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RESEARCH ARTICLE
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Feed Intake in Angus Cattle Using Genomic
Prediction and RNA-seq
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R. Porto-Neto3, Antonio Reverter3, Gonzalo Rincon1

1 VMRDGenetics R&D, Zoetis Inc., Kalamazoo, MI, United States of America, 2 Department of Animal
Science, University of California Davis, Davis, CA, United States of America, 3 CSIRO Agriculture,
Queensland Bioscience Precinct, St. Lucia, QLD, Australia

* kristina.weber@zoetis.com

Abstract
Improvement in feed conversion efficiency can improve the sustainability of beef cattle pro-

duction, but genomic selection for feed efficiency affects many underlying molecular net-

works and physiological traits. This study describes the differences between steer progeny

of two influential Angus bulls with divergent genomic predictions for residual feed intake

(RFI). Eight steer progeny of each sire were phenotyped for growth and feed intake from

8 mo. of age (average BW 254 kg, with a mean difference between sire groups of 4.8 kg)

until slaughter at 14–16 mo. of age (average BW 534 kg, sire group difference of 28.8 kg).

Terminal samples from pituitary gland, skeletal muscle, liver, adipose, and duodenum were

collected from each steer for transcriptome sequencing. Gene expression networks were

derived using partial correlation and information theory (PCIT), including differentially

expressed (DE) genes, tissue specific (TS) genes, transcription factors (TF), and genes

associated with RFI from a genome-wide association study (GWAS). Relative to progeny of

the high RFI sire, progeny of the low RFI sire had -0.56 kg/d finishing period RFI (P = 0.05),

-1.08 finishing period feed conversion ratio (P = 0.01), +3.3 kg^0.75 finishing period meta-

bolic mid-weight (MMW; P = 0.04), +28.8 kg final body weight (P = 0.01), -12.9 feed bunk

visits per day (P = 0.02) with +0.60 min/visit duration (P = 0.01), and +0.0045 carcass spe-

cific gravity (weight in air/weight in air—weight in water, a predictor of carcass fat content; P

= 0.03). RNA-seq identified 633 DE genes between sire groups among 17,016 expressed

genes. PCIT analysis identified >115,000 significant co-expression correlations between

genes and 25 TF hubs, i.e. controllers of clusters of DE, TS, and GWAS SNP genes. Path-

way analysis suggests low RFI bull progeny possess heightened gut inflammation and

reduced fat deposition. This multi-omics analysis shows how differences in RFI genomic

breeding values can impact other traits and gene co-expression networks.
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Introduction
The largest variable costs in beef cattle production are feed and land [1]. Feed costs can be
reduced by improving feed conversion efficiency without sacrificing production traits; one
option for this is to consider residual feed intake (RFI; [2]). RFI is the difference between
observed feed intake and expected intake based on body size and rate of production (growth,
milk production, etc.) over a period of time. An animal with a low RFI has improved feed con-
version efficiency since it consumes less feed than expected for its maintenance and growth
requirements. The heritability of RFI has been estimated to be as high as 42% in growing beef
cattle [3], suggesting it has a strong genetic component and would respond to selective breed-
ing. While it is too expensive for all bull testing centers and feedlots to measure individual feed
intake in order to calculate RFI, reference populations of animals possessing both RFI pheno-
types and high density SNP genotypes have been used to generate predictions of total genetic
merit [4] for RFI in major cattle breeds [5–7]. These genomic predictions can be a selection
tool in the absence of direct phenotypic data.

The aim of this study was to determine whether progeny of bulls with divergent genomic
predictions for RFI displayed physiological and transcriptomic differences. We used two influ-
ential Angus bulls with high or low genomically predicted breeding values for RFI to produce
steer progeny, which were phenotyped for RFI and a large variety of traits from post-weaning
through slaughter and carcass evaluation. Key tissues for growth and metabolism, including
the pituitary, skeletal muscle, liver, visceral adipose, and duodenum, were collected for RNA-
seq analysis. Partial correlation and information theory (PCIT) was used to generate gene net-
works, linking tissue specific (TS) and differentially expressed (DE) genes with known tran-
scription factors (TF) and genes harboring SNP from a large genome-wide association study
(GWAS) study. The DE genes and gene networks described here provide new insights into reg-
ulatory and gene expression pathways of RFI.

Materials & Methods

Animal Management and Phenotype Collection
Using genomic predictions for RFI in Angus cattle [8] produced by Zoetis Inc. (Florham Park,
NJ), two influential purebred Angus bulls were selected as breeding sires. One bull was predicted
to be in the top 1% in the Angus breed in 2010 for RFI, and the other in the bottom 10%, with a
difference in RFI breeding value of 0.32 kg DM/d or approximately 3.5% of daily intake. Semen
from these bulls was used to inseminate a group of commercial cows of predominantly Angus
background at the University of California Sierra Foothill Research and Extension Center
(Browns Valley, CA). Eight steer offspring per sire were selected for participation in the study,
matched between sire groups by weaning weight. Eight animals per group provides 80% power
to detect differential gene expression with fold change greater than or equal to 1.8 for the top
80% of genes by coverage using a biological coefficient of variation of 0.4 and alpha of 0.05 ([9]).
The use of half-sibling progeny of two bulls is expected to reduce the variability within low or
high RFI populations, but does confound RFI with other traits for which the bulls differ. Sire dif-
ferences for other breeding values are provided in S1 Table. Based on molecular and traditional
breeding values, the low RFI sire is predicted to have lower intake, higher weights from birth
through to carcass, larger height and rib-eye area, and reduced backfat thickness.

All livestock were managed under protocols approved by the Institutional Animal Care and
Use Committee (IACUC) of the University of California. Post weaning, at ~ 8 mo of age, the
animals were transferred to a commercial feedlot (Snyder Livestock Co., Yerington, NV; http://
www.slcnv.com/), where they were housed in a single pen equipped with GrowSafe units
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(GrowSafe System Ltd., Airdrie, AB, Canada) for daily feed intake measurement over a period
of 70 d (henceforth referred to as the growing period) after a 14 d adaptation period. Animals
were fed a standard grower diet (Table 1). Feed was provided daily in the morning and pushed
towards the cattle two additional times during the day to encourage feeding. Feed intake was
measured continuously to the 0.01 kg by the GrowSafe system. Data from 2 d were omitted due
to system failure. Feeding behavior was assessed based on frequency and duration of bunk vis-
its. Body weights were taken every 14 d.

Following the growing period, the animals were transferred to the University of California,
Davis Animal Science Feedlot facility, where they were individually housed in 7.5 m2 (1.5 x 5
m) pens for a minimum of 70 d after a 14 d adaptation period or until they reached a body con-
dition appropriate for slaughter (91 d on average), hereafter referred to as the finishing period.
Total feed offered and amount refused were measured to 0.05 kg precision, and daily intake
was calculated as the difference between offered and refused feed per animal per day. Body
weights were measured every 14 d before AM feeding.

For five randomly selected days during the finishing period, the daily ration was provided
via a tie-stall GreenFeed unit (C-Lock Inc., Rapid City, SD) in order to collect methane

Table 1. Composition of the total mixed ration (TMR) used in the growing and finishing periods. Fin-
ishing diet possessed a higher proportion of grain and higher energy content (Mcal/kg).

Item Growing Finishing,Mean (SE)

Ingredient, %

Corn silage 32.56

Corn steepwater 2.75

Rolled corn 62.65

Distillers grain 17.23

Almond hulls 20.00

Rice bran 18.28

Wheat 10.00

Alfalfa hay 8.00 7.83

Oat hay 2.00 3.91

Molasses 4.74

Condensed molasses solubles 2.89

Whey 2.30

Fat 1.96

Limestone 1.28

Calcium carbonate 0.50

White salt 0.46 0.26

Suspension agent 0.18

Magnesium oxide 0.13

Trace minerals 0.06

Rumensin 0.02 0.01

Analyzed, %DM basis

Crude protein 11.36 13.30 (0.86)

Crude fiber 16.35

ADF 9.00 (1.43)

NDF 16.80 (1.34)

Calculated

NEm [10], Mcal/kg 1.263 2.112 (0.047)

NEg [10], Mcal/kg 0.723 1.437 (0.039)

doi:10.1371/journal.pone.0152274.t001
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emission measurements during feeding. For one of those days, the timing and quantity of feed
consumed from the GreenFeed unit was controlled to minimize variation due to animal feed-
ing behavior. During that day, approximately 1 kg of total mixed ration (TMR) was provided at
alternating 1.5 and 3 h intervals in order to measure the peaks and troughs of methane produc-
tion [11]; on the other days, feed provided from the GreenFeed unit was a pelleted form of the
finishing period TMR components, provided ad libitum. For non-GreenFeed days, daily ration
was divided into four parts offered throughout the day (early and late morning and afternoon)
in order for the intermittent feeding allowed by the GreenFeed to not present a huge departure
from habituated feeding patterns.

For both the growing and finishing periods, RFI is defined as the residual of dry matter
intake adjusted for rate of gain and body size [12],

DMI¼b0þb1ADGþb2MMWþRFI

where DMI is average daily dry matter intake; ADG is average daily gain, estimated from the
regression of 14d-body weights on time; MMW is metabolic mid-weight, or (mean period
body weight)0.75; b0, b1 and b2 are the partial regression coefficients associated with the inter-
cept, ADG and MMWT, respectively.

At slaughter, standard beef carcass trait phenotypes were collected, with the addition of
organ weights and carcass specific gravity, a predictor of the fat content of the carcass [13], esti-
mated from CW/(CW-CWH2O) where CW is the dry carcass weight and CWH2O is the weight
of the carcass suspended in water (measured to nearest 1g).

RNA Isolation, cDNA Library Construction, and Transcriptome
Sequencing
Samples of pituitary, skeletal muscle, liver, visceral adipose (KPH fat), and duodenum were col-
lected within 25 minutes of slaughter, snap frozen in liquid nitrogen to preserve RNA integrity,
and frozen at -80°C. To collect the pituitary, the skull was bisected longitudinally and the pitui-
tary identified by a bovine physiologist. To extract RNA, approximately 200 mg of frozen tissue
was immersed in liquid nitrogen, ground with a mortar and pestle, and homogenized in 2 mL
TRIzol1 (Thermo Fisher Scientific, Waltham, MA) using a Mini BeadBeater-8 (Biospec Prod-
ucts, Bartlesville, OK) for up to 10 s, except fat tissue which was shaken rather than bead beaten
to avoid RNA degradation. Total RNA was purified using the TRIzol standard protocol
(Thermo Fisher Scientific, Waltham, MA), and resuspended in 25μL of RNase-free water.
RNA quantity and quality were assessed using NanoDrop1 spectrophotometer (Thermo Sci-
entific, Wilmington, DE) and Agilent 2100 Bioanalyzer (Santa Clara, CA). For each tissue type,
mean 260/280 ratio ranged from 1.84 to 1.93 (0.10 SD), and mean RNA integrity number from
7.0 to 8.1 (2.0 SD). The Illumina TruSeq stranded mRNA HT sample preparation protocol
(San Diego, CA) was used to generate dual-indexed cDNA libraries for each sample using 1 μg
of total RNA as input. Success of library preparation was determined by Agilent 2100 Bioanaly-
zer (Santa Clara, CA), after which all 80 samples were multiplexed into a single equimolar pool
to avoid sequencing run bias. Single end 100 bp sequencing was conducted on an Illumina
HiSeq 2000 following standard protocols.

Sequence Analysis and Mixed Model Analysis
Eighty samples, five tissues from sixteen Angus steers, were analyzed with RNA-seq. Failed
reads were discarded before analysis. Samples with less than 10 million reads (one adipose and
one duodenal sample) were discarded. For the remaining samples, we obtained 45.2 M reads
per sample on average, with mean Phred score 35.8 (0.13 SD), median Phred 38, and less than
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7% of reads below Phred score 30. No additional sequence filtering was performed. Sequence
reads were mapped to the bovine reference genome (UMD3.1 for BTA1-29 and X and Btau
4.6.1 for BTAY) using CLC Genomics Workbench 7 RNA-seq tool (Redwood City, CA). Reads
were required to map with 80% similarity for 90% of their length, which 93% of reads achieved.
We used reads per kilobase of gene per million mapped reads, RPKM [14], as the unit of
expression. A gene was considered tissue specific (TS) if one tissue represented at least two-
thirds of the total expression across tissues. Highly expressed TS genes were compared with tis-
sue expression profiles in Bos taurus and other vertebrate species based on the EMBL-EBI
Expression Atlas (https://www.ebi.ac.uk/gxa/home) to verify that they were consistent with
previously observed expression patterns in these tissues.

Gene expression by sire group was estimated using a mixed model approach [15, 16] in
order to determine whether any genes were differentially expressed across tissues due to sire
effects.

Yijkl¼μþGiþGTijþGAikþGSilþeijkl

where log 2-transformed RPKM (Yijkl) was modeled as a function of the random effects of gene
(Gi), gene by tissue (GTij), gene by animal (GAik), and gene by sire group (GSil) for i genes, j tis-
sues, k animals, and l sires. Random residual (eijkl) was assumed to be independent and identi-
cally distributed. Variance component analysis was performed using VCE6 software (Eildert
Groeneveld, Friedrich-Loeffler-Institut, ftp://ftp.tzv.fal.de/pub/vce6/). A gene was considered
differentially expressed between sire groups (DE) if the gene by sire effect was at least two stan-
dard deviations from the mean, corresponding to P<0.01. To compare TS and DE genes with
known transcription factors (TF), all known TF from AnimalTFDB [17] (http://www.bioguo.
org/AnimalTFDB/) were filtered for those both abundant and most consistently associated
with TS and DE genes between sire groups based on regulatory impact factor metrics [16, 18]
which weights average gene expression across samples (Gi), the differential expression due to
sire group (GSil), and the co-expression correlation between TF and DE or TS genes. Genes
harboring SNP identified by Bolormaa et al. [19] as associated with RFI (hereafter referred to
as SNP genes) were included to determine how closely this experiment aligns with a GWAS
study from a broader beef cattle population.

Network and Pathway Analysis
A gene network for RFI within these five tissues was derived using the TS, DE, TF and SNP
genes as nodes, and significant connections between them were determined via partial correla-
tion and information theory (PCIT) algorithms and software as described by Reverter and
Chan [20]. PCIT relies on calculating the correlation between a pair of genes after accounting
for all other genes (thus, the partial correlation). Connections between gene nodes were
accepted when the partial correlation was greater than two standard deviations from the mean
(P< 0.01). Pairwise co-expressed genes were imported into Cytoscape software [21] (http://
www.cytoscape.org/), to be visualized and clustered into networks using a force-directed edge-
weighted spring embedded layout [22]. Further functional analysis was performed using Inge-
nuity Pathway Analysis1 (Redwood City, CA; www.qiagen.com/ingenuity) and Blast2GO
PRO [23]. For IPA analyses, the human/mouse/rat gene orthologue IDs and the fold changes
for all DE bovine genes expressed in each tissue were compared to the IPA database of path-
ways, networks, diseases, functions, and regulators for gene set enrichment (P< 0.05) and acti-
vation Z-score (|Z|> 2) analysis. For Blast2GO, all annotated bovine genes were imported
from Ensembl Biomart (http://www.ensembl.org/biomart/martview/), and significantly
enriched GO terms (P<0.05) for a given gene subset were identified using Fisher’s exact test.
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Results

Sire Genomic Breeding Values Predicted Difference in Progeny
Phenotypes
The high and low RFI bulls’ progeny were phenotyped for RFI and a variety of growth, intake,
metabolism, and body composition traits to determine which traits differentiated them. As pre-
dicted from their sires’ breeding values, the progeny of the low RFI sire had lower RFI than the
progeny of the high RFI sire in the finishing phase (-0.57 kg DM/d), with a similar trend in the
growing phase (-0.62 kg DM/d; Table 2). As with RFI, feed conversion ratio (DMI/ADG) was
decreased in progeny of the low RFI sire relative to the high RFI sire in the finishing phase. Sire
breeding values predict progeny of the low RFI sire to exhibit reduced intake with similar ADG
relative to progeny of the high RFI sire, which was observed in the growing phase (sire group
differences of -0.48 kg/d DMI and 0.00 kg/d ADG) but not in the finishing phase (sire group
differences of 0.01 kg/d DMI and 0.22 kg/d ADG). Larger finishing and carcass weights were
observed in the progeny of the low RFI sire, as might be predicted from the higher pedigree-
based breeding values of that sire for weaning weight (WW), yearling weight (YW), and mature
weight (MW). The low RFI sire group had higher carcass specific gravities, indicating that
these animals were less fat or leaner for the same carcass weight. No significant differences
were observed in other carcass traits or in heart, liver or kidney weights.

Table 2. Phenotypic differences between sire groups (low RFI sire–high RFI sire) compared with expected progeny difference based on bull breed-
ing values. Differences between sire progeny groups for growth, intake, feed efficiency, feeding behavior, methane production, and carcass traits are pro-
vided, including trait, trait mean, mean difference between sire groups, P-value for that difference (P<0.05 bolded), and expected progeny difference based
on sire breeding values where available.

Trait Type Trait Period Mean (SE) Sire Group Difference P-value Expected Progeny Difference

Growth, MMW, kg0.75 Growing 74.5 (1.1) 0.8 7.3 E-01

Intake, & Finishing 100.4 (0.9) 3.3 4.0 E-02

Feed ADG, kg/d Growing 1.71 (0.05) 0.00 9.8 E-01 0.00

Efficiency Finishing 1.40 (0.06) 0.22 8.0 E-02

DMI, kg DM/d Growing 9.55 (0.25) -0.48 3.4 E-01 -0.18

Finishing 8.52 (0.20) 0.01 9.8 E-01

Feed conversion Growing 5.63 (0.17) -0.28 4.1 E-01

ratio (DMI/ADG) Finishing 6.21 (0.23) -1.08 1.0 E-02

RFI, kg DM/d Growing 0.00 (0.19) -0.62 9.0 E-02 -0.16

Finishing 0.00 (0.15) -0.57 5.0 E-02

Feeding Bunk Visits, visits/d 57.7 (2.9) -12.9 2.0 E-02

Behavior Bunk Visit Duration, min/visit 1.87 (0.13) 0.60 1.0 E-02

(Growing Period) Feeding Duration, min/d 96.7 (3.1) 7.04 2.6 E-01

Methane Production Controlled feed amount and
interval, g CH4/d

165.3 (13.1) 6.6 8.1 E-01

(Finishing Period) Ad lib feeding, g CH4/d 161.8 (9.5) 8.7 6.6 E-01

Carcass Final weight, kg 533.9 (6.1) 28.8 1.0 E-02 MW 33.6

Hot carcass weight, kg 323.4 (4.1) 12.6 1.1 E-01 10.5

Rib-eye area, cm2 80.2 (1.9) 6.8 7.0 E-02 5.7

Backfat thickness, mm 12.9 (0.4) -0.5 5.4 E-01 -0.5

Yield grade 3.0 (0.1) -0.3 2.6 E-01

Marbling score 6.8 (0.3) 0.0 1.0 E+00 0.0

Carcass specific gravity 1.08 (0.002) 0.0045 3.0 E-02

Heart weight, kg 2.01 (0.10) 0.25 2.0 E-01

Liver weight, kg 6.00 (0.17) -0.03 9.2 E-01

Kidney weight, kg 1.00 (0.03) -0.03 6.4 E-01

doi:10.1371/journal.pone.0152274.t002
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While feeding behavior was only measured in the growing period, progeny of the low RFI
sire visited the feed bunk less often (-12.9 visits/d) and stayed longer (0.6 min) at each visit. No
significant differences were observed for methane production.

Differential Expression and Pathway Analysis
Of 24,737 annotated bovine genes, 7,721 were not expressed (RPKM< 0.2) in any of the tissues
surveyed. We identified 1,026 TS genes, including 285 in the pituitary, 220 in skeletal muscle,
275 in the liver, 33 in adipose, and 213 in the duodenum, and 633 DE genes across all tissues in
the low versus high RFI sire groups (S2 Table). Pathway analysis showed most differentially
expressed disease and biofunctions (P<0.05 and |Z|>2) corresponded to activation of the
immune response in the duodenum and downregulation of fat deposition in adipose and mus-
cle tissue (Table 3). The combined effect of downregulation of phosphoenolpyruvate carboxy-
kinase 2 (PCK2), thyroid hormone responsive (THRSP), fatty acid synthase (FASN), stearoyl-
CoA desaturase (SCD), acetyl-CoA carboxylase alpha (ACACA), acyl-CoA synthetase long-
chain family member 1 (ACSL1), glycerol-3-phosphate acyltransferase (GPAM), and 1-acylgly-
cerol-3-phosphate O-acyltransferase 9 (AGPAT9) support a deactivation of a regulatory net-
work controlling fatty acid metabolism in the adipose tissue of the progeny of the low RFI sire
(Fig 1). This is consistent with the increase in carcass specific gravity of the progeny of the low
RFI sire, which suggests a reduced body fat content.

Of the 633 DE genes, 122 were TS, 6 were TF, and 12 harbor SNP identified by Bolormaa
et al. [19] as associated with RFI in a large cattle population (Fig 2). The 6 DE TF are ETS vari-
ant 4 (ETV4), group-specific component/vitamin D binding protein (GC, also liver-specific),
high mobility group box 1 protein (HMGB1), sex determining region Y-box 6 (SOX6), transdu-
cin beta-like 1 Y-linked (TBL1Y), and an uncharacterized protein (ENSBTAG00000036343).
ETV4 is most highly expressed in the pituitary and duodenum and is upregulated in the prog-
eny of the low RFI sire.HMGB1, SOX6, and TBL1Y are expressed in all assayed tissues but
most highly in the duodenum.HMGB1 and TBL1Y are upregulated in all tissues, and SOX6 is
downregulated in the duodenum, pituitary, and skeletal muscle and upregulated in liver and
adipose. ENSBTAG00000036343 is an adipose-specific heat shock protein and strongly down-
regulated (-5.2 fold change). The 12 DE genes harboring GWAS SNP are acyl-CoA synthetase
long-chain family member 1 (ACSL1), carcinoembryonic antigen-related cell adhesion mole-
cule 20 (CEACAM20), chordin-like 2 (CHRDL2), claudin 2 (CLDN2), glypican 3 (GPC3), glu-
tamate receptor ionotropic AMPA 2 (GRIA2), interleukin 2 receptor gamma (IL2RG), lipoma
HMGIC fusion partner-like 1 (LHFPL1), lin-52 DREAMMuvB core complex component
(LIN52), ryanodine receptor 3 (RYR3), transmembrane protein 8C (TMEM8C), and ZW10
interacting kinetochore protein (ZWINT). While relatively few DE genes are TF or SNP genes,
some have key biological functions in the immune system, lipid metabolism, and muscle pro-
cesses. GC is the primary carrier of vitamin D in the blood and a macrophage activating factor
which is used in some cancer therapies [24]. IL2RG is a signaling component of many interleu-
kin receptors and loss-of-function of this gene has been associated with X-linked immunodefi-
ciency in humans [25]. ACSL1 is an intermediate of fatty acid metabolism. RYR3 is involved in
releasing calcium from intracellular stores. Overall, many DE genes were TS and only a few
were also TF or GWAS SNP genes, many supporting immune system and fat metabolism roles.

PCIT Network Analysis
Partial correlation information theory was used to determine significant partial correlations
between TS, DE, TF, and SNP genes (N = 115,058 edges; Fig 3).
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There were 6 major clusters to the PCIT network, which align with the tissue of highest rela-
tive expression (with muscle having two clusters and all other tissues having one cluster per tis-
sue), as more than 90% of edges are between genes within tissue. The number of edges from
one tissue to another (e.g. from liver to any other tissue) were proportional to the number of
nodes for that tissue (R2 = 0.94). Commensurate with its role as a hormonal regulator, of the

Table 3. Pathway analysis of differentially expressed genes between low and high RFI sire groups by tissue, for pituitary (P), skeletal muscle (M),
liver (L), adipose (A), and duodenum (D). Top biofunctions by |Z-score| from IPA are provided, expressed as low relative to high RFI sire progeny group dif-
ferences; all are significant (P<0.05). Functions associated with the immune system or fat deposition are grouped together, all other significant functions at
the bottom.

Diseases or Functions Annotation P M L A D Diseases or Functions Annotation P M L A D

Immune system Fat deposition

activation of antigen presenting cells 2.6 differentiation of adipocytes 2.4

immune response of antigen presenting
cells

2.0 mass of adipose tissue 2.2

inflammation of body region 2.1 concentration of triacylglycerol -2.5

chemotaxis of granulocytes 2.0 synthesis of triacylglycerol -2.4 -2.6

recruitment of granulocytes 2.2 quantity of diacylglycerol -2.0

inflammation of large intestine -2.7 concentration of acylglycerol -2.1

colitis -2.7 synthesis of acylglycerol -2.2

activation of leukocytes 2.3 2.7 metabolism of membrane lipid derivative -2.2

immune response of leukocytes 2.2 concentration of
1,2-dipalmitoylphosphatidylcholine

-2.3 -2.3 -3.1

recruitment of leukocytes 2.7 2.8 2.8 concentration of phosphatidylcholine -2.2 -2.1

activation of macrophages 2.5 beta-oxidation of fatty acid -2.2

activation of mononuclear leukocytes 2.3 accumulation of lipid -3.0 -2.4

cell movement of mononuclear
leukocytes

2.0 binding of lipid 2.0

response of mononuclear leukocytes 2.6 flux of lipid 2.6 2.5

activation of myeloid cells 2.3 transport of lipid 2.8

response of myeloid cells 2.4 transport of cholesterol 2.1

chemotaxis of neutrophils 2.3 fatty acid metabolism 2.1

activation of phagocytes 2.4 transport of steroid 2.2

immune response of phagocytes 2.4 steroid metabolism -2.2

recruitment of phagocytes 2.5 2.1 2.4 concentration of hormone -3.0

response of phagocytes 3.0 2.2 binding of carbohydrate 2.0 2.2

viral infection -2.3 uptake of carbohydrate 2.1

inflammatory response 2.3 3.2 insulin resistance 2.1

Other traits

morbidity or mortality -2.2 relaxation of artery 2.7

necrosis -2.5 recruitment of blood cells 2.4 2.6 2.6

deposition of extracellular matrix -2.2 -2.2 vasoconstriction 2.0

contractility of muscle 2.2 bleeding -2.3

proliferation of muscle cells 2.6 function of cardiac muscle 2.1

formation of fibrils -2.2 activation of cells 2.3 2.0 2.2

fibrogenesis -2.0 2.2 cell movement 2.1 2.6

injury of liver 2.1 engulfment of cells 2.6

export of molecule 2.3 migration of cells 2.1 2.8

neurological signs 2.2 damage of endothelial cells 2.0 -2.2

secretion of protein 2.2 damage of epithelial tissue 2.5

soft tissue neoplasm -2.1 stimulation of epithelial cells -2.1

doi:10.1371/journal.pone.0152274.t003
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top 50 genes ranked by number of edges to other genes, 38 are most highly expressed or tissue
specific to the pituitary, such as luteinizing hormone/lutropin subunit beta (LHB; 280 edges),
G protein-coupled receptor 173 (GPR173; 273 edges), EF-hand domain C-terminal containing
1 (EFHC1; 268 edges), prolactin (PRL; 267 edges), and growth hormone/somatotropin (GH1;
266 edges). The distribution of number of edges per gene is provided in Fig 4.

The majority of edges are between TS genes (54%) or between TS and DE, TF, or SNP genes
(32%). There are proportionally more edges to DE genes than to SNP genes (27% versus 20%).
Two genes identified in Bolormaa et al. [19] as potential QTL for RFI were Src homology 2
domain containing transforming protein 3 (SHC3) and insulin-like growth factor binding pro-
tein 2 (IGFBP2). SHC3, while not DE or a TF, was significantly correlated with 18 DE genes
(predominantly expressed in the pituitary and duodenum), 17 SNP genes, 5 TF [Msh homeo-
box 1 (MSX1), paired box 8 (PAX8), zinc finger protein 300 (ZNF300), v-ets avian erythroblas-
tosis virus E26 oncogene homolog 1 (ETS1), and signal transducer and activator of
transcription 6, interleukin-4 induced (STAT6)], and 1 TS gene. IGFBP2 was adjacent to but
did not harbor GWAS SNP, was not used as a SNP gene in this study nor was it identified as
DE or TS, but related proteins IGFBP1 and 4 were TS and DE and correlated with 219 and 18
genes in the liver, respectively. Five percent of edges connect to TF, of which the most highly
connected TF areMSX1 (235 edges), GC (228), v-myb avian myeloblastosis viral oncogene
homolog (MYB; 203), ETS1 (200), SIX homeobox 3 (SIX3; 194), SAM pointed domain contain-
ing ETS transcription factor (SPDEF; 192), zinc finger E-box-binding homeobox 1 (ZEB1;
187), LIM homeobox 3 (LHX3; 182), and myogenic differentiation 1 (MYOD1; 165). TF and
genes connected to them by an edge were extracted and visualized as a new network (Fig 5).

In the TF network diagram, the clusters by tissue are present, with small clusters around TF
that regulate gene expression within and across tissues. The TF with the greatest number of

Fig 1. Downregulation of regulatory network controlling fat deposition among low RFI sire progeny.
This figure displays the regulatory network connecting concentration of triacylglycerol, accumulation of lipid,
quantity of insulin in the blood, quantity of connective tissue, and migration of phagocytes, overlaid with fold
changes observed in adipose tissue. Red = up-regulated, green = down-regulated, orange = predicted
activation, blue = predicted inhibition, and yellow = inconsistent.

doi:10.1371/journal.pone.0152274.g001
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edges in the pituitary are, in descending order,MSX1, ETS1, SIX3, ZEB1, LHX3, myelin tran-
scription factor 1 (MYT1), zinc finger E-box binding homeobox 2 (ZEB2), friend leukemia
integration 1 transcription factor (FLI1), and GATA binding protein 3 (GATA3). GATA3 is
linked through DE and SNP genes to E2F transcription factor 1 (E2F1) in the duodenum, in
which the other major TF areMYB, SPDEF, and caudal type homeobox 1 (CDX1). Similarly,
ZEB1 and FLI1 are linked with hematopoietically expressed homeobox (HHEX) in the liver, in
which GC, uncharacterized protein ENSBTAG00000030470, signal transducer and activator of
transcription 3 (STAT3), and E2F transcription factor 4 (E2F4) are other major TF. ZEB2 is
linked with T-cell acute lymphocytic leukemia 1 (TAL1), the only major adipose TF, which
clusters with muscle TFsMYOD1, transcription termination factor, RNA polymerase I (TTF1),
Zinc finger X-chromosomal protein (ZFX), iroquois homeobox 3 (IRX3), zinc finger and
SCAN domain containing 21 (ZSCAN21), and zinc finger protein 35 (ZNF35). Most clusters
are an approximately even mixture of DE and SNP genes, with the exception of the GC/
ZNF160-centric cluster in the liver which is richer in DE genes, and a cluster of SNP genes
linked to ZFX, IRX3, and zinc finger protein 35 (ZNF35) in skeletal muscle. Comparing these

Fig 2. Venn diagram of DE, TS, TF, and SNP genes.

doi:10.1371/journal.pone.0152274.g002
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SNP genes to the other muscle-specific gene clusters (centered aroundMYOD1, TTF1, and
ZSCAN21), the ZFX-IRX3-ZNF35 cluster displays enrichment of transcription regulation; ner-
vous, connective, and blood vessel tissue development; metabolic activity; and immune
response (Table 4).

Discussion
This paper discussed the results of a progeny test of two Angus bulls with either high or low
RFI genomic breeding value on the progeny for a variety of phenotypic traits collected from
weaning until slaughter, multiple tissue transcriptomics, and gene co-expression network anal-
ysis. While conducted in a small population of Angus animals, it was found that the sire breed-
ing value for RFI did predict differences in progeny phenotype for finishing period RFI. This is
consistent with the widely observed accuracy and utility of genomic predictions in various beef
and dairy cattle [6, 8, 26, 27]. These two bull sires differ in breeding value for many body weight
traits (S1 Table), including mature and hot carcass weights, suggesting an increased growth
rate among the progeny of the low RFI sire relative to those of the high RFI sire. Comparing
predicted and observed ADG and DMI as well as RFI, a trend of increased ADG was observed

Fig 3. Gene co-expression network diagram including differentially expressed genes between sire groups, tissue specific genes, transcription
factors regulating growth and feed efficiency, and genes harboring GWAS SNP for RFI.Genes (or nodes) are connected by an edge when a significant
partial correlation was determined by PCIT. Colors represent the tissue of highest relative expression for each gene: pituitary (light blue), skeletal muscle
(red), liver (light green), visceral adipose (yellow), and duodenum (orange).

doi:10.1371/journal.pone.0152274.g003
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in the finishing period with no difference in intake, in contrast to the predicted difference in
genomic breeding values for DMI. This may be partially accounted for by the low n of our
study and that RFI has been shown to be only lowly to moderately repeatable (0.29 to 0.62)
[28–30]; however another cause could be differing trait definitions between the reference data
(predominantly purebred bulls) and the test data (feedlot steers). American Angus DMI rec-
ords depend on bull test data, which is generally collected before the bull is one year of age,
making the DMI breeding value potentially more similar to a growing period DMI, which in
our data showed a trend of decreased DMI in progeny of the low RFI sire relative to the high
RFI sire. While the progeny groups show similar group differences in RFI in the growing and
finishing period, phenotypic differences between them, including rate of gain and intake,
change over time.

Fig 4. Distribution of significant partial correlations per gene in the co-expression network. This figure shows the number of significant partial
correlations (or edges in the gene co-expression network) with other genes, ranging up to 280 per gene node. For each bin, genes are grouped by the tissue
of highest relative expression, including pituitary (light blue), skeletal muscle (red), liver (light green), visceral adipose (yellow), and duodenum (orange), to
give an approximation of the distribution within tissue. The pituitary, liver and duodenum are most highly represented among the genes with the highest
number of edges.

doi:10.1371/journal.pone.0152274.g004
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In the growing period, we observed a reduced number of feed bunk visits in progeny of the
low RFI sire, which suggest that RFI is positively correlated with the number of daily feeding
events, as has been observed in heifers and bulls in several beef and dairy breeds [31–33]. Feed-
ing behavior was not recorded in the finishing phase, with the exception of the five days in
which animals were fed from the GreenFeed methane emissions measurement unit, which
based on the amount of variability observed, is too short a period to accurately gauge feeding
behavior. We did not observe any differences in finishing period methane emissions, though
this is not surprising given that methane production is highly correlated with DMI [34] and
there was no difference in DMI between sire groups during this period. For future studies, it
would be useful to measure both feeding events and methane emissions over a longer time
interval, in order to increase accuracy and allow direct correlation with each other and DMI.

In the RNA-seq portion of this study, we found 633 differentially expressed genes between
sire groups, of which one-fifth overlapped with the 1,026 tissue specific genes. Compared to a
study by Canovas et al. [16] which used similar methods to study the effects of puberty in com-
posite beef cattle, we found a comparable number of TS genes, but fewer DE and TF genes,
indicating that genetic predisposition for feed efficiency are associated with more subtle
changes in a variety of processes versus the massive cascade of change caused by puberty in
developing heifers. While a variety of biofunctions were associated with the DE genes, reduced
fat accumulation in adipose tissue in conjunction with an upregulation of muscle growth
would agree with the reduced lean:fat ratio observed in the low RFI sire group carcasses based
on carcass specific gravity. Similar effects have been observed from the application of growth
promotants which increase growth through an increased lean muscle growth at the expense of
fat deposition [35]. This effect is also seen less dramatically in cattle of larger mature size or

Fig 5. a and b. Gene co-expression network subset including all genes which are or are correlated with a transcription factor (N = 1,673).Genes (or
nodes) are connected by an edge only when a significant partial correlation with a TF was found. Fig 5a displays nodes colored by tissue of highest relative
expression for each gene: pituitary (light blue), skeletal muscle (red), liver (light green), visceral adipose (yellow), and duodenum (orange). The key
transcription factor for each cluster is labeled. Fig 5b highlights differentially expressed genes (dark blue) and genes harboring GWAS SNP for RFI (red) or
both (purple), with all other nodes colored grey.

doi:10.1371/journal.pone.0152274.g005
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which are slaughtered at an earlier stage of maturity [35]. In this experiment, low RFI sire prog-
eny were both more feed efficient and possessing heavier body weights (as predicted from sire
breeding values), contributing to an increased carcass protein:fat ratio.

Pathway analysis of the differentially expressed genes between progeny groups predicted an
increased immune system and inflammatory response in the duodenum and other tissues.
Increased liver inflammation and periportal lesions and altered lipid metabolism were also
observed in more feed efficient Nellore beef bulls [36]. The increased inflammatory response in
the progeny of the low RFI sire suggests perhaps a heightened acidosis or sensitivity to the high
grain finishing diet while supporting an increased growth rate or body size. High concentrate
feeding has been affect numerous inflammatory biomarkers such as increasing peak concentra-
tions of plasma acute phase proteins [37], rumen lipopolysaccharide concentration, and serum
amyloid-A and haptoglobin concentrations [38] relative to higher roughage diets. However,
Paradis et al. [39] posited that more efficient beef heifers respond less to hepatic proinflamma-
tory stimuli based on differential expression of interferon-modulated genes in the liver, and
reduced inflammatory markers and increased alkaline phosphatase (which aids in detoxifica-
tion) were also observed in low RFI swine [40]. These may indicate differential effects of diet,
as developing heifers and swine are managed differently than finishing beef steers, or these
may be effects that vary from population to population.

Examining the transcription factor sub-network, many of the key transcription factor hubs
have been linked with feed efficiency, growth, intake, or carcass traits across species. Genes
linked directly to feed efficiency include IRX3 in Australian Angus cattle [41], LHX3 in cross-
bred U.S. beef cattle [42],MYOD1 in Landrace swine [43], and ETS1 in Duroc swine [44] and
commercial broiler chickens [45]. Other genes have been linked to muscle hypertrophy and

Table 4. The top 10 enriched GO terms for the muscle specific gene clusters. Clusters are centered by the transcription factorsMYOD1TTF1-
ZSCAN21 and ZFX-IRX3-ZNF35. The latter set of clusters had a higher proportion of SNP genes, suggesting conserved function in regulating RFI in beef cat-
tle populations.

Enriched GO terms

MYOD1-TTF1-ZSCAN21 clusters ZFX-IRX3-ZNF35 clusters

GO Term P-value GO Term P-value

titin binding 8.39E-
10

RNA polymerase II transcription factor binding, negative regulation of
transcription

1.93E-
04

sarcomere organization 3.63E-
07

negative regulation of astrocyte differentiation 6.61E-
04

troponin I binding 5.59E-
06

sympathetic nervous system development 2.46E-
03

tropomyosin binding 1.03E-
05

lung connective tissue development 3.90E-
03

skeletal muscle cell differentiation 4.73E-
05

blood vessel endothelial cell migration involved in intussusceptive angiogenesis 3.90E-
03

ventricular cardiac muscle tissue
morphogenesis

4.91E-
05

N-acetylglucosamine kinase activity 3.90E-
03

transition between fast and slow fiber 7.57E-
05

helper T cell enhancement of adaptive immune response 3.90E-
03

ion channel binding 7.57E-
05

cellular urea homeostasis 3.90E-
03

calcium ion binding 1.44E-
04

cellular creatinine homeostasis 3.90E-
03

cardiac myofibril assembly 2.88E-
04

cellular ammonia homeostasis 3.90E-
03

doi:10.1371/journal.pone.0152274.t004
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lean growth, which was observed in this study to be enhanced in progeny of the low RFI sire.
Polymorphisms inMYOD1 have been associated with carcass and muscle traits in cattle [46]
and swine [47]. TTF1 and APOA2, a differentially expressed transcription factor in this study,
have been associated with meat quality in Nelore cattle [48]. SIX3 was found to be differentially
expressed in double-muscled cattle [49]. In addition to direct effects on insulin secreting
enzymes such as PCSK2, the transcription factors HHEX and CDKNA2A/B have been associ-
ated with impaired insulin release in diabetic humans [50]. In addition to direct observations
of feeding behavior, some transcription factors such as GATA3 and STAT3 have been associ-
ated with eating behavior and appetite in mice and swine [51, 52], as both are linked to leptin-
mediated control of satiety and inflammation [53, 54]. Further,MYT1 regulates neuropeptide
Y (NPY) expression [55], which stimulates feed intake and energy homeostasis [56]. E2F1 was
observed to be downregulated in the liver of swine expressingMC4R D298N variant, which is
associated with increased feed intake, growth, and backfat thickness [57]. Lastly, Bolormaa
et al. [58] suggested that ZEB1 as a candidate for a QTL with pleiotropic effects on stature, fat-
ness and reproduction in beef cattle. This study presents some evidence for linking these tran-
scription factors, independently identified as impacting RFI and related traits, into a network
associated with RFI in cattle possessing this set of ancillary phenotypes. Additional research
should be performed to determine how consistently similar phenotypic trends are observed in
more feed efficient beef cattle.

While supportive evidence has been outlined for some of the associations in this analysis,
the overlap between the GWAS SNP genes and the DE genes was not high, although a large
proportion could be linked to each other by partial correlations. For example, SNP genes SHC3
and the IGFBP gene family possessed nearly 300 significant partial correlations to DE and TF
genes, suggesting a potential regulatory network. The TF hubs in muscle also do not show an
even distribution of DE and SNP genes, with different functions associated with DE-rich versus
SNP-rich gene sub-networks. The simplest explanation is that many of the DE effects may be
unique to this population and to the inherent differences between the two siring bulls. Another
highly speculative possibility could be that the major TF affecting feed efficiency can manifest
in DE differences along many different pathways, based on the specific populations, diets, and
environments involved, as has been suggested in the context of complex human disease [59].
The results from this analysis, linking genomic prediction through transcriptomics and deep
phenotyping, highlight some key connections but also the remaining questions surrounding
the complex trait of RFI, pointing toward the highly polygenic nature of this trait.

This study provides a set of phenotypes across age and growth period identified as associ-
ated with genomically predicted differences in RFI between two Angus bull sires. Further, we
identified differentially expressed genes and gene co-expression networks linking DE genes
with tissue function, transcription factors, and genes harboring GWAS SNP. The information
about significant genes and gene associations may be used as prior information of QTL for
genomic prediction, in addition to its utility at defining pathways and regulatory networks.
Due to the small size of this population, it is advised to validate associations through additional
studies.
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