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The complex genetic architecture of Alzheimer’s disease: novel
insights and future directions
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Summary
Background Alzheimer’s disease (AD) is a complex multifactorial neurodegenerative disorder and the most common
form of dementia. AD is highly heritable, with heritability estimates of ∼70% from twin studies. Progressively larger
genome-wide association studies (GWAS) have continued to expand our knowledge of AD/dementia genetic
architecture. Until recently these efforts had identified 39 disease susceptibility loci in European ancestry populations.

Recent developments Two new AD/dementia GWAS have dramatically expanded the sample sizes and the number of
disease susceptibility loci. The first increased total sample size to 1,126,563—with an effective sample size of 332,376
—by predominantly including new biobank and population-based dementia datasets. The second, expands on an
earlier GWAS from the International Genomics of Alzheimer’s Project (IGAP) by increasing the number of
clinically-defined AD cases/controls in addition to incorporating biobank dementia datasets, resulting in a total
sample size to 788,989 and an effective sample size of 382,472. Collectively both GWAS identified 90 independent
variants across 75 AD/dementia susceptibility loci, including 42 novel loci. Pathway analyses indicate the
susceptibility loci are enriched for genes involved in amyloid plaque and neurofibrillary tangle formation,
cholesterol metabolism, endocytosis/phagocytosis, and the innate immune system. Gene prioritization efforts for
the novel loci identified 62 candidate causal genes. Many of the candidate genes from known and newly
discovered loci play key roles in macrophages and highlight phagocytic clearance of cholesterol-rich brain tissue
debris by microglia (efferocytosis) as a core pathogenetic hub and putative therapeutic target for AD.

Where next? While GWAS in European ancestry populations have substantially enhanced our understanding of AD
genetic architecture, heritability estimates from population based GWAS cohorts are markedly smaller than those
from twin studies. While this missing heritability is likely due to a combination of factors, it highlights that our
understanding of AD genetic architecture and genetic risk mechanisms remains incomplete. These knowledge gaps
result from several underexplored areas in AD research. First, rare variants remain understudied due to methodo-
logical issues in identifying them and the cost of generating sufficiently powered whole exome/genome sequencing
datasets. Second, sample sizes of non-European ancestry populations in AD GWAS remain small. Third, GWAS of
AD neuroimaging and cerebrospinal fluid endophenotypes remains limited due to low compliance and high costs
associated with measuring amyloid-β and tau levels and other disease-relevant biomarkers. Studies generating
sequencing data, including diverse populations, and incorporating blood-based AD biomarkers are set to
substantially improve our knowledge of AD genetic architecture.

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by the abnormal aggregation and deposition
of amyloid-β peptides into extracellular plaques and of
hyperphosphorylated tau into intracellular neurofibrillary
tangles, followed by synaptic and neuronal loss resulting in
progressive cognitive and functional decline.1 Genetic
*Corresponding author. Department of Psychiatry and Behavioral Sci-
ences, University of California San Francisco, 675 18th St, San Fran-
cisco, CA 94107, USA.
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variants play a substantial role in the development of AD
and can be conceptualized as occupying a space along two
dimensions: population minor allele frequency (MAF) and
effect size (Fig. 1). At one end of this spectrum, very rare
highly penetrant mutations in APP, PSEN1, and PSEN2
that cause autosomal dominant AD typically with early
onset. At the other end of the spectrum, common alleles
identified in genome-wide association studies (GWAS;
Panel 1) of late-onset sporadic AD have individually small
causal effects on disease susceptibility that in aggregrate
contribute to genetic liability for disease.
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Fig. 1: Genetic architecture of AD/dementia highlighting ADAD mutations and 81 genome-wide significant loci. Genetic variants
associated with disease are often conceptualized along two dimensions–variant effect size and population minor allele frequency. Highly
penetrant mutations in APP, PSEN1, PSEN2 that segregate with autosomal dominant AD are extremely rare and have large effect sizes. Variants
discovered by genome-wide associations are mostly common to low-frequency with small effect sizes. To date, AD/dementia GWAS have
identified 101 independent AD-associated single nucleotide polymorphisms across 81 genome-wide significant (p < 5e-8) loci. The shaded area
illustrates 80% power to detect genome-wide significant association for variants at a given effect size and population frequency between an
effective sample size of 382,472 from Bellenguez et al. (2022) (top) and 1 million (bottom), assuming 0.18 AD prevalence. Odds ratios are
reported on the absolute scale, with triangles indicating directionality for APOE genotypes and rare variants with moderate-high SnpEff impact
annotations. Effect sizes for APOE genotypes and APP Ala673Thr were obtained from Reiman et al.1 and Jonsson et al.,16 respectively. Labeled
loci indicate candidate causal genes prioritized by Bellenguez et al. (2022). Variant MAFs and APOE genotype frequencies were obtained from
the gnomAD global population (GRCh37 v2.1.1).
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In our previous review, we provided an overview of
GWAS methodology, the loci discovered by the largest
AD/dementia GWAS at the time, and gene prioritiza-
tion efforts to nominate candidate causal gene(s) at each
locus.2 Since then, improvements in sample size resul-
ted in the discovery of several novel loci,3,4 culminating
in the publication of two new AD/dementia GWAS with
significantly larger sample sizes that have doubled the
number of AD-associated loci (Fig. 2).5,6 At the same
time, causal gene prioritization approaches have also
advanced considerably. In this Rapid Review, we will
summarize the loci and respective candidate causal
genes associated with AD, the biological pathways they
implicate, and AD heritability estimates based on these
genetic associations. Finally, we will discuss existing
gaps in our understanding of the genetic architecture
and biological mechanisms of AD and ongoing efforts to
close those gaps.
Genetic loci associated with Alzheimer’s
disease
Building on their earlier study, Wightman et al.
expanded the sample size of their GWAS to 1,126,563
participants (43,725 cases, 46,613 proxy-cases, 1,036,225
controls/proxy-controls) primarily by including new
biobank and population-based dementia datasets.6,7

Bellenguez et al. expanded on earlier GWAS from the
International Genomics of Alzheimer’s Projects8 by
including new clinical case/control cohorts predomi-
nantly from the European Alzheimer’s & Dementia
BioBank (EADB) in addition to biobank dementia
datasets resulting in a total sample size of 788,989 par-
ticipants (64,498 cases, 46,828 proxy-cases, and 677,643
controls/proxy-controls).5 Both studies were limited to
European ancestry individuals. Additionally, there is a
large degree of sample overlap between these two
studies and with earlier studies, and as such they are not
independent. While Wightman et al. obtained a larger
total sample size by predominantly increasing the
number of population-based controls; Bellenguez et al.
obtained a larger effective sample size by increasing the
number of clinical cases, thus achieving greater statis-
tical power to detect genetic variants associated with
AD/dementia (Fig. 2). Furthermore, when Wightman
et al. and Bellenguez et al. limited their GWAS and
pathway enrichment analyses to clinically-diagnosed
cases their findings remained consistent, indicating
their primary results were not driven by the inclusion of
proxy-cases from the UK Biobank (UKB).
www.thelancet.com Vol 90 April, 2023
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Panel 1: Glossary terms

Candidate Causal Gene: Genome-wide association analyses identify regions of the genome associated with disease, with genes within a locus selected for
further study and validation based on their biological plausibility and statistical significance.
Effective Sample Size: In contrast to total sample size—the total number of participants in a study—the effective sample size reflects the sample size for
an equivalently powered GWAS within a balanced sample design (i.e., 50% cases and 50% controls).22

Genome-wide association study: Genome-wide association studies (GWAS) aim to identify genetic variants that are associated with phenotypes by
testing for differences in allele frequencies between people who differ phenotypically.28 Each genotyped or imputed variant across the whole
genome is tested sequentially–typically within a regression framework–and variants reaching genome-wide significance (p < 5e-8) are determined to
be significantly associated with a given phenotype. GWAS interrogating common/low-frequency variants detect association between the phenotype
and haplotype blocks of variants in linkage disequilibrium (LD) rather than genes per se, motivating downstream prioritization analyses to uncover
the genes implicated as causally driving the phenotype.
Genetic Architecture: The characteristics of genetic variation that are responsible for the heritable component of a trait. This comprises the number of
variants affecting a trait, their effect sizes, their frequency in the population, and gene–gene and gene–environment interactions. Common (minor allele
frequency [MAF] > 5%) and low-frequency (MAF between 1% and 5%) variants typically have small effect sizes, while rare variants (MAF between 0.1% and
1%) and ultra-rare variants (MAF < 0.1%) tend to have large effect sizes.
Heritability: The proportion of phenotypic variance explained by genetic variation. Approaches that estimate heritability typically capture either broad-
sense heritability (H2), the fraction of trait variation that can be attributed to both additive or dominance effects, or narrow-sense heritability (h2), which
captures additive genetic effects only. SNP-heritability (h2snp) only captures the additive effects of measured variants and is dependent on the exact set of
variants used to estimate it.28,56

Linkage disequilibrium: Correlation structures between nearby genetic variants largely due to genetic recombination during gametogenesis. Differences in
LD structure across populations are a major contributor to ancestry differences in trait genetic architecture.
Polygenic Risk Score: Polygenic risk scores (PRS) provide an estimate of genetic propensity to a trait at an individual level, typically by weighting and
summing genotypes at multiple risk-associated variants by their effect sizes, sometimes including other weighting factors or filters.45

Review
Together, Wightman et al. and Bellenguez et al. iden-
tified 90 independent variants across 75 loci (38 and 71
respectively) associated with AD/dementia, of which 34
loci were identified by both studies and 42 loci are novel
(collapsing loci across studies results in fewer reported loci
from Bellenguez et al. (2022); see Panel 2 for methods on
data harmonization and loci definition). Post-GWAS ana-
lyses were subsequently performed to identify candidate
causal genes and the biological pathways that are per-
turbed by AD/dementia-associated variants.
Fig. 2: AD/dementia genome-wide significant loci. AD/dementia GWA
sample size has increased, collectively identifying 101 independent varian
significance in a given study, and red points represent loci harboring m
candidate causal genes prioritized by Bellenguez et al. (2022) and Wight

www.thelancet.com Vol 90 April, 2023
Alzheimer’s disease gene prioritization
While GWAS have advanced our understanding of the
genetic architecture of AD, post-GWAS functional
genomic analyses are required to prioritize genes that
modulate disease susceptibility and nominate candidate
causal genes for further functional validation in cellular
and animal models. Integration of earlier AD GWAS
with tissue and cell type-specific epigenetic annotations
strongly implicated myeloid cells (including microglia,
the brain-resident macrophages) in the modulation of
S have found an increasing number of associated loci as effective
ts across 81 loci. Full points represent loci that reach genome-wide
ultiple independent associated variants. Loci are labeled based on

man et al. (2022).
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Panel 2: Search strategy and selection criteria

We searched PubMed for genome-wide association studies of Alzheimer’s disease published between Jan 1, 2020, and July 31, 2022, using the terms:
((Alzheimer Disease [MeSH Terms]) AND association study, genome wide [MeSH Terms]) AND (“2020/01/01” [Date–Publication]: “2022/07/31” [Date–
Publication]) AND English [LA] NOT review [pt]. We included studies in which the outcome was clinically diagnosed late onset Alzheimer’s disease or a
family history of Alzheimer’s disease. For Supplementary Table S1 and Figs. 1 and 2, the lead variants, effect sizes, variance, allele frequency, and sample
size were extracted from GWAS of AD/dementia conducted in populations of European ancestry and processed as follows. Variant effect alleles were lifted
over to build GRCh37, harmonized so the effect allele aligned with the reference human genome (build 37) alternate allele, then annotated with global
population allele frequency from gnomAD, predicted impact using snpEff, nearest protein-coding gene according to GENCODE release 40, and cytogenetic
band from UCSC Genome Browser. Loci were defined by merging overlapping regions ±500 kb around each lead variant from each study to obtain non-
overlapping regions. Collapsing loci across studies resulted in fewer reported loci in Bellenguez et al. LD pruning (EUR GRCh37 reference, r2 = 0.1,
MAF = 0.001) using LDlink SNPclip was employed to define independent variants in each locus. Code is available at https://github.com/sjfandrews/
ADGenetics. The final reference list was generated on the basis of relevance and novelty to this Rapid Review.

Review
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disease susceptibility.9,10 In addition, mapping AD risk
variants in active myeloid enhancers to their target
genes led to nomination of candidate causal genes in
myeloid cells (including BIN1, RIN3, ZYX, CD2AP,
SORT1, CASS4, CCD6, TSPAN14, NCK2).3,9 These
findings also help to predict the directionality of AD risk
gene expression on disease susceptibility, which can
help interpret the results of gene manipulations
(knockout/knockdown or overexpression) in validation
experiments and guide the development of therapeutics
targeting these AD risk genes. For example, increased
AD risk was associated with decreased expression of
BIN1, ZYX, and APPB3, but increased expression of
RABEP1 and AP4M1.9 Gene regulatory network ana-
lyses have also confirmed that AD risk variants specif-
ically affect binding of the transcription factor SPI1
(PU.1), a master regulator of myeloid cell lineage, at
gene regulatory elements (enhancers or promoters) of
microglial cells.10

Gene prioritization analyses conducted by Wightman
et al. and Bellenguez et al. identified a further 62 unique
candidate causal genes. Using colocalization to integrate
expression quantitative trait loci (eQTLs) from brain and
immune tissues/cells with their GWAS signals, Wight-
man et al. nominated nine candidate causal genes across
the 38 loci they identified. Bellenguez et al. conducted a
more systematic search for candidate causal genes across
the 40 novel loci they discovered. They investigated
whether the lead variant in each locus was a rare or
protein-altering variant near a protein-coding gene, regu-
lated molecular phenotypes (expression, splicing, protein
expression, DNA methylation, or histone acetylation) in
AD-relevant brain tissue/cell types or blood, or affected
APP metabolism. By integrating these various levels of
evidence into a gene prioritization score, 55 candidate
causal genes were identified–31 with tier 1 evidence
(greater likelihood of being a causal risk gene) and 24 with
tier 2 evidence (lower likelihood of being a causal risk gene
and the absence of a minimum level of evidence as a
causal risk gene). This encompassed 25 loci with a single
tier 1 gene, 6 loci with a single tier 1 gene and one or more
tier 2 genes, and 9 loci with one or more tier 2 genes. Of
the 40 loci investigated, 13 contained myeloid candidate
causal genes.

Overall, gene prioritization efforts indicate ∼51% of
AD loci harbor candidate causal genes involved in
myeloid cell function, further implicating myeloid cells
in the etiology of AD.

Human genetics implicates microglial
efferocytosis and APP metabolism as strong
candidate causal Alzheimer’s disease pathways
The next unresolved question concerns the biological
processes in myeloid cells/microglia that AD risk vari-
ants affect to modulate disease susceptibility. Since the
early AD GWAS, pathway analyses of common AD risk
variants consistently showed enrichment for gene sets
involved in 1) cholesterol metabolism and transport, 2)
endocytosis/phagocytosis, and 3) innate immune sys-
tem; with most of the recently nominated AD risk genes
falling into these biological pathways.3,9 For example,
USP6NL, nominated as a candidate AD risk gene in the
ECHDC3 locus by integration of microglial eQTL data,
is involved in endolysosomal membrane trafficking.11 In
addition, rare AD risk variants have been discovered in
myeloid-specific genes (i.e., TREM2, ABCA7, PLCG2,
ABI3) with critical roles in efferocytosis–the phagocytic
clearance of apoptotic cells and other cholesterol-rich
cellular debris (e.g., myelin fragments and apoptotic
synapses) by microglia and other myeloid cells of the
innate immune system.12 These findings strongly sug-
gest that the three etiological pathways emerging from
GWAS are not independent causal drivers of AD.
Rather, they are facets of a higher-order biological pro-
cess (efferocytosis) that connects them as (dys)func-
tional components of a pathogenetic hub within myeloid
phagocytes (Fig. 3). KCNN4, identified by integrative
fine mapping analysis is involved in microglial migra-
tion, which is critical for engagement of efferocytic
targets by microglia.10 Bellenguez et al. nominated
additional genes that support the causal role of
www.thelancet.com Vol 90 April, 2023
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Fig. 3: Prioritized AD risk genes with roles in microglial efferocytosis. Both common and rare genetic variants associated with Alzheimer’s
disease point to several genes with important roles in one of the most fundamental functions of all macrophages, the phagocytic clearance of
dead cells and other cellular “waste” (a process termed “efferocytosis”). Efferocytosis is essential for the maintenance of tissue homeostasis and
immune tolerance, and for the resolution of inflammation. Accordingly, defective efferocytosis underlies several autoimmune and chronic
inflammatory diseases, and it is thought to contribute to the pathogenesis of several other disorders.13 Efferocytosis is a multi-step process that
involves: 1) finding dead cells by virtue of receptors located on the surface of macrophages that recognize “eat-me” (e.g., phosphatidylserine,
PtdSer) as well as “don’t eat-me” (e.g., sialylated glycoproteins/lipids) signals presented on the surface of dead and live cells, respectively; 2)
internalization of dead cells by phagocytic uptake into phagosomes (Engulfment), 3) digestion of dead cells by the fusion of phagosomes with
lysosomes (“Digest me”. Endolysosomal processing); 4) functional (e.g., transcriptional, metabolic, and inflammatory) adaptation of macro-
phages to molecules derived from the phagolysosomal decomposition of cell corpses, e.g., cholesterol, which activates LXR:RXR nuclear re-
ceptors to regulate the expression of genes (e.g., AD-associated genes ABCA1 and APOE) involved in the removal of cholesterol from
macrophages (“Poop me”. Adaptation, storage, elimination). With the exception of genes colored in gray, all genes shown in this figure to be
involved in the various steps of efferocytosis have also been implicated in the etiology of AD by GWAS and post-GWAS studies. Genes in green
font were prioritized or nominated through integration analyses.3,5,9–11 Thus human genetics evidence strongly suggests that efferocytosis may
act as a pathogenetic hub for Alzheimer’s disease in macrophages, including microglia in the brain. Created with BioRender.com.

Review
microglial efferocytosis in AD. Gene Ontology annota-
tion of prioritized genes (e.g., TMEM106B, SNX1, and
CTSH), showed enrichment in endolysosomal function.
Furthermore, BLNK has been shown to operate in
the TREM2-PLCG2 signaling cascade that is critical
for efferocytosis.14 Other prioritized genes (ABCA1,
ATP8B3, JAZF1) are involved in lipid/cholesterol me-
tabolism, another important component of effer-
ocytosis.12 Consistent with this functional interpretation
of AD GWAS findings, a recent study reported opposing
www.thelancet.com Vol 90 April, 2023
effects of APOE2 and APOE4 on microglial efferocytosis
and lipid metabolism.15

More recently (and possibly due in part to AD GWAS
geneset annotation bias in favor of the amyloid cascade
hypothesis) pathway analyses of common AD risk alleles
have also implicated amyloid plaque and neurofibrillary
tangle formation in the etiology of late-onset AD.5,6 This
is consistent with the rare protective missense APP
A673T variant previously found in the Icelandic popu-
lation.16 It will be important to determine whether APP
5
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processing plays a role in efferocytosis or whether these
pathways represent separate disease mechanisms un-
derlying AD pathogenesis.

Although, ∼51% of AD GWAS loci contain myeloid
candidate causal genes and pathway analyses of these
genes point to the critical role of microglial effer-
ocytosis, AD risk variants in the remaining loci may
affect expression of genes in other cell types that impact
microglial efferocytosis in a non-cell autonomous
fashion, or other biological processes altogether. For
example, a loss-of-function nonsense mutation in IL34
may increase AD risk via neuron-driven loss of micro-
glia, highlighting the role of cell–cell communication.5,17

In addition, recent studies found that APOE4 altered
cholesterol homeostasis and transport in astrocytes and
oligodendrocytes, in addition to microglia. APOE4-
mediated cholesterol accumulation in iPSC-derived as-
trocytes impaired function of lysosomes and changed
their profile of secreted cytokines while abnormal
accumulation of cholesterol in oligodendrocytes from
APOE4 carriers was associated with weaker
myelination.18,19

In summary, the integration of AD GWAS with
multi-omic datasets has yielded crucial insights into
candidate causal genes and the molecular and cellular
pathways that may mediate their effect on disease sus-
ceptibility. However, AD functional genomic studies are
still limited by insufficient multi-omic datasets in
disease-relevant tissues and cell types. As such, this re-
mains a critical bottleneck in elucidating the genetic,
molecular, and cellular mechanisms that drive AD risk.
Heritability of Alzheimer’s disease
Given GWAS have collectively identified 101 indepen-
dent variants across 81 loci associated with AD/demen-
tia in European ancestry populations (Fig. 2), how many
more novel loci remain to be discovered?56 Heritability
estimates the proportion of phenotypic variance in a trait
that can be explained by genetic variation–including
additive and non-additive effects.20 Twin studies esti-
mate that the narrow-sense heritability (the fraction of
phenotypic variance due to additive genetic effects) of
AD is ∼70%.21 In contrast, Wightman et al. used their
GWAS meta-analysis summary statistics to estimate the
SNP-heritability (the proportion of narrow-sense herita-
bility explained by genotyped/imputed variants) of AD as
3.1%. The gap in heritability estimates between twin
studies and GWAS–termed “missing heritability”–can
be attributed to several factors.

First, narrow-sense heritability captures the additive
genetic effect of all variants, encompassing the complete
range of frequencies and types (e.g., SNPs, structural
variation, etc), while SNP-heritability is dependent on
the exact set of variants used to estimate it, typically
limited to common and low-frequency variation inter-
rogated in GWAS.20 Second, widely-used methods for
estimating SNP-heritability from GWAS summary sta-
tistics exclude genetic variants with extremely large ef-
fect sizes and correspondingly the highest heritability–
such as APOE4–as outliers. Third, mismatches in the
linkage disequilibrium (LD) structure between GWAS
cohorts used to estimate SNP-heritability and popula-
tion reference panels will decrease heritability estimates.
SNP-heritability can be further affected by residual un-
corrected population structure, environmental biases,
indirect genetic effects (e.g., parental effects, assortative
mating, sibling effects), assuming a homogeneous
contribution to trait heritability across all SNPs, and
variation in the proportion of cases across contributing
cohorts.20,22 Heritability is also specific to how a trait is
measured, with poor diagnostic accuracy of AD leading
to measurement error and thus making AD appear less
heritable; this can be further exacerbated by meta-
analysis of clinical- and proxy-defined cases.23,24 Finally,
it is important to note that heritability estimates are not
static and are dependent on the time, place, and popu-
lation in which they are estimated, due to the population
specificity of additive & non-additive genetic factors and
environmental variables.20 As such, if the environmental
component of a trait decreases, the corresponding ge-
netic component–and thus heritability–will increase.

The missing heritability in AD GWAS is therefore
due to both GWAS only capturing a fraction of the
heritability in twin studies and a downward bias in
SNP-heritability estimates. By incorporating genetic
information from GWAS into twin study heritability
estimates, APOE and AD polygenic risk scores (PRS)
only account for 9.3% and 2.1% of phenotypic variance,
respectively.21 This indicates that ∼59% of AD herita-
bility remains unexplained with potentially ∼11,000
causal variants underlying genetic risk for AD.21,25 Power
analyses indicate that a sample size of >8 million is
required to identify 80% of the genetic variance of AD.
While likely inflated due to the downward bias in AD
heritability estimates, this suggests that we have
not yet reached a point of diminishing returns.25,26

Nevertheless, while increasing the overall effective
sample size will identify novel AD loci, alternative study
designs will be required to further dissect the genetic
architecture of AD.
Rare variants contributing to Alzheimer’s
disease risk
Rare variation is one widely discussed potential source
of missing heritability in complex traits.27 Variants that
have strong effects on complex traits are expected to be
under intense selective pressure and therefore remain at
low frequencies in the population. GWAS have tradi-
tionally relied on array-based SNP genotyping followed
by statistical imputation, which is typically limited to
common and low-frequency variants and thus has
generally been unable to detect rare variants.20,28,29
www.thelancet.com Vol 90 April, 2023
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Second-generation sequencing in the form of short read
whole genome or exome sequencing (WGS or WES) are
the primary genotyping technologies for robustly
detecting rare and ultra-rare genetic variants.20,28,29 The
main challenge associated with using WGS/WES to
identify rare variation remains the cost of generating
sufficiently powered datasets.

GWAS based on genotyping with WGS/WES or
exome-wide arrays have successfully identified AD-
associated rare variants in a number of genes that
converge on the same biological pathways identified by
GWAS of common/low-frequency variation.29 Several of
the earliest discoveries include rare protein-altering vari-
ants in genes with important roles in microglial effer-
ocytosis in AD, notably TREM2, ABCA7, PLCG2, and
ABI3.29 Improved reference panels for imputation enabled
the GWAS by Bellenguez et al. to detect association with
these original TREM2, PLCG2, and ABI3 rare variants in
addition to novel common variants at several of those loci.5

The next logical step will be to implement GWAS designs
that combine WGS/WES with SNP array datasets to
identify novel variant associations.

This approach was used to identify AD-associated
APOE rare variants by initially using a WGS/WES dis-
covery cohort from the Alzheimer’s Disease Sequencing
Project (ADSP; 11,868 cases and 11,934 controls), fol-
lowed by replication using both densely imputed array
data from clinical cases/controls (44,161 cases and
159,002 controls) and WES data from proxy cases and
population controls (28,484 cases and 157,436 con-
trols).30 Two rare protective missense variants were
identified—the previously reported APOE3-Jacksonville
(V236E) variant that apparently promotes healthy brain
aging by reducing APOE self-association and increasing
lipidation,31 and the novel R251G variant where the
mechanism underlying the reported protective effect
remains to be elucidated.

GWAS approaches integrating WES/WGS and SNP
array data will further identify variants and genes asso-
ciated with AD, hence elucidating the biological path-
ways that modulate disease risk when perturbed.
Moreover, rare variation AD GWAS has focused on
protein-altering variants, but the impact of rare non-
coding variation in gene regulatory elements is largely
unexplored. Third-generation WGS using long read
technology will also enable researchers to robustly
investigate the role of other types of genetic variation,
such as structural variants.32
Alzheimer’s disease genetics in diverse
populations
A major limitation of genetic studies is insufficient
racial and ethnic diversity, with individuals of European
ancestry overwhelmingly overrepresented.33 This is also
reflected in AD genetic studies despite African Ameri-
cans (AAs) and Hispanic Americans being more likely
www.thelancet.com Vol 90 April, 2023
to develop AD than non-Hispanic Whites (NHWs) from
the same community. Asian Americans, on the other
hand, have a similar prevalence of AD to NHWs. The
genetic architecture of complex traits like AD can also
differ between populations, due in part to inter-
population differences in LD structure. As such,
results from one population may not extrapolate well to
another, exacerbating health disparities in non-
European ancestry populations who may not fully
benefit from the genetic and genomic advances in the
knowledge and treatment of AD/dementia derived from
studies limited to NHWs.33,34

Expanding AD GWAS to enhance representation of
multiple populations will confer several advantages.
First, genetic variants that are rare or non-existent in
one population may be more frequent in another pop-
ulation, enabling the discovery of ancestry-specific or
ancestry-enriched risk variants. Additionally, gene by
population-specific environmental factor interactions
may result in ancestry-specific genetic effects that
highlight novel pathways.34 Second, cross-population
genetic studies performing fine mapping of genomic
loci to identify causal variants will generally benefit from
inter-population LD structure differences and identify
smaller sets of candidate causal variants.20

The largest GWAS of clinical AD in AAs comprised
2784 cases and 5222 controls.35 In a single variant analysis
adjusting for age, sex, and population structure only the
APOE locus achieved genome-wide significance, however,
another nine loci reached suggestive significance. In sec-
ondary models adjusting for APOE, a novel rare variant
reached genome-wide significance in addition to a further
3 loci at suggestive significance. Of the 14 loci identified
only two were previously identified in European ancestry
AD GWAS (APOE and ABCA7). Pathway-based analysis
however highlighted that genes within these loci are
involved in the same principal molecular pathways as
detected by European ancestry GWAS, including innate
immunity, lipid processing, and intracellular trafficking,
underscoring their importance in disease etiology, and
highlighted kidney system development as a novel
pathway. A second study expanded on this analysis by
meta-analyzing these results with a GWAS of ADRD and
proxy dementia (4012 cases; 6641 proxy cases; and 64,405
controls/proxy-controls) in AA participants from the
Million Veterans Program that subsequently identified six
genome-wide significant loci.36

A similarly sized Japanese population AD GWAS
(3962 cases and 4074 controls) identified nine suggestive
loci, three of which reached genome-wide significance
after meta-analysis with a replication cohort (5178 cases
and 6520 controls).37 The known AD-associated loci
APOE and SORL1 were confirmed, while a novel locus
not identified in European ancestry populations was
discovered. The lead SNP in the novel locus is more
frequent in East Asian compared to European ancestry
populations and was observed to be an eQTL for the
7
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genes FAM47E and SCARB2 in brain tissue–with both
genes also exhibiting association with Parkinson’s dis-
ease. Pathway analysis replicated the amyloid pathways
and identified novel pathways associated with the regu-
lation of metallopeptidase and metalloendopeptidase
activities.

In summary, diversifying participants in AD genetics
studies will improve the effectiveness of genomic
medicine by expanding the scope of known genetic
variation, facilitating locus discovery, improving func-
tional mapping, and ultimately bolstering our under-
standing of disease etiology and reducing health
disparities. In addition, novel diverse population func-
tional genomics datasets are urgently needed for inte-
gration with large diverse population AD GWAS to
improve population-relevant gene prioritization and
promote AD precision medicine equity. Finally, moving
beyond discrete continental ancestries by using concepts
and tools that adopt a multidimensional and continuous
view of ancestry to examine how local ancestry moder-
ates AD-associated genetic variation (in both admixed
and “homogenous” populations) will further facilitate
locus discovery and functional mapping.38,39
Using plasma biomarkers to elucidate
Alzheimer’s disease genetics
An alternative approach to investigate the genetic basis of
AD is to study the effects of genetic variation on AD
pathophysiological quantitative traits. Examining more
objective measurable biomarkers of AD (endopheno-
types) rather than clinical diagnostic classifications has
the advantage of reducing trait heterogeneity and
improving statistical power to detect an effect, assuming
measurement error is low. Furthermore, this approach
enables identification of genetic variants that are associ-
ated with specific AD-related biological mechanisms.
GWAS of neuropathological, neuroimaging, or cerebro-
spinal fluid (CSF) amyloid and tau levels have to date
been constrained by their sample size due to difficulties
collecting biological specimens resulting from low
compliance (CSF, autopsy) or high costs (positron emis-
sion tomography, PET). Despite these limitations, GWAS
of CSF Aβ42, CSF pTau, and brain amyloid burden using
PET imaging have identified several genome-wide sig-
nificant loci.40,41 These studies have laid the groundwork
for the advent of large blood-based AD biomarker data-
sets that will significantly improve our ability to identify
genetic variants associated with AD pathogenesis.

GWAS of amyloid and tau plasma biomarkers are still
in their infancy, however, they have identified key loci
and genes associated with Aβ and tau processing. In
12,369 participants of European ancestry, a GWAS of
plasma Aβ40, Aβ42, and Aβ42/40 ratio levels identified two
loci, APOE and BACE1.42 Gene-based analyses further
identified APOE, BACE1, PSEN2, and APP, emphasizing
that variants in genes known to regulate APP processing
determine plasma Aβ levels. A multi-population GWAS
of circulating total tau levels in 15,674 people (14,721
NHWs and 953 AAs) identified three genome-wide sig-
nificant loci specific to AAs and a single locus encom-
passing MAPT, which encodes tau, in NHWs.43

In addition to promoting the identification of novel
genetic variants associated with AD pathophysiology,
plasma biomarkers will facilitate improved AD diag-
nostic accuracy and decrease disease status measure-
ment error in AD GWAS.44
Utility of Alzheimer’s disease polygenic risk
scores in clinical practice
As well as discovering risk loci to inform drug develop-
ment, GWAS can be used to develop polygenic risk scores
(PRS) that quantify individual-level genetic risk for disease
to facilitate disease prediction enabling the early identifi-
cation of at-risk individuals.45 Bellenguez et al. generated an
AD-PRS composed of 82 genome-wide significant SNPs,
excluding the APOE region, and evaluated its association
with incident AD in European descent cognitively unim-
paired participants and patients withMCI. Higher AD-PRS
were associated with increased risk of conversion to AD in
both groups, especially for participants in the highest decile
for genetic risk. However, the predictive ability of the AD-
PRS was limited, only marginally increasing the ability to
discriminate cases from controls, beyond that of age, sex,
andAPOE. The predictive performance of AD-PRS are also
affected by the p-value threshold for including variants and
how the APOE locus is included in the model–with the
most predictive models including APOE and PRS
composed of all variants with p < 0.1 as two separate pre-
dictors.46 Nevertheless, AD-PRS have shown better
discriminative ability in pathologically confirmed cases/
controls, suggesting that GWAS with more refined AD and
control phenotypes may yield better predictions.23,47 PRS
generated from European ancestry GWAS also have poor
transferability to other populations,48 which combined with
the lack of diverse AD GWAS datasets, further limits the
clinical utility of AD-PRS.

Taken together, the poor discriminative ability of AD-
PRS and their lack of transferability across populations
limit the current use of AD-PRS to research purposes
only. However, this area of research is undergoing rapid
methodological development. PRS for genetic prediction
of ADmay further be enhanced by generating pathway or
etiology-specific PRS,49 using multi-trait PRS for cross-
trait prediction,50 incorporating functional annotations,51

combining common and rare variation,52 and including
GWAS of ancestrally diverse populations.53
Balancing sample size and depth of
phenotyping
Larger effective sample sizes are required for AD GWAS
to discover novel loci due to its high polygenicity. The
www.thelancet.com Vol 90 April, 2023
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inclusion of participants with minimal phenotyping–
often self-reported dementia diagnoses, family history,
or EHR diagnostic codes–from large-scale biobanks and
population cohort studies has allowed sample sizes to
increase rapidly. However, these minimal phenotypes
can have poor diagnostic accuracy and therefore capture
genetic effects of other dementias rather than AD spe-
cifically. To identify genetic signatures specific to AD,
more refined phenotyping of case-controls based on
neuropathological or biomarker criteria is needed to
improve AD diagnostic accuracy. Deeper phenotyping
also enables more in-depth analyses of related pheno-
types, such as resilience to AD neuropathology, that can
highlight novel biological pathways protecting the brain
from amyloidosis.54,55 However, to date such studies of
more refined phenotypes remain underpowered due to
small sample sizes.

Whether large-scale studies composed of broad
clinical phenotypes or more refined phenotyping should
be prioritized depends on the specific research question,
however, both are essential to maximize clinical trans-
lation of AD genetics. Triangulation across study de-
signs will increase the confidence in AD-associated
genetic loci and facilitate the identification of genes that
specifically influence the clinical and proteinopathic
features characterizing AD pathogenesis.
Conclusion
AD GWAS across multiple populations have to date
identified more than 80 loci, with the majority found in
European ancestry cohorts primarily due to markedly
larger sample sizes. These discoveries have substantially
contributed to our understanding of the genetic basis of
AD and revealed the roles of microglial efferocytosis and
APP metabolism in AD pathogenesis. Nevertheless, a
substantial proportion of AD genetic architecture remains
to be discovered. Generating large scale WES/WGS
datasets will enable the identification of rare variants
associated with AD. Increasing racial and ethnic diversity
in AD GWAS will improve the generalizability of genetic
findings and polygenic risk scores across populations,
promote elucidation of genetic risk mechanisms, and
facilitate the discovery of ancestry-specific genetic effects.
Collection of blood-based biomarkers will enhance diag-
nostic accuracy, and GWAS of blood-based biomarkers
will drive discovery of genetic variants influencing spe-
cific AD-related biological mechanisms. While we have
focused on examining the contribution of genetics to
AD, environmental and lifestyle risk factors are estimated
to explain 29% of the phenotypic variance,21 however,
their impact in the context of AD genetic liability remains
largely unknown. Large diverse integrative studies
combining genetics, multi-omics, lifestyle risk factors,
and social determinants of health will be crucial for
AD pathobiological insight and equitable therapeutic
discovery.
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