ − z′tĉ1)2 Pr(st = 1|Y )∑T

t=1 Pr(st = 1|Y )
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σ̂2
2 =

∑T
t=1(yt − x′tβ̂ − z′tĉ2)2 Pr(st = 2|Y )∑T

t=1 Pr(st = 2|Y )
.

1.7.5 Filtering and smoothing algorithm

Let

ξt =

1{st = 1}

1{st = 2}

 (1.50)

Let ξ̂t|τ = E(ξt|Yτ ). Then

ξ̂t|τ =

Pr(ξt = e1|Yτ )

Pr(ξt = e2|Yτ )

 (1.51)

where Yτ consists of information available up to time τ , e1 = (1, 0)′, e2 = (0, 1)′.

Let yt be the vector of dependent variables of all the equations. Let ηt be the vector

of densities of yt conditional on ξt and Yt−1:

ηt =

p(yt|θ1, Yt−1)

p(yt|θ2, Yt−1)

 =

p(yt|ξt = e1, Yt−1)

p(yt|ξt = e2, Yt−1)

 (1.52)

where θ has been dropped on the right hand side for brevity.

In my model,

ηt1 = (2π)(−(K+N)/2)|Ψ1|−1/2×

exp

−1

2


Yt1
Yt2

−
µ1 + ΦXt

A1 +BXt



′

Ψ−1
1


Yt1
Yt2

−
µ1 + ΦXt

A1 +BXt
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ηt2 = (2π)(−(K+N)/2)|Ψ2|−1/2×

exp

−1

2


Yt1
Yt2

−
µ2 + ΦXt

A2 +BXt



′

Ψ−1
2


Yt1
Yt2

−
µ2 + ΦXt

A2 +BXt





where

Ψj =

 σ2
j 0K×N

0N×K Ωj


and K = 1 and N = 7.

The density of yt conditional on Yt−1 is given by p(yt|Yt−1) = η′tξ̂t|t−1 =

1′2(ηt � ξ̂t|t−1) where � signifies element-wise matrix multiplication. The contem-

poraneous inference ξ̂t|t about the unobserved state vector ξt is given in matrix

notation by the filtering recursions

ξ̂t|t =
ηt � ξ̂t|t−1

1′2(ηt � ξ̂t|t−1)
(1.53)

ξ̂t+1|t = P · ξ̂t|t (1.54)

where P is the matrix of transition probabilities. The recursion is initialized with

ξ̂1|0 = ρ

The smoothed inference about the unobserved state vector ξt is given by

ξ̂t|T = ξ̂t|t �
(
P ′(ξ̂t+1|T (÷)ξ̂t+1|t)

)
(1.55)

where the sign (÷) denotes element-by-element division. The smoothed probabilities
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ξ̂t|T are found by iteration on equation (1.55) backward for t = T − 1, T − 2, · · · , 1.

This iteration is started with ξ̂T |T , which is obtained from equation (1.53) for t = T .

1.7.6 Estimation of number of factors

I use the Eigenvalue Ratio and Growth Ratio tests proposed in Ahn and

Horenstein (2013) in order to estimate the number of factors in my model. Let

Y be the T ×N matrix containing the demeaned futures price data, with T=234

and N = 7, and let λ̂k denote the kth largest eigenvalue of the covariance matrix

(Y ′Y )/NT . The Eigenvalue Ratio criterion function ER(k) is the ratio of two

adjacent eigenvalues of (Y ′Y )/NT :

ER(k) ≡ λ̂k

λ̂k+1

, k = 1, 2, . . . , kmax (1.56)

where k is the number of factors used, and kmax is a specified maximum number of

factors.

The Growth Ratio criterion function GR(k) is given by

GR(k) ≡ log(1 + λ̂∗k)

log(1 + λ̂∗k+1)
(1.57)

where V (k) =
∑m

j=k+1 λ̂j and λ̂∗k = λ̂k/V (k).

The estimators of the true number of factors r are the maximizers of ER(k)

and GR(k):

r̂ER = max1≤k≤kmaxER(k) (1.58)

r̂GR = max1≤k≤kmaxGR(k) (1.59)

These estimators are called the ER and GR estimators, respectively.



48

1.8 Figures
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Figure 1.1. Log of the observed 3-month natural gas futures price
The natural gas futures price is measured in dollars per million Btu.
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Figure 1.2. Spread between the log of the 9-month futures price and the log of
the 3-month futures price vs. smoothed probability of regime 2 (the backwardation
regime)
The spread is shown in blue, and the smoothed probability of regime 2 (the
backwardation regime) is shown in red. Shaded areas represent the backwardation
regime.
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Figure 1.3. Log of the observed 3-month natural gas futures price
Shaded areas represent the backwardation regime.
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Figure 1.4. First principal component vs. smoothed probability of the backwar-
dation regime
Shaded areas represent the backwardation regime. The first principal component is
shown in blue, and the smoothed probability of the backwardation regime is shown
in red.
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Figure 1.5. Expected monthly holding returns (%) conditional on each regime
Expected monthly holding returns (%) conditional on the contango regime (regime
1, in blue) and conditional on the backwardation regime (regime 2, in red), averaged
over each regime.
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1.9 Tables

Table 1.1. First stage reduced form parameter estimates

Regime 1

µ 0.0365
(0.0189)

Φ

A(3) 1.3803
(0.0058)

A(4) 1.3926
(0.0037)

A(5) 1.4120
(0.0031)

A(6) 1.4328
(0.0030)

A(7) 1.4524
(0.0031)

A(8) 1.4692
(0.0036)

A(9) 1.4786
(0.0049)

B(3)

B(4)

B(5)

B(6)

B(7)

0.9785
(0.0113)

0.3724
(0.0035)
0.3760

(0.0022)
0.3789

(0.0018)
0.3808

(0.0017)
0.3809

(0.0019)

Regime 2

-0.0412
(0.0292)

1.4891
(0.0097)
1.4743

(0.0058)
1.4555

(0.0044)
1.4309

(0.0045)
1.4064

(0.0050)
1.3863

(0.0055)
1.3778

(0.0070)
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Table 1.1. First stage reduced form parameter estimates (continued)

Regime 1

B(8)

B(9)

σ2 0.0528
(0.0061)

Ω(3)

Ω(4)

Ω(5)

Ω(6)

Ω(7)

Ω(8)

Ω(9)

πP11

πP22

ρ1

logL

0.3797
(0.0021)
0.3770

(0.0028)

0.0048
(0.0005)
0.0018

(0.0002)
0.0013

(0.0001)
0.0013

(0.0001)
0.0014

(0.0001)
0.0017

(0.0002)
0.0029

(0.0003)
0.9053

(0.0252)
0.8023

(0.0480)
1.0000

2721.6

Regime 2

0.0584
(0.0098)

Asymptotic standard errors are in parentheses
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Table 1.2. Second stage parameter estimates

Regime 1

µ 0.0357
(0.0189)

Φ

A(3) 1.3743
(0.0046)

B(3)

σ2 0.0528
(0.0061)

Ω(3)

Ω(4)

Ω(5)

Ω(6)

Ω(7)

Ω(8)

Ω(9)

πP11

πP22

πQ11

πQ22

λ0 -0.0008
(0.0189)

λ1

0.9785
(0.0113)

0.3767
(0.0020)

0.0048
(0.0005)
0.0018

(0.0002)
0.0013

(0.0001)
0.0013

(0.0001)
0.0014

(0.0001)
0.0017

(0.0002)
0.0029

(0.0003)
0.9070

(0.0252)
0.8060

(0.0479)
0.9776

(0.0231)
0.9813

(0.0383)

-0.0233
(0.0114)

Regime 2

-0.0396
(0.0292)

1.4959
(0.0083)

0.0586
(0.0098)

0.0257
(0.0295)
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Table 1.3. Wald t-statistics

H0 Estimate Std error Wald t-stat

Reduced-form parameters (1st stage)
A(4),1 − A(4),2 = 0 -0.0817 0.0063 -13.0459
A(5),1 − A(5),2 = 0 -0.0435 0.0053 -8.1938
A(6),1 − A(6),2 = 0 0.0019 0.0056 0.3393
A(7),1 − A(7),2 = 0 0.0460 0.0057 8.0412
A(8),1 − A(8),2 = 0 0.0829 0.0059 14.0888
A(9),1 − A(9),2 = 0 0.1008 0.0079 12.7908

Reduced-form parameters (2nd stage)
µ1 − µ2 = 0 0.0753 0.0357 2.1076
σ2

1 − σ2
2 = 0 -0.0057 0.0117 -0.4903

A(3),1 − A(3),2 = 0 -0.1216 0.0087 -13.9022

Structural parameters (2nd stage)
λ0,1 − λ0,2 = 0 0.0489 0.0360 1.3575
πP11 − πQ11 = 0 -0.0706 0.0351 -2.0078
πP22 − πQ22 = 0 -0.1753 0.0605 -2.8996
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Table 1.4. Reduced-form versus model implied values for A(n),j and B(n)

First stage estimates Model implied values

A(3),1 1.3803 1.3743
A(3),2 1.4891 1.4959
A(4),1 1.3926 1.3948
A(4),2 1.4743 1.4734
A(5),1 1.4120 1.4142
A(5),2 1.4555 1.4515
A(6),1 1.4328 1.4326
A(6),2 1.4309 1.4304
A(7),1 1.4524 1.4502
A(7),2 1.4064 1.4099
A(8),1 1.4692 1.4670
A(8),2 1.3863 1.3901
A(9),1 1.4786 1.4831
A(9),2 1.3778 1.3711
B(3) 0.3724 0.3767
B(4) 0.3760 0.3774
B(5) 0.3789 0.3781
B(6) 0.3808 0.3788
B(7) 0.3809 0.3794
B(8) 0.3797 0.3801
B(9) 0.3770 0.3808
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Chapter 2

Bond Risk Premia in the Pres-
ence of Regime Switching

Abstract

Bond yields are known to behave quite differently during different periods

and to change their behavior abruptly. Regime-switching models are very well suited

to match these properties of bond markets. I develop and estimate a dynamic

term structure model with regime switching, and investigate the consequences

of changes in regime on expected excess returns, using zero-coupon bond yield

data from 1990 to 2007. Statistical tests provide very strong evidence for this

regime-switching model. I find that one regime corresponds to episodes when

rates are falling and the volatility of yields is lower, whereas the second regime

corresponds to non-decreasing rates and higher volatility. I find that, on average, it

is always profitable for investors to be long in either short term or long term bonds.

According to my model, expected excess returns on all bonds are higher conditional

on the decreasing rates regime. Even though the yield curve is flatter in that regime,

investors would want to hold more long term bonds because rates are decreasing. I

also find that a higher yield spread is associated with higher expected excess returns.

A separate contribution of this paper is to provide an estimation procedure that is

61
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considerably simpler and less prone to numerical difficulties than other methods in

the literature. To that end, I adapt the new econometric framework I proposed in

the first chapter of my dissertation to the setting of bond yields.

2.1 Introduction

Bond yields are known to behave quite differently during different periods

and to change their behavior abruptly. While some changes may be very short term,

others may persist for many periods. Regime-switching models are very well suited

to match these properties of bond markets. Previous research has provided evidence

that two-state regime-switching models do much better at describing interest rate

dynamics than single regime models, e.g. Ang and Bekaert (2002), Bansal and

Zhou (2002), and Dai, Singleton, and Yang (2007), among others.

In this paper, I model bond yields using a regime-switching Gaussian affine

term structure model. I use a three factor model with two regimes, and assume

the factors are observed and equal to the first three principal components of bond

yields with maturities 3 months, 6 months, 1 year, 2 years, 4 years, 5 years, 9 years,

and 10 years. As is typical in the bond yield literature, the factors correspond to

the level, slope, and curvature of the yield curve. I allow the level and volatility

of the vector of factors, the level of bond yields, the level of the short rate, the

market price of factor risk, and the market price of regime shift risk to depend on

the regime. I use the zero-coupon yield dataset constructed by Gurkaynak, Sack,

and Wright (2007) for the period from 1990 to 2007. My sample period ends before

the Zero Lower Bound (ZLB) period, during which it is not appropriate to apply

Gaussian affine term structure models, as pointed out by Wu and Xia (2016).

I find very strong evidence for a regime-switching model in which one regime

is characterized by falling rates and lower volatility of yields, while the other regime
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corresponds to non-decreasing rates and higher volatility. This result differs from

other papers studying regime switching in bond yields in that regimes are not found

to be associated with recessions and expansions. The main empirical finding of this

paper is that on average it is always profitable for investors to be long in bonds

of any maturity over my sample period. Investors would want to hold more long

term bonds in the regime in which rates are decreasing, even though on average

the yield curve in that regime is flatter.

Gaussian affine term structure models are extensively employed to describe

the cross-section of yields. Some seminal papers in the literature on Gaussian

affine term structure models are Vasicek (1977), Duffie and Kan (1996), Dai and

Singleton (2000), Duffee (2002), and Piazzesi (2010). Dai et al. (2007), Bansal and

Zhou (2002), and Ang and Bekaert (2002), among others, propose and estimate

regime-switching models for the term structure of interest rates.

Most methods in the literature rely on numerical maximization of the

likelihood function with respect to all the parameters. As a result, these methods

often run into numerical issues due to highly non-linear and badly behaved likelihood

surfaces, and estimation can be very difficult or even computationally infeasible.

Multiple researchers have reported encountering such difficulties, e.g. Kim and

Orphanides (2005), Duffee (2002), Ang and Piazzesi (2003), Kim (2008), Duffee and

Stanton (2008), Duffee (2009), and Ang and Bekaert (2002). The estimation in Dai

et al. (2007) and Ang and Bekaert (2002) is performed using maximum-likelihood

based methods based on an iterative procedure developed by Hamilton (1989).

Bansal and Zhou (2002) employ a two-step efficient method of moments estimator.

Significant numerical issues are often encountered when using these methods.

One of the contributions of this paper is to provide an estimation procedure

that is considerably simpler and less prone to numerical difficulties. To that end, I
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adapt the new econometric framework for estimation of regime-switching Gaussian

affine term structure models that I developed in Chapter 1 of my dissertation

to the setting of bond yields. I use a two stage estimation method. In the first

stage, I use a regression based iterative approach to estimate the reduced-form

parameters. The no-arbitrage restrictions are not imposed in this stage. In the

second stage, I exploit the no-arbitrage restrictions and estimate the prices of

risk and risk-neutral transition probabilities via minimum-chi-square estimation.

The minimum-chi-square procedure chooses the values of the prices of risk and

risk-neutral transition probabilities so that the values for the recursive bond pricing

parameters implied by the no-arbitrage restrictions most closely fit the unrestricted

first-stage estimates. The numerical component of my method is significantly

simpler computationally than maximizing the likelihood function numerically with

respect to all the parameters, as is typically done by other methods. Thus, with

my approach I avoid many of the numerical difficulties encountered with other

methods in the literature.

The rest of the paper is organized as follows. Section 2.2 presents the

model framework, Section 2.3 describes the estimation approach, Section 2.4 gives

empirical results, and Section 2.5 concludes.

2.2 Model

Let P
(n)
t denote the price of an n-period zero-coupon bond at time t, and

let p
(n)
t denote the log price: p

(n)
t ≡ logP

(n)
t . The corresponding yield is

y
(n)
t = −n−1p

(n)
t (2.1)
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Let rx
(n−1)
t+1 denote the one-month log excess holding return on an n-period zero-

coupon bond. It is defined as

rx
(n−1)
t+1 = p

(n−1)
t+1 − p(n)

t − rt (2.2)

This is the return on buying an n-period zero-coupon bond in period t and then

selling it as an (n− 1)-period zero-coupon bond in period t+ 1.

The Gaussian affine term structure framework assumes that there are K

factors, denoted by Xt, relevant for bond pricing. The log of the bond price, and

hence the yield, are assumed to be a function of these factors. The factors Xt follow

a first-order Gaussian vector autoregression under the P-measure:

Xt+1 = µst + ΦXt + vt+1 , vt+1|st ∼ N(0,Σst) (2.3)

Here st denotes the regime at time t, st ∈ {1, 2}. I allow the intercept parameter µ

to change with the regime. I assume that the slope parameter Φ is independent of

the regime. 1 Under no-arbitrage, there exists a pricing kernel Mt,t+1 such that

P
(n)
t = Et

[
Mt,t+1P

(n−1)
t+1 |st = j

]
(2.4)

if the regime at time t is j. Following Dai et al. (2007), I assume that the pricing

kernel is exponentially affine:

Mt,t+1 = exp

[
−rt − Γst,st+1 −

1

2
λ′t,stλt,st − λ

′
t,stΣ

−1/2
st vt+1

]
(2.5)

1In my empirical application, I find that allowing Φ to change with the regime leads to a
non-stationary process for the factor under one of the regimes. To avoid this issue, I restrict Φ
to be regime independent.
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where rt is the short rate. The terms Γst,st+1 and λt,st allow for the possibility of

non-zero expected excess returns in equilibrium. The term Γst,st+1 is referred to

as the market price of regime shift risk, and can be interpreted as the excess log

expected return per unit of regime shift risk exposure. The term λt,st is referred to

as the market price of factor risk. The market price of factor risk can be thought

of as the excess log expected return required per unit of factor risk exposure (Dai

et al. (2007)). I also assume that the market price of factor risk λt,st is an affine

function of the vector of factors Xt:

λt,st = Σ−1/2
st (λ0,st + λ1Xt) (2.6)

I assume that the slope component λ1 of the market price of risk is regime indepen-

dent.2 Under assumptions (2.3), (2.5), and (2.6), it can be shown that the price

P (Xt) in regime j of any asset whose payoff is a function of the factors g(Xt+1)

can be computed as

P (Xt) = EP
t [Mt,t+1g(Xt+1)|st = j] = exp(−rjt )EQ

t [g(Xt+1)|st = j] (2.7)

Under the risk-neutral Q-measure, the factor Xt follows a Gaussian vector autore-

gression:

Xt+1 = µQ
st + ΦQXt + vQt+1 (2.8)

In Appendix 2.6.1 it is shown that

µQ
j = µj − λ0,j (2.9)

2The slope component of the market price of risk λ1 is related to the slope parameter Φ from
the factor VAR through the relation ΦQ = Φ − λ1. I assume ΦQ to be regime independent in
order to obtain closed form solutions for bond prices. Since I have also assumed Φ to be regime
independent, it follows that λ1 is regime independent.
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ΦQ = Φ− λ1 (2.10)

and vQt+1|st = j ∼Q N(0,Σj). I also assume that the short rate is an affine function

of the vector of factors:

rt = y
(1)
t = δ0,st + δ′1Xt (2.11)

I constrain the loadings δ1 of the short rate on the vector of factors Xt to be the

same across regimes in order to be able to obtain closed-form solutions for bond

prices. Equations (2.3), (2.4), (2.5), and (2.11) imply that zero-coupon bond yields

and the log of bond prices are affine in the vector of factors as well:

y
(n)
t =

1

n
A(n)
st +

1

n
B(n)′Xt (2.12)

Similarly for bond prices,

p
(n)
t = −A(n)

st −B
(n)′Xt (2.13)

I allow the intercept term A
(n)
st to be different across regimes. Since ΦQ and δ1

are assumed to be regime independent, from equation (2.38) it follows that the

factor loadings B(n) are regime independent. This makes it possible to obtain exact

closed-form solutions for bond prices.

I assume that there are two regimes that govern the dynamic properties of

the vector of factors Xt. The unobserved regime variable st is presumed to follow a

two-state Markov chain, with the risk-neutral probability of switching from regime

st = j to regime st+1 = k given by πQjk , 1 ≤ j, k ≤ 2, with
∑2

k=1 π
Qjk = 1, for

j = 1, 2. I assume that the risk-neutral transition probabilities πQjk and the historic

transition probabilities πPjk are regime independent, and allow πPjk 6= πQjk . Agents
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are presumed to know the history of the vector of factors Xt and of the regime.

For tractability, I assume that the Markov process governing regime changes is

conditionally independent of the process for Xt. The econometrician is presumed

to observe Xt but not the state st.

The model implies the following recursive relations for the bond pricing

parameters A
(n)
j and B(n) (derived in Appendix 2.6.2 in equations (2.37) and (2.39)):

A
(n)
j = δj0− log

(
2∑

k=1

πQjke−A
(n−1)
k

)
+B(n−1)′(µj−λ0,j)−

1

2
B(n−1)′ΣjB

(n−1) (2.14)

for j = 1, 2 and

B(n) = δ1 + (Φ− λ1)′B(n−1) (2.15)

with initial conditions A
(1)
j = δj0 and B(1) = δ1. These recursions represent non-

linear cross-equation no-arbitrage restrictions on A
(n)
j and B(n). The restrictions

are not used or imposed in the initial reduced-form estimation, but are exploited in

the second stage of the estimation described below.

2.3 Estimation procedure

I use the zero-coupon yield data set constructed by Gurkaynak, Sack, and

Wright (2007) for the period from 1990 to 2007. Gurkaynak et al. (2007) provide

parameters of fitted Nelson-Siegel-Svensson curves based on which zero-coupon

yields can be calculated. I use these parameters to compute yields for maturities 1

month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 9 years, and 10 years.

I assume that the vector of factors Xt is observed, and it consists of the first three

principal components extracted from standardized end-of-month bond yields with

maturities 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 9 years, and 10
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years. I take the 1-month yield as the risk-free rate. My empirical analysis uses

annualized yield data because as pointed out by Lemke (2006), for monthly yields

the measurement error variance would be very small, which might lead to numerical

difficulties. I propose a two-step procedure for estimating the model parameters.

First, I estimate the reduced-form parameters based on equations (2.12) and (2.3).

2.3.1 Estimation of reduced-form parameters via regime-
switching VAR’s

Annualized yields 3 are given by

y
(n)
t,A = 1200y

(n)
t =

1200

n
A(n)
st +

1200

n
B(n)′Xt (2.16)

where y
(n)
t represent monthly yields. Based on equations (2.16) and (2.3), I propose

to estimate the following regime-switching regressions:

y
(n)
t,A = a(n)

st + b(n)′Xt + u
(n)
t , n = 1m, 3m, 6m, 12m, 24m, 36m, 60m, 108m, 120m

(2.17)

where

(
u

(1)
t , u

(3)
t , u

(6)
t , u

(12)
t , u

(24)
t , u

(36)
t , u

(60)
t , u

(108)
t , u

(120)
t

)
|st ∼ N(0,Ω) (2.18)

3We have to multiply by 1200 since yields in the dataset are expressed in percentages.
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and

Ω ≡



[ω(1)]2 0 0 0 0 0 0 0 0

0 ω2 0 0 0 0 0 0 0

0 0 ω2 0 0 0 0 0 0

0 0 0 ω2 0 0 0 0 0

0 0 0 0 ω2 0 0 0 0

0 0 0 0 0 ω2 0 0 0

0 0 0 0 0 0 ω2 0 0

0 0 0 0 0 0 0 ω2 0

0 0 0 0 0 0 0 0 ω2



(2.19)

jointly with the regime-switching regression for Xt:

Xt+1 = µst + ΦXt + vt+1 , vt+1|st ∼ N(0,Σst) (2.20)

as a vector system of regime-switching equations.

In the first stage, I estimate the vector system of regime-switching equations

in (2.17)-(2.20) using the EM algorithm. The details of the algorithm I use can be

found in Appendix 1.7.3-1.7.5 of Chapter 1 of this dissertation. The general vector

version of the EM algorithm is given in Hamilton (2016).

2.3.2 Minimum-chi-square estimation of structural pa-
rameters

In the second stage, I back out the prices of risk and risk-neutral transition

probabilities by minimum-chi-square estimation.

Comparing equations (2.16) and (2.17), we can see that the first stage

estimates of the recursive bond pricing parameters A
(n)
j and B(n) can be backed
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out from

Â
(n)
j =

n

1200
â

(n)
j (2.21)

and

B̂(n) =
n

1200
b̂(n) (2.22)

The minimum-chi-square procedure chooses the values of λ0,1, λ0,2, λ1, πQ
11,

and πQ
22 so that the values for A

(n)
j and B(n) implied by equations (2.14) and

(2.15) most closely fit the unrestricted estimates (2.21)-(2.22). Minimum-chi-square

estimation in the context of single regime affine term structure models is discussed

in Hamilton and Wu (2012).

Let π denote the vector of reduced-form parameters (VAR coefficients,

variance-covariance matrix of the vector of factors, measurement error variances, and

P-measure regime-switching probabilities). Let L(π;Y ) denote the log-likelihood

for the entire sample, and let π̂ =arg max L(π;Y ) denote the full-information

maximum likelihood estimate. If R̂ is a consistent estimate of the information

matrix,

R = −T−1E

[
∂2L(π;Y )

∂π∂π′

]
(2.23)

then θ can be estimated by minimizing the chi-square statistic

T [π̂ − g(θ)]′ R̂ [π̂ − g(θ)] (2.24)

As noted by Hamilton and Wu (2012), the variance of θ̂ can be approximated with

ˆV ar(θ̂) ≡ T−1(Γ̂′R̂Γ̂)−1 (2.25)

for Γ̂ = ∂g(θ)
∂θ′
|θ=θ̂.
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The second stage of the estimation in this case consists of minimizing the

distance between the unrestricted maximum likelihood estimates of the coefficients

A
(n)
j and B(n) (from the regime-switching regressions) and the values of A

(n)
j and

B(n) implied by the no-arbitrage restrictions. According to equations (2.14) and

(2.15), the latter are predicted to be functions of θ, a vector of structural parameters

defined as follows:

θ =
(
µ1, µ2,Φ, δ0,1, δ0,2, δ1,Σ1,Σ2, ω

2(1), ω2, πP11 , πP22 , λ0,1, λ0,2, λ1, π
Q11 , πQ22

)
(2.26)

Let π̂ be the vector of the unrestricted maximum likelihood estimates from the

regime-switching VAR:

π̂ =

(
µ1, µ2,Φ, [a

(3m)
j ; a

(6m)
j ; a

(12m)
j ; a

(24m)
j ; a

(36m)
j ; a

(60m)
j ; a

(108m)
j ; a

(120m)
j ; a

(1m)
j ],

[b(3m); b(6m); b(12m); b(24m); b(36m); b(60m); b(108m); b(120m); b(1m)],Σ1,Σ2, ω
2(1), ω2,

πP11 , πP22

)
(2.27)

and

g(θ) =

(
µ1, µ2,Φ,

[
1200A

(3m)
j (θ)

3
;
1200A

(6m)
j (θ)

6
;
1200A

(12m)
j (θ)

12
;
1200A

(24m)
j (θ)

24
;

1200A
(36m)
j (θ)

36
;
1200A

(60m)
j (θ)

60
;
1200A

(108m)
j (θ)

108
;
1200A

(120m)
j (θ)

120
;

1200A
(1m)
j (θ)

1

]
,

[
1200B(3m)(θ)

3
;
1200B(6m)(θ)

6
;
1200B(12m)(θ)

12
;
1200B(24m)(θ)

24
;

1200B(36m)(θ)

36
;
1200B(60m)(θ)

60
;
1200B(108m)(θ)

108
;
1200B(120m)(θ)

120
;

1200B(1m)(θ)

1

]
,Σ1,Σ2, ω

2(1), ω2, πP11 , πP22

)
(2.28)
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A
(n)
j (θ) and B(n)(θ) are defined by the no-arbitrage restrictions in equations (2.14)

and (2.15).

Then I obtain θ̂ as

θ̂ ≡ argminθ{T [π̂ − g(θ)]′ R̂ [π̂ − g(θ)]} (2.29)

In this way I obtain estimates of the prices of risk λ0,1, λ0,2, and λ1 and of the

risk-neutral transition probabilities πQ11 and πQ22 as part of the vector θ̂. I also

obtain second-stage estimates of the reduced-form parameters.

Rothenberg (1973, pp. 24-25) shows that when the reduced-form estimate

is the unrestricted MLE and the weighting matrix is the associated information

matrix (which is the case in this paper), the resulting minimum-chi-square estimate

is asymptotically equivalent to full-information MLE. Hamilton and Wu (2012)

also show that the variance ˆV ar(θ̂) given in equation (2.25) above is identical to

the usual asymptotic variance for the MLE obtained from second derivatives of the

log-likelihood function directly with respect to θ.

2.4 Empirical results

Table 2.1 shows the first stage reduced-form parameter estimates, Table

2.2 shows the second stage reduced-form estimates, Table 2.3 shows the second

stage structural parameter estimates, and Table 2.4 shows Wald t-statistics for

the hypothesis tests that there is no regime switching in the regime-dependent

parameters. I find very strong evidence that there is regime switching in the U.S.

Treasury bond yields data. The hypotheses of no regime switching in the intercept

parameters in the yield equations are strongly rejected. I also find that the level and

variance of the first factor change with the regime. As is typical in the bond yield
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literature, the factors are found to correspond to the level, slope, and curvature

of the yield curve. Figure 2.1 plots the first factor with the periods corresponding

to regime 2 shaded. The level µ1,1 of the first factor in regime 1 is negative and

statistically significant, indicating that this regime corresponds to episodes when

rates are falling. On the other hand, regime 2 corresponds to periods when rates

are generally either rising or relatively constant. Based on these results, I refer

to regime 1 as the “decreasing rates” regime and regime 2 as the “non-decreasing

rates” regime. Contrary to previous studies, I do not find that regimes correspond

to recessions and expansions. I also find that the variance of the level factor is

statistically significantly lower in regime 1. Figure 2.2 plots the spread between

the 10-year yield and the 1-month yield with the periods corresponding to the

“non-decreasing rates” regime shaded. We can see that the spread is generally higher

in that regime.

Figure 2.3 shows the observed and model-implied term structure of average

yields conditional on each regime. To construct the observed term structure of

average yields, I first assign each month to a regime based on the smoothed

probability of the regime for that month. In other words, if Prob(st = j|FT ) > 0.5,

I assign month t to regime j. Then for each maturity from n = 1, . . . , 120, I

compute the average yield over all months identified as regime j, for each j = 1, 2.

To construct the model-implied term structure of average yields, I use the model-

implied values of the recursion parameters A
(n)
j and B(n) and simulate 1000 time

series of bond yields of each maturity, with the same length as that of my dataset

(215 months). Then I calculate the mean yield for each simulated series of each

maturity, conditional on either regime 1 or regime 2, and plot the mean yields

averaged over all simulations. We can see that the average observed and model-

implied term structures match really well. The average yield curve is flatter in the
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“decreasing rates” regime. Moreover, yields are higher on average in that regime.

The average yield curve is considerably steeper in the “non-decreasing rates” regime.

This is consistent with my finding that the spread between the 10-year and the

1-month yield is generally higher in the “non-decreasing rates” regime.

Figure 2.4 shows expected excess returns conditional on each regime. I find

that the expected excess returns on bonds of all maturities are positive in each

regime. Moreover, expected excess returns are higher in the “decreasing rates”

regime. These results imply that over my sample period, on average it is always

profitable for investors to be long in bonds of any maturity, and that they would

want to hold larger positions in longer term bonds in the “decreasing rates” regime.

Thus, even though the yield curve is flatter in the “decreasing rates” regime, on

average investors would be better off holding more long term bonds in that regime

because rates are decreasing.

I find significant differences in the market pricing of risk between the two

regimes. In particular, the price of risk corresponding to the third (curvature)

factor is statistically significantly different between the two regimes. Since there is

a statistically significant element in each row of either λ0 or λ1, I conclude that

level, slope, and curvature risks are all priced. This evidence supports the view that

investors require risk compensation for shocks to the level, slope, and curvature of

the yield curve.

The loading of level risk on the slope factor is negative and statistically

significant. Thus, changes in the slope of the yield curve drive variation in the price

of level risk. Figure 2.10 shows the loadings of expected one-month excess holding

log returns on each factor. These loadings represent the effect of a one-standard-

deviation change in each factor on the expected one-month excess holding log

returns. As can be seen in Figure 2.10, expected excess log returns load positively
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on the slope factor with coefficients increasing approximately linearly in maturity.

Therefore, the model implies that a higher slope (yield spread) is associated with

higher expected excess log returns. This is consistent with the finding in Adrian et

al. (2013) for a single regime model, as well as with prior evidence on the predictive

power of yield spreads for bond returns as, e.g., in Campbell and Shiller (1991).

From Figure 2.10, we can see that a one standard deviation increase in the slope

factor increases the annualized expected excess log return on the 10-year bond

by about 5%. I also find that the loading of slope risk on the curvature factor is

statistically significant, which implies that the current curvature factor forecasts

future expected excess returns. This is consistent with results in Cochrane and

Piazzesi (2008). From Figure 2.10 we can also see that a one standard deviation

decline in the curvature factor increases the annualized expected excess log return

on the 10-year Treasury bond by about 6%.

Figures 2.5 and 2.6 show observed and model-implied one-month excess

holding log returns for maturities 24 months and 120 months, while Figures 2.7

and 2.8 plot the observed and model-implied yields for these two maturities. We

see that the model does a very good job of matching the actual yields and returns.

Figures 2.7 and 2.8 also plot the term premium.

2.5 Conclusion

In this paper, I study the consequences of changes in regime on bond risk

premia, using Treasury bond yield data form 1990 to 2007. The main empirical

finding of the paper is that over my sample period, on average it is always profitable

for investors to be long in either short term or long term bonds. Moreover, they

would want to hold more long term bonds in periods when rates are decreasing,

even though the yield curve is flatter on average during those periods. I also find
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that a higher yield spread is associated with higher expected excess returns. A one

standard deviation increase in the slope factor, which is related to the slope of the

term structure, increases the annualized expected excess log return on the 10-year

Treasury bond by about 5%. A separate contribution of this paper is to provide an

estimation procedure that is considerably simpler than existing methods and avoids

most of the numerical difficulties encountered with other methods in the literature.
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2.6 Appendix

2.6.1 Relation between P-dynamics and Q-dynamics

By no arbitrage, an asset with payoff g(Xt+1) has a price in regime j equal

to

P (Xt) = EP
t [Mt,t+1g(Xt+1)|st = j] = exp(−rjt )EQ

t [g(Xt+1)|st = j] (2.30)

πQjk = EQ
t

[
1{st+1=k}|st = j

]
= exp(rjt )EP

t

[
1{st+1=k}Mt,t+1|st = j

]
= exp(rjt )EP

t

[
1{st+1=k} exp

(
−rt − Γst,st+1 −

1

2
λ′t,stλt,st − λ

′
t,stΣ

−1/2
st vt+1

)
|st = j

]
= exp(rjt ) exp(−rjt )EP

t

[
1{st+1=k} exp

(
−Γst,st+1

− 1

2
λ′t,stλt,st − λ

′
t,stΣ

−1/2
st vt+1

)
|st = j

]
= EP

t

[
exp

(
−1

2
λ′t,stλt,st − λ

′
t,stΣ

−1/2
st vt+1

)
|st = j

]
EP

t

[
1{st+1=k} exp

(
−Γst,st+1

)
|st = j

]
= exp

(
−1

2
λ′t,jλt,j

)
EP

t

[
exp

(
−λ′t,stΣ

−1/2
st vt+1

)
|st = j

]
πPjk exp(−Γj,k)

= exp

(
−1

2
λ′t,jλt,j

)
exp

(
1

2
V art(−λ′t,stΣ

−1/2
st vt+1|st = j)

)
πPjk exp (−Γj,k)

= exp

(
−1

2
λ′t,jλt,j

)
exp

(
1

2
λ′t,jλt,j

)
πPjk exp (−Γj,k) = πPjk exp (−Γj,k)

Therefore,

Γj,k = log

(
πPjk

πQjk

)
(2.31)
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P (Xt) = EP
t [Mt,t+1g(Xt+1)|st = j]

= EP
t

[
exp

(
−rt − Γst,st+1

− 1

2
λ′t,stλt,st − λ

′
t,stΣ

−1/2
st vt+1

)
g(Xt+1)|st = j

]
= exp(−rjt ) exp

(
−1

2
λ′t,jλt,j

)
EP

t

[
exp

(
−Γst,st+1 − λ′t,stΣ

−1/2
st vt+1

)
g(Xt+1)|st = j

]
= exp(−rjt ) exp

(
−1

2
λ′t,jλt,j

)[ 2∑
k=1

πPjk exp(−Γjk)

]
×

EP
t

[
exp

(
−λ′t,stΣ

−1/2
st vt+1

)
g(Xt+1)|st = j

]
=

= exp(−rjt ) exp

(
−1

2
λ′t,jλt,j

)[ 2∑
k=1

πPjk
πQjk

πPjk

]
×

EP
t

[
exp

(
−λ′t,stΣ

−1/2
st vt+1

)
g(Xt+1)|st = j

]
=

= exp(−rjt ) exp

(
−1

2
λ′t,jλt,j

)[ 2∑
k=1

πQjk

]
EP

t

[
exp

(
−λ′t,stΣ

−1/2
st vt+1

)
g(Xt+1)|st = j

]
= exp(−rjt ) exp

(
−1

2
λ′t,jλt,j

)
EP

t

[
exp

(
−λ′t,stΣ

−1/2
st vt+1

)
g(Xt+1)|st = j

]
)

= exp(−rjt ) exp

(
−1

2
λ′t,jλt,j

)
EP

t

[
exp

(
−λ′t,stΣ

−1/2
st (Xt+1 − µst − ΦXt)

)
g(Xt+1)|st = j

]
= exp(−rjt ) exp

(
−1

2
λ′t,jλt,j

)∫
g(Xt+1) exp

(
−λ′t,jΣ

−1/2
j (Xt+1 − µj − ΦXt)

)
(2π)−K/2|Σj |−1/2 exp

(
−1

2
(Xt+1 − µj − ΦXt)

′Σ−1j (Xt+1 − µj − ΦXt)

)
dXt+1

= exp(−rjt )(2π)−K/2|Σj |−1/2
∫
g(Xt+1) exp

(
−1

2

[
(Xt+1 − µj − ΦXt)

′Σ−1j

(Xt+1 − µj − ΦXt) + 2λ′t,jΣ
−1/2
j (Xt+1 − µj − ΦXt) + λ′t,jλt,j

])
dXt+1

= exp(−rjt )(2π)−K/2|Σj |−1/2
∫
g(Xt+1) exp

(
−1

2

[
Σ
−1/2
j (Xt+1 − µj − ΦXt) + λt,j

]′
[
Σ
−1/2
j (Xt+1 − µj − ΦXt) + λt,j

])
dXt+1 =

= exp(−rjt )(2π)−K/2|Σj |−1/2
∫
g(Xt+1) exp

(
−1

2

[
Σ
−1/2
j (Xt+1 − µj − ΦXt + Σ

1/2
j λt,j)

]′
[
Σ
−1/2
j (Xt+1 − µj − ΦXt + Σ

1/2
j λt,j)

])
dXt+1
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= exp(−rjt )(2π)−K/2|Σj |−1/2
∫
g(Xt+1) exp

(
−1

2
(Xt+1 − µj − ΦXt + λ0,j + λ1Xt)

′
Σ−1j

= (Xt+1 − µj − ΦXt + λ0,j + λ1Xt)

)
dXt+1

= exp(−rjt )(2π)−K/2|Σj |−1/2
∫
g(Xt+1) exp

(
−1

2
[Xt+1 − (µj − λ0,j)− (Φ− λ1)Xt]

′
Σ−1j

[Xt+1 − (µj − λ0,j)− (Φ− λ1)Xt]

)
dXt+1 = exp(−rjt )EQ

t (g(Xt+1)|st = j)

Therefore, under the Q-measure,

Xt+1|st = j ∼Q N((µj − λ0,j) + (Φ− λ1)Xt,Σj) (2.32)

or, equivalently,

Xt+1|st = j ∼Q N(µQ
j + ΦQXt,Σj) (2.33)

where

µQ
j ≡ µj − λ0,j (2.34)

and

ΦQ ≡ Φ− λ1 (2.35)

Hence, under the Q-measure, Xt+1 follows the dynamics

Xt+1 = µQ
j + ΦQXt + vQt+1 (2.36)

where vQt+1|st = j ∼Q N(0,Σj) under the Q-measure.

2.6.2 Calculating expected excess returns

The bond price is

P
(n)j
t = e−A

(n)
j −B

(n)′Xt
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p
(n)j
t = logP

(n)j
t = logEQ

t

[
e−r

j
tP

(n−1)
t+1 |st = j

]
=

= log

(
e−r

j
t

2∑
k=1

πQjkEQ
t

[
P

(n−1)k
t+1 |st = j

])

= −rjt + log

([
2∑

k=1

πQjke−A
(n−1)
k

]
EQ
t

[
e−B

(n−1)′Xt+1|st = j
])

= −rjt + log

(
2∑

k=1

πQjke−A
(n−1)
k

)
+ logEQ

t

[
e−B

(n−1)′Xt+1|st = j
]

= −rjt + log

(
2∑

k=1

πQjke−A
(n−1)
k

)
+ logEQ

t

[
e−B

(n−1)′ (µQj +ΦQXt+vt+1)|st = j
]

= −rjt + log

(
2∑

k=1

πQjke−A
(n−1)
k

)
+ log

[
e−B

(n−1)′ (µQj +ΦQXt)+
1
2
B(n−1)′ΣjB

(n−1)
]

= −rjt + log

(
2∑

k=1

πQjke−A
(n−1)
k

)
−B(n−1)′(µQ

j + ΦQXt) +
1

2
B(n−1)′ΣjB

(n−1)

= −δj0 − δ′1Xt + log

(
2∑

k=1

πQjke−A
(n−1)
k

)
−B(n−1)′(µQ

j + ΦQXt)+

1

2
B(n−1)′ΣjB

(n−1)

Therefore,

p
(n)j
t = −A(n)

j −B(n)′Xt = −δj0 − δ′1Xt + log

(
2∑

k=1

πQjke−A
(n−1)
k

)
−B(n−1)′µQ

j +

1

2
B(n−1)′ΣjB

(n−1) −B(n−1)′ΦQXt

The above equation implies the recursions:

A
(n)
j = δj0 − log

(
2∑

k=1

πQjke−A
(n−1)
k

)
+B(n−1)′µQ

j −
1

2
B(n−1)′ΣjB

(n−1)
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or equivalently

A
(n)
j = δj0− log

(
2∑

k=1

πQjke−A
(n−1)
k

)
+B(n−1)′(µj−λ0,j)−

1

2
B(n−1)′ΣjB

(n−1) (2.37)

and

B(n)′ = δ′1 +B(n−1)′ΦQ (2.38)

or equivalently

B(n) = δ1 + (Φ− λ1)′B(n−1) (2.39)

The initial conditions are A
(1)
j = δj0, B(1) = δ1.

EP
t

[
p

(n−1)
t+1 |st = j

]
=

2∑
k=1

πPjkEP
t

[
p

(n−1)k
t+1 |st = j

]
=

2∑
k=1

πPjkEP
t

[
−A(n−1)

k −B(n−1)′Xt+1|st = j
]

= −
2∑

k=1

πPjk

(
A

(n−1)
k +B(n−1)′Et [Xt+1|st = j]

)
= −

2∑
k=1

πPjk

(
A

(n−1)
k +B(n−1)′Et [µst + ΦXt|st = j]

)
= −

2∑
k=1

πPjk

(
A

(n−1)
k +B(n−1)′(µj + ΦXt)

)
= −

2∑
k=1

πPjkA
(n−1)
k −

(
2∑

k=1

πPjk

)
B(n−1)′(µj + ΦXt)

= −
2∑

k=1

πPjkA
(n−1)
k −B(n−1)′(µj + ΦXt)
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EP
t

[
rx

(n−1)
t+1 |st = j

]
= EP

t

[
p
(n−1)
t+1 − p(n)t − rt|st = j

]
= EP

t

[
p
(n−1)
t+1 |st = j

]
− p(n)jt − rjt

= −
2∑

k=1

πPjkA
(n−1)
k −B(n−1)′(µj + ΦXt) + δ0,j + δ′1Xt

− log

(
2∑

k=1

πQjke−A
(n−1)
k

)
+B(n−1)′(µQ

j + ΦQXt)−
1

2
B(n−1)′ΣjB

(n−1)

− δ0,j − δ′1Xt = −
2∑

k=1

πPjkA
(n−1)
k −B(n−1)′(µj − µQ

j )

−B(n−1)′(Φ− ΦQ)Xt − log

(
2∑

k=1

πQjke−A
(n−1)
k

)
− 1

2
B(n−1)′ΣjB

(n−1)

= −
2∑

k=1

πPjkA
(n−1)
k − log

(
2∑

k=1

πQjke−A
(n−1)
k

)
−B(n−1)′λ0,j

−B(n−1)′λ1Xt −
1

2
B(n−1)′ΣjB

(n−1)

EP
t

[
rx

(n−1)
t+1 |Ft

]
=

2∑
j=1

EP
t

[
rx

(n−1)
t+1 |st = j

]
P (st = j|Ft)

=
2∑
j=1

[
−

2∑
k=1

πPjkA
(n−1)
k − log

(
2∑

k=1

πQjke−A
(n−1)
k

)
−B(n−1)′λ0,j

−B(n−1)′λ1Xt −
1

2
B(n−1)′ΣjB

(n−1)

]
× P (st = j|Ft)
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We can also derive an expression for e−r
j
t
EP

t [P
(n−1)
t+1 |st=j]
P

(n)j
t

.

P
(n)j
t = EQ

t [e−r
j
tP

(n−1)
t+1 |st = j] = e−r

j
t

2∑
k=1

πQjkEQ
t [P

(n−1)k
t+1 |st = j]

= e−r
j
t

2∑
k=1

πQjkEQ
t [e−A

(n−1)
k −B(n−1)′Xt+1|st = j]

= e−r
j
t

[
2∑

k=1

πQjke−A
(n−1)
k

]
EQ
t

[
e−B

(n−1)′Xt+1|st = j
]

= e−r
j
t

[
2∑

k=1

πQjke−A
(n−1)
k

]
EQ
t

[
e−B

(n−1)′ (µQst+ΦQXt+vt+1)|st = j
]

= e−r
j
t

[
2∑

k=1

πQjke−A
(n−1)
k

]
e−B

(n−1)′ (µQj +ΦQXt)+
1
2
B(n−1)′ΣjB

(n−1)

(2.40)

EP
t [P

(n−1)
t+1 |st = j] =

2∑
k=1

πPjkEP
t [P

(n−1)k
t+1 |st = j]

=
2∑

k=1

πPjkEP
t [e−A

(n−1)
k −B(n−1)′Xt+1|st = j]

=

[
2∑

k=1

πPjke−A
(n−1)
k

]
EP
t

[
e−B

(n−1)′Xt+1 |st = j
]

=

[
2∑

k=1

πPjke−A
(n−1)
k

]
EP
t

[
e−B

(n−1)′ (µPst+ΦPXt+vt+1)|st = j
]

=

[
2∑

k=1

πPjke−A
(n−1)
k

]
e−B

(n−1)′ (µPj+ΦPXt)+
1
2
B(n−1)′ΣjB

(n−1)

(2.41)
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Then

e−r
j
t
EP
t [P

(n−1)
t+1 |st = j]

P
(n)j
t

=

e−r
j
t

[∑2
k=1 π

Pjke−A
(n−1)
k

]
e−B

(n−1)′ (µPj+ΦPXt)+
1
2
B(n−1)′ΣjB

(n−1)

e−r
j
t

[∑2
k=1 π

Qjke−A
(n−1)
k

]
e−B

(n−1)′ (µQj +ΦQXt)+
1
2
B(n−1)′ΣjB(n−1)

=

[∑2
k=1 π

Pjke−A
(n−1)
k

]
[∑2

k=1 π
Qjke−A

(n−1)
k

]e−B(n−1)′ (µPj−µ
Q
j )−B(n−1)′ (ΦP−ΦQ)Xt

=

[∑2
k=1 π

Pjke−A
(n−1)
k

]
[∑2

k=1 π
Qjke−A

(n−1)
k

]e−B(n−1)′ (λ0,j+λ1Xt)

=

[∑2
k=1 π

Pjke−A
(n−1)
k

]
[∑2

k=1 π
Qjke−A

(n−1)
k

]e−B(n−1)′Σ
1/2
j λt,j (2.42)
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2.7 Figures
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Figure 2.1. First principal component of bond yields
Shown in blue. Shaded areas represent regime 2 (non-decreasing rates).
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Figure 2.2. Spread between the 10-year yield and the 1-month yield
Shown in blue. Units are annualized percentage. Shaded areas represent regime 2
(non-decreasing rates).
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Figure 2.3. Observed and model-implied term structure of average yields condi-
tional on each regime
The term structures of observed mean yields conditional on each regime are shown
in solid lines in blue for regime 1 (decreasing rates) and red for regime 2 (non-
decreasing rates). They are obtained by computing sample means after allocating
dates to regimes based on the smoothed probabilities. The term structures of
average simulated yields conditional on each regime are shown in dotted lines in
green for regime 1 and black for regime 2. They are computed by taking the average
of the means of time series of yields simulated from the model.
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Figure 2.4. Monthly expected excess one-month holding returns (%) conditional
on regime 1 (decreasing rates) and regime 2 (non-decreasing rates)
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Figure 2.5. Observed and model-implied one-month excess holding log return for
the 24-month bond
Model-implied return is in green, observed return is in blue, expected return is in
red. Returns are in annualized percentages.
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Figure 2.6. Observed and model-implied one-month excess holding log return for
the 120-month bond
Model-implied return is in green, observed return is in blue, expected return is in
red. Returns are in annualized percentages.
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Figure 2.7. Yield fitting and term premium estimates for the 24-month bond
Model-implied (fitted) yield is in green, observed yield is in blue, and term premium
is in red, in annualized percentage terms.

’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07
−1

0

1

2

3

4

5

6

7

8

9
Yield fitting and term premium estimates for maturity n=120 months

Figure 2.8. Yield fitting and term premium estimates for the 120-month bond
Model-implied (fitted) yield is in green, observed yield is in blue, and term premium
is in red, in annualized percentage terms.
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Figure 2.9. Model-implied factor loadings
The figure plots the model-implied loadings of annualized yields on the factors.
Each line represents the response of the term structure to a one standard deviation
shock in the given factor. The graph shows loadings for the level factor (first
principal component, in blue), the slope factor (second principal component, in
green), and the curvature factor (third principal component, in red).
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Figure 2.10. Loadings of expected one-month excess holding log returns on each
factor
Sensitivity of expected one-month excess holding log returns to one-standard-
deviation changes in the factors. The figure shows loadings for the level factor (first
principal component, in blue), the slope factor (second principal component, in
green), and the curvature factor (third principal component, in red). The loadings
are for returns in annualized percentage terms.
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2.8 Tables

Table 2.1. First stage reduced-form parameter estimates

Regime 1 Regime 2

µ -0.1081 0.0616
(0.0369) (0.0561)
0.0143 -0.0277

(0.0174) (0.0255)
0.0018 -0.0023

(0.0076) (0.0113)

Φ 0.9943 -0.0460 -0.3479

(0.0122) (0.0328) (0.1768)
-0.0064 0.9872 0.4102
(0.0056) (0.0154) (0.0815)
0.0028 -0.0018 0.8492

(0.0025) (0.0067) (0.0361)

A(1) 0.0036 0.0034

(9.10E-06) (1.12E-05)
A(3) 0.0108 0.0106

(4.82E-06) (5.96E-06)
A(6) 0.0218 0.0220

(9.56E-06) (1.18E-05)
A(12) 0.0452 0.0460

(1.93E-05) (2.38E-05)
A(24) 0.0965 0.0967

(3.83E-05) (4.69E-05)
A(48) 0.2101 0.2079

(7.69E-05) (9.41E-05)
A(60) 0.2706 0.2680

(9.64E-05) (0.0001)
A(108) 0.5281 0.5296

(0.0002) (0.0002)
A(120) 0.5951 0.5983

(0.0002) (0.0002)
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Table 2.1. First stage reduced-form parameter estimates (continued)

Regime 1 Regime 2

B(1) 0.0005 -0.0006 0.0013
(2.65E-06) (7.75E-06) (4.42E-05)

B(3) 0.0015 -0.0019 0.0024
(1.40E-06) (4.13E-06) (2.37E-05)

B(6) 0.0031 -0.0035 0.0018
(2.79E-06) (8.15E-06) (4.64E-05)

B(12) 0.0063 -0.0055 -0.0034
(5.66E-06) (1.66E-05) (9.54E-05)

B(24) 0.0122 -0.0046 -0.0158
(1.11E-05) (3.24E-05) (0.0002)

B(48) 0.0220 0.0079 -0.0221
(2.24E-05) (6.54E-05) (0.0004)

B(60) 0.0262 0.0165 -0.0164
(2.80E-05) (8.17E-05) (0.0005)

B(108) 0.0402 0.0546 0.0315
(5.00E-05) (0.0001) (0.0008)

B(120) 0.0432 0.0640 0.0457
(5.57E-05) (0.0002) (0.0009)
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Table 2.3. Second stage structural parameter estimates

Regime 1 Regime 2

λ0 -0.1632 -0.0452
(0.0369) (0.0561)
0.0081 0.0162

(0.0174) (0.0256)
0.0148 -0.0338

(0.0076) (0.0114)

λ1 -0.0148 -0.1060 -0.0982

(0.0122) (0.0328) (0.1767)
0.0031 0.0021 0.1599

(0.0056) (0.0154) (0.0815)
-0.0015 0.0008 -0.0141
(0.0025) (0.0067) (0.0362)

πQ 0.9109 0.0984

(0.0056)
0.0891 0.9016

(0.0070)
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Table 2.4. Wald t-statistics

H0 Wald t-statistic

Reduced-form parameters (first stage)

A
(1)
1 − A

(1)
2 = 0 14.6751

A
(3)
1 − A

(3)
2 = 0 25.3251

A
(6)
1 − A

(6)
2 = 0 -14.0303

A
(12)
1 − A(12)

2 = 0 -27.6478

A
(24)
1 − A(24)

2 = 0 -4.5481

A
(48)
1 − A(48)

2 = 0 17.9280

A
(60)
1 − A(60)

2 = 0 16.8128

A
(108)
1 − A(108)

2 = 0 -5.4761

A
(120)
1 − A(120)

2 = 0 -10.7335

Reduced-form parameters (second stage)

µ1,1 − µ1,2 = 0 -2.3216

1.2466

0.1509

Σ1
11 − Σ2

11 = 0 -2.0819

Σ1
12 − Σ2

12 = 0 -1.8370

Σ1
22 − Σ2

22 = 0 -1.6235

Σ1
13 − Σ2

13 = 0 1.6466

Σ1
23 − Σ2

23 = 0 -0.0441

Σ1
33 − Σ2

33 = 0 -1.7614

δ0,1 − δ0,2 = 0 30.0960

Structural parameters (second stage)

λ0,1 − λ0,2 = 0 -1.6182

-0.2417
3.2822

πP11 − πQ11 = 0 -0.9554

πP22 − πQ22 = 0 -1.6321
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Table 2.5. Reduced-form versus model implied values for the recursion parameters
A

(n)
j

Regime 1 Regime 2

First stage Model First stage Model

A(1) 0.0036 0.0036 0.0034 0.0034

A(3) 0.0108 0.0108 0.0106 0.0106

A(6) 0.0218 0.0218 0.0220 0.0220

A(12) 0.0452 0.0451 0.0460 0.0460

A(24) 0.0965 0.0965 0.0967 0.0967

A(48) 0.2101 0.2102 0.2079 0.2081

A(60) 0.2706 0.2703 0.2680 0.2682

A(108) 0.5281 0.5276 0.5296 0.5291

A(120) 0.5951 0.5958 0.5983 0.5983

Table 2.6. Reduced-form versus model implied values for the recursion parameters
B(n)

First stage Model implied

B(1)′ 0.0005 -0.0006 0.0013 0.0005 -0.0007 0.0012

B(3)′ 0.0015 -0.0019 0.0024 0.0015 -0.0019 0.0024

B(6)′ 0.0031 -0.0035 0.0018 0.0030 -0.0035 0.0018

B(12)′ 0.0063 -0.0055 -0.0034 0.0063 -0.0054 -0.0037

B(24)′ 0.0122 -0.0046 -0.0158 0.0123 -0.0048 -0.0165

B(48)′ 0.0220 0.0079 -0.0221 0.0220 0.0078 -0.0198

B(60)′ 0.0262 0.0165 -0.0164 0.0261 0.0166 -0.0131

B(108)′ 0.0402 0.0546 0.0315 0.0401 0.0547 0.0296

B(120)′ 0.0432 0.0640 0.0457 0.0433 0.0641 0.0409
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Chapter 3

Forecasting the Commodity Price
Index: Does Aggregating Fore-
casts of Sub-components Improve
Forecast Accuracy?

Abstract

Forecasting commodity prices is important for policymakers, investors, and

the general public. Commodity prices have exhibited big fluctuations over the past

few years, and it is of wide interest to find out which method produces the best

forecasts. In this paper I address the question of what is the best way to forecast

the IMF aggregate commodity price index. I investigate whether it is better to

use the individual components (indirect approach), or just forecast the aggregate

directly (direct approach). I evaluate the forecasting performance of exponential

smoothing, autoregressive, and vector autoregressive models. I find that aggregating

component forecasts increases forecasting accuracy when using double exponential

smoothing, triple exponential smoothing, or an AR(p) model. For the AR(1) model

and the simple exponential smoothing method, aggregating sub-index forecasts

does not help forecast the price index. However, whether the direct or the indirect

forecasting approach is used, none of the models considered generate more accurate

106
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out-of-sample forecasts than those based on an AR(1) model specification.

3.1 Introduction

Predicting the movements of commodity prices is important for policymakers,

financial investors, and the general public. Commodity prices have exhibited big

fluctuations over the past decade, and it is of wide interest to find out which method

produces the best forecasts. Another reason why predicting commodity prices is of

interest is that commodity prices may affect current and future inflation. There is

literature examining the usefulness of commodity prices in predicting inflation, e.g.

Chen et al. (2014) and Ishimwe (2015). In this paper I evaluate the forecasting

performance of exponential smoothing, autoregressive, and vector autoregressive

models. I study whether the forecasting accuracy of forecasting the aggregate

commodity price index can be improved by aggregating forecasts of sub-indices as

opposed to forecasting the aggregate index directly. To my knowledge, this is the

first paper looking at this aggregation issue for a major aggregate commodity price

index.

Many macroeconomic variables are aggregates which can be expressed as

a sum of components. Some examples are inflation, GDP, industrial production,

and unemployment. When forecasting such variables, one can either forecast the

aggregate directly or forecast the disaggregate components and then combine the

disaggregate forecasts. The forecast aggregation issue is of considerable practical

importance but there are conflicting results in the empirical literature regarding the

benefits of forecast aggregation. Theoretical results suggest that generally forecast

aggregation should tend to improve forecast accuracy. However, depending on

the dataset and model considered, some researchers have found that aggregating

component forecasts improves forecast accuracy whereas others find that forecast
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aggregation does not help to improve the forecast of the aggregate. Thus, it is not

clear whether in a particular application forecast aggregation would be helpful.

The aggregation issue is often encountered when forecasting inflation since

prices of the component series from which the aggregate price index is constructed

are available. The performance of aggregate versus disaggregate forecasting strate-

gies has been studied in the context of Euro area inflation. There are multiple

studies investigating whether it is better to forecast Euro area aggregates directly

or to aggregate forecasts of the member states. Hubrich (2005) studies whether

aggregating forecasts of sub-indices of the Harmonized Index of Consumer Prices

(HICP) improves forecast accuracy relative to forecasting the aggregate HICP

directly. She uses a range of univariate and multivariate linear time series models

such as AR, VAR, and random walk with drift. Hubrich finds that aggregating

forecasts by component does not necessarily help forecast year-on-year inflation

twelve months ahead. There are similar studies about U.S. inflation. Zellner

and Tobias (2000) study whether disaggregation is useful in forecasting median

GDP growth in industrialized countries. Fair and Shiller (1990) use disaggregated

components for forecasting US real GNP growth.

In this paper, I compare the forecasting accuracy of simple exponential

smoothing, double exponential smoothing, triple exponential smoothing, AR(p),

AR(1), and VAR(1) models when forecasting the log of the aggregate commodity

index by using sub-index forecasts versus forecasting the log of the aggregate

commodity index directly.

3.2 Data

I use data for the IMF aggregate global primary commodity price index and

its 52 sub-indices corresponding to 52 primary commodities. Among the primary
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commodities, non-fuel, crude oil petroleum, natural gas, energy, food, metals,

beverages, agricultural, and industrial inputs are included. The IMF commodity

price index is a world export-earnings-weighted price index. The IMF commodity

price series are benchmark prices which are representative of the global market.

They are determined by the largest exporter of a given commodity. The IMF

commodity prices are end-of-month prices measured at close and denominated in

U.S. dollars. The data for the aggregate index as well as its component sub-indices

is available on the IMF website.1 The weights used to calculate the aggregate index

from individual sub-index prices can be found in Table 2 “Indices of Market Prices

for Non-Fuel and Fuel Commodities” and Table 6 “Specifications for Commodity

prices” on the IMF website. The weights are based on 2002-2004 average world

export earnings. The IMF provides a single set of weights which can be used to

calculate the aggregate index from its components for all the historical data. These

are the weights I use to aggregate the individual sub-index forecasts into a combined

forecast for the aggregate index. In other words, I use constant weights throughout

the estimation samples.

I use monthly data from January 1992 to February 2017. The data I use

starts from January 1992 since that is the earliest date for which data for all 52

sub-indices is available. The 52-item breakdown is the most detailed breakdown

available for the aggregate commodity index.

Figure 3.1 shows the monthly aggregate IMF commodity index, measured

in nominal US dollar terms. Figure 3.2 presents a plot of the commodity price

sub-indices as well as the aggregate index. There is noticeable comovement of

the individual sub-indices with the aggregate index. Prices were relatively stable

until 2006. Then they rose sharply until mid-2008 and fell sharply (except textiles)

1http://www.imf.org/external/np/res/commod/index.aspx
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during the financial crisis. Commodity prices started rising again after March 2009

until mid-2011. After that they remained relatively stable until 2015. Then they

declined throughout 2015 and started rising again in 2016.

3.3 Empirical framework and methodology

Let P aggr
t represent the level of the aggregate commodity index. The ag-

gregate commodity index can be considered as a contemporaneously aggregated

variable that can be represented as the weighted sum of the prices P j
t of its N

disaggregated sub-indices at each time t, where N = 52. The aggregate can be

expressed as

P aggr
t =

N∑
j=1

wjP
j
t (3.1)

for t = 1, . . . , T , where wj , j = 1, . . . , N are the aggregation weights. I assume that

the aggregation weights are constant over time, which is indeed the case for the

IMF commodity index data. Each weight wj > 0 and
∑N

j=1wj = 1. The variable I

am interested in forecasting is the log of the monthly aggregate commodity index,

paggrt :

paggrt ≡ logP aggr
t (3.2)

The direct forecast of paggrt is obtained by forecasting paggrt directly and is denoted

p̂aggrt .

An indirect forecast P̂ aggr
sub,t of the level of the aggregate index can be obtained

by aggregating the N sub-index forecasts P̂ j
t (j = 1, . . . , N):

P̂ aggr
sub,t =

N∑
j=1

wjP̂
j
t (3.3)

I am interested in an indirect forecast p̂aggrsub,t of the log of the aggregate index, which
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can be obtained as

p̂aggrsub,t = log
(
P̂ aggr
sub,t

)
= log

(
N∑
j=1

wjP̂
j
t

)
(3.4)

For the approach using sub-index data (the indirect approach), for a given

model, I fit the model to the log of each sub-index.2 Then I calculate forecasts p̂jt

for the logs of the sub-indices. Next, I construct forecasts P̂ j
t for the levels of the

sub-indices by exponentiating the forecasts of the logs:

P̂ j
t = exp(p̂jt) (3.5)

I use the weights wj to generate a combined (indirect) level forecast P̂ aggr
sub,t for the

aggregate index as the weighted average of the level forecasts P̂ j
t of the sub-indices,

as in equation (3.3). Then I compute an indirect forecast p̂aggrsub,t for the log of the

aggregate index by taking the log of the combined level forecast P̂ aggr
sub,t for the

aggregate index, as in equation (3.4). Finally, I compute RMSFE of the indirect

forecast p̂aggrsub,t for the log of the aggregate index over all the recursive estimation

windows.

For the direct approach, I estimate the given model on the log of the

aggregate index, paggrt , 3 and calculate RMSFE for the forecast p̂aggrt of the log of

the aggregate index.

For each model, I construct one set of forecasts by using sub-index data and

another set of forecasts by using the direct approach. Then I compare the forecast

accuracy of the two approaches.

I use data from January 1992 to December 1997 as the initial estimation

2With the exception of the AR(1) model, which is fit to the log difference.
3With the exception of the AR(1) model, which is fit to the log difference.
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sample. For each model, I generate recursive pseudo out-of-sample forecasts with

an expanding estimation window. Using data up to time T (where initially T

corresponds to December 1997), I estimate each model and compute h-step ahead

forecasts (for time T+h) of the log of the aggregate commodity index using the direct

approach and using the indirect approach, for each horizon h = 1, . . . , 12 months.

Next, I expand the estimation sample by adding the next monthly observation.

Then given data up to time T + 1, I re-estimate the model and calculate h-step

ahead forecasts for h = 1, . . . , 12 (i.e. for time T +1+h). I repeat this process up to

the last estimation sample, which ends in February 2016. I evaluate out-of-sample

forecast accuracy through Root Mean Square Forecast Error (RMSFE).

I denote by p̂aggrT+h|T the direct h-step ahead forecast of the log of the aggregate

index given information up to time T , and by p̂aggrsub,T+h|T the indirect h-step ahead

forecast of the log of the aggregate index.

I evaluate the forecasting performance of simple exponential smoothing,

double exponential smoothing, triple exponential smoothing, an AR(1) model, an

AR(p) model, and a VAR(1) model.

3.3.1 Simple exponential smoothing

Simple exponential smoothing models the level component lt of a series.4

The simple exponential smoothing method can be expressed in terms of a forecast

equation and a smoothing equation for the level called level equation. For a

commodity sub-index log price pjt , simple exponential smoothing can be written as

Forecast equation: p̂jt+h|t = lt, h = 1, 2, 3, . . . (3.6)

Level equation: lt = αpjt + (1− α)lt−1 = αpjt + (1− α)p̂jt|t−1 (3.7)

4The following description of the method is based on the textbook by Hyndman (2013).
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where lt is the estimated level of the series at time t. The h-step ahead forecast

for the sub-index log price p̂jt+h|t at any time t+ h, h = 1, 2, . . . is the estimated

level at time t. The level equation shows that the estimated level lt of the series

at time t is a weighted average of the current value pjt and the previous level lt−1.

In other words, the estimated level at time t is a weighted average of the current

value of the sub-index log price and the within-sample 1-step ahead forecast for

time t. Simple exponential smoothing is useful for forecasting time series with no

trend or seasonal component.

3.3.2 Holt’s double exponential smoothing

Holt’s double exponential smoothing method (1957) extends simple expo-

nential smoothing to accommodate smoothing and forecasting of a series with a

trend.5 In addition to the forecast equation and the smoothing equation for the

level, there is now also a second smoothing equation for the trend. For a commodity

sub-index log price pjt , double exponential smoothing can be expressed as

Forecast equation: p̂jt+h|t = lt + hbt (3.8)

Level equation: lt = αpjt + (1− α)(lt−1 + bt−1) = αpjt + (1− α)p̂jt|t−1 (3.9)

Trend equation: bt = β∗(lt − lt−1) + (1− β∗)bt−1 (3.10)

where lt is the level of the series at time t, bt is an estimate of the trend (slope)

of the series at time t, α (0 ≤ α ≤ 1) is the smoothing parameter for the level,

and β∗ (0 ≤ β∗ ≤ 1) is the smoothing parameter for the trend. Again, the level

equation means that the level lt is a weighted average of the current value of the

sub-index log price pjt and the within-sample 1-step ahead forecast for time t. The

5The following description of the method is based on the textbook by Hyndman (2013).
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trend equation can be interpreted as the trend bt being a weighted average of the

change in the level (lt − lt−1) and the previous estimate of the trend bt−1.

The forecast equation (3.8) shows that the forecast function is trending,

unlike the flat forecast function associated with simple exponential smoothing. The

h-step ahead forecasts are a linear function of h.

3.3.3 Holt-Winters triple exponential smoothing

Holt-Winters triple exponential smoothing (Holt (1957) and Winters (1960))

extends Holt’s double exponential smoothing method to time series exhibiting

linear trend and additive or multiplicative seasonality.6 In addition to a forecast

equation and smoothing equations for the level lt and trend bt, triple exponential

smoothing adds a smoothing equation for the seasonal component, denoted by st.

The corresponding smoothing parameters are α, β∗, and γ. Let m denote the period

of seasonality, i.e. the number of seasons in a year. For monthly data, m = 12.

There is an additive version and a multiplicative version of the method. The version

is chosen depending on the nature of the seasonality (additive or multiplicative).

For the IMF data, the seasonal variations are relatively constant throughout the

series (i.e. additive seasonality), so I use the additive method. With this method,

in the level equation the series is seasonally adjusted by subtracting the seasonal

component. Within each year, the seasonal component adds up to approximately

zero.

The additive triple exponential smoothing method can be expressed in terms

6The following description of the method is based on the textbook by Hyndman (2013).
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of the following equations:

Forecast equation: p̂jt+h|t = lt + hbt + st−m+h+m
(3.11)

Level equation: lt = α(pjt − st−m) + (1− α)(lt−1 + bt−1) (3.12)

Trend equation: bt = β∗(lt − lt−1) + (1− β∗)bt−1 (3.13)

Seasonal factor: st = γ(pjt − lt−1 − bt−1) + (1− γ)st−m (3.14)

where h+
m ≡ b(h− 1) mod mc+ 1 so that the estimates of the seasonal indices used

for forecasting are from the last year of the sample (Hyndman (2013)). From the

level equation, we can see that the estimated level is a weighted average of the

seasonally adjusted current value of the sub-index log price (pjt − st−m) and the

forecast (lt−1 + bt−1) for time t in the absence of seasonality. The trend equation

is the same as for double exponential smoothing. The seasonal factor equation

expresses the seasonal component as a weighted average of the current seasonal

index (pjt − lt−1 − bt−1) and st−m, which is the seasonal index of the same season in

the previous year.

3.3.4 Autoregressive models AR(p)

For a commodity sub-index log price pjt , the autoregressive AR(p) model

can be written as:

pjt = αj +
K∑
i=1

βji p
j
t−i + εjt (3.15)

For each series pjt and for each estimation window, I estimate the parameters by

OLS. The maximum lag length for the AR model is specified ex ante and the

number of lags K is chosen according to the Akaike Information Criterion (AIC).
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The 1-step ahead forecast is computed as:

p̂jt+1|t = αj +
K∑
i=1

βji p
j
t−i+1 (3.16)

The h-step ahead forecast is computed as

p̂jt+h|t = αj +
K∑
i=1

βji p̂
j
t+h−i|t (3.17)

3.3.5 Vector autoregression VAR(1)

Let p̄t be an (N × 1) vector of all commodity sub-index log prices (N=52):

p̄t = (p1
t , p

2
t , . . . , p

N
t ), c an (N × 1) vector of constants, A1 an (N ×N) matrix of

coefficients, and εt an (N × 1) vector of disturbances. I estimate a VAR(1) model

on the log-level of the series p̄t.

p̄t = c+ A1p̄t−1 + εt (3.18)

Then the 1-step ahead forecast is

p̄t+1|t = c+ A1p̄t (3.19)

The h-step ahead forecast is

p̄t+h|t = c+ A1pt+h−1|t (3.20)
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3.4 Empirical results

Table 3.1 shows the Root Mean Square Forecast Error (RMSFE) for the

direct and indirect forecasts when using an AR(1) model. I find that using an AR(1)

model, the forecasting accuracy from the disaggregated approach and the direct

approach is almost the same, i.e. using disaggregate information does not help

improve the accuracy of the forecast of the log of the aggregate. Figure 3.3 plots the

RMSFE for each horizon h = 1, . . . , 12 months for each of the two approaches. The

blue line represents the RMSFE obtained when using the indirect approach with an

AR(1) model. The red line represents the RMSFE obtained when using the AR(1)

model and the direct approach. The blue line and red line overlap very closely,

indicating that the two forecasting approaches have almost identical forecasting

accuracy. The upward slope of the lines indicates that the forecasting performance

of each approach deteriorates as the horizon increases.

Table 3.2 shows the forecasting performance of the simple exponential

smoothing (SES) model for each of the two approaches. Again, I find that the

forecasting accuracy is almost identical no matter whether sub-index information

is used or the log of the aggregate is forecasted directly. Hence, aggregating sub-

index forecasts does not help forecast the log of the aggregate commodity price

index at any of the horizons under consideration. This can also be seen in Figure

3.4, which shows the RMSFE for each horizon from h = 1, . . . , 12 months for

each of the two approaches. The lines representing the RMSFE for each of the

two approaches overlap, indicating that the two approaches have almost identical

forecasting accuracy as measured by RMSFE. Again, the forecasting performance

of each of the two methods gets worse as the horizon increases.

Table 3.3 shows the RMSFE for the two forecasting approaches when
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using Holt’s double exponential smoothing method. In this case, I find that using

disaggregate forecasts to forecast the log of the aggregate commodity index improves

forecasting accuracy at each horizon relative to forecasting the log of the aggregate

directly. This can also be seen from Figure 3.5. As the forecast horizon increases,

the difference between the forecasting accuracy of the two methods increases. In

other words, for forecasts further out into the future, the disaggregated approach

provides greater improvement in RMSFE relative to the direct approach.

Table 3.4 shows the forecasting performance of Holt-Winters triple expo-

nential smoothing for both approaches. As with double exponential smoothing,

triple exponential smoothing has greater forecasting accuracy at each horizon when

combining sub-index forecasts as opposed to forecasting the log of the aggregate

index directly. This can be seen more clearly in Figure 3.6. Again, the forecasting

accuracy gain of the disaggregated approach relative to the direct approach increases

for horizons further out into the future.

Table 3.5 shows the RMSFE for the AR(p) model for the disaggregated

approach and for the direct approach. Figure 3.7 depicts the RMSFE for each

approach and for each horizon. For horizons from 1 to 4 months, the forecasting

accuracy of the two approaches is approximately the same. For horizons 5 to 12

months, combining sub-index forecasts to forecast the log of the aggregate index

improves forecasting accuracy relative to forecasting the log of the aggregate directly.

The accuracy gain increases as the forecast horizon increases.

Finally, Table 3.6 shows the RMSFE for a VAR(1) model on logs of the

52 sub-index series. The RMSFE for the VAR(1) model is higher at each forecast

horizon than the RMSFE for the disaggregated approach when using any of the

other methods.

When using double exponential smoothing and triple exponential smoothing,
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aggregating forecasts of the individual sub-indices increases forecasting accuracy

at any horizon h = 1, . . . , 12 months. For the AR(p) model, combining sub-

index forecasts improves forecasting accuracy relative to forecasting the log of the

aggregate directly for horizons h ≥ 5 months. For the AR(1) model and the simple

exponential smoothing model, using the indirect approach does not improve the

forecasting performance and results in almost identical RMSFE as forecasting the

aggregate index directly. Overall, no matter whether I use disaggregate forecasts

to forecast the log of the aggregate commodity index or I forecast the log of the

aggregate index directly, none of the models considered generate more accurate

out-of-sample forecasts than those based on an AR(1) model specification. When

forecasting the log of the aggregate commodity index directly, for horizons h ≥ 8

months, the simple exponential smoothing model has almost identical forecast

accuracy as the AR(1) model. The VAR(1) model has the worst forecast accuracy

among the models considered.

3.5 Conclusion

In this paper, I compare the forecasting performance of simple exponential

smoothing, Holt’s double exponential smoothing, Holt-Winters triple exponential

smoothing, AR(p), AR(1), and VAR(1) models when forecasting the log of the

aggregate commodity index by using sub-index forecasts (indirect approach) versus

forecasting the log of the aggregate commodity index directly (direct approach).

I find that when using double exponential smoothing and additive triple expo-

nential smoothing, aggregating forecasts from the individual sub-indices increases

forecasting accuracy at any horizon h = 1, . . . , 12 months. For the AR(p) model,

using sub-index forecasts to forecast the log of the aggregate improves forecasting

accuracy relative to forecasting the log of the aggregate directly for horizons h ≥ 5
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months. On the other hand, for the AR(1) model and the simple exponential

smoothing model, the indirect approach does not improve the forecasting per-

formance and results in almost identical RMSFE as the direct approach. When

using either forecasting approach, none of the models considered generate more

accurate out-of-sample forecasts than the AR(1) model. For the direct approach,

for horizons h ≥ 8 months, the simple exponential smoothing model has almost

identical forecast accuracy as the AR(1) model.
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3.6 Figures
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Aggregate IMF Commodity Price Index

Figure 3.1. Log of the monthly aggregate IMF commodity index
The index is measured in nominal US dollar terms.
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Figure 3.2. Log of the monthly aggregate IMF commodity index and its 52
sub-indices
The thick black line represents the aggregate index. Prices are measured in nominal
US dollar terms.
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Figure 3.3. RMSFE for the indirect and the direct approach when using an AR(1)
model
Root mean square forecast error (RMSFE) obtained when the AR(1) forecasts for
the commodity sub-indices are aggregated to obtain a forecast for the aggregate
index (in blue) versus RMSFE obtained when the aggregate commodity price index
is forecasted directly using an AR(1) model (in red).
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Figure 3.4. RMSFE for the indirect and the direct approach when using a simple
exponential smoothing model
Root mean square forecast error (RMSFE) obtained when the simple exponential
smoothing (SES) forecasts for the commodity sub-indices are aggregated to obtain
a forecast for the aggregate index (in blue) versus RMSFE obtained when the
aggregate commodity price index is forecasted directly using a SES model (in red).
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Figure 3.5. RMSFE for the indirect and the direct approach when using Holt’s
double exponential smoothing
Root mean square forecast error (RMSFE) obtained when the individual forecasts for
the commodity sub-indices obtained by using Holt’s double exponential smoothing
method are aggregated to obtain a forecast for the aggregate index (in blue) versus
RMSFE obtained when the aggregate commodity price index is forecasted directly
using Holt’s double exponential smoothing (in red).
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Figure 3.6. RMSFE for the indirect and the direct approach when using additive
triple exponential smoothing
Root mean square forecast error (RMSFE) obtained when the individual forecasts for
the commodity sub-indices obtained by using additive triple exponential smoothing
are aggregated to obtain a forecast for the aggregate index (in blue) versus RMSFE
obtained when the aggregate commodity price index is forecasted directly using
additive triple exponential smoothing (in red).
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Figure 3.7. RMSFE for the indirect and the direct approach when using an AR(p)
model
Root mean square forecast error (RMSFE) obtained when the AR(p) forecasts for
the commodity sub-indices are aggregated to obtain a forecast for the aggregate
index (in blue) versus RMSFE obtained when the aggregate commodity price index
is forecasted directly using an AR(p) model (in red).
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Figure 3.8. RMSFE for the indirect method when using a VAR(1) model
Root mean square forecast error (RMSFE) obtained when the VAR(1) forecasts
for the individual commodity sub-indices are aggregated to obtain a forecast for
the aggregate index.
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3.7 Tables

Table 3.1. RMSFE for the AR(1) model

Horizon Disaggregate Aggregate

(month) (52 items)

1 0.0473 0.0470

2 0.0799 0.0795

3 0.1089 0.1088

4 0.1342 0.1343

5 0.1559 0.1561

6 0.1755 0.1761

7 0.1911 0.1919

8 0.2048 0.2056

9 0.2155 0.2165

10 0.2244 0.2251

11 0.2334 0.2341

12 0.2429 0.2434
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Table 3.2. RMSFE for the simple exponential smoothing model

Horizon Disaggregate Aggregate

(month) (52 items)

1 0.0503 0.0504

2 0.0838 0.0838

3 0.1126 0.1126

4 0.1374 0.1374

5 0.1588 0.1588

6 0.1776 0.1775

7 0.1927 0.1926

8 0.2057 0.2056

9 0.2161 0.2160

10 0.2250 0.2249

11 0.2343 0.2342

12 0.2439 0.2438
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Table 3.3. RMSFE for Holt’s double exponential smoothing

Horizon Disaggregate Aggregate

(month) (52 items)

1 0.0503 0.0511

2 0.0847 0.0909

3 0.1154 0.1309

4 0.1437 0.1692

5 0.1693 0.2061

6 0.1925 0.2433

7 0.2114 0.2772

8 0.2290 0.3083

9 0.2436 0.3358

10 0.2571 0.3615

11 0.2701 0.3883

12 0.2831 0.4173
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Table 3.4. RMSFE for the Holt-Winters additive triple exponential smoothing

Horizon Disaggregate Aggregate

(month) (52 items)

1 0.0539 0.0581

2 0.0870 0.0939

3 0.1159 0.1263

4 0.1425 0.1586

5 0.1670 0.1916

6 0.1897 0.2217

7 0.2088 0.2505

8 0.2268 0.2742

9 0.2416 0.2964

10 0.2555 0.3191

11 0.2676 0.3426

12 0.2795 0.3640
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Table 3.5. RMSFE for the AR(p) model

Horizon Disaggregate Aggregate

(month) (52 items)

1 0.0483 0.0481

2 0.0827 0.0825

3 0.1136 0.1147

4 0.1416 0.1438

5 0.1661 0.1699

6 0.1882 0.1942

7 0.2062 0.2140

8 0.2218 0.2319

9 0.2346 0.2467

10 0.2450 0.2588

11 0.2546 0.2708

12 0.2649 0.2832
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Table 3.6. RMSFE for the VAR(1) model

Horizon Disaggregate

(month) (52 items)

1 0.0595

2 0.1027

3 0.1431

4 0.1803

5 0.2136

6 0.2418

7 0.2643

8 0.2828

9 0.3003

10 0.3157

11 0.3314

12 0.3496
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