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Emergence of Metachronal Waves in Active Microtubule Arrays

Stephen E Martin,1 Matthew E Brunner,2 and Joshua M Deutsch1, ∗

1Department of Physics, University of California, Santa Cruz, CA 95064, USA
2Voltaiq Inc. 2150 Shattuck Ave, #704 Berkeley, CA 94704

(Dated: September 30, 2019)

The physical mechanism behind the spontaneous formation of metachronal waves in microtubule
arrays in a low Reynolds number fluid has been of interest for the past several years, yet is still not
well understood. We present a model implementing the hydrodynamic coupling hypothesis from
first principles, and use this model to simulate kinesin-driven microtubule arrays and observe their
emergent behavior. The results of simulations are compared to known experimental observations
by Sanchez et al. (https://doi.org/10.1126/science.1203963). By varying parameters, we de-
termine regimes in which the metachronal wave phenomenon emerges, and categorize other types
of possible microtubule motion outside these regimes.

I. INTRODUCTION

Metachronal waves refer to the synchronization of thin, flexible appendages that result in large-scale wavelike
formations. These appear in biological systems at the macroscopic scale (e.g. the motion of millipede legs) and at the
microscopic scale (e.g. cilia in air pathways). On the microscopic level, metachronal waves are essential components
of several critical biological processes, from motility in microorganisms to mucus clearance in human bronchial tubes
[1, 2]. If cilia are unable to effectively move and synchronize, the results are often severe – especially if the disorder is
genetic [1]. Research into physical explanations for cilia beating [3], and of spontaneous metachronal behavior in cilia
is ongoing and still not well understood [4, 5], although many have suggested that this phenomenon can be explained
from hydrodynamic coupling between cilia [6–9].

Recently, in some remarkable experiments, Sanchez et al. demonstrated metachronal wave behavior in an in vitro
system[10, 11]. Microtubules (MTs) aggregated into bundles of length 10−100µm due to the addition of polyethylene
glycol [12]. Many of these bundles attached at one end to a fixed boundary forming dense arrays. When exposed to a
solution containing clusters of kinesin and ATP, sustained metachronal wave behavior between MT bundles (similar
to that displayed by cilia and flagella) was observed. MT bundles were constrained to move between two glass slides.
It is surprising that a system with such few ingredients could develop complex behavior that so closely resembles
biological systems, which are made up from a much more complicated machinery. Proteomic analysis indicate that
eukaryotic cilia are composed of many hundreds of proteins [13].

Some important details of this in vitro system are still unclear, most notably whether the MTs in this experiment
are unipolar or of mixed polarity. Opposite polarity MTs will move past each other, causing separation into unipolar
bundles [14, 15]. We present analytical and numerical arguments for unipolarity in Appendix D. The surprising
mechanism for the motion of unipolar bundles described here, has not previously been given [10, 11], and we believe
that the agreement between our model and experiments provides further evidence to support our proposed explanation.

The general mechanism proposed is quite similar to the model used to describe and simulate cytoplasmic streaming
in Drosophila oocytes, and the fact that it can be adapted as such is in many ways a testament to its predictive power.
A fair amount of attention has been paid in recent years to the understanding of how metachronal waves form in such
arrays [16–19]. However, such models often rely on assumptions about individual MT (or cilia) beat patterns and/or
on phenomenology. The model we propose makes no such assumptions (beyond some minor simplifications), relying
on first-principles fluid mechanics calculations. This is important, as it is not clear why one would want additionally
to impose oscillatory behavior on individual MTs given the lack of a well defined internal structure.

II. THE MODEL

We now present a model for the simulation of the Sanchez et al. system. A similar method has been used successfully
to simulate cytoplasmic streaming [20] in Drosophila oocytes[21], and is based on theoretical work completed several
decades ago regarding the calculation of Stokes flows created by a point force (stokeslet) near no-slip boundaries[22, 23].
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FIG. 1. Conceptual illustration of forces acting on a single polymer that are not due to hydrodynamic interactions. The blue
vectors indicate the buckling forces due to kinesin walkers (tangent to polymer), the red vectors show the direction and relative
magnitude of stiffness forces (in the direction of d4r/ds4), and the green arrows indicate a restorative force keeping the base of
the polymer approximately perpendicular to the binding surface.

A conceptual explanation of this mechanism is given below, and further details regarding theory and implementation
are given in appendix A and B.

An illustration of how MT bundles are simulated is given in Fig. 1. Each MT bundle is modeled as a chain of
monomers (i.e. polymer) which are held an approximately fixed distance from one another by a spring force. The
base of each polymer is anchored to a single point, and the polymer at the base is kept roughly perpendicular to the
anchoring surface. Let the polymer be described by the curve r(s), where r(0) is the location of the polymer base,
and s is the arc length. We give the polymer a stiffness by implementing an energetic cost of bending proportional to
curvature squared, which implies a local force at s proportional to d4r/ds4. Additionally, monomers feel a “buckling”
force due to the drag from the walking kinesin Fkin = −fkdr/ds, which is parallel to the polymer and toward the
polymer base. fk will depend linearly on the speed of the kinesin and the solvent viscosity. This force continually
adds energy to the system (making it active), and has been shown to be a good representation of the average drag
force due to kinesin walking along the microtubule away from the polymer base [21].

This kind of model for a single chain was first employed to understand glide assay dynamics in two dimensions [24].
In three dimensions, periodic waves develop whose dynamics have been analyzed in detail [21], and related theoretical
work has recently also been performed [25]. However, scaling can be used to get the relevant length and timescales [24]
and this survives when considering the full hydrodynamic treatment [21]. The average radius of curvature depends
on the strength of the buckling force fk, and the elastic constant of a filament characterizing its stiffness kstiff .

The radius of curvature over quite a wide range of parameters can be shown to be R = (kstiff/(βfk))1/3, where
β ≈ 0.05. Likewise, the angular frequency is ω = fk/(νR), where ν is the hydrodynamic drag coefficient per unit
length. Although there is a fairly large experimental uncertainty in parameters used to model a Drosophila oocyte,
this model finds quite good agreement with the experimental time and length scales. R was predicted to be 25−54µm,
close to the 16.3± 2.2µm observed. Likewise, the time scale was predicted to be 203− 1094s, which is in the observed
range of 370± 42s. It is interesting that the length and time scales observed by Sanchez et al. are also quite close to
these numbers, and that the frequency of biological cilia beating is often three orders of magnitude higher than this.
See appendix E for a detailed comparison with this experiment.

Polymers also feel hydrodynamic forces. As the force from the kinesin causes the polymers to buckle, we begin
to see complex motion. Each monomer acts as a point force (stokeslet) in the surrounding fluid. This force, that
a monomer exerts on the fluid, is simply the sum of all of the other forces on the monomer: because the Reynolds
number is nearly zero, there are no inertial terms, meaning the force is transferred perfectly from the monomer to the
fluid. As this is a Stokes flow, the flow contributions from all stokeslets add linearly, and we can (in principle) calculate
the flow everywhere. However, we only need to calculate the fluid velocity at points with monomers. Therefore, the
evolution can be calculated via a pairwise sum over all monomers (see Appendix A).

It should be emphasized that when motors walk up microtubules, the force produced by the motor is only one
of many forces acting on the fluid. Newton’s third law implies that the motor will apply the opposite force to the
microtubule which will also act on the fluid. This leads to a cancellation of the long range hydrodynamic component
and the only remaining forces are from the microtubule’s backbone, that is curvature and tension forces and it is
these that create long range flow. The simulation method that we employ (see the supplementary material of Ref.
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[21]) analyzes these forces quantitatively to derive the equations of motion for the system.
We also assume all polymer motion is two dimensional with a constant value of z, which is physically sensible when

considering the geometry of the Sanchez et al. experiments. In this experiment, MT bundles were observed between
glass slides, with a height H, of approximately 10µm, creating a narrow channel for which fluid can flow. For this
reason, we adopt a two dimensional geometry. In addition, the no-slip boundaries of the plates have a large impact
on the hydrodynamic forces between monomers[22, 23], which we give explicitly in AppendixA. Other close-range
contact forces were also used: monomer-monomer repulsion which is small and allows chain crossing, and repulsion
from the anchoring surface. See Appendix refapp:sim.

We can now address at the qualitative level the mechanism by which we propose the metachronal waves observed by
Sanchez et al. form. As kinesin walk away from the polymer bases, the polymers will tend to buckle. If a polymer is
isolated, this buckling will lead to corkscrew motion or periodic waves[21]. When placed in an array, however, nearby
polymers will exert hydrodynamic forces on one another that tend to synchronize their motion. If these hydrodynamic
forces are sufficiently strong, this can cause a transition from disordered motion to aligned MTs and correlated motion.

III. RESULTS

Despite the fact that this model was developed to explain and simulate cytoplasmic streaming, its mechanism can
be easily adapted for related biological phenomena. Indeed, when the conditions of the Sanchez et al. experiment are
simulated in the same way, we observe metachronal waves. It is not clear if this is formally a transition or a more
continuous crossover effect, but the results found make strong predictions that should be testable experimentally. In
the following, we present the results of these simulations and discuss the required conditions for metachronal wave
formation.

Videos of select simulations are included in the Supplementary Materials [26]. Fig. 2 shows some still frames of
simulated arrays demonstrating metachronal wave behavior in both the planar and circular geometries.

We characterize the behavior of each system using the correlation function for the chain ends x(i, t),

C(∆i,∆t) = 〈∆x(i+ ∆i, t+ ∆t)∆x(i, t)〉, (1)

where

∆x(i, t) = x(i, t)− 〈x(i, t)〉.

The average is performed over all chain indices i, and time t, after a period of equilibration. Figs. 3 and 4 show
correlation functions for circular and planar geometries (for the circular geometry, the polar angle θ is the position
variable rather than x). In the following, we will discuss these and examine how the system responds to changes in
the strength of the interaction tensor, koseen, kstiff , and height H. It should be noted that changes in the viscosity
or kinesin velocity and density (that affect fk), can be absorbed into a rescaling of time, and of kstiff .
koseen, has a dramatic effect on the type of wave behavior seen, or whether it is observed at all. This strength

is a function of the hydrodynamic effects of kinesin walking along microtubules, and will depend on their density
and speed, as explained in detail in Ref. [21]. Fig. 3 shows the correlation results of three 128-polymer simulations
(monomer number = 16) in the same circular geometry shown in Fig. 2(a) for three different values of koseen. There
is an overall strengthening of the metachronal behavior as koseen is increased from 0.1 to 0.2. The sign of the slope
reflects the initial conditions of the system. Long lived waves travel predominantly in a single direction over long
times scales resulting in a slope of the crests of the correlation function that can either be positive or negative. Similar
crests are seen in the analysis of the real experimental data [10]. With this circular geometry, the correlation function
must be periodic, which is why it rises again when i becomes large.

The polymer stiffness kstiff also has an interesting effect on metachronal wave formation. Fig. 4 shows the
correlation functions for kstiff = 5.0, 10.0, and 20.0 in a planar geometry. While Figs. 4(a-b) both are indicative
of an underlying system showing strongly periodic wavelike motion but with a spatial correlation length that is
substantially shorter in 4(b) than in 4(a). Figs. 4(c-d) show that if the polymer is made too stiff, no metachronal
behavior is observed at all. In general, planar geometry appears to cause more coherence in the motion of the different
bundles, and the correlation function is dominated by motion at the longest lengths and time scales.

The distance between plates, H, has a considerable effect on the dynamics as well. Longer range, more coherent
motion is observed when H is larger, and short range, less coherent motion when H is small. (See Fig. 8 in the
Appendix and supplementary videos S-2 through S-5 for more detailed information [26].) This is to be expected due
to the strong screening effect that these boundary conditions impose. Smaller H reduces the hydrodynamic coupling,
causing a decrease in coherence.
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(a)

(b)

FIG. 2. Simulated metachronal wave formation for 128-polymer arrays in (a) circular and (b) planar geometries. In both cases,
koseen = 0.1, kstiff = 10.0, H = 1.
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(a) (b) (c) (d)

FIG. 3. Full correlation functions for circular geometry with H = 1 and kstiff = 10, with koseen = 0.1, 0.2, and 0.3 (a-c,
respectively). The correlation function at ∆i = 0 for all of these values of koseen are shown in (d).

(a) (b) (c) (d)

FIG. 4. Full correlation functions for planar geometry with H = 1 and koseen = 0.1, with kstiff = 5.0, 10.0, and 20.0 (a-c,
respectively). The correlation function at ∆i = 0 for all of these values of kstiff are shown in (d).

When comparing these results to those of Sanchez et al., we find that the basic features agree. The videos included
in the supplemental materials [26] qualitatively mimic the experimental videos (see Ref. [10] supporting materials),
and the experimental correlation analysis of Sanchez et al. agrees quite well with the simulations. More importantly,
this agreement between theory and experiment was reached from first principles. We only use a handful of forces in
our simulations, and each force has a physical justification for being used.

IV. DISCUSSION

There are potential shortcomings of this model that may result in some differences between experiment and theory.
The first is that the experiments observe bundles of microtubules that taper away from their base. The hydrodynamics
are not expected to be uniform along the length of a chain. In addition these bundles will, for short enough times,
behave like rigid material, but for longer times, because they are connected through walking kinesin molecules, will
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behave more as individual mictrotubules with a greatly reduced elastic constant. On the time scales of the motion,
we expect to be in the latter regime. However the details of the hydrodynamics and elasticity in these bundles is
still not understood experimentally. In fact, as we mentioned earlier, the polarity of individual MT’s is not known
experimentally, and arguments for their unipolarity are given in Appendix D. But still, the basic mechanism of
dynamic buckling due to kinesin drag, and metachronal waves being generated by hydrodynamic coupling, is robust
over a wide parameter range, so we believe that these complications, aside from unipolarity, will not alter the basics
of our explanation.

At a more technical level, there are other things that may make a slight difference to the results here. The bundles
are constrained to move only in the xy-plane, and while it is true that MT motion is nearly 2-dimensional, there is
some room in the z−direction that MT bundles can occupy. Additionally, this model does not account for the fluid
boundary condition at the anchoring surface. This may introduce some errors if a monomer becomes close (∼ H)
to the anchoring plane. However, because of the screening effects of the plates, this should not alter the behavior at
distances large compared to the plate separation. We have tested for this by adding image charges to the planar case,
and found that their effects on correlations are small, as expected.

V. CONCLUSIONS

In conclusion, we have developed a model for the spontaneous formation of wavelike behavior in active polymer
arrays that only requires two ingredients: semi-flexible chains tethered to a surface, and motors walking from their
bases to their tips. The hydrodynamics in their confined geometry gives rise to metachronal waves that appear
remarkably similar to what is observed experimentally [10, 11]. Unlike axonemes in cilia, there is no need to posit
additional mechanisms that force individual bundles to oscillate. This all happens as a consequence of Newton’s laws
and fluid mechanics, allowing us to gain a better understanding of how metachronal waves form with considerable
predictive power. As such, we have examined new parameter spaces and have demonstrated boundaries between
different types of metachronal behavior and regimes in which no metachronal behavior exists. It would be of great
interest to test these predictions experimentally, and in many cases, this appears to be viable. Given the simplicity and
robust nature of this mechanism, and the ubiquity of microtubules and kinesin in cells, it gives one further impetus
to look for other places in biology where this kind of behavior can be found.
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VI. SUPPLEMENTARY VIDEO LEGENDS

Descriptions of the supplemental videos [26].

Supplementary video S1: 128 microtubule bundles (length 16) with kinesin walkers in a circular geometry in a
fluid chamber with koseen = 0.1, chamber height H = 1.0, kstiff = 10.

Supplementary video S2: 128 microtubule bundles (length 16) with kinesin walkers in a circular geometry in a
fluid chamber with koseen = 0.2, chamber height H = 0.1, kstiff = 10.

Supplementary video S3: 128 microtubule bundles (length 16) with kinesin walkers in a circular geometry in a
fluid chamber with koseen = 0.2, chamber height H = 0.2, kstiff = 10.

Supplementary video S4: 128 microtubule bundles (length 16) with kinesin walkers in a circular geometry in a
fluid chamber with koseen = 0.2, chamber height H = 0.5, kstiff = 10.

Supplementary video S5: 128 microtubule bundles (length 16) with kinesin walkers in a circular geometry in a
fluid chamber with koseen = 0.2, chamber height H = 1.0, kstiff = 10.

<http://fqxi.org>
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FIG. 5. Fluid speeds as a function of distance ρ from the stokeslet F = ı̂. Solid curves are calculated using the full interaction
tensor (A2) and dashed lines are the far-field approximation (A3). (a) ux(ρ) along the line y = 0; (b) ux(ρ) along the line
x = 0; (c) uy(ρ) along the line y = x.

Supplementary video S6: 128 microtubule bundles (length 16) with kinesin walkers in a circular geometry in a
fluid chamber with koseen = 0.3, chamber height H = 1.0, kstiff = 10.

Supplementary video S7: 128 microtubule bundles (length 16) with kinesin walkers in a planar geometry in a fluid
chamber with koseen = 0.1, chamber height H = 1.0, kstiff = 5.

Supplementary video S8: 128 microtubule bundles (length 16) with kinesin walkers in a planar geometry in a fluid
chamber with koseen = 0.1, chamber height H = 1.0, kstiff = 10.

Supplementary video S9: 128 microtubule bundles (length 16) with kinesin walkers in a planar geometry in a fluid
chamber with koseen = 0.1, chamber height H = 1.0, kstiff = 15.

Supplementary video S10: 128 microtubule bundles (length 16) with kinesin walkers in a planar geometry in a
fluid chamber with koseen = 0.1, chamber height H = 1.0, kstiff = 20.

Supplementary video S11: 2 microtubules of opposite polarities, green MT’s have minus ends on surface, and blue
MT’s have plus ends on the surface. There are fixed boundary conditions on the surface. This shows a simulation for
a set of parameters where the two microtubules move. This behavior was never found when there were more than 2
microtubules in a bundle.

Supplementary video S12: Pillar of 9 microtubules of opposite polarities, green MT’s have minus ends on surface,
and blue MT’s have plus ends on the surface. There are sliding boundary conditions on the surface. This shows a
simulation in a regime with sufficiently weak attractive interactions, fa = 1, where there is a twisting motion inside
the pillar but then the minus microtubules suddenly slide off of the plus ones, finally lying close to parallel with the
plane of attachment.

Appendix A: The Quasi-2D Interaction Tensor

The interaction tensor used in simulations is that of a stokeslet enclosed by two infinite parallel plates, as derived
by Liron and Mochon[23]. In general, the interaction tensor G is defined as the relationship between the fluid flow
u(r) and the stokeslet F which causes this flow:

u(r) = F ·G(r) (A1)

We assume the system is embedded in a viscous fluid with viscosity µ. For computational efficiency, we assume all
monomers to be only in the xy-plane, with parallel plates at z = ±H/2. This reduces a three-dimensional problem
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to two dimensions, as (a) the stokeslet is located in the xy-plane, (b) the stokeslet’s direction has no z-component,
and (c) we only concern ourselves with flows in the xy-plane (see Fig. 6). For this arrangement, it can be shown from
Liron and Mochon’s general result that the interaction tensor a displacement r (and ρ ≡ |r|) from a single stokeslet
F at the origin reduces to

G(r) =
H

8πµρ2

{[
4
( ρ
H

)2
S1 −

1

2

ρ

H
I1

]
I +

[
4π
( ρ
H

)3
S2 +

1

2

ρ

H
I1 −

1

4

( ρ
H

)2
I2

]
r⊗ r

ρ2

}
(A2)

where

S1 ≡
1

4

∞∑
n=0

(−1)n[(
ρ
H

)2
+ n2

]1/2
S2 ≡

1

4π

ρ

H

∞∑
n=0

(−1)n[(
ρ
H

)2
+ n2

]3/2
I1 ≡

∫ ∞
0

ξJ1

( ρ
H
ξ
) tanh2 ξ

2

sinh ξ − ξ
dξ

I2 ≡
∫ ∞
0

ξ2
[
J0

( ρ
H
ξ
)
− J2

( ρ
H
ξ
)] tanh2 ξ

2

sinh ξ − ξ
dξ

Here, Jn is the Bessel function of the first kind. Because S1 and S2 do not converge rapidly as defined above, we also
make use of the Poisson sums

S1 =

∞∑
k=0

K0

[
π(2k + 1)

ρ

H

]
S2 =

∞∑
k=0

(2k + 1)K1

[
π(2k + 1)

ρ

H

]
where Kn is the modified Bessel function of the second kind.

In the far field, it can be shown that (A2) approaches

G(r) ≈ − 3H

32πµρ2

(
I− 2

r⊗ r

ρ2

)
(A3)

Fig. 5 shows plots of u(r) at selected locations, and compares the exact value from (A2) to the far-field approximation
from (A3).

We can now make some conceptual observations regarding this interaction tensor and how it compares to the
boundary-free Oseen tensor G0:

G0(r) =
1

8πµr

(
I +

r⊗ r

r2

)
First, we immediately notice a 1/r dependence (rather than 1/ρ2). This means forces without boundaries tend to be
more long-range, and boundaries result in long-range screening. Second, G0 is always positive, whereas this is not
true for the interaction tensor used here. One key implication of this is that flows created by a stokeslet are often
flowing opposite its direction (e.g. Fig. 5b). Both of these qualities may enhance metachronal behavior in the confined
system. Screening means that interactions between nearby polymers are most important, creating a “domino effect”
from one polymer to the next rather than having motion more influenced by long-range interactions. The creation of
opposing flows means (among other things) that if one polymer is moving toward the anchoring surface, it may exert
a force on many of its neighboring polymers away from the anchoring surface. This encourages wavelike behavior
rather than uniformity of beating motion.

Appendix B: Simulation Methods

The algorithm we implement is built on work that was used to simulate the mechanism behind cytoplasmic streaming
in Drosophila oocytes [21], and many of the methods and equations below are explained in detail in these papers.
This software simulates an array of active microtubules tethered to a plane that works as follows and is explained in
further detail below.
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H
F z = 0

H
2

FIG. 6. Illustration of the geometry for which interaction tensor is derived in A. While this is a three-dimensional system, we
constrain polymers to the xy-plane.

Fa
FbFa→b

Fb→a

FIG. 7. Illustration of hydrodynamic forces between two example monomers in a planar polymer array. The green forces are
the sum of non-hydrodynamic forces on the monomer (and by extension the force the monomer exerts on the surrounding

fluid). ~Fa→b and ~Fb→a are the hydrodynamic forces on monomer b due to ~Fa and the hydrodynamic force on monomer a due

to ~Fb, respectively.

1. After an array of polymers is initialized, forces on all monomers are summed (described below, also see Fig. 1
of main paper) and monomer position and velocity are updated using time step dt.

2. This motion initiates complex flow in the surrounding fluid. The fluid flow is not simulated directly, but the
resulting hydrodynamic forces from this flow are calculated via an Oseen tensor with corrections by Blake[22].
This is illustrated in Fig. 7.

3. Forces on each monomer are summed, and monomer position and velocity are updated accordingly.

4. Once updated, steps 2-3 are repeated.

In the present work there were these differences:

1. N Microtubules are confined to the xy-plane, with polymer bases separated by a distance l tethered either to a
flat plate at y = 0 or to a circular boundary. For all presented results, N = 128. The geometry of this is shown
in Fig. 6.

2. At the tethering point, a potential was added in order to keep the base monomer approximately orthogonal to
the boundary.

3. Rather than the Blake correction to the Oseen tensor, we use the simplified Liron/Mochon interaction tensor
described in Appendix A. We also investigated varying the hydrodynamic coupling parameter koseen ≡ 1/(8πµ).

Now we describe how the above was accomplished in more detail. Each polymer is composed of n = 16 monomers.
The ith monomer position ri is updated a using a fourth order Runge Kutte integration of the equation

dri
dt

= u(ri)− kkin (ri−1 − ri+1) (B1)
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where dt is the time step (set to 0.003), kkin (set to 0.2) controls the strength of the kinesin force tangent to the
polymer (Fkin in Fig. 1), and u(ri) is the fluid velocity due to the motion of all other monomers as given by Equation
A1 and A2 (which imparts the forces Fa→b in Fig. 7):

u(ri) =
∑
j 6=i

Fj ·G(ri − rj) (B2)

Here, Fj is the total force on the fluid due to the jth monomer. Because there are are no inertial effects when Re� 1,
any non-hydrodynamic force exerted on the monomer must be transferred to the fluid. In our case,

Fj = Tj + Cj + Qj , (B3)

where

• Tj = kspr [(|rj−| − `) r̂j− + (|rj+| − `) r̂j+]
with rj± ≡ rj±1 − rj , is the spring force keeping monomer separation approximately constant. For our simula-
tions, kspr = 100 and ` = 1. In these simulations the separation between polymer bases defines above, l is equal
to 4`.

• Cj = kstiff (2ri − ri+2 − ri−2)
is the stiffness force which resists polymer bending. kstiff is varied in our simulations, but typically 5 ≤ kstiff ≤
20.

• Qj = Pj + Bj + Wj +
∑
kHjk

is the sum of miscellaneous conditional forces:

– Pj = kpin (rj − ĥ)
if (j mod n) = 1

is the force on the base monomer of each polymer chain keeping it pinned to the anchoring surface. For
our simulations, we set kpin = 100 and h = 1.

– Bj = kpin2 (rj − rj−1 − `̂)
if (j mod n) = 2

is the force on the second monomer in each polymer chain, keeping the base of each polymer approximately
orthogonal to the anchoring surface (Fbase in Fig. 1). For our simulations, we set kbase = 100.

– Wj = kwall

[
1−

(
dwall

yj

)4]
̂

if yj < dwall
is the repulsive force exerted by the anchoring plane on any monomer that gets close to the wall. For our
simulations, we set dwall = 0.5 and kwall = 100.

– Hjk = krep

[
1−

(
drep
|rj−rk|

)4]
(rj − rk)

if |rj − rk| < drep
is the repulsive force between monomers that are very close to one another. For our simulations, we set
drep = 0.5 and krep = 1.

Appendix C: Correlations versus chamber height

In addition to varying chain stiffness, and the hydrodynamic coupling, and the geometry, we also varied the distance
between the two plates, as this is also possible to probe experimentally. The results for the correlation functions in
shown in Fig. 8, for 128 chains in a circular geometry, with kstiff = 10, koseen = 0.2, and H = 1.0, 0.5, and 0.1. As is
apparent, from these figures, the motion becomes less correlated as H becomes smaller. In Fig. 8(a), there are strong
correlations at different positions ∆i, and from the slopes of the ridges and troughs, this shows the propagation of
waves. Fig. 8(b) and (c) show progressively less spatial correlation due to stronger screening by the plates. In (c),
where H = 0.1, the motion is quite short range. This is also apparent from the supplementary videos S-2 through
S-5.
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Appendix D: Analysis of Unipolarity

The work of Sanchez et al. [10, 11] consists of a mixture of biotin-labeled kinesin-1 motors bound together to form
clusters using multimeric streptavidin and taxol stabilized microtubules in a polyethylene-glycol solution with ATP.
These form bundles of microtubules, some of which are adsorbed to air-water or air-glass interfaces, that point out
from the interface forming a lawn of microtubule bundles. These bundles are flexible and show bending similar to
what is seen in the simulations described here in both the time scales, length scales, and correlations between different
bundles.

The question that is not answered in the experimental work is the directionality of the microtubules inside a bundle.
The microtubules forced into bundles by the polyethylene glycol (PEG) could be of mixed polarity so that some have
their minus ends at the interface while others have their plus ends there. We will refer to microtubules with different
orientations as having different “polarities”, minus-ends against the interface as “minus” and those with opposite
polarity as “plus”.

The problems with having a mixed polarity bundle are two fold. The first is that for a wide range of experimental
parameters, we expect mixed polarity bundles to be unstable [14, 15]. The second problem is that it is not clear that
mixed polarity bundles can give rise to the motion seen experimentally. We will analyze both problems below.

1. Instability of mixed polarity bundles

The first problem is that adjacent microtubules with different polarities will be linked by kinesin clusters that will
apply equal and opposite forces to them. This will cause the minus microtubules to be pushed toward the interface,
and the plus ones away from it. The forces from the kinesin act in parallel on a microtubule over its length which is
of order 10µm. The forces that these cause can be competitive with depletion forces caused by the PEG as we will
now see. A full analysis of this is not possible without more information about the details of the system such as the
density of kinesin clusters and chain lengths of the PEG. However we can do a calculation to show that even with
very modest assumptions concerning kinesin density, expulsion of plus microtubules will take place.

Depletion forces exert an osmotic pressure on microtubules and filaments. Each polymer excludes a roughly spherical
region of order its radius of gyration Rg. Entropic forces favor the separation of microtubules into bundles because
less volume is excluded by the PEG. We will estimate the force acting on a single microtubule protruding from a
bundle. PEG is depleted in a region of size Rg around the microtubule. The increase in free energy per unit area
caused by this depletion is of order pRg where the osmotic pressure is p = kBTρ, and ρ is the number of polymers
per unit volume. The increase in free energy dF , in raising the microtubule by a height dz, is dF = (2πRmdz)px.
Here Rm is the microtubule radius. If we assume that the polymers are close-packed around the microtubule to get
the maximum effect, then ρ = 1/(4πR3

g/3). So the force needed to push the microtubule out of the tip of the bundle

(a) (b) (c) (d)

FIG. 8. Full correlation functions for circular geometry with kstiff = 10, koseen = 0.2, and H = 1.0, 0.5, and 0.1 (a-c,
respectively). The correlation function at ∆i = 0 for all of these values of H are shown in (d).
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is f = dF/dz = (3/2)RmkBT/R
2
g.

Rm ≈ 13nm and conservatively taking Rg = 1nm, which is quite small for PEG, f = 81pN The stall force of
kinesin is approximately 5pN [27]. So only 16.2 kinesins are needed to overcome the depletion forces and expel this
microtubule from the bundle.

The minimum separation of kinesin on a microtubule is 8nm and there are 13 tracks around its circumference.
Because kinesin has a strong affinity for microtubules we expect a high density of bound kinesin. Therefore 16
kinesins contributing to the force over a distance of 10µm is over three orders of magnitude less dense than the
maximum density attainable. This suggests that for a wide range of parameters, the microtubule bundles will become
unipolar with minus-ends against the interface.

2. Model of mixed polarity bundles

The second problem is that it is not clear that a mixed polarity bundle can give rise to the motion seen in
experiment. Here we analyze this possibility by using simulation methods similar to what was used previously to
understand molecular motor dynamics [28]

We assume that the microtubules are inextensible and that opposite polarity microtubules apply forces in equal
and opposite directions. We discuss the different forces separately.

First there is an effective attractive interaction between microtubules independent of their polarities induced by
the presence of PEG polymers. We choose a short range force so the monomers separated by a distance r within a
range σs will feel an attractive force due to depletion forces as discussed above. To simplify the expressions we use a
normalized unitless distance ∆ ≡ r/σs. The force between any two monomers for ∆ < 1 is taken to be

fattr = fa∆4(1−∆12)3r (D1)

where fa is the strength of the attractive interaction. The reason for choosing this functional dependence on ∆ was
to produce a force that was close to constant for ∆ < 0.6, and then drop smoothly to zero, so as to work well with
the Runge Kutte algorithm.

Second, we introduce an even shorter range repulsion between monomers that diverges at a hard core radius σh
and goes to zero at σs:

frep = fr

(
1

r2 − σ2
h

− 1

σ2
s − σ2

h

)4

r (D2)

where fr is the strength of the repulsive interaction.
Third, we introduce an equal and opposite forces between monomers on opposite polarity microtubules that are

within a distance σs. The direction of the force is as follows. We compute the tangents to both monomers as
(ri+1 − ri−1)/2. Then we choose the direction t, to be the average of these two tangents. The magnitude of the
kinesin force is

fkin = fk(1−∆12)3 (D3)

where fk is similar the symbol used previously in the main text and denotes the magnitude of the kinesin force.
These forces are added to the elastic forces, viscous drag, and tension that must be introduced to conserve link

length and the equation of motion is iterated using a method for updating chains with constant link length [29, 30].
We also tried two separate kinds of boundary conditions. First, tethering the chains to fixed points on the surface

which we will call “fixed” boundary conditions. Second, confining the chain ends to a two dimensional plane but
letting the ends move within that plane, which we will call “sliding” boundary conditions.

We tried a wide range of parameters, of different elastic constants, attractive interactions, number of microtubules,
and boundary conditions. What we found is now summarized.

For two chain bundles of opposite polarity we did find a set of parameters which showed movement of the bundle
with: fr = 10.0, σs = 2, σh = 1, fa = 3, fk = 0.2, kstiff = 100, and chain length of 20, see supplemental video S11.

For larger bundle sizes, e.g. 9 chains, we did not find anything similar to experiments. With fixed boundary
conditions, and started as a pillar of parallel microtubules with slightly randomized directions, the chains would settle
down to a pillar shape that would not change with time for sufficiently small attractive interactions fa, but when
this became greater than a certain value that depends on elastic constant and other parameters, it would suddenly
collapse into a ball because this is more highly favored energetically.

When we chose sliding boundary conditions, and for sufficiently weak attractive interactions, fa = 1 there was a
regime where there was twisting motion inside the pillar but then the minus microtubules would suddenly slide off of
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the plus ones, finally lying close to parallel with the plane of attachment, see supplemental video S12. It therefore
appears that a two microtubule bundle moves because of a strong anisotropy in forces seen in cross sections. In larger
bundles, the forces through the bundle are more homogeneous which acts to stabilize them.

We conclude that by direct physical modeling of a mixed polarity bundle, it is not clear if there are any reasonable
parameters which show motion similar to what is seen in the experiments of Sanchez et al [10, 11].

Note that the elastic constant of a microtubule in a bundle will depend strongly on the rate at which it is bent. For
very short times, the bonds between different microtubules caused by kinesin binding will be fixed in position giving
the bundle the elastic constant of a cylinder of radius R which is ∝ R4. However the oscillations here take place on
minute timescales. In that case the individual kinesin molecules have velocities of order 1µm/s so they unbind and
move very far on this time scale. This allows neighboring microtubules to move relative to each other, to eliminate
stress. Therefore on sufficiently long timescales, this reduces the elastic constant of a microtubule to that of one in
isolation.

Appendix E: Quantative comparison with experiment

We briefly summarize the protocol and procedures used to create the experimental system that we are trying to
understand and compare those findings with our theory. This comparison is similar to what was done in the context
of cytoplasmic streaming [21].

Microtubules were prepared using methods to minimize inter-microtubule crosslinking. Their lengths were 4.8 ±
4.1µm. Kinesin streptavidin complexes were created and added to the microtubules along with polyethylene glycol
(PEG). PEG introduces depletion forces discussed above in Sec. D 1 that will cause the microtubules to form bundles.
The kinesin streptavidin complexes link individual kinesin motors together so that they walk up bundles together.
Depending on the concentration of PEG, different dynamics and morphologies are seen. Concentrations between 0.5%
to 0.6% are apparently optimal for observing beating bundles.

Many other chemical components were added to stabilize this system, particularly during photobleaching, but
crucially, ATP is added to make the kinesin motors active.

The resultant microtubule bundles were approximately 100µm long and slowly tapered in diameter. Examimation
of images [10, 11] shows that close to the air interface, bundles merge forming what appears to be a single bundle
of diameter 1 − 2µm that slowly tapers to become too thin to accurately measure, less than 0.1µm. These bundles
are made up of many small microtubules much smaller than the bundle length. No measurements of the bundle
stiffness was attempted, however translation of individual microtubules was observed by photolabeling. This is
further evidence that the bundles were not strongly crosslinked and that the elastic properties are determined largely
by the depletion forces that create the bundles in the first place. Microtubules can easily slide relative to each other,
because streptavidin crosslinked motors do not walk in lock-step so that two motors walking up microtubules can
relax any shear forces.

The time and length scales are quite similar to what was found previously in cytoplasmic streaming in Drosophila
oocytes [21]. Although the bundle stiffness is unknown, our mechanism predicts a simple relationship between length
and timescales for beating of an individual bundle.

We can model[21] an individual bundle as a thin elastic rod with a local drag coefficient per unit length ν and a
force per unit length fk caused by the drag of the kinesin motors walking up a bundle. The force on a rod oriented
either perpendicular or parallel to the direction of motion only has a logarithmic dependence (for an infinite system)
on its radius [31] and is linearly proportional to the length of the cylinder and the viscosity. With experimental
conditions, a saturated surface containing kinesin walking at speed vk will have fk ≈ νvk. In the case of kinesin,
vk ≈ 0.8µm/s [32]. This was analyzed in detail in Ref. [21].

A tethered rod subject to these forces will show oscillatory motion that can be analyzed in mathematical detail [21].
Its angular frequency

ω = fk/(νR) (E1)

where R is the radis of curvature. This equation is useful to consider here because it gives a relationship between
radius of curvature and frequency that does not require a direct knowledge of chain stiffness. Furthermore it does not
require a knowledge of viscosity because fk and ν are both proportional to it. This is an exact result for a single chain
analysis giving the relationship between the angular frequency ω, the force per unit length applied by the kinesin, the
drag coefficient of the kinesin ν, and the radius of curvature R. It is exact when the rod is far from any surfaces, but
has been analyzed both numerically and analytically for a single chain, when there are velocity fields and surfaces
present. For a large range of parameters, this relation is close to being exact. However this analysis ignores long range
hydrodynamic interactions, but simulations [21] including such effects agree quite well with this model. From Eq. E1
we see that ω = 2πf = νvk/(νR) = vk/R. From expeimental images [10, 11], radius of curvature R is approximately
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30µm. Therefore the frequency of oscillation is predicted to be 4.1× 10−3Hz. The experimentally measured number
from Ref 1, is 4.8 × 10−3Hz. Given large experimental uncertainties, this result is fortuitously close, and we would
expect more generally that it should agree within a factor of two.

We can also estimate the force on a single kinesin motor and compare it with the stall force. For a cylinder moving
in solution with a viscosity η, approximately that of water, and ignoring logarithmic corrections, the force per unit
length will be fk = ηvk ∼ 8 × 10−10N/m. In our model kinesin motors, close to saturation, walk on the surface of
a bundle. The force on a single motor can be calculated by distributing fk over all motors in a given length. Given
a bundle of radius rb, the number of motors per unit length is Nk = 2πrb/l

2
k where lk is the size of a kinesin motor.

Therefore the force on a single motor is F = fk/Nk. In the extreme case where lk = rb, and estimating lk = 10nm,
this gives a force of ∼ 2.5× 10−18N = 2.5× 10−6pN , where as the stall force is approximately 5pN [33], this is more
than a million times larger than what is needed for this model. More realistically, the radius of the bundle is much
larger than this, by a factor of at least 100, making the force even smaller. Therefore we can safely ignore the stall
force or any velocity dependent effects, including those related to processivity.
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[14] K. Kruse and F. Jülicher, Actively contracting bundles of polar filaments, Phys. Rev. Lett. 85, 1778 (2000).
[15] T. B. Liverpool and M. C. Marchetti, Instabilities of isotropic solutions of active polar filaments, Phys. Rev. Lett. 90,

138102 (2003).
[16] M. C. Lagomarsino, P. Jona, and B. Bassetti, Metachronal waves for deterministic switching two-state oscillators with

hydrodynamic interaction, Phys. Rev. E 68, 021908 (2003).
[17] B. Guirao and J.-F. Joanny, Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia, Bio-

physical journal 92, 1900 (2007).
[18] J. Elgeti and G. Gompper, Emergence of metachronal waves in cilia arrays, Proceedings of the National Academy of

Sciences 110, 4470 (2013).
[19] T. Niedermayer, B. Eckhardt, and P. Lenz, Synchronization, phase locking, and metachronal wave formation in ciliary

chains, Chaos: An Interdisciplinary Journal of Nonlinear Science 18, 037128 (2008).
[20] L. R. Serbus, B.-J. Cha, W. E. Theurkauf, and W. M. Saxton, Dynein and the actin cytoskeleton control kinesin-driven

cytoplasmic streaming in drosophila oocytes, Development 132, 3743 (2005).
[21] C. E. Monteith, M. E. Brunner, I. Djagaeva, A. M. Bielecki, J. M. Deutsch, and W. M. Saxton, Filler, Biophys. J. 110,

2053 (2016).
[22] J. R. Blake, A note on the image system for a stokeslet in a no-slip boundary, Mathematical Proceedings of the Cambridge

Philosophical Society 70, 303 (1971).
[23] N. Liron and S. Mochon, Stokes flow for a stokeslet between two parallel flat plates, Journal of Engineering Mathematics

10, 287 (1976).
[24] L. Bourdieu, T. Duke, M. B. Elowitz, D. A. Winkelmann, S. Leibler, and A. Libchaber, Spiral defects in motility assays:

a measure of motor protein force, Phys. Rev. Lett. 75, 176 (1995).
[25] G. De Canio, E. Lauga, and R. E. Goldstein, Spontaneous oscillations of elastic filaments induced by molecular motors,

Journal of The Royal Society Interface 14, 20170491 (2017).
[26] See Supplemental Material at [...] for videos of the simulations.
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