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STOCHASTIC CONTROL LIAISONS:
RICHARD SINKHORN MEETS GASPARD MONGE

ON A SCHRÖDINGER BRIDGE ∗

YONGXIN CHEN † , TRYPHON T. GEORGIOU ‡ , AND MICHELE PAVON §

Abstract. In 1931/32, Erwin Schrödinger studied a hot gas Gedankenexperiment (an instance of
large deviations of the empirical distribution). Schrödinger’s problem represents an early example of a
fundamental inference method, the so-called maximum entropy method, having roots in Boltzmann’s
work and developed in subsequent years by Jaynes, Burg, Dempster and Csiszár. The problem,
known as the Schrödinger bridge problem (SBP) with “uniform” prior, was more recently recognized
as a regularization of the Monge-Kantorovich Optimal Mass Transport (OMT) problem, leading
to effective computational schemes for the latter. Specifically, OMT with quadratic cost may be
viewed as a zero-temperature limit of the problem posed by Schrödinger in the early 1930s. The
latter amounts to minimization of the Helmholtz’s free energy over probability distributions that are
constrained to possess two given marginals. The problem features a delicate compromise, mediated
by a temperature parameter, between minimizing the internal energy and maximizing the entropy.
These concepts are central to a rapidly expanding area of modern science dealing with the so-called
Sinkhorn algorithm which appear as a special case of an algorithm first studied in the more challenging
continuous-space setting by the French analyst Robert Fortet in 1938/40 specifically for Schrödinger
bridges. Due to the constraint on end-point distributions, dynamic programming is not a suitable
tool to attack these problems. Instead, Fortet’s iterative algorithm and its discrete counterpart, the
Sinkhorn iteration, permit computation of the optimal solution by iteratively solving the so-called
Schrödinger system. Convergence of the iteration is guaranteed by contraction along the steps in
suitable metrics, such as Hilbert’s projective metric.

In both the continuous as well as the discrete-time and space settings, stochastic control provides
a reformulation and a context for the dynamic versions of general Schrödinger bridges problems
and of its zero-temperature limit, the OMT problem. These problems, in turn, naturally lead to
steering problems for flows of one-time marginals which represent a new paradigm for controlling
uncertainty. The zero-temperature problem in the continuous-time and space setting turns out
to be the celebrated Benamou-Brenier characterization of the McCann displacement interpolation
flow in OMT. The formalism and techniques behind these control problems on flows of probability
distributions have attracted significant attention in recent years as they lead to a variety of new
applications in spacecraft guidance, control of robot or biological swarms, sensing, active cooling,
network routing as well as in computer and data science. This multifacet and versatile framework,
intertwining SBP and OMT, provides the substrate for a historical and technical overview of the
field taken up in this paper. A key motivation has been to highlight links between the classical early
work in both topics and the more recent stochastic control viewpoint, that naturally lends itself to
efficient computational schemes and interesting generalizations.

Key words. Optimal mass transport, Schrödinger bridge, Sinkhorn’s algorithm, stochastic
control.
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1. Prelude: Sinkhorn’s algorithm. In 1962, Richard Sinkhorn completed
his doctoral dissertation entitled “On Two Problems Concerning Doubly Stochastic
Matrices” and submitted [220] which would appear in The Annals of Mathematical
Statistics in 1964. He showed there that the iterative process of alternatively normal-
izing the rows and columns of a matrix A with striclty positive elements converges
to a doubly stochastic matrix D1AD2. Here D1 and D2 are diagonal matrices with
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RICHARD SINKHORN MEETS GASPAR MONGE 3

positive diagonal elements which are unique up to a scalar factor. By 1970, a survey
by Fienberg had appeared [94], where many other contributions to this topic, includ-
ing [221, 222, 128], were cited. Differently from Sinkhorn, Ireland and Kullback [128],
who studied a more general problem than Sinkhorn, credited Deming and Stephan [83]
(1940) for first introducing the iterative proportional fitting (IPF) procedure1. Several
other significant contributions on this problem followed including generalizations to
multidimensional matrices such as [18, 109] and this line of research continues to this
date, see e.g. [76, 4, 231, 196, 25, 85]. This large body of literature often ignores two
papers by Erwin Schrödinger from the early 1930’s [212, 213] as well as important
contributions by Robert Fortet (1938/40) [105, 106] and Arne Beurling (1960) [27].
The same goes for some later contributions on the Schrödinger system [131, 103].
But why should this bulk of work on Sinkhorn algorithms be related to Schrödinger’s
quest for the most likely random evolution between two given marginals for a cloud
of diffusive particles?

One of the main goals of this paper is to provide an exhaustive answer to this
question. To do that, we shall have to address several other questions such as: What
is the relation between Schrödinger’s problem and the seventeen-hundred’s Monge
“Mémoire sur la théorie des déblais et des remblais” (1781) [173]? Was Schrödinger
interested in regularizing the Optimal Mass Transport (OMT) problem as some recent
papers seem to hint [23, 66, 161]? And how does the latter regularization relate to von
Helmholz’s free energy of thermodynamics [120]? Is there a relation to Boltzmann’s
maximum entropy problem (1877) [34]? Is there a connection to multiplicative func-
tional transformations of Markov processes [129], or to Bernstein’s reciprocal processes
[24, 130]? And what about connections to the Fisher information functional [239] and
to positive maps on cones contracting Hilbert’s projective metric [28, 42]? Lastly and
surprisingly, but definitely not least, how is this scientific exploration intertwined with
Democritus atomic hypothesis?

As it turns out, all of these topics are indeed tightly connected. Therefore, what
we would like to discuss in this paper lies right at the crossroad of major areas of
science, some still in rapid development. Clearly, given the overwhelming spectrum
of ideas and concepts, attempting to sort this all out may result in a fuzzy picture.
Given our limited competence, how can we ever hope to give here at least a reason-
able/interesting account of all these intersecting areas (sutor, ne ultra crepidam!)?
Our choice is to discuss this science junction from an angle which is not the most
common in the literature, namely stochastic control. We shall try to provide evidence
that, once Schrödinger’s problem has been converted to a stochastic control problem,
it lends itself naturally to computational schemes as well as to interesting generaliza-
tions. It leads naturally to a steering problem for probability distributions, namely a
relaxed version of a most central problem in deterministic optimal control [98].

Our tale is apparently going to be a long and complex one with permanent danger
of too much branching out and continuous flashbacks. The only way to avoid total
chaos seems to us is starting with Erwin Schrödinger’s drama in the early 1930’s.

2. Overture: Science dramas. We briefly recall two famous dramas in the
history of science.

1Even earlier contributions are [249, 148].
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2.1. Schrödinger’s drama. Edward Nelson concludes his jewel 1967 book [176]
with a 1926 quotation from Erwin Schrödinger [211, Paragraph 14]: “... It has even
been doubted whether what goes on in the atom could ever be described within the
scheme of space and time. From the philosophical standpoint, I would consider a
conclusive decision in this sense as equivalent to a complete surrender. For we cannot
really alter our manner of thinking in space and time, and what we cannot comprehend
within it we cannot understand at all.”

Several years later, in 1953, Schrödinger wrote [214]: “For it must have given to
de Broglie the same shock and disappointment as it gave to me, when we learnt that
a sort of transcendental, almost psychical interpretation of the wave phenomenon had
been put forward, which was very soon hailed by the majority of leading theorists as
the only one reconcilable with experiments, and which has now become the orthodox
creed, accepted by almost everybody, with a few notable exceptions.”2

Between these two dramatic statements, however, there is a time in the early
thirties when Schrödinger has hope again. It is when he introduces what we now call
the Schrödinger bridges in two remarkable papers [212, 213]. He states: “Merkwürdige
Analogien zur Quantenmechanik, die mir sehr des Hindenkens wert erscheinen”3. In
this respect, the title of [212] is revealing: “Über die Umkehrung der Naturgesetze”,
namely “On the reversal of natural laws”. A few years later in 1937, another sci-
entific giant, Andrey Kolmogorov, publishes a paper [147] with a very similar title
“Zur Umkehrbarkeit der statistischen Naturgesetze”, namely “On the reversibility of
statistical natural laws”. What had Schrödinger glimpsed? Before we discuss this,
let’s go back some 120 years to another dramatic moment in the history of science.

2.2. Fourier’s drama. On December 21st, 1807, Joseph B. Fourier submits
a manuscript to the Institute of France in Paris entitled “Sur la propagation de la
chaleur”. He had been working on this memoir during his stay in Grenoble as Pre-
fect of the Department of Isére, a post to which he had been appointed by Napoleon
himself. The surprising, but not fully justified, results provoke an animated discus-
sion among the examiners. The committee consists of Lagrange, Laplace, Lacroix
and Monge. Lagrange and Laplace, who criticize Fourier’s expansion of functions
as trigonometrical series, and Monge had all been teachers of Fourier at the École
Normale. Here is how Fourier describes Monge [107]: “Having a loud voice and is
active, ingenious and very learned.” In 1785, while teaching at the École Militaire in
Paris, Monge, the father of descriptive geometry, see Figure 1, has among his stu-
dents a sixteen years old Corsican gifted for mathematics by the name of Napoleone
Bonaparte. The latter will be examined upon graduation by Pierre-Simon de Laplace.
Of the group of outstanding mathematicians active in France in that time, Fourier
and Monge are those who take on important political positions. Monge is Minister
of the Marine during the French revolution. In between two assignements in Italy,
he directs the École Polytechnique which he had co-established in 1794 with Lazare
Carnot and Napoleon. Fourier and Monge had also been together in the expedition
to Egypt in 1798 and members of the mathematics division of the Cairo Institute
together with Malus and Napoleon himself. In spite of all of this, the manuscript is
eventually rejected (Fourier’s “Théorie analytique de la chaleur” will appear only in

2According to Nelson, “a realistic interpretation of quantum mechanics is, in my view, as unre-
solved as it was in the 1920s.”, [178, p.230].

3“Remarkable analogies to quantum mechanics which appear to me very worth of reflection”.
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Fig. 1: G. Monge, Géométrie Descriptive

1822).4

Let us zoom in on Gaspard Monge, Comte de Péluse. A first version (unfortu-
nately lost) of his “Mémoire sur la théorie des déblais et des remblais” is read at the
Académie des sciences on January 27 and February 7, 1776. Although the memoir
is proposed for publication by the secretary Condorcet, only on March 28, 1781 does
Monge read a second version of his memoir, cf. Figure 2. A forty page publication
follows in 1784. Monge, who is of rather humble origin, had worked for military insti-
tutions for a while taking advantage of his extraordinary drawing skills and geometric
intuition, see below. Monge had applied descriptive geometry to such problem as
designing cannons (Figure 3), cutting stones, planning city walls and drawing shad-
ows. But now he is interested in the following problem which has both civil and
military applications: Suppose you need to build some embankments carrying debris
from another location: How should the transport occur so that the average distance
is minimized? Monge discusses two and three-dimensional problems showing a pro-
found understanding of the problem and of its challenging aspects. In particular, his
intuition of normality of optimal transport paths to a certain one-parameter family
of surfaces was proven to be correct more than one hundred years later in a 200-page
memoire by Appel [8].

2.3. Kantorovich. Not much happens until the 1920’s and 1930’s when the
transportation problem is first studied mathematically by A.N. Tolstoi [233, 234].

4In 1826, Fourier announced a method for the solution of systems of linear inequalities [108]
which has elements in common with the simplex method of Linear Programming.
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Fig. 2: Front page of Monge’s memoire and Monge’s drawing

Then, in 1939, the transport problem is briefly mentioned by the Soviet mathemati-
cian Leonid Kantorovich in the booklet [137] where he lays the foundations of linear
programming including duality theory and a variant of the simplex method. In 1942,
Kantorovich provided in [138] the generalization of linear programming to an abstract
setting. He considers the following problem: Let X be compact metric space with dis-
tance function d. Let ν0 and ν1 be probability measures on X and let Π(ν0, ν1) denote
all the probability distributions on X×X having ν0 and ν1 as marginal distributions.
Consider the problem

(2.1) K(ν0, ν1) = inf
π∈Π(ν0,ν1)

∫
X×X

d(x, y)dπ(x, y).

Kantorovich establishes the following fundamental duality theorem (see also Theorem
3.1 for the case of a non-distance cost function):
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Fig. 3: G. Monge, L’Art de fabriques les Canons

Theorem 2.1.

(2.2) K(ν0, ν1) = sup
ϕ

{∫
ϕ(x)d (ν0 − ν1) ; ‖ϕ‖Lip ≤ 1, ϕ ∈ L1(|ν0 − ν1|)

}
.

Lipschitz functions with constant 1 relative to the metric d are called potentials
by Kantorovich. The transport plan π is called a potential plan if

ϕ(x)− ϕ(y) = d(x, y), π a.s.

for an (optimal) potential function ϕ (this theorem will be complemented in 1958
by the paper [140] joint with his student Rubinstein). In 1947 Kantorovich [139],
seeing the proceeding of a conference held in Leningrad (St. Petersburg) on the
bicentennial of Monge’s birth, realized that the surfaces of Monge were just the level
surfaces of the optimal potentials (dual functions) he had defined in the Doklady note
[138]. Thus, Kantorovich, a functional analyst motivated by economics applications,
provided a more manageable (relaxed) formulation of the transport problem and major
advances opening the avenue for the impressive developments of the past twenty years
[200, 92, 239, 5, 240, 184], see [238] for a full historical account of Kantorovich’s
contributions5.

3. Elements of optimal mass transport theory. The literature on this prob-
lem is by now so vast and our degree of competence is such that we shall not even

5It would have been possible to entitle this section “Kantorovich’s Drama”. Indeed, to this day it
is little known that he should be credited for linear programming, including the simplex method, and
for duality theory even in an abstract setting. His metric is curiously called Wasserstein (Vasershtein)
due to Dobrushin being aware of Vasershtein paper [237] (Vasershtein worked in the laboratory
he headed) and not being aware of Kantorovich’s publications. Finally, Kantorovich’s ideas on
mathematical economics were long considered in official Soviet circles as anti-Marxist. Consequently
they suffered for many years a sort of ostracism. For all of this see [238]. Fortunately, as a partial
compensation, he was awarded in 1975 the Nobel price for economics.
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attempt here to give a reasonable and/or balanced introduction to the various fas-
cinating aspects of this theory. Fortunately, there exist excellent monographs and
survey papers on this topic, see [200, 92, 239, 5, 240, 184], to which we refer the
reader. The range of applications has also increased exponentially; we mention quality
control, industrial manufacturing, vehicle path planning [202, 203], image processing
[23], computer graphics [223, 224, 226, 227, 228, 150], machine learning [225, 9, 174],
econometrics [110], and so on. We shall only briefly review some concepts and results
which are relevant for the topics of this paper.

3.1. The Monge-Kantorovich static problem. Let ν0 and ν1 be probability
measures on the separable, complete metric spaces X and Y , respectively. Let c :
X × Y → [0,+∞) be a lower semicontinuous map with c(x, y) representing the cost
of transporting a unit of mass from location x to location y. Let Tν0ν1 be the family
of measurable maps T : X → Y such that T#ν0 = ν1, namely such that ν1 is the
push-forward of ν0 under T . Any T ∈ Tν0ν1 is called a transport map. Then, Monge’s
optimal mass transport problem (OMT) is

(3.1) inf
T∈Tν0ν1

∫
X

c(x, T (x))dν0(x)

for the particular case where c(x, y) = d(x, y), i.e., it is a metric on X and X = Y .
This problem may be unfeasible and the family Tν0ν1 may be empty6. This is never
the case for the “relaxed” version of the problem studied by Kantorovich in the 1940’s

(3.2) inf
π∈Π(ν0,ν1)

∫
X×Y

c(x, y)dπ(x, y).

Here Π(ν0, ν1) are “couplings” of ν0 and ν1, namely probability distributions on X×Y
with marginals ν0 and ν1 called transport plans. Indeed, Π(ν0, ν1) always contains the
product measure ν0 ⊗ ν1. We have Kantorovich’s duality theorem.

Theorem 3.1. Suppose c is lower semicontinuous, then there exists a solution
to Problem (3.2). Moreover

min
π∈Π(ν0,ν1)

∫
X×Y

c(x, y)dπ(x, y) = sup
(ϕ,ψ)∈Φc

[∫
X

ϕdν0 +

∫
Y

ψdν1

]
Φc = {(ϕ,ψ)|ϕ ∈ L1(ν0), ψ ∈ L1(ν1), ϕ(x) + ψ(y) ≤ c(x, y)}.

Let us specialize the Monge-Kantorovich problem (3.2) to the case X = Y = Rn
and c(x, y) = ‖x − y‖2. Then, if ν1 does not give mass to sets of dimension ≤
n− 1, by Brenier’s theorem [239, p.66], there exists a unique optimal transport plan
π (Kantorovich) induced by a dν0 a.e. unique (Monge) map T , of the form T = ∇ϕ
with ϕ convex, so that

(3.3) π = (I ×∇ϕ)#ν0, ∇ϕ#ν0 = ν1.

Here I denotes the identity map. Among the extensions of this result, we mention that
to strictly convex, superlinear costs c, by Gangbo and McCann [111]. The optimal

6This is the case when e.g., ν0 is a Dirac distribution and ν1 the sum of two Dirac distributions
of half the magnitude. Since ν0 needs to be “split” so as to be transferred at two separate locations,
a transference plan T does not exist as a map.
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transport problem may be used to introduce a useful distance between probability
measures. Indeed, let P2(Rn) be the set of probability measures µ on Rn with fi-
nite second moment. For ν0, ν1 ∈ P2(Rn), the Kantorovich-Wasserstein quadratic
distance, is defined by

(3.4) W2(ν0, ν1) =

(
inf

π∈Π(ν0,ν1)

∫
Rn×Rn

‖x− y‖2dπ(x, y)

)1/2

.

As is well known [239, Theorem 7.3], W2 is a bona fide distance. Moreover, it provides
a most natural way to “metrize” weak convergence7 in P2(Rn) [239, Theorem 7.12], [5,
proposition 7.1.5] (the same applies to the case p ≥ 1 replacing 2 with p everywhere).
The Kantorovich-Wasserstein space W2 is defined as the metric space (P2(Rn),W2).
It is a Polish space, namely a separable, complete metric space.

3.2. The dynamic problem. So far, we have dealt with the static optimal
transport problem. Nevertheless, in [22, p.378] it is observed that “...a continuum
mechanics formulation was already implicitly contained in the original problem ad-
dressed by Monge... Eliminating the time variable was just a clever way of reducing
the dimension of the problem”. Thus, a dynamic (Eulerian) version of the OMT
problem was already in fieri in Gaspar Monge’s 1781 “Mémoire sur la théorie des
déblais et des remblais” ! It was elegantly accomplished by Benamou and Brenier in
[22] by showing that

W 2
2 (ν0, ν1) = inf

(µ,v)

∫ 1

0

∫
Rn
‖v(t, x)‖2µt(dx)dt,(3.5a)

∂µ

∂t
+∇ · (vµ) = 0,(3.5b)

µ0 = ν0, µ1 = ν1.(3.5c)

Here the flow {µt; 0 ≤ t ≤ 1} varies over continuous maps from [0, 1] to P2(Rn)
and v over smooth fields. Benamou and Brenier were motivated by computational
considerations, a topic which had not received much attention in OMT, see [7]. In
[240], Villani states at the beginning of Chapter 7 that two main motivations for the
time-dependent version of OMT are

• a time-dependent model gives a more complete description of the transport;

• the richer mathematical structure will be useful later on.

We can add three further reasons:

1. it allows to view the optimal transport problem as an (atypical) optimal
control problem, see Section 3.3 below and [50]-[59];

2. it opens the way to establish a connection with the Schrödinger bridge prob-
lem, where the latter appears as a regularization of the former [168, 169, 170,
157, 156, 52, 54, 46];

7Here, we say that, as k → ∞, µk converges weakly to µ in P2(Rn) if
∫
Rn fdµk →

∫
Rn fdµ for

any continuous function f satisfying f(x) ≤ c
(
1 + d(x, x0)2

)
for every x0 ∈ Rn, the latter condition

guaranteeing tightness of the sequence {µk}.
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3. In some applications such as computer graphics [226, 150], interpolation of
images [55], spectral morphing [134], machine learning [174] and network
routing [64, 64, 65], the interpolating flow is essential!

Let {µ∗t ; 0 ≤ t ≤ 1} and {v∗(t, x); (t, x) ∈ [0, 1]× Rn} be optimal for (3.5). Then

µ∗t = [(1− t)I + t∇ϕ] #ν0,

with T = ∇ϕ solving Monge’s problem, provides McCann’s displacement interpolation
between ν0 and ν1 [167]. In fact, {µ∗t ; 0 ≤ t ≤ 1} may be seen as a constant-speed
geodesic joining ν0 and ν1 in W2 and, moreover, as realized by Otto in [187], W2 can
be endowed a Riemannian-like structure8 which is consistent with W2.

McCann discovered [167] that certain functionals are displacement convex, namely
convex along Wasserstein geodesics. This has led to a variety of applications. Fol-
lowing one of Otto’s main discoveries [136, 187], it turns out that a large class of
PDE’s may be viewed as gradient flows on the Wasserstein space W2. This inter-
pretation, because of the displacement convexity of the functionals, is well suited to
establish uniqueness and to study energy dissipation and convergence to equilibrium.
A rigorous setting in which to make sense of the Otto calculus has been developed
by Ambrosio, Gigli and Savaré [5] for a suitable class of functionals. Convexity along
geodesics inW2 also leads to new proofs of various geometric and functional inequali-
ties [167], [239, Chapter 9], [69]. Finally, we mention that, when the space is not flat,
qualitative properties of optimal transport can be quantified in terms of how bounds
on the Ricci-Curbastro curvature affect the displacement convexity of certain specific
functionals [240, Part II].

In passing and for completeness, we note that the tangent space of P2(Rn) at a
probability measure µ, denoted by TµP2(Rn) [5] may be identified with the closure
in L2

µ of the span of vector fields {∇ϕ : ϕ ∈ C∞c }, where C∞c is the family of smooth
functions with compact support. It is naturally equipped with the inner product
of L2

µ. Several recent papers have contributed to the development of second-order
calculus in Wasserstein’s space [242, 70, 71, 72] building on [164, 114, 6].

3.3. Optimal mass transport as a stochastic control problem. Optimal
control, deeply rooted in the classical Calculus of Variations, seeks to modify the nat-
ural (free) evolution of a system so as to minimize a suitable cost. This field received a
boost in the days of the space race motivated by aeronautical and astronautical prob-
lems such as navigation and the soft moon landing problem [98, p. 21]. Foundational
contributions were provided in the late fifties and in the early sixties by Pontryagin
and his school in the Soviet Union, and by Bellman, Kalman, and others in the United
States. When the system starts from random initial conditions and/or is subject to
random disturbances, the problem becomes one of a stochastic nature where the cost
is now the expectation of a suitable random functional. A crucial aspect of the prob-
lem is the information which is available to design the control action. In this paper,
we shall mainly discuss the case where the state variables constitute a fully observable
(vector) Markov process with values in a Euclidean space or, in the discrete-time set-
ting, in a finite alphabet set. In the continuous-time setting, standard references are
Lee-Markus and Fleming-Rishel [151, 98]. For Markov Decision Processes, standard

8More precisely, a weak Riemannian structure, see [6, 2.3.2], a limitation being that the tangent
space about singular distributions is not “rich enough,” leading towards all other nearby distributions.
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references are [198, 26]. As we shall see, both the OMT problem and its regularized
version (Schrödinger Bridge) can be viewed as stochastic optimal control problems:
It is possible to derive suitable Hamilton-Jacobi-Bellman (HJB) equations. The dif-
ficulty lies with selecting the appropiate solution of the HJB as the boundary term
is missing. Our first step in introducing the optimal control viewpoint on the topics
of this paper consists in re-deriving the Benamou-Brenier formulation of OMT using
elementary control considerations.

Let us start by observing that the square of the Euclidean distance can be ex-
pressed as the infimum of an action integral, namely,

(3.6)
1

2
‖x− y‖2 = min

x∈Xxy

∫ 1

0

1

2
‖ẋ‖2dt

where Xxy is the family of C1([0, 1];Rn) paths with x(0) = x and x(1) = y. The
minimum in (3.6) is evidently achieved by

x∗(t) = (1− t)x+ ty,

namely, the straight line joining x and y. Since x∗(t) is a Euclidean geodesic, any
probabilistic average of the lengths of C1 trajectories starting at x at time 0 and
ending in y at time 1 gives necessarily a higher value. Thus, the probability measure
on C1([0, 1];Rn) concentrated on the path {x∗(t); 0 ≤ t ≤ 1} solves the following
problem

(3.7) inf
Pxy∈D1(δx,δy)

EPxy
{∫ 1

0

1

2
‖ẋ‖2dt

}
,

where D1(δx, δy) are the probability measures on C1([0, 1];Rn) whose initial and final
one-time marginals are Dirac’s deltas concentrated at x and y, respectively. Since
(3.7) provides us with yet another representation for 1

2‖x − y‖
2, in view of (3.4), we

also get that

inf
π∈Π(ν0,ν1)

∫
1

2
‖x− y‖2dπ(x, y) = inf

π∈Π(ν0,ν1)

∫
inf

Pxy∈D1(δx,δy)
EPxy

{∫ 1

0

1

2
‖ẋ‖2dt

}
dπ.

Now observe that if Pxy ∈ D1(δx, δy) and π ∈ Π(ν0, ν1), then

P =

∫
Rn×Rn

Pxydπ(x, y)

is a probability measure in D1(ν0, ν1), namely a measure on C1([0, 1];Rn) with initial
and final marginals ν0 and ν1, respectively. On the other hand, the disintegration
of any measure P ∈ D1(ν0, ν1) with respect to the initial and final positions9 yields
Pxy ∈ D1(δx, δy) and π ∈ Π(ν0, ν1). Thus, we get that the original optimal transport
problem is equivalent to

(3.8) inf
P∈D1(ν0,ν1)

EP
{∫ 1

0

1

2
‖ẋ‖2dt

}
.

9Disintegration can be viewed here as the opposite process to the construction of a product
measure.
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So far, we have followed [157, pp. 2-3]. Instead of the “particle” picture, we can
also consider the hydrodynamic version of (3.6), namely the optimal control problem

1

2
‖x− y‖2 = inf

v∈Vy

∫ 1

0

1

2
‖v(t, xv(t))‖2dt(3.9)

ẋv(t) = v(t, xv(t)), x(0) = x,

where the admissible feedback control laws v(·, ·) in Vy are continuous and such that
xv(1) = y. Following the same steps as before, we get that the optimal transport prob-
lem is equivalent to the following stochastic control problem with atypical boundary
constraints

inf
v∈V

E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
(3.10a)

ẋv(t) = v(t, xv(t)), a.s., x(0) ∼ ν0, x(1) ∼ ν1.(3.10b)

Finally suppose dν0(x) = ρ0(x)dx, dν1(y) = ρ1(y)dy and xv(t) ∼ ρ(t, x)dx. Then,
necessarily, ρ satisfies (weakly) the continuity equation

(3.11)
∂ρ

∂t
+∇ · (vρ) = 0

expressing the conservation of probability mass. Moreover,

E
{∫ 1

0

1

2
‖v(t, xv(t))‖2dt

}
=

∫
Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx.

Hence (3.10) turns into the Benamou-Brenier problem (3.5):

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2
‖v(t, x)‖2ρ(t, x)dtdx,(3.12a)

∂ρ

∂t
+∇ · (vρ) = 0,(3.12b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y).(3.12c)

The variational analysis for (3.10) or, equivalently, for (3.12) can be carried out
in many different ways. For instance, let Pρ0ρ1 be the family of flows of probability
densities ρ = {ρ(t, ·); 0 ≤ t ≤ 1} satisfying (3.12c) and let V be the family of con-
tinuous feedback control laws v(·, ·). Consider the unconstrained minimization of the
Lagrangian over Pρ0ρ1 × V,

(3.13) L(ρ, v) =

∫
Rn

∫ 1

0

[
1

2
‖v(t, x)‖2ρ(t, x) + λ(t, x)

(
∂ρ

∂t
+∇ · (vρ)

)]
dtdx,

where λ is a C1 Lagrange multiplier. Integrating by parts, assuming that limits for
‖x‖ → ∞ are zero, we get∫

Rn

∫ 1

0

[
1

2
‖v(t, x)‖2 +

(
−∂λ
∂t
−∇λ · v

)]
ρ(t, x)dtdx(3.14)

+

∫
Rn

[λ(1, x)ρ1(x)− λ(0, x)ρ0(x)] dx.
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The last integral is constant over Pρ0ρ1 for a fixed λ and can therefore be discarded.
We are left to minimize

(3.15)

∫
Rn

∫ 1

0

[
1

2
‖v(t, x)‖2 +

(
−∂λ
∂t
−∇λ · v

)]
ρ(t, x)dtdx

over Pρ0ρ1×V. We consider doing this in two stages, starting from minimization with
respect to v for a fixed flow of probability densities ρ = {ρ(t, ·); 0 ≤ t ≤ 1} in Pρ0ρ1 .
Pointwise minimization of the integrand at each time t ∈ [0, 1] gives that

(3.16) v∗ρ(t, x) = ∇λ(t, x)

which is continuous. Substituting this expression for the optimal control into (3.15),
we obtain

(3.17) J(ρ) = −
∫
Rn

∫ 1

0

[
∂λ

∂t
+

1

2
‖∇λ‖2

]
ρ(t, x)dtdx.

In view of this, if λ satisfies the Hamilton-Jacobi equation

(3.18)
∂λ

∂t
+

1

2
‖∇λ‖2 = 0,

then J(ρ) is identically zero over Pρ0ρ1 and any ρ ∈ Pρ0ρ1 minimizes the Lagrangian
(3.13) together with the feedback control (3.16). We have therefore established the
following [22]:

Proposition 3.2. Let ρ∗(t, x) with t ∈ [0, 1] and x ∈ Rn, satisfy

(3.19)
∂ρ∗

∂t
+∇ · (ρ∗∇λ) = 0, ρ∗(0, x) = ρ0(x),

where λ is a solution of the Hamilton-Jacobi equation

(3.20)
∂λ

∂t
+

1

2
‖∇λ‖2 = 0

for some boundary condition λ(1, x) = λ1(x). If ρ∗(1, x) = ρ1(x), then the pair
(ρ∗, v∗) with v∗(t, x) = ∇λ(t, x) is a solution of (3.5).

The stochastic nature of the Benamou-Brenier formulation (3.12) stems from
the fact that initial and final densities are specified. Accordingly, the above requires
solving a two-point boundary value problem and the resulting control dictates the
local velocity field. In general, one cannot expect to have a classical solution of (3.20)
and has to be content with a viscosity solution [104]. See [229] for a recent contribution
in the case when only samples of ρ0 and ρ1 are known.

3.4. Optimal mass transport with a “Prior”. The stochastic control for-
mulation (3.10) of OMT casts this as a problem to steer the dynamical system ẋ = u,
with u being the control input, between specified marginal distributions for the state.
The generalization to non-trivial underlying dynamics of the form ẋ = f(t, x) + u
leads in a similar manner to

inf
u∈V

E
{∫ 1

0

1

2
‖u(t, xu(t))‖2dt

}
(3.21a)

ẋu(t) = f(t, xu(t)) + u(t, xu(t)), a.s., x(0) ∼ ν0, x(1) ∼ ν1.(3.21b)
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Once again, this is a non-standard minimum energy control-effort problem due to
the constraint on the final state distribution. A fluid dynamic reformulation proceeds
as follows. Suppose we are given two end-point marginal probability densities ρ0 and
ρ1, and suppose we are also given a model

(3.22)
∂ρ

∂t
+∇ · (fρ) = 0

for the flow of probability densities {ρ(t, x); 0 ≤ t ≤ 1}, for a continuous vector field
f(·, ·), which however is not consistent with the given end-point marginals. Then,
(3.22) represents a “prior” evolution to serve as a reference when seeking an update
in the vector field to minimize the quadratic cost

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2
‖v(t, x)− f(t, x)‖2ρ(t, x)dtdx,(3.23a)

∂ρ

∂t
+∇ · (vρ) = 0,(3.23b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y).(3.23c)

Clearly, if the prior flow satisfies ρ(0, x) = ρ0(x) and ρ(1, y) = ρ1(y), then it solves
the problem and v∗ = f . Moreover, the standard OMT problem is recovered when
the prior evolution is constant, i.e. f ≡ 0.

Remark 3.3. From a different angle, problem (3.23) can be motivated as follows.
It seeks a correction v to a transportation plan f that has already been computed from
obsolete data (e.g., marginal distributions for transportantion of resources in ρ0,old to
meet demands in ρ1,old) as this data is being updated to a new set of marginals ρ0

and ρ1, respectively. 2

The particle version of (3.23) takes the form of a more familiar OMT problem,
namely

(3.24) inf
π∈Π(ν0,ν1)

∫
Rn×Rn

c(x, y)dπ(x, y),

where dν0(x) = ρ0(x)dx, dν1(y) = ρ1(y)dy and

(3.25) c(x, y) = inf
x∈Xxy

∫ 1

0

L(t, x(t), ẋ(t))dt, L(t, x, ẋ) = ‖ẋ− f(t, x)‖2.

The explicit calculation of the function c(x, y) when f 6≡ 0 is nontrivial. Moreover,
the zero-noise limit results of [156, Section 3], based on a Large Deviations Principle
[81], although very general in other ways, seem to cover here only the case where
c(x, y) = c(x − y) is strictly convex originating from a Lagrangian L(t, x, ẋ) = c(ẋ).
We mention that [55] deals with OMT problems where the Lagrangian is not strictly
convex with respect to ẋ. Finally, we feel that the present formulation is a most
natural one in which to study zero-noise limits of Schrödinger bridges with a general
Markovian prior evolution. References [54, 55] discuss this same problem in the case of
a Gaussian prior, and show directly the convergence of the solution to the Hamilton-
Jacobi-Bellman equation to solution of a Hamilton-Jacobi equation.
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The variational analysis for (3.23) can be carried out as in Section 3.3 obtaining
the following result:

Proposition 3.4. If λ satisfies the Hamilton-Jacobi equation

(3.26)
∂λ

∂t
+ f · ∇λ+

1

2
‖∇λ‖2 = 0,

and is such that the solution ρ∗ to

(3.27)
∂ρ∗

∂t
+∇ · [(f +∇λ)ρ∗] = 0, ρ∗(0, x) = ρ0(x),

satisfies the end-point condition ρ∗(1, x) = ρ1(x) as well, then the pair

(ρ∗(t, x), v∗(t, x) = f(t, x) +∇λ(t, x))

solves (3.23), provided λ(t, x)ρ∗(t, x) vanishes as ‖x‖ → ∞ for each fixed t.

4. Schrödinger’s bridges. Two excellent surveys on this topic are [244, 157].
See also [62] for an exposition of the Schrödinger bridge problems in the context of
control engineering.

4.1. The hot gas Gedankenexperiment. In 1931/32, Erwin Schrödinger con-
sidered the following Gedankenexperiment [212, 213]: We have a cloud of N indepen-
dent Brownian particles evolving in time10. This cloud of particles has been observed
having at the initial time t = 0 an empirical distribution approximatively equal to
ρ0(x)dx. At time t = 1, an empirical distribution approximatively equal to ρ1(x)dx
is observed which considerably differs from what it should be according to the law of
large numbers (N is large, say of the order of Avogadro’s number), namely

ρ1(y) 6=
∫
Rn
p(0, x, 1, y)ρ0(x)dx,

where

(4.1) p(s, x, t, y) = [2π(t− s)]−
n
2 exp

[
−‖x− y‖

2

2(t− s)

]
, s < t

is the transition density of the Wiener process (heat kernel). It is apparent that the
particles have been transported in an unlikely way. But of the many unlikely ways in
which this could have happened, which one is the most likely? In modern probabilistic
terms, this is a problem of large deviations of the empirical distribution as observed
by Föllmer [103]. Thus, at the outset, Schrödinger’s motivation and the context of
his question had no connection to OMT that we just discussed–the confluence of the
two that we highlight shortly may be seen as a deep and lucky coincidence.

4.2. Large deviations and maximum entropy. The area of large deviations
is concerned with the probabilities of rare events. In light of Sanov’s theorem [208],
Schrödinger’s problem can be seen as a large deviations (maximum entropy) problem
for distributions on trajectories, as we proceed to explain.

10To put Schrödinger’s 1931 work in perspective, one has to recall what science had accomplished
on the atomic hypothesis and physical Brownian motion by that time, besides Boltzmann’s work
[34]. For this, see [176] and Section 6 below.
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Let Ω = C([0, 1];Rn) be the space of Rn-valued continuous functions, D be the
space of probability measures on Ω, and Wx ∈ D denote Wiener measure starting at
x at t = 0. If, instead assuming a Dirac marginal concentrated at x, we enlarge Wx

to subsume the volume measure at t = 0, we obtain

W :=

∫
Wx dx.

This is an unbounded nonnegative measure on the path space Ω, called stationary
Wiener measure (or, sometimes, reversible Brownian motion); W has marginals at
each point in time that coincide with the Lebesgue measure and therefore, while still
nonnegative, it is not a probability measure. In fact it serves as a convenient analogue
of the Lebesgue measure on paths that “symmetrizes” and “uniformizes” the Wiener
measure with respect to the time arrow.

Alternatively, we can enlarge Wx to

Wρ :=

∫
Wx ρ(x)dx

so that instead the Dirac marginal at t = 0 it now has a marginal probability measure
ρdx. Clearly Wρ is a probability measure on Ω which is absolutely continuous with
respect to W . Indeed, if

D(P‖Q) =

{
EP

{
log dP

dQ

}
, if P � Q

+∞ otherwise
.

denotes the relative entropy functional (divergence, Kullback-Leibler index) between
nonnegative measures, it can be seen that

D(Wρ‖W ) =

∫
ρ log(ρ)dx = −S(ρ),

where S(ρ) is the differential entropy of the measure ρ(x)dx. Moreover,

D(Wρ‖Wρ0) =

∫
ρ log(

ρ

ρ0
)dx =: D(ρ‖ρ0).

Now let us consider X1, X2, . . . be i.i.d. Wiener evolutions on [0, 1] with values
in Rn and starting value xi distributed according to ρ. The empirical distribution µN
associated to X1, X2, . . . XN is defined by

(4.2) µN (X1, X2, . . . , XN ) :=
1

N

N∑
i=1

δXi .

The expression in (4.2) defines a map from ΩN to the space D of probability distri-
butions on C([0, 1];Rn). Hence, for E ⊂ D, we may consider the probability of

{(ω1, . . . , ωN )|µN (·) ∈ E},

in the product measure WN
ρ on ΩN . By the ergodic theorem, see e.g. [90, Theorem

A.9.3.], as N tends to infinity, the sequence of distributions µN converges weakly to
Wρ. Hence, if Wρ 6∈ E, it follows that

WN
ρ ({(ω1, . . . , ωN )|µN (·) ∈ E})↘ 0.
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In this, large deviation theory provides us with a much finer result, that the decay
is exponential and the exponent may be characterized solving a maximum entropy
problem [81].

Specifically, in our setting we let E = D(ρ0, ρ1), namely the set of distributions on
C([0, 1];Rn) having marginal densities ρ0 and ρ1 at times t = 0 and t = 1, respectively.
Then, Sanov’s theorem [208], [81, Theorem 6.2.10] asserts that, assuming the “prior”
Wρ does not have the required marginals, the probability of observing an empirical
distribution µN in a neighborhood of D(ρ0, ρ1) in the weak topology, decays as

e−N inf{D(P‖Wρ)|P∈D(ρ0,ρ1)}

as N → ∞. This large-deviations statement can be turned around in the spirit of
Gibbs conditioning principle (cf. [81, Section 7.3]), to deduce that, given as data the
marginal distributions ρ0, ρ1, the most likely distribution is the closest to Wρ in the
sense of relative entropy. But, in our setting, ρ is unspecified, and in light of the fact
that

D(P‖Wρ) = D(P‖W )− D(ρ0‖ρ),

the most likely random evolution between two given marginals is in fact the solution
of the Schrödinger Bridge Problem:

Problem 4.1.

(4.3) PSBP := argmin{D(P‖W ) | P ∈ D(ρ0, ρ1)}.

The optimal solution is referred to as the Schrödinger bridge between ρ0 and ρ1

over W , since its marginal flow {ρ(t, ·); 0 ≤ t ≤ 1}, which is the entropic interpolation
between ρ0 and ρ1, is seen as a “bridge” between the two marginals.

Next we discuss the structure of the solution and the reduction of the above to a
static problem.

Let P ∈ D be a finite-energy diffusion [102]. That is, under P , the canonical
coordinate process Xt(ω) = ω(t) has a (forward) Itô differential

(4.4) dXt = βtdt+ dWt

where βt is adapted to {F−t } (F−t is the σ-algebra of events up to time t) and

(4.5) EP
[∫ 1

0

‖βt‖2dt
]
<∞.

Conditioning the process on starting at X0 = x and ending at X1 = y gives

Pxy = P [ · | X0 = x,X1 = y] , Wxy = W [ · | X0 = x,X1 = y] .

These laws are referred to as the disintegrations of P and W with respect to the initial
and final positions [48]. Let also ρP01 and ρW01 be the joint initial-final time distributions
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under P and W , respectively. Then, we have the following decomposition of relative
entropy [103]

D(P‖W ) = EP
[
log

dP

dW

]
=

∫ ∫ [
log

ρP01(x, y)

ρW01(x, y)

]
ρP01(x, y)dxdy

+

∫ ∫ ∫ (
log

dP yx
dW y

x

)
dP yx ρ

P
01(x, y)dxdy.(4.6)

Clearly, since ρP01(x, y) and dP yx can be independently chosen, the choice P yx = W y
x

which actually makes the second summand equal to zero is optimal. Thus, Problem
4.1 reduces to the following “static” one:

Problem 4.2. Minimize

(4.7) D(ρ01‖ρW01) =

∫ ∫ [
log

ρ01(x, y)

ρW01(x, y)

]
ρ01(x, y)dxdy

over the set of densities

Π(ρ0, ρ1) :=

{
ρ01 on Rn × Rn |

∫
ρ01(x, y)dy = ρ0(x),

∫
ρ01(x, y)dx = ρ1(y)

}
.

One should note that the conditions defining Π are linear; the elements of Π(ρ0, ρ1)
are referred to as couplings between ρ0 and ρ1. If ρ∗01 is the solution to Problem 4.2,
i.e., the optimal coupling, then, evidently,

(4.8) P ∗(·) =

∫
Rn×Rn

Wxy(·)ρ∗01(dxdy),

solves11 Problem 4.1. The structure of the problem further endows P ∗ with the same
three-points transition density

p∗(s, x, t, y, u, z) =
p(s, x, t, y)p(t, y, u, z)

p(s, x, u, z)
, s < t < u,

as the prior – a property that is referred to by saying that it belongs to the same
reciprocal class as the prior measure [24, 130].

It is natural to consider the case when the prior is a Wiener measure with variance
ε, denoted by Wε and having transition kernel

pε(0, x, 1, y) = [2πε]
−n2 exp

[
−‖x− y‖

2

2ε

]
,

and to contemplate the limiting process when ε → 0. Indeed, using ρWε
01 (x, y) =

ρWε
0 (x)pε(0, x; 1, y) and the fact that∫ ∫ [

log ρWε
0 (x)

]
ρ01(x, y)dxdy =

∫ [
log ρWε

0 (x)
]
ρ0(x)dx

11Note that decomposition (4.6) and the resulting argument remain valid even when the prior
measure is induced by any, possibly non-Markovian, finite-energy diffusion P̄ , see (4.27) below.



RICHARD SINKHORN MEETS GASPAR MONGE 19

is independent of ρ01, we obtain

D(ρ01‖ρWε
01 ) = −

∫ ∫ [
log ρWε

01 (x, y)
]
ρ01(x, y)dxdy +

∫ ∫
[log ρ01(x, y)] ρ01(x, y)dxdy

(4.9)

=

∫ ∫
‖x− y‖2

2ε
ρ01(x, y)dxdy − S(ρ01) + constant,

where S is the differential entropy. Thus, Problem 4.2 of minimizing D(ρ01‖ρWε
01 ) over

the couplings Π(ρ0, ρ1) is equivalent to

(4.10) min
ρ01∈Π(ρ0,ρ1)

∫
‖x− y‖2

2
ρ01(x, y)dxdy + ε

∫
ρ01(x, y) log ρ01(x, y)dxdy.

It is seen that in the limit, as ε→ 0, the cost reduces to 1
2‖x−y‖

2 which is in the form
of the Kantorovich functional in 2.1. Thus, the Schrödinger Bridge Problem represents
a regularization of Optimal Mass Transport (OMT) obtained by subtracting from the
cost functional a term proportional to the entropy.

We have already seen that the Schrödinger’s bridge problem can be motivated in
three different ways. Firstly, via the original statistical mechanical thought-experiment
of E. Schrödinger (a large-deviations problem). Secondly, via Sanov’s theorem and
Gibbs conditioning principle, as a maximum entropy problem. It is an early and
important instance of an inference method that prescribes how to choose a posterior
distribution making the fewest number of assumptions beyond the available informa-
tion. This approach has been noticeably developed over the years by Jaynes, Burg,
Dempster, and Csiszár [132, 133, 39, 40, 84, 73, 74, 75]. Both of these two forms of
the problem have their roots in Boltzmann’s work [34]. The more recent third moti-
vation comes from regularized OMT [168, 169, 170, 156, 157, 46] which mitigates its
computational challenges [7, 22, 196].

4.3. Derivation of the Schrödinger system. The Lagrangian function of
Problem 4.2 has the form

L(ρ01, λ, µ) =

∫ ∫ [
log

ρ01(x, y)

ρW01(x, y)

]
ρ01(x, y)dxdy

+

∫
λ(x)

[∫
ρ01(x, y)dy − ρ0(x)

]
+

∫
µ(y)

[∫
ρ01(x, y)− ρ1(y)

]
.

Setting the first variation equal to zero, we get the (sufficient) optimality condition

1 + log ρ∗01(x, y)− log p(0, x, 1, y)− log ρW0 (x) + λ(x) + µ(y) = 0,

where we have used the expression ρW01(x, y) = ρW0 (x)p(0, x, 1, y) with p as in (4.1).
We get

ρ∗01(x, y)

p(0, x, 1, y)
= exp

[
log ρW0 (x)− 1− λ(x)− µ(y)

]
= exp

[
log ρW0 (x)− 1− λ(x)

]
exp [−µ(y)] .

Thus, the ratio ρ∗01(x, y)/p(0, x, 1, y) factors into a function of x times a function of
y. Let us denote them by ϕ̂(x) and ϕ(y), respectively. The optimal ρ∗01(·, ·) has then
the form the form

(4.11) ρ∗01(x, y) = ϕ̂(x)p(0, x, 1, y)ϕ(y),
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with ϕ and ϕ̂ satisfying

ϕ̂(x)

∫
p(0, x, 1, y)ϕ(y)dy = ρ0(x),(4.12)

ϕ(y)

∫
p(0, x, 1, y)ϕ̂(x)dx = ρ1(y).(4.13)

Let ϕ̂(0, x) = ϕ̂(x), ϕ(1, y) = ϕ(y) and

ϕ̂(1, y) :=

∫
p(0, x, 1, y)ϕ̂(0, x)dx, ϕ(0, x) :=

∫
p(0, x, 1, y)ϕ(1, y).

Then, (4.12)-(4.13) is equivalent to the system

ϕ̂(1, y) =

∫
p(0, x, 1, y)ϕ̂(0, x)dx,(4.14a)

ϕ(0, x) =

∫
p(0, x, 1, y)ϕ(1, y)dy(4.14b)

with the boundary conditions

(4.14c) ϕ(0, x) · ϕ̂(0, x) = ρ0(x), ϕ(1, y) · ϕ̂(1, y) = ρ1(y).

The question of existence and uniqueness of positive functions ϕ̂, ϕ satisfying (4.14a)-
(4.14b)-(4.14c), left open by Schrödinger, is a highly nontrivial one and has been
settled in various degrees of generality by Fortet, Beurling, Jamison and Föllmer
[106, 27, 131, 103], see also[157, 68]; note that both Fortet and Beurling predate
Sinkhorn’s work [220, 221] on a problem in statistics that turned out to be closely
related.

There are basically two ways to deal with the existence of solutions to the
Schrödinger system of equations (4.14a–4.14c). One is to prove existence for the dual
problem of the original convex optimization problem. This was first accomplished by
Beurling [27] leading to [131], see also the recent paper [68]. Alternatively, one can
try to prove convergence of a suitable successive approximation scheme. This was
first accomplished by Fortet [106], see also [58]. We outline Fortet’s results in Section
8.1. We remark that, in the special case where the marginals ρ0, ρ1 are Gaussian,
the Schrödinger system has a closed-form solution. This was only recently discovered
in [50]. The discrete counterpart of Fortet’s algorithm is the so-called IPF-Sinkhorn
algorithm which is discussed in Section 8.2. Also notice that in the recent paper [91]
(see also [159]), the bulk of Fortet’s paper has been rewritten filling in all the missing
steps and explaining the rationale behind his complex approximation scheme.

The pair (ϕ, ϕ̂) satisfying (4.14a–4.14c) is unique up to multiplication of ϕ by
a positive constant c and division of ϕ̂ by the same constant. At each time t, the
marginal ρ(t, ·) factors as

(4.15) ρ(t, x) = ϕ(t, x) · ϕ̂(t, x).

The factorization (4.15) resembles Born’s relation (in quantum theory)

ρ(t, x) = ψ(t, x) · ψ̄(t, x)
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with ψ and ψ̄ satisfying two adjoint equations like ϕ and ϕ̂. Moreover, the solution
of Problem 4.1 exhibits the following remarkable reversibility property: Swapping the
two marginal densities ρ0 and ρ1, the new solution is simply the time reversal of
the previous one, cf. the title “On the reversal of natural laws” of [212]. These are
the remarkable analogies to quantum mechanics which appeared to Schrödinger very
worth of reflection. But, wait a minute: When Schrödinger poses his question, the
very foundations of probability theory are still missing, the notion of stochastic process
has not been introduced yet. Although Wiener had given a rigorous construction of
Wiener measure in 1923 [245], there was hardly any theory of continuous parameter
stochastic processes in early 1930s. Many relevant results such as Sanov’s theorem
and multiplicative functionals transformations of Markov processes [129] were not
available. How could Schrödinger formulate and, to a large extent, solve such an
abstract problem in the early 1930’s? Schrödinger, in his countryman Boltzmann’s
style, discretizes space to be able to compute by the De Moivre-Stirling formula the
most likely joint initial-final distribution very much like Boltzmann had done in 1877
[34].

In [194], the Schrödinger bridge problem was considered in the case when only
samples of the boundary marginals are available. A numerical method has been devel-
oped which has potential to work in high-dimensional settings employing constrained
maximum likelihood in place of the nonlinear boundary coupling and importance
sampling to propagate ϕ and ϕ̂. Another paper dealing with a similar problem is [25].

4.4. Stochastic control formulation. In 1975 Jamison [131] showed that the
solution of the Schrödinger bridge problem is an h-path process in the sense of Doob
[87], [88, p. 566]. Indeed, dividing both sides of (4.11) by ρ0(x) (assumed everywhere
positive), we get

(4.16) p∗(0, x, 1, y) =
1

ϕ(x)
p(0, x, 1, y)ϕ(y),

where ϕ, in Doob’s language, is space time harmonic satisfying

(4.17)
∂ϕ

∂t
+

1

2
∆ϕ = 0.

The solution is namely obtained from the prior distribution via a multiplicative func-
tional transformation of Markov processes [129]. It is worthwhile to mention that
Francesco Guerra has connected such function to the importance function of neutron
transport theory [118].

The connection between Schrödinger bridges and stochastic control, clearly es-
tablished in [77], was prepared by work in the latter field on the so-called logarithmic
transformation of parabolic differential equations [99, 100, 101, 123, 142, 172, 30] as
well as by work in mathematical physics [118, 250]. The Schrödinger bridge problem
can be turned, thanks to Girsanov’s theorem, into a stochastic calculus of varia-
tions problem [175, 243, 79, 1] which, in turn, can be reformulated in the language
of stochastic control [77, 78, 190, 96]. Let P ∈ D be a finite-energy diffusion with
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forward differential (4.4). Then, by Girsanov’s theorem [143],

log
dP

dW
= log

ρP0 (X0)

ρW0 (X0)
+

∫ 1

0

βtdXt −
∫ 1

0

1

2
‖βt‖2dt, P a.s.,

= log
ρP0 (X0)

ρW0 (X0)
+

∫ 1

0

βtdWt +

∫ 1

0

1

2
‖βt‖2dt, P a.s..

(4.18)

By the finite energy condition (4.5),

Yt :=

∫ t

0

βτdWτ

is a martingale and has therefore constant expectation. Since Y0 = 0, we have

EP
[∫ 1

0

βtdWt

]
= 0.

Then (4.18) yields

(4.19) D(P‖W ) = EP
[
log

dP

dW

]
= D(ρ0‖ρW0 ) + EP

[∫ 1

0

1

2
‖βt‖2dt

]
.

Note that D(ρ0‖ρW0 ) is constant over D(ρ0, ρ1). We then get a stochastic control
formulation. Problem 4.1 (when the prior has variance ε) is equivalent to

Problem 4.3.

Minimizeu∈U J(u) = E
[∫ 1

0

1

2ε
‖ut‖2dt

]
,

subject to dXt = utdt+
√
εdWt, X0 ∼ ρ0(x), X1 ∼ ρ1(y),

(4.20)

where the family U consists of adapted, finite-energy control functions.

The optimal control is of the feedback type

(4.21) u∗(t, x) = ε∇ logϕ(t, x),

where (ϕ, ϕ̂) solve the Schrödinger system

∂ϕ

∂t
+
ε

2
∆ϕ = 0,(4.22a)

∂ϕ̂

∂t
− ε

2
∆ϕ̂ = 0,(4.22b)

ϕ(0, x) · ϕ̂(0, x) = ρ0(x),(4.22c)

ϕ(1, y) · ϕ̂(1, y) = ρ1(y).(4.22d)

4.5. Fluid-dynamic formulation. Problem 4.3 leads immediately to the fol-
lowing fluid dynamic problem
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Problem 4.4.

inf
(ρ,u)

∫
Rn

∫ 1

0

1

2
‖u(t, x)‖2ρ(t, x)dtdx,(4.23a)

∂ρ

∂t
+∇ · (uρ)− ε

2
∆ρ = 0,(4.23b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y).(4.23c)

where u(·, ·) varies over continuous functions on [0, 1]× Rn.

Remark 4.5. Contrary to what is often stated in the literature (see e.g. [153])12,
Problem 4.4 is not equivalent to Problems 4.1, 4.2 and 4.3 in that it only reproduces
the optimal entropic interpolating flow {ρ∗(t, ·); 0 ≤ t ≤ 1}. Information about cor-
relations at different times and smoothness of the trajectories in the support of the
measure P ∗ is here lost. Indeed, let (ρ∗, u∗) be optimal for Problem 4.4 and define
the current velocity field [176]

(4.24) v∗(t, x) := u∗(t, x)− ε

2
∇ log ρ∗(t, x).

Assume that v∗ guarantees existence and uniqueness of the following initial value
problem on [0, 1] for any deterministic initial condition

Ẋt = v∗(t,Xt), X0 ∼ ρ0dx.

Then the probability density ρ(t, x) of Xt satisfies the continuity equation

∂ρ

∂t
+∇ · (v∗ρ) = 0

as well as (4.23b) with the same initial condition and therefore coincides with ρ∗(t, x).
2

It appears that, as ε↘ 0, the solution to this problem converges to the solution
of the Benamou-Brenier Optimal Mass Transport problem [22]. This is indeed the
case [168, 169, 170, 157, 156]. The analysis in Remark 4.5, however, suggests that
an alternative fluid-dynamic problem characterization of the entropic interpolation
flow {ρ∗(t, ·); 0 ≤ t ≤ 1} may be possible. Indeed, such alternative time-symmetric
problem was derived in [54], see also [112]:

Problem 4.6.

inf
(ρ,v)

∫
Rn

∫ 1

0

[
1

2
‖v(t, x)‖2 +

ε2

8
‖∇ log ρ‖2

]
ρ(t, x)dtdx,(4.25a)

∂ρ

∂t
+∇ · (vρ) = 0,(4.25b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y).(4.25c)

The two criteria differ by a (scaled) Fisher information functional

I(ρ) =

∫
‖∇ log ρ(t, x)‖2ρ(t, x)dx

12We contributed ourselves to this confusion in [54, Section 5].
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while the Fokker-Planck equation has been replaced by the continuity equation. Both
Problems 4.4 and 4.6 can be thought of as regularizations of the Benamou-Brenier
problem [22] and as dynamic counterparts of (4.10) [168, 169, 170, 157, 156, 52, 54].

Remark 4.7. The problem of minimizing the Yasue [247] action (4.25a) under
the continuity equation (4.25b) and boundary conditions (4.25c) was formulated by
Carlen in [45, p.131]. He was investigating there possible connections between OMT
and Nelson’s stochastic mechanics. He wrote: “... the Euler-Lagrange equations for
it are not easy to understand”. The solution to Carlen’s problem was provided in [54,
Section 5] through the fluid-dynamic problem associated to the Schrödinger bridge.
Carlen’s statement has caused several authors (see e.g. [152]) to believe that Yasue in
[247] had already discussed this problem. This is not true as what Yasue developed
there, using Nelson’s integration by parts formula for semimartingales [176, Theorem
11.12], was a stochastic calculus of variations which may be viewed as the “particle”
form of Hamilton principle in stochastic mechanics. The fluid dynamic counterpart of
this principle was developed in [117], see also [177], but with a different action (there
is a minus in front of the Fisher information functional)! For a clarification of the
connection between Schrödinger bridges, Nelson’s stochastic mechanics and Bohm’s
stochastic mechanics [31, 32, 33] through calculus of variations in the Wasserstein
space see [72, Section VI]. 2

4.6. General prior. All of what we have seen in this section can be generalized
to a general Markovian prior measure. Indeed, suppose that P̄ is a Markov finite
energy diffusion [102]. Under P̄ , the canonical coordinate process has a forward Itô
differential

dXt = f(t,Xt)dt+
√
εdWt.

Let p̄(s, x, t, y) be the corresponding transition density. Consider the Schrödinger
bridge problem with prior P̄ , namely

Problem 4.8.

(4.26) Minimize D(P‖P̄ ) over P ∈ D(ρ0, ρ1).

Then, a decomposition like (4.6) turns the problem into Problem 4.2. In partic-
ular, (4.8) is replaced by

(4.27) P ∗(·) =

∫
Rn×Rn

P̄xy(·)ρ∗01(dxdy).

The various dynamic formulations get modified accordingly. Problem 4.3 becomes

Problem 4.9.

min
u∈U

J(u) = E
[∫ 1

0

1

2ε
‖ut‖2dt

]
,

dXt = [f(t,Xt) + ut] dt+
√
εdWt, X0 ∼ ρ0(x)dx, X1 ∼ ρ1(y)dy,

(4.28)
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where the family U consists of adapted, finite-energy control functions.

Then (4.21) is replaced by

(4.29) u∗t = ε∇ logϕ(t,Xt),

where (ϕ, ϕ̂) now solve the Schrödinger system

∂ϕ

∂t
+ f · ∇ϕ+

ε

2
∆ϕ = 0,(4.30a)

∂ϕ̂

∂t
+∇ · (fϕ̂)− ε

2
∆ϕ̂ = 0,(4.30b)

with the same boundary conditions. The fluid dynamic formulations also change
accordingly. Let

v̄(t, x) := f(t, x)− ε

2
∇ log ρ̄(t, x)

be the current velocity of the prior process. Then Problem 4.6 becomes

inf
(ρ,v)

∫
Rn

∫ 1

0

[
1

2
‖v(t, x)− v̄(t, x)‖2 +

ε2

8

∥∥∥∥∇ log
ρ(t, x)

ρ̄(t, (x)

∥∥∥∥2
]
ρ(t, x)dxdt,(4.31a)

∂ρ

∂t
+∇ · (vρ) = 0,(4.31b)

ρ0 = ν0, ρ1 = ν1,(4.31c)

where the two criteria differ by a relative Fisher information term.

The theory can be further extended to the case of a general diffusion coefficient
(anisotropic diffusion) and to the situation where the prior Markovian measure fea-
tures creation and/or killing, so that the probability mass is not preserved at each
time [79, 1, 244, 51]. Both cases are treated in Section 5.

Remark 4.10. We like to stress here one aspect of (4.8), namely that this is
just a representation of the solution P ∗ even if we have been able to solve Problem
4.2. This representation needs to be supplemented with the multiplicative functional
relation between transition densities

(4.32) p∗(s, x, t, y) =
1

ϕ(s, x)
p̄(s, x, t, y)ϕ(t, y), 0 ≤ s < t ≤ 1,

and the associated relation between drifts (4.29). We shall come back to this point
when discussing the discrete state space case. 2

5. Stochastic control and general bridge problems. The classical proba-
bilistic literature on the Schrödinger bridge problem only considers the case in which
the noise and control matrices are constant, diagonal and nonsingular (often the iden-
tity matrix), see Problem 4.9. This permits, in particular, to employ the Girsanov
transformation (4.18). In many applications, however, such a requirement represents
a serious limitation. Noise may not affect all components of the state vector like in the
controlled oscillator (6.5) and/or the control channel may be dictated by technological
constraints such as in some engineering applications. Central in such applications are
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problems for controlled Gauss-Markov models13: Find an adapted control u minimiz-
ing

J(u) = E
{∫ 1

0

‖u(t)‖2 dt
}
,

among those which achieve the transfer

dx(t) = A(t)x(t)dt+B(t)u(t)dt+B1(t)dWt,

x(0) ∼ N (m0,Σ0), x(1) ∼ N (m1,Σ1).

It is therefore important to pose the minimum energy steering problem for probability
distributions in a more general setting where the original large deviations/maximum
entropy motivation might be lost. This will make salient the advantage of the control
formulation which always makes perfect sense and in which the free (uncontrolled)
evolution plays the role of the prior model. We proceed in this section to see how
much of the fluid-dynamic formulation can be extended to the general case [51].

We consider a cloud of particles with density ρ(t, x), x ∈ Rn, which evolves
according to the transport-diffusion equation

(5.1)
∂ρ

∂t
+∇ · (f(t, x)ρ) + V (t, x)ρ =

1

2

n∑
i,j=1

∂2(aij(t, x)ρ)

∂xi∂xj
,

with ρ(0, ·) = ρ0(·) a probability density. Differently from previous literature on
connections to Feynman-Kac [244, 190, 78] and following our desire to be able to
model inertial particles as in the previous section, we assume that the matrix a(t, x) =
[aij(t, x)]mi,j=1 is only positive semidefinite of constant rank on [0, 1]× Rn with

aij(t, x) =
∑
k

σik(t, x)σkj(t, x)

for a matrix σ(t, x) = [σik(t, x)] ∈ Rn×m of constant rank m ≤ n. Notice that the
presence of V (t, x) ≥ 0 allows for the possibility of loss of mass, so that the integral of
ρ(t, x) over Rn is not necessarily constant. This flexibility permits to model particles
satisfying

(5.2) dXt = f(t,Xt)dt+ σ(t,Xt)dWt,

which are absorbed at some rate by the medium in which they travel or, if the sign
of V is negative, created out of this same medium [144, p. 272]. We assume that f
and σ are smooth and that the operator

L =

n∑
i,j=1

aij(t, x)∂xi∂xj +

n∑
j=1

fj(t, x)∂xj − ∂t

is hypoelliptic satisfying Hörmander’s condition [124, 183]. Hypoelliptic diffusions
model important processes in many branches of science: Ornstein-Uhlenbeck stochas-
tic oscillators, Nyquist-Johnson circuits with noisy resistors, in image reconstruction

13In a twin paper [61], we shall review the by now vast literature [126, 127, 219, 116, 251, 50, 52,
55, 56, 57, 60, 119, 13, 14, 15, 16, 17, 115, 202, 203, 180, 181, 205, 182, 3, 67] on optimal steering of
probability distributions for Gauss-Markov models in continuous and discrete time, over a finite or
infinite time horizon, with or without state and/or control constraints and applications.
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based on Petitot’s model of neurogeometry of vision [37], etc. The “reweighing” of
the original measure of the Markov process (5.2) when V is unbounded is a delicate
issue and can be accomplished via the Nagasawa transformation, see [244, Section 8B]
for details.

Let us now suppose that (5.1) represents a prior evolution and that at time t = 1
we measure an empirical probability density ρ1(·) 6= ρ(1, ·) as dictated by (5.1). Thus,
the model (5.1) is thought not to be consistent with the estimated end-point empirical
distribution. Yet, suppose that one has reasons to believe14 that the actual evolution
was close to the nominal one and that only the actual drift field is different, perturbed
by an additive term σ(t, x)u(t, x), i.e.,

v(t, x) = f(t, x) + σ(t, x)u(t, x).

Notice that the control variables, which may be fewer than n, act through the same
channels of the diffusive part. The assumption that stochastic excitation and control
enter through the same “channels” is natural in certain applications as explained
and treated in [50] for linear diffusions. The case were these channels may differ is
considered in [52].

Taking (5.1) as a reference evolution and given the terminal probability density
ρ1, we are led to consider the following generalization of Problem 4.4:

inf
(ρ,u)

∫
Rn

∫ 1

0

[
1

2
‖u‖2 + V (t, x)

]
ρ(t, x)dtdx,(5.3a)

∂ρ

∂t
+∇ · ((f + σu)ρ) =

1

2

n∑
i,j=1

∂2 (aijρ)

∂xi∂xj
,(5.3b)

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x).(5.3c)

When [aij ] does depend on x, the connection to a relative entropy problem on
path space is apparently available only under rather restrictive assumptions such as
uniform boundness of a [97, Section 5]. Problem (5.3) thus appears as a generalization
of Problem 4.4 which is not necessarily connected to a large deviations problem. In
[43], a special case of Problem 5.3 has been considered (V ≡ 0, σ(t, x) = B(t)).
For certain classes of drifts f , a Wasserstein proximal algorithm has been used to
numerically solve a pair of Initial Value Problems equivalent to (5.10) below. This
result has been generalized to the situation where there are hard state constraints
(the diffusion paths have to remain in a bounded domain) in [44]. We mention here
that chance state constraints were considered for the covariance control problem in
[180]. Moreover, input constraints for discrete and continuous time models have been
considered in [14, 182]. In [204, 248], a nonlinear covariance control problem was
studied by iteratively solving an approximate linearized problem and by differential
dynamic programming, respectively.

We provide below in some detail the variational analysis for (5.3) which can be
viewed as a generalization of that of Section 3.3. Let Pρ0ρ1 be the family of flows
of probability densities satisfying (5.3c). Let U be a family of continuous feedback

14Alternative reasoning based on Gibbs conditioning principle, as before, may be possible.
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control laws u(·, ·). Consider the unconstrained minimization of the Lagrangian over
Pρ0ρT × U

L(ρ, u, λ) =

∫
Rn

∫ 1

0

[(
1

2
‖u(t, x)‖2 + V (t, x)

)
ρ+ λ(t, x)

(
∂ρ

∂t
+∇ · ((f + σu)ρ)

−1

2

n∑
i,j=1

∂2

∂xi∂xj
(aij(t, x)ρ)

 dtdx,
where λ is a C1 Lagrange multiplier. After integration by parts, assuming that limits
for x→∞ are zero, and observing that the boundary values are constant over Pρ0ρ1 ,
we get the problem
(5.4)

inf
(ρ,u)∈Xρ0ρ1×U

∫
Rn

∫ 1

0

1

2
‖u‖2 + V −

∂λ
∂t

+ (f + σu) · ∇λ+
1

2

n∑
i,j=1

aij
∂2λ

∂xi∂xj

 ρdtdx
Pointwise minimization of the integrand with respect to u for each fixed flow of prob-
ability densities ρ gives

(5.5) u∗ρ(t, x) = σ′∇λ(t, x).

Plugging this form of the optimal control into (5.4), we get the functional of ρ ∈ Pρ0ρ1
(5.6)

J(ρ, λ) =

∫
Rn

∫ 1

0

∂λ
∂t

+ f · ∇λ+
1

2
∇λ · a∇λ− V +

1

2

n∑
i,j=1

aij
∂2λ

∂xi∂xj

 ρdtdx.
We then have the following result:

Proposition 5.1. If ρ∗ satisfies

(5.7)
∂ρ

∂t
+∇ · ((f + a∇λ)ρ) =

1

2

n∑
i,j=1

∂2 (aijρ)

∂xi∂xj
,

with λ a solution of the HJB-like equation

(5.8)
∂λ

∂t
+ f · ∇λ+

1

2

n∑
i,j=1

aij(t, x)
∂2λ

∂xi∂xj
+

1

2
∇λ · a∇λ− V = 0,

and ρ∗(1, ·) = ρ1(·), then the pair (ρ∗, u∗) with u∗ = σ′∇λ is a solution of (5.3).

Of course, the difficulty lies with the nonlinear equation (5.8) for which no bound-
ary value is available. Together, ρ(t, x) and λ(t, x) satisfy the coupled equations (5.7)-
(5.8) and the split boundary conditions for ρ(t, x) in (5.3c). Let us, however, define

ϕ(t, x) = exp [λ(t, x)], (t, x) ∈ [0, 1]× Rn.

If λ satisfies (5.8), we get that ϕ satisfies the linear equation

(5.9)
∂ϕ

∂t
+ f · ∇ϕ+

1

2

n∑
i,j=1

aij(t, x)
∂2ϕ

∂xi∂xj
= V ϕ.
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Moreover, for ρ satisfying (5.7) and ϕ satisfying (5.9), let us define

ϕ̂(t, x) =
ρ(t, x)

ϕ(t, x)
, (t, x) ∈ [0, 1]× Rn.

Then a long but straightforward calculation shows that ϕ̂ satisfies the original equation
(5.1). Thus, we have the system of linear PDE’s

∂ϕ

∂t
+ f · ∇ϕ+

1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
= V ϕ,(5.10a)

∂ϕ̂

∂t
+∇ · (fϕ̂)− 1

2

n∑
i,j=1

∂2 (aijϕ̂)

∂xi∂xj
= −V ϕ̂,(5.10b)

nonlinearly coupled through their boundary values as

(5.10c) ϕ(0, ·)ϕ̂(0, ·) = ρ0(·), ϕ(1, ·)ϕ̂(1, ·) = ρ1(·).

Equations (5.10a-5.10c) constitute a generalized Schrödinger system. We have there-
fore established the following result.

Theorem 5.2. Let (ϕ(t, x), ϕ̂(t, x)) be nonnegative functions satisfying (5.10a)-
(5.10c) for (t, x) ∈ ([0, 1]× Rn). Suppose ϕ is everywhere positive. Then the pair
(ρ∗, u∗) with

u∗(t, x) = σ′∇ logϕ(t, x),(5.11a)

∂ρ

∂t
+∇ · ((f + a∇ logϕ)ρ) =

1

2

n∑
i,j=1

∂2 (aijρ)

∂xi∂xj
,(5.11b)

is a solution of (5.3).

Establishing existence and uniqueness (up to multiplication/division of the two
functions by a positive constant) of the solution of the Schrödinger system is extremely
challenging even when the diffusion coefficient matrix a is constant and nonsingular.
Particular care is required in the case when V is unbounded or singular [1]. Never-
theless, if the fundamental solution p of (5.1) is everywhere positive on ([0, 1]× Rn),
which is to be expected in the hypoelliptic case [124, 146], existence and unique-
ness follows from a deep result of Beurling [27] suitably extended by Jamison [130,
Theorem 3.2], [244, Section 10].

Remark 5.3. It is interesting to note that although (5.3) is not convex in (ρ, u),
it can be turned into a convex problem in a new set of coordinates (ρ,m) where
m = ρu, in which case it becomes

inf
(ρ,m)

∫
Rn

∫ 1

0

[
1

2

‖m‖2

ρ(t, x)
+ V (t, x)ρ(t, x)

]
dtdx,(5.12a)

∂ρ

∂t
+∇ · (fρ+ σm) =

1

2

n∑
i,j=1

∂2 (aijρ)

∂xi∂xj
,(5.12b)

ρ(0, ·) = ρ0(·), ρ(1, ·) = ρ1(·).(5.12c)

This type of coordinate transformation has been effectively used in [22] in the context
of optimal mass transport. 2
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6. The atomic hypothesis, microscopes and stochastic oscillators. Richard
Feynman, in his first lecture of the famous Caltech series, stated: “If, in some cata-
clysm, all of scientific knowledge were to be destroyed, and only one sentence passed
on to the next generation of creatures, what statement would contain the most in-
formation in the fewest words? I believe it is the atomic hypothesis that all things
are made of atoms - little particles that move around in perpetual motion, attracting
each other when they are a little distance apart, but repelling upon being squeezed
into one another.”

The atomic hypothesis apparently originates with Democritus of Abdera (a colony
of Miletus in nowadays Greek Thrace) and his mentor Leucippus. Democritus, ac-
cording to the Greek historian Diogenes Laërtius, (Democritus, Vol. IX, 44) states:

αρχάς ειναι των óλων ατ óµoυς καί κενóν, τα δ′άλλα πάντα νενoµίσθαι

which (Robert Drew Hicks (1925)) can be translated as: “The first principles of the
universe are atoms and empty space; everything else is merely thought to exist. ”

Democritus had (correctly) imagined that the wearing down of a wheel and the
drying of clothes would be due to small particles of wood and water, respectively,
flying out of them. Then, he had the following philosophical argument (according to
Aristotle’s report): If matter were infinitely divisible, only points with no extension
would remain. But putting together an arbitrary number of them, we would still get
things without extension15. Democritus was largely ignored in ancient Athens. He is
said to have been disliked so much by Plato that the latter wished all of his books
burned. It should also be stressed that, differently from the subsequent Plato and
Aristoteles, the atomists Leucippus and Democritus, following the scientific rational-
ist philosophy associated with the Miletus school, wanted to investigate in the Vth
century BCE the causes of natural phenomena rather than their significance !

The long history of the atomic hypothesis intersects twice with the history of the
microscope. The first intersection simply occurs because the invention of this instru-
ment at the beginning of the seventeen century made it possible to observe the very
irregular motion of particles immersed in a fluid. These observations of “animated”
or “irritable” particles were made, among others, by van Leeuwenhoek, Buffon, Spal-
lanzani long before the British botanist Robert Brown16. Many other important
contributions to the atomistic theory had come before Brown, among others, from
Dalton and Avogadro. By 1877 the kinetic theory asserting that Brownian motion
of particles is caused by bombardment by the molecules of the fluid was rather well
established.

In 1877 [34], Boltzmann poses and solves the first large deviation and relative
maximum entropy problem in history where his “loaded dice” are actually molecules!
Nevertheless, the theory is not open to experimental verification as the velocity of

15This kind of subtle argument has its roots in the Elean philosophical school of Parmenides and
Zeno (the one of the turtle-Achilles paradox). According to Diogenes Laërtius, Leucippus was a pupil
of Zeno. Elea, nowadays Velia, located approximatively 90 miles south-east of Naples, was a Greek
colony flourishing in the Vth century BCE.

16In [176, Chapter 2], Edward Nelson writes about Robert Brown: “His contribution was to
establish Brownian motion as an important phenomenon, to demonstrate clearly its presence in
inorganic as well as organic matter, and to refute by experiment facile mechanical explanations of
the phenomenon”.
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Brownian particles cannot be measured accurately. At the beginning of the twentieth
century, there are still prominent scientists such as Ostwald and Mach who are not
convinced of the existence of atoms and molecules due to their “positivistic philosoph-
ical attitude” (Albert Einstein [210, p.49]). In 1905 Einstein (and , independently, in
1906 Smoluchowski), proposes a p.d.e. model which is open to the experimental check
of measuring the diffusion coefficient, thereby circumventing the need to measure the
velocity of Brownian particles. This is accomplished in 1908 by Perrin [195, Section
3] some 2, 350 years after Democritus’ argument! Meanwhile, in 1908, a fundamental
step in the direction of a large body of modern science is taken by Paul Langevin in
[149]. He argues that the equation of motion has the form

(6.1) m
d2x

dt2
= −γ dx

dt
+ F, γ > 0,

where F is a complementary force which maintains the agitation of the particle which
the viscous resistance would stop without it. This is the first stochastic differential
equation in history which is written down long before the relative probabilistic foun-
dations and concepts (Wiener process) are introduced! After important contributions
by a number of theoretical physicists and engineers such as Fokker and Planck, the
Nyquist-Johnson model for RLC networks with noisy resistors in 1928 [135, 179], we
come in 1930/31 to the accepted model for physical Brownian motion in a conserva-
tive force field [236, 141, 47]17, [176, Chapter 10] given by the stochastic oscillator

dx(t) = v(t) dt,(6.2a)

dv(t) = −βv(t) dt− 1

m
∇V (x(t))dt+ σdWt,(6.2b)

with x(t0) = x0 and v(t0) = v0 a.s., where w(t) is a standard 3-dimensional Wiener
process and Einstein’s fluctuation-dissipation relation holds

(6.3) σ2 = 2kTβ.

Here k is Boltzmann’s constant and T is the absolute temperature of the fluid. The
original Einstein-Smoluchowski theory is the high-friction limit of this model [176,
Theorem 10.1]18. Condition (6.3) guarantees the existence and the Boltzmann-Gibbs
nature of an invariant measure for (6.2) with density

(6.4) ρBG(x, v) = Z−1exp

[
−H(x, v)

kT

]
, for H(x, v) =

1

2
m‖v‖2 + V (x),

and Z is a suitable normalizing constant (partition function), see [121, 53] for a
generalization of this result.

These models have since played a central role in many areas of science besides
microphysics such as electric circuits [179], astronomy [47], mathematical finance since
[11], biology, chemistry, etc. In more recent times, stochastic oscillators play a central

17Ornstein and Uhlenbeck only considered the case of a quadratic potential leading to a Gauss-
Markov model in phase space.

18Like the Aristotelian F = mv, often observed in nature, is the high friction limit of the Newto-
nian F = ma .
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Fig. 4: Surface topography: Velocity-dependent feedback control used to reduce ther-
mal noise of a cantilever in Atomic Force Microscopy.

role in cold damping feedback where (6.2) is replaced by

dx(t) = v(t) dt,(6.5a)

dv(t) = −βv(t) dt+ u(x(t), v(t))dt− 1

m
∇V (x(t))dt+ σdWt,(6.5b)

The purpose of this feedback control action is to reduce the effect of thermal noise
on the motion of an oscillator by applying a viscous-like force, which is the very first
feedback control action mathematically analyzed [166]. James Clerk Maxwell writes
there: “In one class of regulators of machinery, which we may call moderators, the
resistance is increased by a quantity depending on the velocity”. The first imple-
mentation on electrometers [171] dates back to the fifties. Since then, it has been
successfully employed in a variety of areas such as atomic force microscopy (AFM)
[162] (second intersection!), see19 Figure 4, polymer dynamics [86, 38] and nano to
meter-sized resonators, see [93, 165, 215, 241, 197]. For (6.5), the feedback control
action u(t) = −αv(t), α > 0, asymptotically steers the phase space distribution to
the steady state

(6.6) ρ̄(x, v) = Z̄−1exp

[
−H(x, v)

kTeff

]
,

where the effective temperature Teff satisfies

Teff =
β

β + α
T < T.

19Notice that the experimental apparatus here is partially inspired by that of Kappler [141] with
a light being shined onto a small mirror and the angle being measured through the position of the
reflected spot a large distance away.
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Fig. 5: Inertial particles: trajectories in phase space

These new applications also pose new physics questions as the system is driven to
a non-equilibrium steady state [199, 145, 35, 191]. In [95], a suitable efficiency measure
for these diffusion-mediated devices was introduced which involves a class of stochastic
control problems. Stochastic oscillators play also an important role in accelerating
convergence of stochastic gradient descent for neural networks [189, Chapter 6], [49].

In [53], the problem of asymptotically driving system (6.5) to a desired steady
state corresponding to reduced thermal noise was considered. Among the feedback
controls achieving the desired asymptotic transfer, it was found that the least energy
one is characterized by time-reversibility. This problem has its roots in the classical
covariance control of Skelton, Grigoriadis and collaborators [126, 127, 219, 116, 251].

The problem of steering with minimum effort such a system in finite time to a
target steady state distribution was also solved in [53] as a generalized Schrödinger
bridge problem. The system can then be maintained in the desired state state through
the optimal steady-state feedback control. The solution, in the finite-horizon case,
involves a space-time harmonic function ϕ satisfying

(6.7)
∂ϕ

∂t
+ v · ∇xϕ+ (−βv − 1

m
∇xV ) · ∇vϕ+

σ2

2
∆vϕ = 0.

Here − logϕ plays the role of an artificial, time-varying potential under which the
desired evolution takes place. This two-step control strategy is effectively illustrated
by the following simple Gaussian example. The system

dx(t) = v(t)dt

dv(t) = −v(t)dt+ u(t)dt− x(t)dt+ dWt

is first optimally steered from time t = 0 to time t = 1 between the initial and
final Gaussian marginals N (0, (1/2)I) and N (0, (1/24)I), respectively. The latter
distribution is then maintained through constant feedback in this terminal desired
state; see Figure 5 where the transparent tube represents the 3-standard deviation
region of the state distribution.
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7. Minimizing the free energy. We now proceed to clarify how the problems
considered by Sinkhorn [220, 221] are connected to Schrödinger bridges and to ther-
modynamical free energy. To achieve this in the most transparent way, we turn to
the discrete setting.

7.1. Regularized transport problems. Let us first recall the notion of the
simplex of probability distributions on a finite set. Let V be a vector space and
A ⊆ V . The convex hull [206] of A, written conA, is the intersection of all convex
subsets of V containing A. The convex hull of n+ 1 affinely independent20 points of a
Euclidean space is called an n-simplex. For example, a 1-simplex is a line segment, a
2-simplex is a triangle and a 3-simplex is a tetrahedron, and so on. Let D(X ) denote
the family of all probability distributions on the sample space X = {1, 2, . . . , n}. Then
D(X ) is an (n− 1)-simplex whose vertices are the distributions pi(j) = δij , where δij
is the Kronecker delta.

The discrete OMT problem [200, Vol. I] has been popularized in the following
form. Suppose there are n mines with mine i producing the fraction pi of the total
production. There are also n factories which need the raw material from the mines. To
operate, factory j needs the fraction qj of the total available supply. Let C = (cij)

n
i,j=1

be a matrix of “transportation costs”21 with nonnegative elements. On D(X ), we can
then define a metric in the following way: Given the two probability distributions
p, q ∈ D(X ), let Π(p, q) be the family of probability distributions on X × X that are
“couplings” of p and q, namely π ∈ Π(p, q) has marginals p and q, respectively. Any
π ∈ Π(p, q) represents a feasible transport plan, the quantity πij representing the
amount of the demand of factory j which is satisfied by mine i. Then, the discrete
OMT problem of minimizing the total cost of transportation while respecting the
constraints leads to the optimal transport distance between p and q defined by

(7.1) dC(p, q) := min
π∈Π(p,q)

∑
i,j

cijπij .

When cij = d(i, j)2, where d(·, ·) is a distance on X × X ,

W2(p, q) := (dC(p, q))
1/2

.

is called earth mover distance (Wasserstein 2-distance). It can be shown [196, Propo-
sition 2.2] that W2 is a bona fide distance on D(X ). This distance has recently found
important applications in many diverse fields of science such as economics, physics, en-
gineering and probability, and in particular, in information engineering for problems of
imaging (DTI, multimodal, color, etc), robust-efficient transport over networks, spec-
tral analysis, collective dynamics, etc. A regularized version of (7.1), which features
important algorithmic/computational advantages [76, 196], is obtained by subtracting
a term proportional to the entropy

(7.2) inf
π∈Π(p,q)

∑
i,j

cijπij − εS(π)

 , S(π) = −
∑
ij

πij log(πij),

20The points x1, x2, . . . , xn+1 are called affinely independent if every point x in their convex hull
admits a unique representation as convex combination of the points.

21cij is the cost of transporting one unit of material from mine i to factory j.
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for ε > 0. Notice, in particular, that the resulting functional

(7.3) J(π) =
∑
i,j

cijπij + ε
∑
ij

πij log(πij)

is strictly convex in π.

7.2. Thermodynamic systems: Statics. We consider a physical system with
state space X = {1, 2, . . . ,M}. We can think of this mesoscopic description as orig-
inating from a microscopic description where the phase space, in Boltzmann’s style,
has undergone a “coarse graining” through subdivision into small cells which is what
we typically observe. Each of the cells represents a mesoscopic state. While the
microscopic states are equally likely, this is no more true for the macroscopic states
which correspond to different numbers of microstates.

For each macroscopic state x we consider its energy Ex ≥ 0. The function
H : x 7→ Ex is referred to as the Hamiltonian. The thermodynamic states of the
system are given by probability distributions on Z reflecting how many microscopic
states correspond to the macroscopic ones, namely by D(X ). On D(X ), we define the
internal energy as the expected value of the Energy observable in state π, namely,

(7.4) U(π) = Eπ{H} =
∑
x

Exπx = 〈E, π〉,

where E denotes the n-dimensional vector with components Ex. Let us also introduce
the Gibbs entropy

(7.5) SG(π) = kS(π) = −k
∑
x

πx log πx,

where k is Boltzmann’s constant. As is well-known, SG is nonnegative and strictly
concave on D(X ). Let Ē be a constant satisfying

(7.6) min
x
Ex ≤ Ē ≤

1

n

∑
x

Ex.

We can think of Ē as the energy of the underlying conservative microscopic system
(the upper bound 1

n

∑
lEl in (7.6) guarantees existence of a positive multiplier, see

below). We now consider the following Maximum Entropy problem:

max {SG(π) | π ∈ D(X )}(7.7a)

subject to U(π) = Ē.(7.7b)

This is an (important) instance of a class of maximum entropy problems originating
with Boltzmann [34], see [193] for a survey, where entropy is maximized over probabil-
ity distributions that give the correct expectation of certain observables in accordance
with known macroscopic quantities. The Lagrangian function is then given by

(7.8) L(π, λ) := SG(π) + λ(Ē − U(π)),

where the Lagrange multiplier λ is positive, corresponding to positive “absolute tem-
peratures” T = λ−1. The problem is then equivalent to minimizing over D(X ) the
Helmholtz Free energy functional

(7.9) F (π, T ) = U(π)− TSG(π) =
∑
x

Exπx + kT
∑
x

πx log πx.
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Since F is strictly convex on D(X ), the first order optimality conditions are suffi-
cient, and determine the unique minimizer in the form of the Boltzmann distribution22

(7.10) πB(x) = Z(T )−1exp

[
−Ex
kT

]
, where Z(T ) =

∑
x

exp

[
−Ex
kT

]
,

see e.g. [207]. Alternatively, it suffices to observe that

(7.11) F (π, T ) = TD(π‖πB)− T logZ(T )

and invoke the properties of relative entropy. As is well-known, the Boltzmann dis-
tribution (7.10) tends to the uniform (maximum entropy) distribution as T ↗ +∞
and tends to concentrate on the set of minimal energy states as T ↘ 0. Hence, for
0 < T < +∞, the Boltzmann distribution represents in a precise way a compromise
between minimizing energy and maximizing entropy.

7.3. Schrödinger and Sinkhorn, redux. The fact that the Boltzmann distri-
bution minimizes the free energy may be viewed as an elementary version of what is
often called Gibbs’ variational principle. Notice that the minimization of F in (7.9)
is unconstrained. Nevertheless, we are often interested in minimizing the free energy
under additional constraints. This is usually the case with natural evolutions which
tend to maximal entropy configurations23 while respecting certain constraints. In
particular, we now consider a constrained version of the minimization of (7.9). In the
notation of Section 7.1, let Z = X × X and consider the problem

(7.12) inf
π∈Π(p,q)

F (π, T ).

Then, letting ε = kT , comparing (7.9) with (7.3) shows that (7.12) coincides with
the regularized optimal transport problem (7.2). In particular, up to constants, the
negative Lagrangian (7.8) for Problem (7.7a)-(7.7b) coincides with the functional (7.3)
to be minimized in regularized optimal transport. On the other hand, because of (7.11),
Problem (7.2) is equivalent to

(7.13) min
π∈Π(p,q)

D(π‖πB),

where

(7.14) πB(i, j) = Z(T )−1exp
[
− cij
kT

]
, Z(T ) =

∑
ij

exp
[
− cij
kT

]
,

which is a discrete counterpart of Problem 4.2. Naturally, this and the other maximum
entropy problems of this section, also admit the large deviations interpretation of
Section 4.2.

Let us now write the joint probability πB(i, j) as

πB(i, j) = pB(i)pB(i, j),

22The letter Z for the partition function was chosen by Boltzmann to indicate “zuständige Summe”
(relevant sum).

23According to Planck, nature seems to favour high entropy states.
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where pB(i, j) is the conditional probability. Introducing Lagrange multipliers for the
linear constraints ∑

j

πij = pi, i = 1, 2, . . . , n(7.15)

∑
i

πij = qj , j = 1, 2, . . . , n,(7.16)

and proceeding precisely as in Section 4.3, we readily get the following expression for
the optimal π

(7.17) π∗ij = ϕ̂(i)pB(i, j)ϕ(j)

where the non-negative functions ϕ̂ and ϕ satisfy the system

ϕ̂(i)

∑
j

pB(i, j)ϕ(j)

 = pi;(7.18)

ϕ(j)

[∑
i

pB(i, j)ϕ̂(i)

]
= qj .(7.19)

Defining ϕ̂(0, i) = ϕ̂(i), ϕ(1, j) = ϕ(j), we see that (7.18)-(7.19) can be replaced by
the system

ϕ(0, i) =
∑
j

pB(i, j)ϕ(1, j),(7.20a)

ϕ̂(1, j) =
∑
i

pB(i, j)ϕ̂(0, i),(7.20b)

ϕ(0, i) · ϕ̂(0, i) = pi,(7.20c)

ϕ(1, j) · ϕ̂(1, j) = qj .(7.20d)

Let us write

π∗ij = pi · p∗(i, j),

and assume pi > 0 for all i. Dividing both sides of (7.17) by pi we get, in view of
(7.20c),

(7.21) p∗(i, j) =
1

ϕ(0, i)
pB(i, j)ϕ(1, j)

which should be compared to (4.16). It is interesting to write (7.21) in matricial form.
Let P ∗ = (p∗(i, j)) and PB = (pB(i, j)). Then (7.21) gives

(7.22) P ∗ = diag

(
1

ϕ(0, 1)
, . . . ,

1

ϕ(0, n)

)
PB diag (ϕ(1, 1), . . . , ϕ(1, n)) .

System (7.20) represents a discrete counterpart of the Schrödinger system (4.14a)-
(4.14b)-(4.14c). Existence for the latter, as already observed after (4.14c), is extremely
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challenging with the first solution being provided by Robert Fortet in 1940 [106]
through a complex iterative scheme. The same problem is much simpler in the discrete
setting with the first convergence proof for the classical IPF procedure being provided
in a special case by Sinkhorn in 1964 [220]. Indeed, consider the special case where
both marginals are uniform distributions so that pi = qi = 1/n, i = 1, 2, . . . , n. Let
C = (cij) be the matrix of transportation costs. Then π ∈ D(X × X ) belongs to
Π(p, q) if and only if it satisfies the constraints

∑
j

πij =
1

n
, i = 1, 2, . . . , n(7.23)

∑
i

πij =
1

n
, j = 1, 2, . . . , n.(7.24)

Thus, the matrix nπ must be doubly stochastic which was the original Sinkhorn prob-
lem24.

8. The Fortet-IPF-Sinkhorn algorithm.

8.1. Continuous case. In 1938-1940 Robert Fortet, a fine French analyst for-
mer student of Maurice Frechet, sets out to solve the problem of existence and unique-
ness for the Schrödinger system (4.14a)-(4.14b)-(4.14c), left open by Schrödinger25 as
well as by Bernstein in [24]. Fortet’s proof in [105, 106] is, to this day, the only al-
gorithmic one and in a rather general setting, establishing convergence of successive
approximations. More explicitly, let g(x, y) be a nonnegative, continuous function on
R × R bounded from above. Suppose g(x, y) > 0 except possibly for a zero measure
set for each fixed value of x or of y. Suppose that ρ0(x) and ρ1(y) are continuous,
nonnegative functions such that∫

ρ0(x)dx =

∫
ρ1(y)dy.

Suppose, moreover, that the integral∫
ρ1(y)∫

g(z, y)ρ0(z)dz
dy

is finite (this is Fortet’s crucial hypothesis). Then the system [106, Theorem 1]

ϕ̂(x)

∫
g(x, y)ϕ(y)dy = ρ0(x),(8.1)

ϕ(y)

∫
g(x, y)ϕ̂(x)dx = ρ1(y)(8.2)

admits a solution (ϕ(x), ϕ̂(y)) with ϕ ≥ 0 continuous and ϕ̂ ≥ 0 measurable. More-
over, ϕ̂(x) = 0 only where ρ0(x) = 0 and ϕ(y) = 0 only where ρ1(y) = 0.

24Sinkhorn: “It is not the intent of this paper to obtain properties of this estimate..”. Sinkhorn
appears only concerned in establishing convergence of the iterative method to a doubly stochastic
matrix without clearly connecting the latter to an optimization problem.

25Schrödinger thought existence and uniqueness should hold since the problem looked to him so
natural except, possibly, in the case of very nasty marginals.
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The result is proven by setting up a complex approximation scheme to show that
C(h) = h with

(8.3) C(h)(·) :=

∫
g(·, y)

ρ1(y)dy∫
g(z, y)ρ0(z)

h(z) dz

has a fixed point. The map C is considered on functions of class (K), namely functions
h : R→ (R ∪+∞) which satisfy the following properties:

i) h is measurable;

ii) There exists α > 0 such that h(x) ≥ α,∀x ∈ R;

iii) For almost every x ∈ R, h(x) < +∞.

If h0 and h1 are of class (K) and h0 ≤ h1 a.e., then C(h0) ≤ C(h1). Moreover, on class
(K) functions, C is positively homogeneous of degree one. Unfortunately, the map
C does not map class (K) functions into class (K) functions as it does not preserve
the property of being bounded away from zero. This is a fundamental difficulty
of the continuous case which Fortet circumvents through his brilliant but complex
approximation scheme involving three sequences of functions. This difficulty can be
altogether avoided in the discrete case through a suitable positivity assumption, see
Theorem 8.1 below. Notice that the one-dimensional heat kernel

g(x, y) = p(0, x, 1, y) =
1√
2πγ

exp

[
−|x− y|

2

2γ

]
.

satisfies all assumptions of Fortet’s theorem. Uniqueness, in the sense described after
formula (4.14c) , namely uniqueness of rays, is much easier to establish. In [91], most
of Fortet’s paper has been revisited filling in all the gaps and explaining the meaning
of the various steps of his elaborate approach. Another recent paper in this direction
is [159].

8.2. Discrete case. In 1940, an iterative proportional fitting (IPF) procedure,
was proposed in the statistical literature on contingency tables [83]. Convergence for
the IPF algorithm was first established (in a special case) by Richard Sinkhorn in
1964 [220]. The iterates were shortly afterwards shown to converge to a “minimum
discrimination information” [128, 94, 73], namely to a minimum entropy distance.
This line of research, usually called Sinkhorn algorithms, continues to this date, see
e.g. [76, 4, 231].

We now state and, later on, establish the following fundamental result.

Theorem 8.1. Let X = {1, 2, . . . , n} and p, q ∈ D(X ). Assume that the n × n
matrix G = (gij) has all positive elements. Then, there exist vectors ϕ(0, ·), ϕ̂(1, ·)
with positive entries such that
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ϕ(0, i) =
∑
j

gijϕ(1, j),(8.4a)

ϕ̂(1, j) =
∑
i

gijϕ̂(0, i),(8.4b)

ϕ(0, i) · ϕ̂(0, i) = pi,(8.4c)

ϕ(1, j) · ϕ̂(1, j) = qj .(8.4d)

The pair ϕ(0, ·), ϕ̂(1, ·) is unique up to multiplication of ϕ(0, ·) by a positive constant
α and division of ϕ̂(1, ·) by the same constant α.

We first set up a natural iterative scheme (Fortet-IPF-Sinkhorn) for system (8.4).
We introduce the following linear maps on Rn+ = {x ∈ Rn : xi ≥ 0}, the positive
orthant of Rn:

E : x 7→ y=
∑
j

gijxj ,

E† : x 7→ y=
∑
i

gijxi.

Here and in the sequel † denotes adjoint26.We also define the following nonlinear maps
on the interior of the positive orthant int Rn+ = {x ∈ Rn : xi > 0}

D0 : x 7→ y=
p

x

D1 : x 7→ y=
q

x

where division of vectors is componentwise. On Rn+, consider also the composition of
the four maps

(8.5) C := E ◦ D1 ◦ E† ◦ D0.

This is just the discrete counterpart of map (8.3). Consider the vector iteration

(8.6) ϕk+1(0) = C(ϕk(0)), ϕ0(0) = 1,

where 1† = (1, 1, . . . , 1). Observe first that (8.6) stays in the interior of Rn+ even when
the marginals p and/or q have some zero components. Indeed, since gij > 0,∀(i, j),
maps E and E† map Rn+ into int Rn+. It follows that the componentwise divisions of
D0 and D1 are well defined and C : int Rn+ 7→ int Rn+. Next, we want to show that the
sequence generated by (8.6) converges to a fixed point of C, thereby proving Theorem
8.1. Theorem 8.1 asserts, in particular, that uniqueness for the Schrödinger system
(8.4) concerns rays in the positive orthant. This suggests that contractivity of the
map (8.5) should be established on the set of rays endowed with a projective metric.
This was accomplished in [113, Theorem 3]. It extends the approach of Franklin
and Lorenz [109] dealing with the scaling of nonnegative matrices. We devote the
next subsection to some key results on Hilbert’s projective metric in which the rays
convergence can be proved.

26Our use of the adjoint for the map E is consistent with the standard notation in diffusion
processes where the Fokker-Planck (forward) equation involves the adjoint of the generator appearing
in the backward Kolmogorov equation.
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8.3. Hilbert’s projective metric. This metric was introduced in 1895 [122].
In 1957 [28], Garrett Birkhoff proved crucial contractivity result in this metric that
permits to establish existence of solutions of linear equations on cones (such as the
Perron-Frobenius theorem (Theorem 9.6 below)). This result was extended to certain
nonlinear maps by Bushell [41, 42]. Besides the ergodic theory for Markov chains,
the Birkhoff-Bushell results have been applied to positive integral operators and to
positive definite matrices [42, 155]. In recent times, this geometry has proven useful
in problems concerning communication and computations over networks (see [235].
Other significant applications have been developed by Sepulchre and collaborators
[216, 36, 12]. These concern consensus in non-commutative spaces and metrics for
spectral densities. We mention also applications to in quantum information theory
[201]. On the more mathematical side, a survey on the applications in analysis is [155].
The use of the Hilbert metric is crucial in the nonlinear Frobenius-Perron theory [154].
A further extension of the Perron-Frobenius theory beyond linear positive systems and
monotone systems has been recently proposed in [104].

Applications of the Birkhoff-Bushell contractivity results to the topics of this
paper apparently initiated in 1989 with the paper [109] which deals with scaling of
nonnegative matrices. In [113], we showed that the Schrödinger bridge for Markov
chains and quantum channels can be efficiently obtained from the fixed-point of a
map which contracts the Hilbert metric. In [58], a similar approach was taken in the
context of diffusion processes leading to a new proof of a classical result of Jami-
son on existence and uniqueness for the Schrödinger bridge and providing as well
an efficient computational scheme for both Schrödinger Bridges and OMT. This new
computational approach can be effectively employed, for instance, in image interpo-
lation. There are, however, some fundamental difficulties in using this approach in
Schrödinger’s original setting. These are outlined in Remark 8.7 below.

Following [42], we recall some basic concepts and results of this theory.

Let S be a real Banach space and let K be a closed solid cone in S, i.e., K is
closed with nonempty interior intK and is such that K + K ⊆ K, K ∩ −K = {0} as
well as λK ⊆ K for all λ ≥ 0. Define the partial order

x � y ⇔ y − x ∈ K, x < y ⇔ y − x ∈ intK

and for x, y ∈ K0 := K\{0}, define

M(x, y) := inf {λ | x � λy}
m(x, y) := sup{λ | λy � x}.

Then, the Hilbert metric is defined on K0 by

dH(x, y) := log

(
M(x, y)

m(x, y)

)
.

Strictly speaking, it is a projective metric since it is invariant under scaling by positive
constants, i.e., dH(x, y) = dH(λx, µy) for any λ > 0, µ > 0 and x, y ∈ intK. Thus, it
is actually a distance between rays. If U denotes the unit sphere in S, (intK ∩ U, dH)
is a metric space.
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Example 8.2. Let K = Rn+ = {x ∈ Rn : xi ≥ 0} be the positive orthant of Rn.
Then, for x, y ∈ intRn+, namely with all positive components,

dH(x, y) = log max{xiyj/yixj}.

Another very important example for applications in many diverse areas of statis-
tics, information theory, control, etc., is the cone of Hermitian, positive semidefinite
matrices.

Example 8.3. Let S = {X = X† ∈ Cn×n}, where † denotes here transposition
plus conjugation and, more generally, adjoint. Let K = {X ∈ S : X ≥ 0} be the
positive semidefinite matrices. Then, for X,Y ∈ intK, namely positive definite, we
have

dH(X,Y ) = log
λmax

(
XY −1

)
λmin (XY −1)

= log
λmax

(
Y −1/2XY −1/2

)
λmin

(
Y −1/2XY −1/2

) .
It is closely connected to the Riemannian (Fisher-information) metric

dR(X,Y ) = ‖ log
(
Y −1/2XY −1/2

)
‖F =

√√√√ n∑
i=1

[log λi
(
Y −1/2XY −1/2

)
]2.

Notice that, in the two examples above, Hilbert’s pseudo-metric puts the bound-
ary of the cone at infinite distance from any interior point.

A map E : K → K is called non-negative. It is called positive if E : intK → intK.
If E is positive and E(λx) = λpE(x) for all x ∈ intK and positive λ, E is called
positively homogeneous of degree p in intK. For a positive map E , the projective
diameter is befined by

∆(E) := sup{dH(E(x), E(y)) | x, y ∈ intK}

and the contraction ratio by

κ(E) := inf{λ | dH(E(x), E(y)) ≤ λdH(x, y),∀x, y ∈ intK}.

Finally, a map E : S → S is called monotone increasing if x ≤ y implies E(x) ≤ E(y).

Theorem 8.4 ([42]). Let E be a monotone increasing positive mapping which is
positive homogeneous of degree p in intK. Then the contraction κ(E) does not exceed
p. In particular, if E is a positive linear mapping, κ(E) ≤ 1.

Theorem 8.5 ([28, 42]). Let E be a positive linear map. Then

(8.7) κ(E) = tanh(
1

4
∆(E)).

Theorem 8.6 ([42]). Let E be either
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(a) a monotone increasing positive mapping which is positive homogeneous of
degree p(0 < p < 1) in intK, or

(b) a positive linear mapping with finite projective diameter.

Suppose the metric space Y = (intK ∩ U, dH) is complete. Then, in case (a) there
exists a unique x ∈ intK such that E(x) = x, in case (b) there exists a unique positive
eigenvector of E in Y .

This result provides a far-reaching generalization of the celebrated Perron-Frobenius
theorem [29] (Theorem 9.6 below). Notice that in both Examples 8.2 and 8.3, the
space Y = (intK ∩ U, dH) is indeed complete [42]. We also note that there are other
metrics as well that are contracted by positive monotone maps. For instance, the
closely related Thompson metric [232] dT (x, y) = log max{M(x, y),m−1(x, y)}. The
Thompson metric is a bona fide metric on K. It has been, for instance, employed in
[163, 66, 12].

Remark 8.7. If we try to use a similar approach to prove existence for the
Schrödinger system (8.1)-(8.2), we may expect that in an infinite dimensional setting
questions of boundness or integrability might become delicate. The main difficulty,
however, lies here with two other issues. To introduce them, let us observe that in
the Birkhoff-Bushell theory we have linear or nonlinear iterations which remain in the
interior of a cone. For example, in the application of the Perron-Frobenius theorem
to the ergodic theory of Markov chains, the assumption that there exists a power of
the transition matrix with all strictly positive entries ensures that the evolution of the
probability distribution occurs in the interior of the positive orthant (intersected with
the simplex). The first difficulty is that the natural function space cones such as L1

+

(L2
+), namely integrable (square integrable) nonnegative functions on Rd, have empty

interior ! The second difficulty is that, even if we manage to somehow define a suitable
function space cone with nonempty interior27, the nonlinear map Ω defined in (8.3)
cannot map the interior of the cone into itself. Precisely to overcome this difficulty
in [58] the two marginals were assumed to have compact support. We see here once
more, from a slightly different angle, how much more challenging the continuous case
is. 2

8.4. Proof of Theorem 8.1. We begin with three preliminary results.

Lemma 8.8. Consider the maps E and E†. We have the following bounds on
their contraction ratios:

(8.8) κ(E) = κ(E†) = tanh

(
1

4
∆(E)

)
< 1.

Proof. Observe that E is a positive linear map and its projective diameter is

∆(E) = sup{dH(E(x), E(y)) | xi > 0, yi > 0}

= sup{log

(
gijgk`
gi`gkj

)
| 1 ≤ i, j, k, ` ≤ n}.

27This was indeed accomplished in [58].
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It is finite since all entries gij ’s are positive. It now follows from Theorem 8.5 that its
contraction ratio satisfies (8.8). Similarly for the adjoint map E†.

Lemma 8.9.

κ(D0) ≤ 1, κ(D1) ≤ 1.

Proof. Observe that when p and q have positive entries, both D0 and D1 are
isometries in the Hilbert metric. Indeed, for vectors x, y in the interior of Rn+, inversion
and element-wise scaling are both isometries for the Hilbert metric as the following
calculations show

dH(x, y) = log

(
(max

i
(xi/yi))

1

mini(xi/yi)

)
= log

(
1

mini((xi)−1/(yi)−1)
max
i

((xi)
−1/(yi)

−1)

)
= dH(x−1, y−1)

where x−1 and y−1 are obtained from x and y, respectively, through componentwise
inversion. Moreover, let px and py be the vectors with components pixi and piyi,
respectively. Then

dH(px, py) = log
maxi((pixi)/(piyi))

mini((pixi)/(piyi))

= log
maxi(xi/yi)

mini(xi/yi)
= dH(x, y).

If p has zero entries, then the second equality above needs to be replaced by the
inequality “≤”.

Lemma 8.10. The composition

(8.9) C = E ◦ D1 ◦ E† ◦ D0

contracts the Hilbert metric with contraction ratio κ(C) < 1, namely

dH(C(x), C(y)) < dH(x, y), ∀x, y ∈ intRn+.

Proof. The result follows at once from Lemmas 8.8 and 8.9.

We now complete the proof of Theorem 8.1. The set of rays in intRn+ with the
Hilbert metric is complete (this can be proven by intersecting intRn+ with the unit
sphere, see [42, Section 4]). By Lemma 8.10, C contracts the Hilbert metric. By the
Banach-Caccioppoli Contraction Mapping Theorem, there exists a unique ray in intRn+
to which the iteration (8.6) (starting from any vector in intRn+) converges. Next, we
prove that, due to (8.4d)-(8.4d), the iteration (8.6) actually converges to fixed vector.
Since the iteration has a fixed ray, we have that for some positive constant α

α · ϕ(0) = C(ϕ(0)),
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where the composed map is C := E ◦ D1 ◦ E† ◦ D0. From this we can obtain

ϕ̂(1) = E†(ϕ̂(0)),

ϕ(0) = E(ϕ(1)),

while

ϕ̂(1)ϕ(1) = q and

αϕ̂(0)ϕ(0) = p,

where, as usual, multiplication is componentwise. Let 〈·, ·〉 denote the scalar product
in Rn. Since p and q are probability distributions, we have

1 = α〈ϕ̂(0), ϕ(0)〉
= α〈ϕ̂(0), E(ϕ(1))〉
= α〈E†(ϕ̂(0)), ϕ(1)〉
= α〈ϕ̂(1), ϕ(1)〉
= α.

Thus α = 1, the iteration (8.6) converges to a fixed point (vector in Rn+) and the four
vectors (ϕ(0), ϕ̂(0), ϕ(1), ϕ̂(1)) satisfy the Schrödinger system (8.4). The vectors ϕ(0)
and ϕ̂(1) have all positive components.

9. Efficient vs. robust routing for networks flows. While Problem 7.13, and
the corresponding equivalent regularized OMT (7.2), are the discrete counterparts of
Problem 4.2, it is apparent that the discrete counterpart of the “dynamic” Schrödinger
Bridge Problem 4.1 is still missing. Before we turn to dynamic problems with discrete
state space, let us mention that there is also work on discrete time and continuous
state-space [246, 21, 13, 115, 14, 17]. This literature mostly deals with Gaussian
distributions, both, in the finite and infinite horizon case, with and without noise in
the dynamics and, with and without constraints. The case of regularized transport
on discrete metric graphs has been studied by Léonard in [158].

9.1. Generalized bridge problems. Consider a directed, strongly connected
(i.e., with at least one path joining each pair of vertices), aperiodic graph G = (X , E)
with vertex set X = {1, 2, . . . , n} and edge set E ⊆ X ×X . Time is discrete and taken
in T = {0, 1, . . . , N}.

Let FPN0 ⊆ XN+1 denote the family of feasible paths x = (x0, . . . , xN ) of length
N , namely paths such that xixi+1 ∈ E for i = 0, 1, . . . , N − 1. We seek a probability
distribution P on FPN0 with prescribed initial and final marginal probability distri-
butions ν0(·) and νN (·), respectively, and such that the resulting random evolution is
closest to a “prior” measure M on FPN0 in a suitable sense.

The prior law for our problem is induced by the Markovian evolution

(9.1) µt+1(xt+1) =
∑
xt∈X

µt(xt)mxtxt+1(t)

with nonnegative distributions µt(·) over X , t ∈ T , and weights mij(t) ≥ 0 for
all indices i, j ∈ X and all times. Moreover, to respect the topology of the graph,
mij(t) = 0 for all t whenever ij 6∈ E . Often, but not always, the matrix

(9.2) M(t) = [mij(t)]
n
i,j=1
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may not depend on t. The rows of the transition matrix M(t) do not necessarily
sum up to one, so that the “total transported mass” is not necessarily preserved. It
occurs, for instance, when M simply encodes the topological structure of the network
with mij being zero or one, depending on whether a certain link exists (i.e., when
M represents the adjacency matrix of the graph). The evolution (9.1), together with
measure µ0(·), which we assume positive on X , i.e.,

(9.3) µ0(x) > 0 for all x ∈ X ,

induces a measure M on FPN0 as follows. It assigns to a path x = (x0, x1, . . . , xN ) ∈
FPN0 the value

(9.4) M(x0, x1, . . . , xN ) = µ0(x0)mx0x1 · · ·mxN−1xN ,

and gives rise to a flow of one-time marginals

µt(xt) =
∑
x` 6=t

M(x0, x1, . . . , xN ), t ∈ T .

Definition 9.1. We denote by P(ν0, νN ) the family of probability distributions
on FPN0 having the prescribed marginals ν0(·) and νN (·).

We seek a distribution in this set which is closest to the prior M in relative
entropy where, for P and Q measures on XN+1, the relative entropy (divergence,
Kullback-Leibler index) D(P‖Q) is

D(P‖Q) :=

{ ∑
x P (x) log P (x)

Q(x) , Supp(P ) ⊆ Supp(Q),

+∞, Supp(P ) 6⊆ Supp(Q),

Here, by definition, 0 · log 0 = 0. Naturally, while the value of D(P‖Q) may turn out
negative due to miss-match of scaling (in case Q = M is not a probability measure),
the relative entropy is always jointly convex. Thus, we are led to the Schrödinger
Bridge Problem (SBP):

Problem 9.2. Determine

M∗[ν0, νN ] := argmin{D(P‖M) | P ∈ P(ν0, νN )}.(9.5)

The following result may be proven in the usual way, cf. Section 7.3 and [192, 63, 64].

Theorem 9.3. Assume that the entries of the matrix product

G := M(0)M(1) · · ·M(N − 2)M(N − 1)

are all positive. Then there exist nonnegative functions ϕ(·) and ϕ̂(·) on T × X
satisfying

ϕ(t, i) =
∑
j

mij(t)ϕ(t+ 1, j),(9.6a)

ϕ̂(t+ 1, j) =
∑
i

mij(t)ϕ̂(t, i),(9.6b)
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for t ∈ {0, 1, · · · , N − 1}, along with the (nonlinear) boundary conditions

ϕ(0, x0)ϕ̂(0, x0) = ν0(x0)(9.6c)

ϕ(N, xN )ϕ̂(N, xN ) = νN (xN ),(9.6d)

for x0, xN ∈ X . Moreover, the solution M∗[ν0, νN ] to Problem 9.2 is unique and
obtained by

M∗(x0, . . . , xN ) = ν0(x0)πx0x1(0) · · ·πxN−1xN (N − 1),

where the one-step transition probabilities

(9.7) πij(t) := mij(t)
ϕ(t+ 1, j)

ϕ(t, i)

are well defined.

As usual, factors ϕ and ϕ̂ are unique up to multiplication of ϕ by a positive
constant and division of ϕ̂ by the same constant. Let ϕ(t) and ϕ̂(t) denote the
column vectors with components ϕ(t, i) and ϕ̂(t, i), respectively, with i ∈ X . In
matricial form, (9.6a), (9.6b ) and (9.7) read

(9.8) ϕ(t) = M(t)ϕ(t+ 1), ϕ̂(t+ 1) = M(t)T ϕ̂(t),

and

(9.9) Π(t) := [πij(t)] = diag(ϕ(t))−1M(t) diag(ϕ(t+ 1)).

We see that the scheduling of the transport plan amounts to modifying the prior
transition mechanism. Therefore, this brings us to an alternative interpretation of
the Schrödinger Problem, as a special Markov Decision Processes’ problem [198, 26].
This can be accomplished, once more, through a generalized multiplicative functional
transformation (4.16) even when the prior is not a probability measure.

9.2. Invariance of most probable paths. In [77, Section 5], Dai Pra es-
tablished an interesting path-space property of the Schrödinger bridge for diffusion
processes, namely that the “most probable path” [89, 230] of the prior and the solu-
tion are the same. Loosely speaking, a most probable path is similar to a mode for
the path space measure P . More precisely, if both drift b(·, ·) and diffusion coefficient
σ(·, ·) of the Markov diffusion process

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

are smooth and bounded, with σ(t, x)σ(t, x)′ > ηI, η > 0, and x(t) is a path of class
C2, then there exists an asymptotic estimate of the probability P of a small tube
around x(t) of radius ε. It follows from this estimate that the most probable path is
the minimizer in a deterministic calculus of variations problem where the Lagrangian
is an Onsager-Machlup functional, see [129, p. 532] for the full story28.

The concept of most probable path is, of course, much simpler in our discrete
setting. We now define this for general positive measures on paths.

28The Onsager-Machlup functional was introduced in [186] to develop a theory of fluctuations in
equilibrium and nonequilibrium thermodynamics.
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Given a positive measure M as in Section 9.1 on the feasible paths of our graph
G, we say that x = (x0, . . . , xN ) ∈ FPN0 is of maximal mass if for all other feasible
paths y ∈ FPN0 we have M(y) ≤M(x). Likewise we consider paths of maximal mass
connecting particular nodes. It is apparent that paths of maximal mass always exist
but are, in general, not unique. If M is a probability measure, then the maximal mass
paths–most probable paths, are simply the modes of the distribution. We establish
below that the maximal mass paths joining two given nodes under the solution of a
Schrödinger Bridge problem as in the previous section are the same as for the prior
measure.

Proposition 9.4. Consider marginals ν0 and νN in Problem 9.2. Assume that
ν0(x) > 0 on all nodes x ∈ X and that the product M(0)M(1) · · ·M(N − 2)M(N − 1)
of transition matrices of the prior has all positive elements (cf. with M ’s as in (9.2)).
Let x0 and xN be any two nodes. Then, under the solution M∗[ν0, νN ] of the SBP,
the family of maximal mass paths joining x0 and xN in N steps is the same as under
the prior measure M.

Proof. Suppose path y = (y0 = x0, y1, . . . , yN−1, yN = xN ) has maximal mass
under the prior M. In view of (9.4) and (9.7) and assumption (9.3), we have

M∗[ν0, νN ](y) = ν0(y0)πy0y1(0) · · ·πyN−1yN (N − 1)

=
ν0(x0)

µ0(x0)

ϕ(N, xN )

ϕ(0, x0)
M(y0, y1, . . . , yN ).

Since the quantity

ν0(x0)

µ0(x0)

ϕ(N, xN )

ϕ(0, x0)

is positive and does not depend on the particular path joining x0 and xN , the con-
clusion follows. 2

The above calculation establishes in fact the following stronger result.

Proposition 9.5. Let x0 and xN be any two nodes in X . Then, under the
assumptions of Proposition 9.4, the measures M and M∗[ν0, νN ], restricted on the set
of paths that begin at x0 at time 0, and end at xN , at time N , are identical.

9.3. Robust network routing. We now discuss yet another possible usage
and interpretation of Schrödinger Bridges, motivated by a concept of robustness of a
transportation plan for a given network.

Network robustness is typically understood as the ability of a network to maintain
connectivity, or to be insensitive (observables), in the event of node or link failures, or
a disturbance. Maintaining connectivity may be seen as an inverse percolation problem
[2, 19]. There exist several other notions of robustness such the one defined through
a fluctuation-dissipation relation involving the topological entropy rate. This notion
captures the behaviour while relaxing back to equilibrium after a perturbation, see
[10, 82, 217, 218]. Also, robust network design to meet demands in a given uncertainty
set was studied in [185]. Finally, a concept of resilience of a routing policy in the
presence of cascading failures introduced and studied in [209]. Following the latter
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rationale, linking robustness to resilience, equilibrium considerations play no role.
Indeed, this rationale motivates maximal utilization of all available options equally,
as much as possible, so as to preempt failures.

Thus, we are led to formulate the following problem: Given times t = 0, 1, . . . , N
and a directed, strongly connected graph, find a transportation plan from a source
node to a sink node29 such that most of the mass arrives by time N even in the
presence of failures (of course, more general initial and final distributions can also be
similarly treated). For instance, consider the graph of Figure 6, with the total mass
residing at node 1 at time t = 0, and the requirement to transport the total mass
to node 9 in N = 3, or N = 4, time steps. A natural idea is to spread the mass as
much as the topology of graph permits, before reassembling the mass at the target
end-point distribution (here at node 9). The property of “spreading” of distributions
along interpolation between end-point marginals, whether in OMT or Schrödinger
Bridge problems, is often referred to as “lazy gas” [239, 240]. Thus, it is natural to
consider transportation plans that share such a property via utilizing the framework
of Schrödinger bridges!

However, the current task, to transport provides no “prior” measure. It is simply
a problem in transportation. Can we select a suitable measure? Perhaps, select as
prior a prespecified plan that no longer meets desired transportation requirements?
Or, modify a transportation plan by adding costs to mediate congestion? All of
these directions are possible and can be profitably pursued in engineering problems.
Yet, herein we motivate a different prior, one that maximally spreads mass utilizing
available options. Indeed, such a prior must be a sort of uniform distribution on paths.
But what does that exactly mean in this setting? Fortunately, such a notion already
exists, and for this we follow the interesting paper [80]. But let us first recall a most
famous result in Linear Algebra [125].

Fig. 6: Transportation network

Theorem 9.6 (Perron-Frobenius). Let A = (aij) be an n × n matrix with
nonnegative entries. Let λA = max{|λ1|, |λ2|, . . . , |λn|} be its spectral radius. Suppose
there exists N such that AN has only positive entries. Then

i) λA > 0 is an eigenvalue of A;

ii) λA is a simple eigenvalue;

iii) there exists an eigenvector v corresponding to λA with strictly positive entries;

29We always have a loop on the sink node to allow part of the mass to arrive there earlier than
the planned time horizon.
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iv) v is the only non-negative eigenvector of A;

v) let B = [bij ] be an n × n matrix with nonnegative entries. If aij ≤ bij,
∀i, j ≤ n and A 6= B, then λA < λB.

Returning to graphs we discuss first the notion of topological entropy, namely,
the rate by which the cardinality of the set of paths of length N increases, as N →∞.
To this end, we consider a strongly connected directed graph G = (X , E) as before.
The topological entropy rate is

HG = lim sup
N→∞

[log |{paths of length N}|/N ].

If A denotes the adjacency matrix of the graph, it is easy to show30 that

HG = log(λA).

Since the graph is stongly connect, AN has only positive entries. Let ϕ̂ and ϕ be its
left and right eigenvectors with positive entries corresponding to λA (Theorem 9.6),
so that

AT ϕ̂ = λAϕ̂, Aϕ = λAϕ,

and select/scale those so that

〈ϕ̂, ϕ〉 :=
∑
i

ϕ̂iϕi = 1.

Then

(9.10) νRB(i) = ϕ̂iϕi

defines a probability distribution on X which is invariant under the transition matrix

(9.11) R = [rij ], rij =
1

λA

ϕj
ϕi
aij .

that is,

RT νRB = νRB .

The transition matrixR in (9.11), together with stationary measure νRB in (9.10),
define the Ruelle-Bowen (Markovian) path measure

MRB(x0, x1, . . . , xN ) := νRB(x0)rx0x1 · · · rxN−1xN .

Equation (9.11) brings up the unmistakeable links to the structure of Schrödinger
Bridges that maximize entropy. But here, a deeper fact is at play, in that the Ruelle-
Bowen distribution [188, 207] represents a uniform distribution on paths, made precise
by the following remarkable proposition.

30This follows from the fact that the ijth entry of AN (a positive integer) enumerates the number
of distinct paths from vertix i to vertix j, in N steps.
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Proposition 9.7. The measure MRB assigns probability λ−tA ϕ̂iϕj to any path
of length t from node i to node j.

Proof. Starting from the stationary distribution (9.10), and in view of (9.11), the
probability of a path ij is

ϕ̂iϕi

(
1

λA
ϕ−1
i ϕj

)
=

1

λA
ϕ̂iϕj ,

assuming that node j is accessible from node i in one step. Likewise, if node k is
accessible from j, the probability of the path ijk is

ϕ̂iϕi

(
1

λA
ϕ−1
i ϕj

)(
1

λA
ϕ−1
j ϕk

)
=

1

λ2
A

ϕ̂iϕk

independent of the intermediate state j, and so on.

Shannon entropy of paths of length N grows like N log λA. Thus, since the
entropy rate of this particular distribution is log λA = HG, it is indeed the maximum
possible!

We note that the stationary measure νRB of this law was used in [80] in order
to obtain a centrality measure (entropy ranking) similar to the Google Page ranking
but more robust and discriminating. In the exposition herein, instead, MRB is a
natural choice as a prior distribution in the Schrödinger bridge problem to achieve
the spreading of the mass. Moreover, as just noted earlier, the Ruelle-Bowen measure
MRB on paths may be itself seen as the solution of a Schrödinger bridge problem
where the “prior” transition matrix is the adjacency matrix A and the two marginals
are ν0 = νN = νRB , see [63, Section 4].

Returning to the transportation problem, we seek

M∗[δ1, δn] = argmin{D(P‖MRB) | P ∈ P(δ1, δn)}

By Theorem 9.3, the solution is the Markovian evolution starting at t = 0 with the
distribution δ1 and with transition matrix

Π∗(t) = diag(ϕ(t))−1R diag(ϕ(t+ 1)),

where

ϕ(t) = Rϕ(t+ 1), ϕ̂(t+ 1) = RT ϕ̂(t),

with the boundary conditions

ϕ(0, x)ϕ̂(0, x) = δ1(x), ϕ(N, x)ϕ̂(N, x) = δn(x), ∀x ∈ X .

Thus, the solution M∗[δ1, δn] is a bridge over MRB which is itself a bridge. Namely
the solution is a bridge over a bridge.

We conclude with a remarkable iterated bridge property of the Schrödinger bridges
(not to be confused with an iterated I-projection property [73, 74]). Suppose first the
prior is a probability distribution; this defines a reciprocal class [130, 160] of distribu-
tions. The solution to the Schrödinger Bridge problem is in fact the unique Markovian
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evolution in the same reciprocal class as the prior (same three times transition proba-
bilities). I.e., if we take the solution as a prior for a new bridge problem, the reciprocal
class stays the same. Notice that this is the case even when there is loss/creation of
mass in the prior evolution, see [64, Section IIA] for the details. Hence, the new
distribution on paths M∗[δ1, δn] can be obtained solving a unique bridge problem
with prior transition the adjacency matrix A and marginals δ1 and δn, see [63]. The
solution may be computed through an iterative algorithm like the one described in
Section 8.2 where G = AN . We exemplify the steps and rationale presented with the
following academic exercise.

Example 9.8. Consider Figure 6 and let ν0 = δ1, νN = δ9. Take first N = 3.
The shortest path from node 1 to 9 is of length 3 and there are three such paths,
which are 1 − 2 − 7 − 9, 1 − 3 − 8 − 9 and 1 − 4 − 8 − 9. Using MRB as the prior,
then we get a transport plan with equal probabilities for all these three paths. The
evolution of the mass distribution is given by the rows of the following matrix, row i
representing the distribution on the nodes at time t = i, i = 0, 1, 2, 3

1 0 0 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 0 0 0 0 1/3 2/3 0
0 0 0 0 0 0 0 0 1

 .
For N = 4, the mass spreads even more before reassembling at node 9


1 0 0 0 0 0 0 0 0
0 4/7 2/7 1/7 0 0 0 0 0
0 0 1/7 1/7 2/7 0 1/7 2/7 0
0 0 0 0 0 1/7 1/7 2/7 3/7
0 0 0 0 0 0 0 0 1


9.4. Optimal flows on weighted graphs. With the same notation as in Sec-

tion 9.1, we now suppose that to each edge ij is associated a length lij ≥ 0. If ij 6∈ E ,
we set lij = +∞. The length may represent distance, cost of transport, cost of com-
munication, inverse capacity of the link, and so on. As an example, suppose a relief
organization, operating in an area where a natural disaster has occurred or an epi-
demic or in a war zone, needs to transport resources. At the initial time t = 0, there
is a distribution ν0(x) of available relief goods in sites x ∈ X . Using the available
road network, the goods must reach certain other locations after N units of time to
be distributed according to a desired distribution νN (x). On the one hand, since the
feasibility of the various possible routes is uncertain, it is desirable that the goods
spread as much as the road network allows before reaching the target nodes. But
at the same time, it is also important that shorter paths are used to keep the fuel
consumption within the available budget. In such a scenario it is possible to repeat
the construction of Section9.3, replacing the adjacency matrix A with a weighted
adjacency matrix B

B = [bij ] = [exp (−lij)] ,

again assuming that BN has positive entries representing cost, thereby allowing us to
employ the Perron-Frobenius theorem.
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The measure ML that replaces the Ruelle-Bowen measure is, of course, no longer
“uniform”. Given the development of Section 7.2, we already know what we can
expect. Rather than maximizing entropy, it is natural to seek a compromise between
the latter goal and that of minimizing length/energy/cost. Indeed, let ϕ̂ and ϕ be
left and right eigenvectors with positive entries of the matrix B corresponding to the
spectral radius λB of B, so that

BT ϕ̂ = λBϕ̂, Bϕ = λBϕ.

Suppose once again that ϕ̂ and ϕ are chosen so that 〈ϕ̂, ϕ〉 =
∑
i ϕ̂iϕi = 1. Then µL

given by

(9.12) µL(i) = ϕ̂iϕi

is a probability distribution which is invariant for the transition matrix

(9.13) RL = λ−1
B diag(ϕ̂iϕi)

−1B diag(ϕ̂iϕi),

namely

(9.14) RTLµL = µL.

As expected, the corresponding path measure ML is no longer uniform on paths of
equal length joining two specific nodes. Indeed, the probability of the path (i =
x0, x1, . . . , xt−1, j = xt) is

λ−tB exp (−
t−1∑
k=0

lxkxk+1
)ϕ̂iϕj .

It is namely the minimum free energy rate distribution (topological pressure in ther-
modynamics) attaining the minimum value, which is − log λB , and has therefore the
form of a Boltzmann distribution (7.10), see [80, Section IV] for details. Indeed, for a
path x = (x0, . . . , xN ) ∈ XN+1, define the length of x to be

l(x) =

N−1∑
t=0

lxtxt+1
,

and for any distribution P on XN+1, the average path length

(9.15) L(P ) =
∑

x∈XN+1

l(x)P (x).

This plays the same role as the internal energy in the state P of Section 7.2, corre-
sponding the length l(x) of x with the energy Ex. Clearly, L(P ) is finite if and only
if P is supported on actual, existing paths of G. The Boltzmann distribution (7.10)
on XN+1 is then

(9.16) pB(x) = ML(x) = Z(T )−1exp

[
− l(x)

kT

]
, for Z(T ) =

∑
x∈X

exp

[
− l(x)

kT

]
.

Note that the the support of the Boltzmann distribution Supp(pB) is contained in
FPN0 . By statement v) in Theorem 9.6, we then have that log λA < log λB , namely,
the topological entropy increases in a way that is consistent with intuition.
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We can take ML as the prior distribution in a maximum entropy problem as in
Section 9.3 obtaining again through the solution M∗L[δ1, δn] a robust-efficient trans-
portation plan from node 1 to node n. We are now ready to prove a striking result
which generalizes Proposition 9.7.

Theorem 9.9. M∗L[δ1, δn](x) assigns equal probability to paths x ∈ XN+1 of
equal cost. In particular, it assigns maximum and equal probability to minimum length
paths.

Proof. For a path x = (x0, x1, . . . , xN ), we have

M∗L[δ1, δn](x) = δ1(x0)
ϕv(N, xN )

ϕv(0, x0)

N−1∏
t=0

bxtxt+1

= δ1(x0)
ϕv(N, xN )

ϕv(0, x0)
exp [−

N−1∑
t=0

lxtxt+1
].(9.17)

Observe once more that δ1(x0)ϕv(N,xN )
ϕv(0,x0) does not depend on the particular path joining

x0 and xN . Since
∑N−1
t=1 lxtxt+1

= l(x) is the total length of the path, the conclusion
now follows.

Remark 9.10. In the discrete (OMT) problem [200, Vol.I] introduced in Section
7.1, one first seeks to identify the shortest path(s) (x0, x

∗
1, . . . , x

∗
N−1, xN ) from any

starting node x0 ∈ X to any ending node xN ,

(9.18) lmin(x0xN ) = min
x∗1 ,...,x

∗
N−1

N−1∑
t=0

lx∗t x∗t+1
.

This is a combinatorial problem but can also be cast as a linear program [20]. It
is apparent that the computational complexity of such a problem becomes rapidly
unbearable as the number of nodes n and the length of the path N increase. Having
a solution to this first problem, the OMT problem can then be recast as the linear
program in (7.1), where the cost of a path is its length. Alternatively, the OMT
problem can be directly cast as a linear program in as many variables as there are
edges [20]. The transport provided by Theorem 9.9, which readily generalizes to any
two marginals ν0 and νN , provides an attractive alternative to the OMT approach:
Minimum length paths all have maximum probability, but some of the mass is also
transported on alternative paths thereby ensuring a certain amount of robustness
of the transportation plan. Also notice that Theorem 9.9 provides an alternative
paradigm to find the minimum length paths through simulation! 2

We conclude this subsection with a few observations on the role of the tempera-
ture parameter, referring to [64, Section V] for the proofs.

Remark 9.11. Consider the solution M∗L,T [δx0
, δxN ] =: M∗T to the maximum

entropy problem

M∗L,T [δ1, δn] = argmin{D(P‖pB(x;T )) | P ∈ P(δ1, δn)}

with prior (9.16) where we have emphasized the dependence on the parameter T . Let
lmin(x0xN ) be as in (9.18).
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i) For T ↘ 0, M∗T tends to concentrate itself on the set of feasible, mini-
mum length paths joining x0 and xN in N steps. Namely, if y = (y0 =
x0, y1, . . . , yN−1, yN = xN ) is such that l(y) > lmin(x0xN ), then M∗T (y) ↘ 0
as T ↘ 0.

ii) For T ↗ +∞, M∗T tends to the uniform distribution on all feasible paths
joining x0 and xN in N steps.

We notice that, as in the diffusion case [168, 169, 170, 157, 156, 52, 54, 46], when
the “heat bath” temperature T is close to 0, the solution of the Schrödinger bridge
problem is close to the solution of the discrete OMT problem. Since for the former an
efficient iterative algorithm is available (8.6), we see that also in this discrete setting
the SBP provides a valuable computational approach to solving OMT problems. We
illustrate this, Theorem 9.9 and the invariance of the most probable paths below, in
a simple example below. 2

Example 9.12. Consider again Figure 6 and let ν0 = δ1 and νN = δ9. Let the
time horizon for the transport N = 3 or N = 4. We first set the length of all edges
equal to 1 except l99 = 0. The shortest path from node 1 to 9 is of length 3 and
there are three such paths, which are 1− 2− 7− 9, 1− 3− 8− 9 and 1− 4− 8− 9.
If we want to transport the mass with a minimum number of steps, we may end up
using one of these three paths. We use the results of Section 9.3 to compute a robust
routing policy. Since all the three feasible paths have equal length, we get a transport
plan with equal probabilities using all these three paths, regardless of the choice of
temperature T . The evolution of mass distribution is given by

1 0 0 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 0 0 0 0 1/3 2/3 0
0 0 0 0 0 0 0 0 1

 ,
where the four rows of the matrix show the mass distribution at time step t = 0, 1, 2, 3
respectively, while columns correspond to vertices. As we can see, the mass spreads
out first and then goes to node 9. When we allow for more steps N = 4, we get, for
“temperature” T = 1,

1 0 0 0 0 0 0 0 0
0 0.4705 0.3059 0.2236 0 0 0 0 0
0 0 0.0823 0.0823 0.1645 0 0.2236 0.4473 0
0 0 0 0 0 0.0823 0.0823 0.1645 0.6709
0 0 0 0 0 0 0 0 1

 .
There are 7 feasible paths of length 4, which are 1− 2− 7− 9− 9, 1− 3− 8− 9− 9,
1−4−8−9−9, 1−2−5−6−9, 1−2−5−7−9, 1−3−4−8−9 and 1−2−3−8−9.
The amounts of mass traveling along these paths are

0.2236, 0.2236, 0.2236, 0.0823, 0.0823, 0.0823, 0.0823,

respectively. The first three are the most probable paths. This is consistent with
Proposition 9.4 since they are the paths with minimum length. If we change the
temperature T , the flow changes. The set of most probable paths, however, remains
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invariant. In particular, when T = 0.1, the flow concentrates on the most probable
set (effecting OMT-like transport), as shown below

1 0 0 0 0 0 0 0 0
0 0.3334 0.3333 0.3333 0 0 0 0 0
0 0 0 0 0 0 0.3334 0.6666 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

 .

Now we change the graph by setting the length of edge (7, 9) as 2, that is, l79 = 2.
When N = 3 steps are allowed to transport a unit mass from node 1 to node 9, the
evolution of mass distribution for the optimal transport plan, for T = 1, is given by

1 0 0 0 0 0 0 0 0
0 0.1554 0.4223 0.4223 0 0 0 0 0
0 0 0 0 0 0 0.1554 0.8446 0
0 0 0 0 0 0 0 0 1

 .
The mass is transported through paths 1− 2− 7− 9, 1− 3− 8− 9 and 1− 4− 8− 9,
but unlike the first case, the transport plan doesn’t equilize probability for these three
paths. Since the length of the edge (7, 9) is larger, the probability that the mass takes
this path becomes smaller. The plan does, however, assign equal probability to the
two paths 1− 3− 8− 9 and 1− 4− 8− 9 with minimum length; that is, these are the
most probable paths. The evolutions of mass for T = 0.1 and T = 100 are

1 0 0 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


and 

1 0 0 0 0 0 0 0 0
0 0.3311 0.3344 0.3344 0 0 0 0 0
0 0 0 0 0 0 0.3311 0.6689 0
0 0 0 0 0 0 0 0 1

 ,
respectively. We observe that, when T = 100 the flow assigns almost equal mass
to the three available paths, while, when T = 0.1 (OMT-like transport), the flow
concentrates on the most probable paths 1−3−8−9 and 1−4−8−9. This is clearly
a consequence of the properties seen in Remark 9.11.

Remark 9.13. As in the continuous case, it is possible to transform the dynamic
problems considered in this section into static ones using a decomposition for the rel-
ative entropy similar to (4.6). Indeed, let P and Q be two probability distributions on
XN+1. For x = (x0, x1, . . . , xN ) ∈ XN+1, consider the multiplicative decomposition

P (x) = Px0,xN (x)p0N (x0, xN ),

where

Px̄0,x̄N (x) = P (x|x0 = x̄0, xn = x̄N )
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and we have assumed that the joint initial-final distribution p0N is everywhere positive
on X × X , and similarly for Q. We get

D(P‖Q) =
∑
x0xN

p0N (x0, xN ) log
p0N (x0, xN )

q0N (x0, xN )

+
∑

x∈XN+1

Px0,xN (x) log
Px0,xN (x)

Qx0,xN (x)
p0N (x0, xN ).

This is the sum of two nonnegative quantities. The second becomes zero if and only
if Px0,xN (x) = Qx0,xN (x) for all x ∈ XN+1. 2

Thus, expanding on the above remark, for instance, the problem

(9.19) min{D(P‖pB(x;T )) | P ∈ P(ν0, νN )}

can be reduced to

Problem 9.14.

(9.20) minimize J(p0N ) := D(p0N‖pB;0N )

over
(9.21)

{p0N probability distribution on X×X :
∑
xN

p0N (·, xN ) = ν0(·),
∑
x0

p0N (x0·) = νN (·)}.

If p∗0N solves the above problem, then

(9.22) P ∗(x) = pB;x0,xN (x)p∗0N (x0, xN )

solves Problem (9.19). As in the continuous setting, the solution lies in the same
reciprocal class of the prior. Observe, however, that, contrary to (9.7), the solution in
the form (9.22) does not yield immediate by-product information on the new transition
probabilities and on what paths the optimal mass flow selects (cf. Remark 4.10 in the
continuous setting). It is therefore less suited for many network routing applications.

10. Closing comments. We have reviewed some of the essential theoretical
features of the Kantorovich relaxed formulation of OMT with quadratic cost and of
the theory of the Schrödinger bridge problem, SBP. We have tried to do this from a
somewhat unusual angle, namely that of stochastic control. We have explained that
such a viewpoint opens the way to natural generalizations and important applications,
particularly in physics (such as cooling), aerospace engineering (such as guidance for
spacecrafts), robotics (such as controlling swarms), and many other areas. Both
problems, OMT and SBP, in their Eulerian formulation, lead to stochastic control
steering problems for probability distributions. In this respect, we have highlighted
the non-equivalence between Schrödinger’s original problem and the related problems
of steering for one-time densities, cf. Remark 4.5. We have also attempted to clarify
the relation between Yasue’s action, Carlen’s problem, and the fluid dynamic Problem
4.6 introduced in [54] that involves a Fisher Information Functional, see Remark 4.7.

In order to keep the paper within a reasonable length, we have avoided touching
here on a large number of related topics such as non-commutative OMT, gradient
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flows on Wasserstein spaces, geometry of displacement and entropic interpolation,
multimarginal transport, functional inequalities, mismatched transport, barycenters,
connection to mean-field games, to information theory, to stochastic mechanics, to
differential games, to name but a few.

In the discrete setting, we have shown in some detail the connection between
the relaxed OMT, Schrödinger bridges and the statistical mechanical free energy. It
turns out (Section 7) that the regularized OMT is just a discrete Schrödinger bridge
problem equivalent to a contrained minimization of the free energy for distributions
on path space. The latter may be viewed as a constrained Gibbs’ variational principle
recovering Schrödinger’s original large deviations motivation. Moreover, the IPF-
Sinkhorn algorithm is just a discrete counterpart of Fortet’s algorithm (Section 8) for
which Fortet had proven convergence under rather general assumptions in the much
more challenging continuous case already in 1940. In Section 8, we have also proven
convergence of the algorithm as a consequence of convergence in a projective metric
of rays in the positive orthant of Rn.

This paper has also the ambition to act as a navigation chart for the topics it
discusses. We felt that this was needed as, on the one hand, probabilists considered
the theory of Schrödinger Bridges pretty much complete by the early 1990’s (see
Wakolbinger’s survey [244] that was published in 1992). Yet, as we argued at the
beginning of Section 5, this is far from being true. On the other hand, some very fine
analysts who contributed to the fantastic development of OMT of the past twenty or
so years, have very little interest in the probabilistic motivation and the statistical
physics underlying the Schrödinger Bridge theory in spite of the fine work of Mikami,
Thieullen and Léonard [168, 169, 170, 157, 156]. Moreover, many first-class scientists
working in the field have a more computational background and interest, having been
driven to these problems by the effectiveness of the earth mover distance in several
modern applications such as those (we quote from [196]) “in imaging sciences (such as
color or texture processing), computer vision and graphics (for shape manipulation) or
machine learning (for regression, classification and density fitting)”. Finally, control
engineers were interested from 1985 on in a special bridge problem on an infinite
horizon problem, called covariance control, starting with the seminal work of Skelton
and collaborators [126, 127, 219, 116, 251]. The field was considered exhausted more
than twenty years ago, but this turned out to be far from the case; it is currently
experiencing another phase of fast development.

On top of all of these reasons for incomprehensions and difficult communication,
there is, of course, a Babelian confusion of Tongues as scientists working in this field
have had a plethora of backgrounds such as in various areas of pure and applied
mathematics, statistical physics, statistics, computer graphics, control, mechanical
and aerospace engineering, numerical analysis, machine learning, etc. Nevertheless,
considering the spectacular flourishing of OMT, Schrödinger Bridges and relative ap-
plications, one feels tempted to end the paper with a Chinese quote: “Great is the
confusion under the sky. The situation is therefore excellent.”
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[129] K. Itô and S. Watanabe, Transformation of Markov processes by multiplicative functionals,

Annales de l’institut Fourier, 15, n.1 (1965), 13-30.
[130] B. Jamison, Reciprocal processes, Zeitschrift. Wahrsch. Verw. Gebiete, 30, (1974), 65-86.
[131] B. Jamison, The Markov processes of Schrödinger, Z. Wahrscheinlichkeitstheorie verw. Gebiete

32 (1975), 323-331.
[132] E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review Series II,

106 (4): 620 D630, 1957. doi:10.1103/PhysRev.106.620. MR87305, and Information The-
ory and Statistical Mechanics II, Physical Review Series II, 108 (2): 171 D190, 1957.
doi:10.1103/PhysRev.108.171. MR96414.

[133] E. T. Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE,
70(9):939–952, Sept. 1982.

[134] X. Jiang, Z. Luo, and T.T. Georgiou, Geometric methods for spectral analysis, IEEE Trans-
actions on Signal Processing, 60, no. 3, 2012, 1064-1074.

[135] J. Johnson, Thermal Agitation of Electricity in Conductors, Physical Review, 32, 97-109, 1928.
[136] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck

equation, SIAM J. Math. Anal. 29: 1-17 (1998).
[137] L. V. Kantorovich, Mathematical methods in the organization and planning of production,

Leningrad Univ., 1939 (in Russian). [English translation: Management Science, 6, 4 (1960),
363-422.]

[138] L.V. Kantorovich, L. V., On translocation of masses, USSR AS Doklady New Series, 37, 7-8,
(1942), 227-229 (in Russian). [English translation: J. Math. Sci., 133, 4 (2006), 1381-1382.]

[139] L. V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk, 3, (1948), 225-226 (in Rus-
sian). [English translation: J. Math. Sci., 133, 4 (2006), 1383.]

[140] L. V. Kantorovich and G. S. Rubinshtein, 1958: On a space of totally additive functions, Vestn.
Leningrad. Univ., 13, 7 (1958), 52-59. (in Russian).

[141] E. Kappler, Versuche zur Messung der Avogadro-Loschmidtschen Zahl aus der Brownschen
Bewegung einer Drehwaage, Annalen der Physik, 11 (1931), 233-256.

[142] I. Karatzas, On a stochastic representation for the principal eigenvalue of a second-order dif-
ferential equation, Stochastics, 3, (1980), 305-321.

[143] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New
York, 1988.

[144] S. Karlin and H. Taylor, A Second Course in Stochastic Processes, Academic Press, 1981.
[145] K. H. Kim and H. Qian, “Entropy production of Brownian macromolecules with inertia”, Phys.

Rev. Lett., 93 (2004), 120602.
[146] W. Kliemann, Recurrence and invariant measures for degenerate diffusions, Ann. Prob., 15

(1987), 690-707.
[147] A. Kolmogorov, Zur Umkehrbarkeit der statistischen Naturgesetze, Mathematische Annalen,

113, (1937), 766- 772.
[148] J. Kruithof, (1937). Telefoonverkeersrekening, De Ingenieur, 52, 8, (1937), E15-E25.



64 YONGXIN CHEN, TRYPHON GEORGIOU and MICHELE PAVON
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306,2014.

[156] C. Léonard, From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct.
Anal., 2012, 262, 1879-1920.
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[200] T. Rachev and L. Rüschendorf, Mass Transportation Problems, Vol. I: Theory, Vol. II: Ap-

plications. Probability and its applications. Springer- Verlag, New York, 1998.
[201] D. Reeb, M. J. Kastoryano, and M. M. Wolf, Hilbert’s projective metric in quantum

information theory, J. Math. Phys., 52 (2011), p. 082201.
[202] J. Ridderhof and P. Tsiotras, Uncertainty quantification and control during Mars powered

descent and landing using covariance steering, in AIAA Guidance, Navigation, and Control
Conference, Kissimmee, FL, Jan. 8-12, 2018.

[203] J. Ridderhof and P. Tsiotras, Minumum-fuel powered descent in the presence of random dis-
turbances, in AIAA Guidance, Navigation, and Control Conference, San Diego, CA, Jan.
7-11, 2019.

[204] J. Ridderhof, K. Okamoto, and P. Tsiotras, Nonlinear uncertainty control with iterative covari-
ance steering, 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3484-3490.
IEEE, 2019.

[205] J. Ridderhof, K. Okamoto, P. Tsiotras, Chance Constrained Covariance Control for Linear
Stochastic Systems With Output Feedback, ArXiv e-prints, arXiv:2001.04544.

[206] T. Rockafellar, Convex analysis. Princeton University Press, 1970.
[207] D. Ruelle, Thermodynamic formalism: the mathematical structure of equilibrium statistical

mechanics, Cambridge University Press, 2004.
[208] I. S. Sanov, On the probability of large deviations of random magnitudes (in Russian), Mat.

Sb. N. S., 42 (84) (1957) 11 D44. Select. Transl. Math. Statist. Probab., 1, 213-244 (1961).
[209] K. Savla, G. Como, and M. A. Dahleh, Robust network routing under cascading failures,”

IEEE Trans. on Network Science and Engineering, 1, (1), 53-66, 2014.
[210] P. A. Schilpp, editor, “Albert Einstein: Philosopher-Scientist”, The Library of Living Philoso-

http://arxiv.org/abs/2001.04544


66 YONGXIN CHEN, TRYPHON GEORGIOU and MICHELE PAVON

phers, Vol. VII, The Library of Living Philosophers, Inc., Evanston, Illinois, 1949.
[211] E. Schrödinger, Collected Papers on Wave Mechanics, translated by J. F. Shearer and W. M.

Deans, Blackie & Son limited, London, 102, 1928.
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