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ABSTRACT: Rapid and low-cost pathogen diagnostic ap-
proaches are critical for clinical decision-making procedures.
Cultivating bacteria often takes days to identify pathogens and
provide antimicrobial susceptibilities. The delay in diagnosis may
result in compromised treatment and inappropriate antibiotic use.
Over the past decades, molecular-based techniques have
significantly shortened pathogen identification turnaround time
with high accuracy. However, these assays often use complex
fluorescent labeling and nucleic acid amplification processes,
which limit their use in resource-limited settings. In this work, we demonstrate a wash-free molecular agglutination assay with a
straightforward mixing and incubation step that significantly simplifies procedures of molecular testing. By targeting the 16S
rRNA gene of pathogens, we perform a rapid pathogen identification within 30 min on a dark-field imaging microfluidic
cytometry platform. The dark-field images with low background noise can be obtained using a narrow beam scanning technique
with off-the-shelf complementary metal oxide semiconductor (CMOS) imagers such as smartphone cameras. We utilize a
machine learning algorithm to deconvolute topological features of agglutinated clusters and thus quantify the abundance of
bacteria. Consequently, we unambiguously distinguish Escherichia coli positive from other E. coli negative among 50 clinical
urinary tract infection samples with 96% sensitivity and 100% specificity. Furthermore, we also apply this quantitative detection
approach to achieve rapid antimicrobial susceptibility testing within 3 h. This work exhibits easy-to-use protocols, high
sensitivity, and short turnaround time for point-of-care testing uses.

There has been a strong need for rapid infectious disease
diagnostics to identify causative pathogens and expedite

treatment strategies. Bacterial culture generally take days,
resulting in delayed treatment and inappropriate antibiotic
use.1 Urinary tract infections (UTIs) are one of the most
common bacterial infections, accounting for more than 8
million hospital visits in the United States, where 84% of
occurrences are in women.2,3 UTIs also are the most common
cause of healthcare-associated infections in the United States
because 15−25% hospitalized patients receive urinary catheters
during their hospital stay.4,5 UTIs cost the healthcare system
more than 3 billion dollars annually due to extended hospital
stays, disability, and antibiotics usage.6−8

In clinical guidelines, empirical antibiotic treatment is
recommended as firsthand UTI treatment based on the most
frequent pathogens identified and local patterns of antimicro-
bial resistance until causative bacteria and their antibiotic
susceptibilities are identified.9 Thus, inappropriate use of
antibiotics may lead to growth of resistant bacteria, which
decreases the efficacy of existing antibiotics and limits available

treatment options.10 Antimicrobial resistance has become one
of the most challenging public health issues today. To this end,
a rapid UTI diagnostic platform can offer treatment guidance
by incorporating antimicrobial susceptibility testing (AST).11

The deployment of rapid diagnostic methods at point-of-
care testing (POCT) levels is essential to improving healthcare
quality and guiding clinical decisions, especially in resource-
limited settings.12,13 Over the past few decades, molecular
diagnostic technologies such as polymerase chain reaction have
been applied for pathogen identification. The nucleic acid
amplification tests (NAATs) offer a powerful technique for a
rapid pathogen identification. However, the NAAT approaches
have shortcomings such as complex sample preparation, high
equipment and reagent costs, amplification of nonviable
organisms, and necessity of qualified technicians among
others.14,15 The lack of sufficient lab instruments such as
water baths, shakers, thermal cyclers, etc. discourages the use
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of NAATs for clinical end-users in resource-limited settings.
Although the development of POCT diagnostics on portable
electronics have shown promising results,16,17 the miniatur-
ization of NAAT techniques and their deployment in POCT
settings remain challenging due to system integration and
testing reliability. Thus, few technologies can deliver a “sample-
in, answer-out” approach for operation and meet POCT
requirements in practice.
In this paper, we propose a low-cost microfluidic imaging

flow cytometry platform for rapid UTI diagnostics. The
platform utilizes the narrow beam scanning (NBS) technique
with off-the-shelf complementary metal-oxide-semiconductor
(CMOS) imagers to collect images from molecular agglutina-
tion bioassays.18,19 The agglutination assay is a simple
approach to produce signals detected by various biosen-
sors.20−23 These bioassays have mostly been demonstrated by
means of antibody-coated microparticles for detection of
biomarkers or bacteria.24,25 Recently, the advancement of
molecular diagnostics allows an innovative agglutination
format through nucleic acid hybridization to detect amplicons
of polymerase chain reaction (PCR) or other nucleic acid
targets.22,26−28 We harness the molecular approach that
immobilizes a pair of oligonucleotide probes on microparticles,
respectively, followed by agglutination formation against target
bacterial nucleic acid through a hybridization reaction. Because
there are more than 10 000 copies of 16S ribosomal
ribonucleic acid (rRNA) per bacterial cell,29 this high
abundance not only allows us to circumvent drawbacks of
nucleic acid amplification, but also ensures high sensitivity
against target bacteria. The probes are designed to be
complementary to specific 16S rRNA of target UTI bacteria.
Once probes on microparticles hybridize with target 16S
rRNA, the scattered light of agglutinated clusters will be
imaged on the CMOS imagers by the NBS technique.
Different bacterial concentrations in the sample display distinct
features of agglutination patterns. To assist the quantification

of bacterial concentration from these agglutination patterns, we
demonstrate the novel application of machine learning
algorithms with image processing to analyze images of
scattered light from agglutinated clusters. The quantitative
outputs of our rapid and low-cost platform enable clinical
pathogen diagnostics and antibiotics selection guidance via
AST in POCT settings.
The use of molecular agglutination bioassays in our platform

simplifies protocols and enables rapid pathogen identification.
As a proof-of-concept for UTI diagnostics, we conduct our
protocols and use a smartphone camera as the readout system.
The major advantages of the proposed platform include: (1)
bacterial identification with high sensitivity and specificity:
utilize widely proven 16S rRNA detection to identify causative
UTI bacteria directly,30 (2) cost effectiveness: use fluorescent-
free reagents and low-cost microparticles to reduce cost per
test, (3) short turnaround time: conduct hybridization in the
solution phase, facilitating agglutination formation, (4) one-pot
protocol: mix lysate with probe-coated microparticles for direct
detection without washing steps, and (5) quantitative
detection: offer a rapid AST solution for clinical treatment
guidance. Our preliminary results demonstrate a rapid
detection protocol that can complete Escherichia coli (E. coli)
detection with a limit of detection down to 102 colony-forming
unit (CFU) per mL within 30 min. We also apply the same
protocols to distinguish E. coli positive samples from 50 clinical
samples, showing high clinical specificity. The growth-based
dose−response testing can be completed within 3 h to clearly
quantify bacterial level change, indicating the proposed
platform holds potential for clinical treatment guidance.

■ RESULTS AND DISCUSSION
In this work, we blend the benefits of molecular testing and
novel imaging techniques to design a rapid and low-cost
pathogen detection platform. We improve upon molecular
agglutination bioassays by quantifying the output in a low-cost

Figure 1. Schematic molecular agglutination assay protocol and detection setup. (1) Bacterial cells suspended in the solution. (2) Cell lysis by
lysozyme to release target 16S rRNA from bacterial cells at room temperature. (3) Incubation of 16S rRNA with probe-coated microparticles at 37
°C in the buffer solution, where a pair of probes bind with target 16S rRNA sequences to form agglutination through hybridization. (4)
Agglutinated cluster in the solution transferred to a microfluidic chip and analyzed by a dark-field imaging flow cytometer implemented on the
smartphone, where a smartphone dongle consists of a microfabricated lens glass slide, an inverse microlens, and an LED. The overall turnaround
time takes less than 30 min from the sample to analyzed results.
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microfluidic imaging flow cytometry platform. The use of a
microfluidic platform transports the agglutinated clusters in
flow, which allows a sufficiently large number of images to be
taken from the product of the agglutination assay for statistical
analyses. The geometry of the microfluidic channel also allows
agglutination clusters in the flow to be distributed within the
depth of focus, which produces more clear images of the
clusters for imaging processing. The microfluidic channels are
fabricated using adhesive tapes coated with hydrophilic
materials to drive fluid flow via a capillary effect, which
eliminates the need for external pumps and hence reduces the
cost and complexity of the overall system. The use of the NBS
technique with off-the-shelf CMOS imagers facilitates point-of-
care testing uses. Finally, we highlight the novel application of
machine learning algorithms to improve the quantification of
bacterial concentration from agglutination patterns in this

work. We discuss each component of our platform in detail in
the following sections.

Microfluidic Imaging Flow Cytometry Platform. The
proposed microfluidic imaging flow cytometry platform for
rapid pathogen identification is illustrated in Figure 1. As
demonstrated in the previous work, a tilted narrow beam can
be formed by the microfabricated lens, where a slit opening
underlays near the edge of the microlens.19 This titled beam
produces scattered light from the objects of interest. We mix
the bacterial lysate with probe-coated microparticles and flow
the liquid mixture through the microfluidic channel. The
refractive index difference between microparticles and medium
generates scattered light, which can be readily detected by the
CMOS imager. The narrow beam illuminates microparticles at
a fixed incident angle so that the CMOS imager collects only
the scattered light but not the primary beam, forming a dark-
field imaging band with minimal background noise. Given the

Figure 2. (a) Snapshot of agglutinated microparticles flowing through the microfluidic channel at each bacterial concentration. Images are recorded
on an iPhone 5S. (b) Overview of a machine learning algorithm to train a neural network to score agglutinated patterns for quantification of
bacterial levels. The count is an intrinsic feature to describe the number of agglutinated clusters. Besides, four agglutinated features are extracted
using image process algorithms: (1) size, (2) scattered light intensity, (3) regularity, and (4) circularity. (c) Quantification of E. coli using the neural
network. The line in orange represents the median of scores at bacterial concentration of 0, 102, 103, 104, 105, 106, and 107 CFU/mL. The upper
and lower boundaries of the boxplot are determined by the first quantile (Q1), the third quantile (Q3), and interquartile range (IQR). The IQR
equals Q3 − Q1. The lower boundary equals Q1 − 1.5*IQR and the upper boundary equals Q3 − 1.5*IQR. (d) The p-value for the pairwise
comparison of score distribution at different bacterial concentrations using two sample Student’s t test.
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30 frame per second (fps) recording rate of the iPhone 5S
camera, the serpentine channel before the sensing window is
designed to slow down the flow rate to capture discernible
images. The latest CMOS imager with higher recording
performance can further improve image quality for down-
stream analysis. The laser cutting process is used to engrave a
microfluidic design on a light shielding film. The light shield
film with double-sided adhesive is then sandwiched with
hydrophilic films. Once the liquid sample is transferred onto
the microfluidic device, capillary effects will spontaneously
imbibe samples into the microchannel. Our platform does not
require any external pumping mechanism, which reduces the
overall costs and improves the ease of use in POCT settings.
A compact smartphone dongle is designed to integrate a

green light-emitting diode (LED) as an illumination source, a
microlens-embedded glass slide, and an optical lens. The
optical lens is used to magnify the agglutinated clusters and
enlarge the field of view, which can fully cover the entire dark-
field imaging band.31,32

Molecular Agglutination Assay. Traditional clinical
diagnosis based on agglutination assays relies on visual
examination by naked eyes. However, the lack of sensitivity
and subjective judgment by visual examination are potential
pitfalls for decision-making. Here we adopt off-chip protocols
for sample preparation and focus on demonstrating a POCT
detection platform. As illustrated in Figure 1, bacteria are lysed
to release target 16S rRNA. A pair of capture probes (EC1 and
EC2) immobilized on magnetic microparticles, respectively,
are mixed with the lysate. Each capture probe has a C12-linker
between its oligonucleotides and biotinylated end to reduce
steric hindrance during hybridization. The magnetic micro-
particles generally have better suspension and less self-
aggregation, which is critical to our image processing
algorithms. Upon addition of hybridization buffer, the presence
of 16S rRNA and probe-coated microparticles will induce
agglutination by the hybridization reaction. In our protocols,
the hybridization occurs in the solution, where a faster reaction
rate is expected due to elimination of inefficient diffusion
processes.33 We also notice that the high stringency buffer
conditions have to be applied to avoid agglutination from
nonspecific binding. Under the high salt concentrations,
agglutination is observed within 5 min after adding the
hybridization buffer even for nontarget bacteria. To prevent
nonspecific agglutination, 1% bovine serum albumin (BSA) is a
minimal amount in the hybridization buffer. The incubation
temperature is set at 37 °C for 25 min. The microparticle
numbers have to be experimentally tuned to achieve a desired
limit of detection within a target dynamic range of the
agglutination assay.34,35 This is because when the binding
capacity on microparticles is greater than target analyte, the
linear detection performance can be obtained. Due to the
clinical criteria of the UTI diagnosis being 105 CFU/mL,36−38

the dynamic range of the present agglutination assay is
designed to include bacterial concentration between 102 and
107 CFU/mL. In 100 μL of the final mixture, about ∼2.4 × 107

probe-coated microparticles are present to react with target
rRNA to form agglutination. After hybridization, the mixture
can be directly pipetted onto the microfluidic chip for analysis
using the NBS technique. As a key feature, the strategy using
two capture probes directed against the target sequence can be
expanded to a generic principle for pathogen detection. Unlike
other optical-based methods, such as fluorescent probes, our
platform uses dark-field imaging to form images on low-cost

CMOS imagers as a readout system. Using the agglutination
format, we are able to conduct a “wash-free” assay. This
microfluidic imaging flow cytometer platform holds the
potential to deliver a ready-to-use POCT system. Another
inherent advantage of our platform is the low cost per test and
inexpensive readout system, which is critical to budget control
of the healthcare ecosystem.

Quantitative Detection of E. coli by Agglutination
Pattern. The present dark-field imaging flow cytometry
platform exploits the agglutination pattern changes, which
clearly captures agglutinated clusters on a two-dimensional
plane, boosting the features on the agglutination pattern. In
contrast to traditional fluorescent detection, the intensity of
fluorescence is the only signal that can be detected for
detection. As a result, great attention to the quality of
fluorophore and quencher molecules and handling procedures
is necessary.
To demonstrate our platform, we selected E. coli, the most

common causative UTI pathogen, as the first target bacteria.
Under the optimized hybridization conditions, we serially
diluted cultured E. coli (JM109 strain) and conducted
protocols to record images of the agglutination pattern at
each bacterial level. In Figure 2a, we observe a concentration-
dependent pattern using our approach with 5 orders of
magnitude dynamic range. At a high concentration above 105

CFU/mL, the probe-coated microparticles can easily hybridize
with target bacterial 16S rRNA sequences, leading to large
agglutinated clusters and less unbound microparticles. On the
other hand, when the target rRNA sequence exists in low
abundance, most microparticles will remain unbound. We
apply an image processing algorithm to identify pattern
variables for bacterial level quantification.
A total of 39 500 images for agglutination patterns at

bacterial concentration of 0, 102, 103, 104, 105, 106, and 107

CFU/mL were collected. Five agglutinated features were
recognized to confer the maximum accuracy of quantification.
As illustrated in Figure 2b, these features of each agglutinated
cluster include (1) size, (2) scattered light intensity, (3)
regularity, and (4) circularity. The count is a feature to describe
the number of agglutinated clusters in each image. The features
of agglutinated clusters from captured images could have large
variance because the images are recorded in the continuous
flow in the microfluidic channel. To reduce the impact from
this variance in each frame, the accumulation of the features is
conducted from every 50 frames to produce agglutination
profiles. A total of 790 agglutination profiles were generated
and learned by machine learning algorithms for quantification
of the level of bacterial in the sample from the agglutination
patterns.
As shown in Table 1, individual features from the

agglutination profile do not correlate well with the
concentration levels. For instance, the intensity of scattered

Table 1. Quantification Accuracy Using Individual Features
from the Agglutination Profile

features MSE R2

regularity 1.31 0.73
count 1.51 0.69
circularity 1.60 0.67
size 1.62 0.67
intensity 2.30 0.53
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light shows a large mean squared error (MSE) of 2.30 and
poor R2 of 0.53. Although some particular features, such as
Regularity, may perform discernible results at certain bacterial
levels, the large coefficient of variation of measured features is
found across different bacterial concentrations (Supporting
Information, Figure S1). The results demonstrate that
individual measures are insufficiently accurate for clinical
purposes, suggesting a multidimensional analysis of the
agglutination profile.
Multidimensional Profiles Boost Quantification Ac-

curacy. Three different machine learning algorithms including
linear regression, support vector machine (SVM), and neural
network trained on the agglutination profile were further
applied to increase accuracy.39,40 As described in Materials and
Methods, each machine learning algorithm learns features from
the agglutination profile and produces a score. The perform-
ance was evaluated by MSE and R2 in Table 2. The linear

regression model outperforms the quantification accuracy
using an individual agglutinated feature, but it still lacks the
required sensitivity to differentiate bacterial concentration
between 102 and 104 CFU/mL (Supporting Information,
Figure S2). The SVM model shows improved performance;
however, a wide score deviation at the bacterial concentration
of 102, 104, and 107 CFU/mL makes precise quantification
difficult (Supporting Information, Figure S3).
Figure 2c shows the score generated by the neural network.

The performance of neural network model on the validation
set, consisting of 237 agglutination profiles, shows a low MSE
of 0.03 and R2 of 0.99. This model yields approximately 43-fold
improvement on MSE and 26% improvement on R2 comparing
to Regularity, the individual feature with the best discernible
results among the agglutination profiles. Moreover, the neural
network model also outperforms the linear regression model
with 30-fold improvement on MSE and the SVM model with
7-fold improvement on MSE. The results suggest that the
activation function used in the neural network model greatly
improves the quantification accuracy. The Student’s t test was
used to determine whether two score distributions are
significantly different from each other. The pairwise compar-
ison between score distributions for seven bacterial concen-
tration levels of 0, 102, 103, 104, 105, 106, and 107 CFU/mL is
shown in Figure 2d. We observe that the score distribution at
one bacterial concentration level is statistically discernible from
others with a small p-value less than 10−10. The limit of
detection (LOD) for the capture probe pairs targeting E. coli is
102 CFU/mL, defined by adding three standard deviations
(SD) from the negative control mean (Supporting Informa-
tion, Table S1). Machine learning algorithms trained on
multidimensional agglutination profile can effectively quantify
bacterial concentrations and produce high sensitivity, in which
one-dimensional, intensity-based scattered light measurement
and individual agglutinated features are not achievable by the
agglutination assay (Supporting Information, Figure S4).

Clinical Validation: Specificity. The specificity of using
the optimized agglutination assay is validated with clinical
samples. We tested 50 clinical patient urine samples that were
first examined in the hospital laboratory for microbiological
analysis. According to the laboratory results, 25 samples were
identified to be E. coli positive. Twenty-five samples are E. coli
negative species (Supporting Information, Table S2). E. coli
positive samples were cultured and concentration was
calibrated to 106 CFU/mL. On the other hand, E. coli negative
samples were tested at the concentration about 108 CFU/mL.
These culturing and calibration steps were performed in this
proof-of-concept implementation to demonstrate the consis-
tency of our quantitative results using calibrated samples of live
bacteria. These steps will not be necessary in an actual test for
UTI diagnosis. Images were analyzed with an established
machine learning model, with a cutoff score of 5, which
corresponds to the clinical threshold concentration of 105

CFU/mL. Figure 3 shows that even highly concentrated E. coli

negative samples do not produce scores above 5, the clinical
criteria for UTI diagnosis. The E. coli positive samples have the
mean score of 6.58 with standard deviation (SD) of 0.75,
whereas the E. coli negative samples have the mean score of
2.38 with SD of 1.27. The Student’s t test shows that the score
distributions between E. coli positive and negative samples is
statistically different with a p-value of 4.06 × 10−10. The low
yet quantifiable levels of agglutination in E. coli negative
samples are attributed to minor cross reactivity against E. coli
nucleotide probes. Combining the NBS technique and
machine learning algorithms, the molecular agglutination
assay demonstrated sensitivity of 96% and specificity of
100% for pathogen identification. More importantly, this
approach significantly reduces turnaround time from 24 h to
30 min and simplifies assay procedures. As a remark, an actual

Table 2. Quantification Accuracy of Machine Learning
Models on Validation Set

algorithms MSE R2

neural network 0.02 0.99
SVM-RBFa 0.21 0.97
linear regression 0.90 0.85

aRBF: radial basis function kernel in SVM analysis.

Figure 3. Clinical specificity validation with 50 clinical pathogens
using E. coli probes. The sample classification results on horizontal
axis results are examined from clinical laboratory test. The score on
the vertical axis is obtained by the established machine learning
algorithms. E. coli positive samples (24 out of 25) shows 96%
detection sensitivity. All E. coli negative samples at 108 CFU/mL
(100-fold higher than positive samples) are below the threshold value,
which indicates 100% detection specificity and matches clinical
microbiology results.
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test involves two separate steps, namely, the sample
preparation step and detection step. This work focuses on
presenting novel developments in the detection platform. The
sample preparation step in clinical tests will involve the use of
centrifuge on the urine samples. Future efforts will integrate
existing techniques, including centrifugal devices and micro-
fluidic automation,41,42 to implement on-chip sample prepara-
tion and further simplify the protocols.
Toward Antimicrobial Susceptibility Testing (AST):

Quantifying Dose−Response Relationship. The optimal
dose of antibiotic use is critical to decide the best strategy for
clinical treatment. Genotypic approaches can only detect
known resistant genes and do not recognize mutant
bacteria.43,44 For complex infection diseases such as UTIs, a
phenotypic approach that cultivates bacteria with and without
antibiotics will provide clinicians a thorough understanding of
the antibiotics’ efficacy. Since our assay can quantify the
concentration of bacteria, we further apply our imaging
microfluidic cytometry platform to establish the dose−
response relationship of ampicillin and ampicillin-susceptible
E. coli (JM109). It holds potential for the antimicrobial
susceptibility testing (AST) applications. The growth-based
phenotypic approaches have been undertaken for UTI
antibiotic assessment.45,46 As shown in Figure 4a, in our
platform, ampicillin-susceptible E. coli (∼106 CFU) were
incubated with ampicillin at different concentrations, including
0, 8, 16, 32, and 64 μg/mL, in Luria broth buffer for 2.5 h,
respectively. The quantification of E. coli at each ampicillin
concentration is calculated with the score ratio of antibiotic-
treated to control samples (score[treated]/score[control]).
Ampicillin is a bacteriolytic antibiotic for Gram-positive and
Gram-negative bacteria.47 Ampicillin not only inhibits biosyn-
thesis of the bacterial cell wall but eventually lyses bacteria. In
the presence of a sufficient ampicillin dose, the E. coli cell wall
is disrupted, and the target 16S rRNAs are removed during the
protocols. The decreasing score ratio is expected. In the clinic,
antibiotic susceptibility can be observed by the score ratio
change. As shown in Figure 4b, when the antibiotic
concentration is higher than 32 μg/mL, the score ratio starts
to remain unchanged. It is indicated that the bacterial sample
was susceptible to ampicillin at the specific concentration. Our

results of ampicillin at 32 μg/mL to inhibit E. coli growth is
close to the minimum inhibitory concentration (MIC) in the
Clinical and Laboratory Standards Institute (CLSI) guide-
line.48 We will further apply this approach to bactericidal
antibiotics such as ciprofloxacin. The preliminary data
demonstrate the capability of our platform to find the optimal
dose of antibiotics in less than 3 h from phenotypic cell growth
to bacterial growth quantification. The dose−response
relationship is an essential step toward AST applications for
clinical decision-making.

■ CONCLUSIONS

We demonstrated a molecular diagnostic approach that uses a
pair of nucleotide probes targeting bacterial 16S rRNA to form
an agglutination assay. Employing the narrow beam scanning
technique on the microfluidic imaging flow cytometer, the
molecular agglutination assay can offer a low-cost and high
specificity diagnostic platform for rapid pathogen identification
of UTIs. Our protocol is no-wash and amplification-free,
eliminating possible human error and simplifying diagnostic
procedures.
As a proof-of-concept study, we used microparticles coated

with probes matching 16S rRNA of specific pathogens. Off-
the-shelf CMOS imagers such as smartphone cameras can be
used as the readout sensor. Unlike fluorescent labeling
techniques, we analyzed scattered light images from aggluti-
nated microparticles. Employing machine learning algorithms,
the features of agglutinated patterns can be extracted for
quantification of bacterial levels. Therefore, it requires no
washing step for background noise removal or signal-to-noise
ratio enhancement. The limit of detection in this preliminary
study is 102 CFU/mL, which is several orders of magnitude
below the clinical cutoff for clinical UTI diagnosis. The
dynamic range for E. coli detection spans 5 orders of magnitude
in bacterial concentration (102 to 107 CFU/mL). The
procedure takes less than 30 min from sample preparation to
results for pathogen identification. In the rare case where the
bacterial concentration is beyond the range of detection,
dilutions and multiple measurements would be required to
confirm the results. We validated the molecular agglutination
assay with 50 UTI patient samples. The trained imaging model

Figure 4. (a) Overview of the phenotypic approach for dose−response testing. The procedures start with the growth of 106 CFU bacteria in LB
buffer with 0 (control), 8, 16, 32, and 64 μg/mL of ampicillin. All cultured samples are then processed with our protocols for quantification by
calculating the score ratio. (b) Ampicillin-susceptible E. coli (JM109) were cultured for 2.5 h at different concentration of ampicillin. Phenotypic
dose−response relationship is performed by using the molecular agglutination approach for quantification. The samples without ampicillin are used
as the control. All sample scores after incubation (t = 2.5 h) are compared with a control sample score to calculate the score ratio. When the score
ratio is observed unchanged at an ampicillin concentration higher than a specific value, it indicates E. coli cells are susceptible to ampicillin.
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successfully distinguished all E. coli positive samples from
clinical samples without false positives. It implies that the
proposed protocols can deliver clinically accurate diagnosis and
significantly reduce turnaround time. In addition, we also
piloted the dose−response testing by leveraging the capability
of quantifying the bacterial concentration. The growth-based
dose−response testing was performed to examine ampicillin-
susceptible E. coli strains within 3 h. Our platform clearly
observed the effect of ampicillin amount against the growth of
E. coli by analyzing the score ratio change. This approach
demonstrated an essential step toward AST applications and
the possibility to shorten the time required to obtain antibiotic
treatment guidance.
To conclude, we present a microfluidic imaging flow

cytometry platform that provides clinically relevant results
for UTI pathogen identification and antibiotic treatment
guidance. Given the inexpensive test and readout component
cost as well as simple protocols (no fluorescent labeling and
washing steps), this platform holds great potential for rapid
pathogen diagnostics from the laboratory to POCT settings.
Although off-chip protocols were used in this study, we
acknowledge more efforts of microfluidic chip integration have
to be completed for on-chip bacterial sample handling. Other
future work will include system integration of multiplexed
pathogen identification assay, on-chip sample preparation, and
miniaturization of the system with minimal human inter-
vention, paving the way toward a “sample-in, answer-out”
point-of-care testing platform for future clinical uses.

■ MATERIALS AND METHODS
Materials. Triton X-100 (Sigma-Aldrich), Tris-HCI (1 M,

pH 8.0, Invitrogen), EDTA (0.5 M, pH 8.0, Invitrogen),
lysozyme from chicken egg white (Sigma-Aldrich), streptavidin
conjugated magnetic beads (1 μm, OceanNanoTech), sodium
chloride (Sigma-Aldrich), 20× SSC (IBI Scientific), sodium
dodecyl sulfate solution (10%, Sigma-Aldrich), UltraPure
distilled water (Invitrogen), bovine serum albumin (>98%,
Sigma-Aldrich), 1× phosphate buffered saline (Sigma-Aldrich),
Biotinylated single-stranded oligonucleotides with C12 linker
between biotin and oligonucleotides (Eton Bioscience).
EC1 : 5 ′ - b i o t i n -C12 -CTGCGGGTAACGTCAA-

TGAGCAAA-3′
EC2:5′-GGTATTAACTTTACTCCCTTCCTC-C12-bio-

tin-3′.
Reagents.Washing buffer: 10 mM Tris-HCl, 1 mM EDTA,

and 2 M NaCl. Storage buffer: 4 mM EDTA, 40 mM Tris−
HCl of pH 8.0, and 0.2% Triton X-100. Biotinylated probe
molecule solution: suspend dry oligonucleotides in the
ultrapure distilled water to normalize the concentration of 10
nmol/mL. Lysis buffer: 15 mg of lysozyme dissolved in 1 mL
of storage buffer. Hybridization buffer: 0.5× SSC, 0.1% SDS,
and 1% BSA.
Probe-Coating on Magnetic Microparticles. 50 μL

suspension is taken from streptavidin conjugated magnetic
bead solution (4 mg/mL). Resuspend 50 μL of bead aliquot in
the centrifuge tube, followed by placing the tube on a magnet
separator for 1 min and discarding the supernatant. Resuspend
magnetic beads in 200 μL of washing buffer. Place on the
magnet separator and discard supernatant. Repeat washing step
twice. Resuspend magnetic beads with 100 μL of washing
buffer and mix with 100 μL of biotinylated probe molecule
solution. Incubate for 15 min at room temperature with gentle
rotation of the tube. Place the tube on the magnet separator

and discard the supernatant. Wash the coated beads 2 times
with storage buffer. Add 250 μL of storage buffer to resuspend
probe-coating magnetic microparticles.

Fabrication of Microfluidic Chips. The design of the
microfluidic device can be referred to our previous work.18 In
brief, the microfluidic chip contains an inlet, a serpentine
microchannel, a sensing window, a waste collection reservoir,
and an outlet. The waste reservoir was designed to hold up to
25 μL of liquid sample. The microfluidic channel width at the
entrance is 600 μm and expanded to 900 μm in the sensing
window area. The microfluidic device is comprised of (1) base
layer: hydrophilic tape (3M 9962) as the material of the
microfluidic devices to transport lysate samples without any
external pumps, (2) channel layer: a double-sided light
shielding tape (Avery Dennison, FT 5250) cut with micro-
fluidic channels, and (3) top layer: hydrophilic tape (3M 9962)
for inlet and outlet openings. The microfluidic chips were
manufactured by using the production lamination process
(LasX Industries Inc., MN).

CMOS Imager-Based Imaging Flow Cytometer. As
described in our previous studies, the narrow beam scanning
technique leveraged a microfabricated lens to produce the
narrow beam for scattered light scanning. The detailed
fabrication can be found in ref 19. The smartphone dongle
was designed as a housing for a microlens embedded glass
slide, an optical lens with effective focal length of 2.51 mm
(Largan Precision Co., Taiwan), and an LED. The dongle
prototyped using a 3-D printer is optically aligned with the
camera on an iPhone 5S (Apple, Cupertino, CA). The detail of
smartphone dongle can refer to the Supporting Information,
Figure S5. With proper optimization, this mechanical structure
can be tailored for other mobile devices such as versatile
Android devices as well. Due to strong scattered light from
agglutinated microparticles, we converted the low-end CMOS
imager to a sensitive biosensing reader.

Patient Samples. Patient urine samples, sent to University
of California San Diego hospital for microbiological analysis,
were used in this study. Human subject involvement in this
study was approved by the University of California, San Diego
Administrative Panel on Human Subjects in Medical Research.
The study was certified as category 4 exempt, which includes
research involving the collection or study of existing data,
documents, records, pathological specimens, or diagnostic
specimens, if the information is recorded in such a manner that
subjects cannot be identified directly or through identifiers
linked to the subjects.

Cell Culture. Clinical samples, including E. coli, Citrobacter,
Klebsiella pneumoniae, Proteus mirabilis, Enterobacter, Morga-
nella morganii, Providencia, and Pseudomonas aeruginosa, and E.
coli lab strain JM109 were applied in the experiment. The
clinical samples were collected from different patients with
diagnosed UTIs. Some of clinical samples contained more than
one bacterial type (refer to Supporting Information, Table S2).
When receiving clinical isolates, samples were inoculated with
Luria broth (LB) buffer in a shaker at 37 °C at 250 rpm and
grown overnight. The grown bacteria were then mixed with
25% glycerol and stored at −80 °C prior to use. Before each
experiment, the frozen samples were grown in LB for 8 h and
adjusted concentration, which was calibrated with the plate
culture and the spectrophotometer.

Detection Protocols. To establish the titration curve of E.
coli analysis, the overnight cultured (8 h) E. coli JM109 bacteria
were first measured O.D. to be ∼0.9 (4.5 × 108 CFU/mL),
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and a serial dilution of bacterial samples was performed in
phosphate-buffered saline (PBS) buffer to make the bacterial
concentration 0 (i.e., negative control), 102, 103, 104, 105, 106,
and 107 CFU/mL. To demonstrate our agglutination assay, 1
mL bacterial sample in PBS buffer was centrifuged at 10 000
rpm for 3 min and 980 μL was supernatant meticulously
discarded without agitating the bacterial pellet. The 12 μL of
lysis buffer was added into bacterial samples with gently
pipetting and incubated for 3 min at room temperature. Five
microliters of EC1 and EC2 probes was added into lysate,
respectively. 68 μL of hybridization buffer was added to make a
total volume of 100 μL at pH = 7.2. The mixture was gently
vibrated by the vortex and incubated in a water bath incubator
for 25 min at 37 °C to initiate the hybridization between the
bacterial 16S rRNA and the probe on microparticles. After
rigorously agitation, 20 μL of mixture was transferred onto the
microfluidic chip inserted in the smartphone dongle. The
mixture will be imbibed into microfluidic channel for the NBS
interrogation. The flowing agglutination pattern was recorded
at 30 fps for 60 s, which is the maximum frame rate supported
by the iPhone 5S. Triplicate experiments were conducted for
each bacterial level to establish the regression curve for E. coli.
All images of agglutinated pattern from E. coli samples were
used for machine learning model training. As for clinical
specificity validation, the same protocols and trained model
were used. The cost per test is around $0.26 (detail can be
found in Supporting Information, Table S3).
Dose−Response Relationship. Ampicillin-susceptible E.

coli (JM109) bacteria were first calibrated O.D. to be ∼0.8 (4
× 108 CFU/mL) in PBS buffer. ∼4 × 106 CFU of E. coli cells
were inoculated into 5 mL of LB buffer, containing 0, 8, 16, 32,
and 64 μg/mL of ampicillin, respectively. Bacterial samples
were incubated at 37 °C for 2.5 h. After incubation, the
bacterial samples were used in the same detection protocols for
three times at each ampicillin concentration.
Image Processing. The video was recorded using an

iPhone 5S at a frame rate of 30 frames per second, and saved in
MOV format with a resolution of 1920 × 1080 pixels. The
video files were transferred to a laptop, and processed using
OpenCV Library.49 The video consists of image sequence,
where each image was converted into hue, saturation, value
(HSV) color space. A threshold of upper (H = 0, S = 0, V =
100) and lower (H = 180, S = 255, V = 255) HSV boundary
was applied to identify the dark-field imaging band. The Otsu’s
algorithm was then applied to automatically calculate the
optimum thresholding that best separates the scattered light
and the background noise in the dark-field imaging band.50

The agglutinated clusters were identified by Suzuki’s chain
approximation algorithm.51

The pattern of each agglutinated cluster was described by
topology and intensity features in the grayscale color space: (1)
size, (2) scattered light intensity, (3) circularity, and (4)
regularity. The size is calculated as the area of the agglutinated
cluster. The scattered light intensity is calculated as the total
intensity of the agglutinated cluster. The circularity is calculated
as the ratio of the area of the agglutinated cluster to the
minimum area of the enclosing circle. The count is calculated
by the numbers of agglutinated clusters. The regularity is
calculated as the ratio of the height to the width of the rotated
bounding rectangle enclosing the agglutinated cluster. In
addition to the described features of agglutinated cluster, each
dark-field imaging band was also described by two features: the
size of agglutinated and nonagglutinated area.

Machine Learning. We accumulated features over 50
frames to generalize the agglutination pattern. The sum and
the standard deviation of each feature were computed to
represent the profile of the accumulated agglutination patterns.
In addition, we used the total area of the dark-field imaging
band as the normalizing factor in the profile. The profiles were
shuffled and split into training and validation sets: 70% of the
profiles for training sets and 30% for validation sets. The
profiles were then standardized by independently centering
and scaling on each feature to unit variance on the samples in
the training set. The same scaling parameters were applied to
validation set for the testing of the model.
Linear regression, SVM, and neural network model were

trained on the standardized agglutination profile using Scikit-
learn. We used radial basis function kernel in the SVM model.
We applied rectified linear unit (ReLU) activation function to
the neural network model and optimized the loss function
using Adam stochastic optimization algorithm.52,53 The
exponential decay rates for estimates of the first and second
moment vector were set 0.9 and 0.999, respectively. The value
for the numerical stability was set to 10−8. We conducted an
exhaustive grid search over L2 penalty and initial learning rate
parameters, which were optimized by 10-fold cross-validation
in the training set. The score corresponding to the stand-
ardized agglutination profile was calculated as the weighted
mean of the concentration level ci in log10 scale:

=
∑ *
∑

W c

W
score i i i

i i

The weight was calculated as the exponential function of
weighted linear summation of input features X = x1, x2, ..., xm,
added to a bias vector, and followed by ReLU activation
function:

= * +W ei
w xmax( bias,0)m

Scoring. Each sample was recorded for 60 s using iPhone
5S as described aforementioned in the Image Processing
section. The video file was then transferred to a laptop for
imaging processing and scoring. The neural network model
returns a score based on the agglutination profile for each
sample. The processing time from a raw video file to the
answer is completed in 2 min using one core of 2.7 GHz Intel
Core i5 (MacBook Pro) or in 5 min using one core of 1.4 GHz
ARM (Raspberry Pi 3B).

Safety Statement. No unexpected or unusually high safety
hazards were encountered in this work.
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