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Systems/Circuits

Neural Encoding and Integration of Learned Probabilistic
Sequences in Avian Sensory-Motor Circuitry

Kristofer E. Bouchard1,2,3,4 and Michael S. Brainard3,4,5

1Department of Neurosurgery, University of California, 2Center for Neural Engineering and Prosthesis, University of California-San Francisco and
University of California-Berkeley, and 3Department of Physiology and 4Center for Integrative Neuroscience, University of California, San Francisco,
California 94158 and, 5Howard Hughes Medical Institute, Chevy Chase, Maryland 20815

Many complex behaviors, such as human speech and birdsong, reflect a set of categorical actions that can be flexibly organized into
variable sequences. However, little is known about how the brain encodes the probabilities of such sequences. Behavioral sequences are
typically characterized by the probability of transitioning from a given action to any subsequent action (which we term “divergence
probability”). In contrast, we hypothesized that neural circuits might encode the probability of transitioning to a given action from any
preceding action (which we term “convergence probability”). The convergence probability of repeatedly experienced sequences could
naturally become encoded by Hebbian plasticity operating on the patterns of neural activity associated with those sequences. To deter-
mine whether convergence probability is encoded in the nervous system, we investigated how auditory-motor neurons in vocal premotor
nucleus HVC of songbirds encode different probabilistic characterizations of produced syllable sequences. We recorded responses to
auditory playback of pseudorandomly sequenced syllables from the bird’s repertoire, and found that variations in responses to a given
syllable could be explained by a positive linear dependence on the convergence probability of preceding sequences. Furthermore,
convergence probability accounted for more response variation than other probabilistic characterizations, including divergence proba-
bility. Finally, we found that responses integrated over �7–10 syllables (�700 –1000 ms) with the sign, gain, and temporal extent of
integration depending on convergence probability. Our results demonstrate that convergence probability is encoded in sensory-motor
circuitry of the song-system, and suggest that encoding of convergence probability is a general feature of sensory-motor circuits.

Introduction
Songbirds provide an excellent model for investigating neural
encoding of sequence statistics. The learned song of each bird is
composed of a unique set of categorical acoustic elements,
termed syllables, organized into sequences (Fig. 1A,B). For the
Bengalese finch these sequences are highly variable, though the
statistical structure of this variability is stable over time (Okanoya
and Yamaguchi, 1997; Woolley and Rubel, 1997; Hampton et al.,
2009; Warren et al., 2012). This variability in sequencing provides
an opportunity to investigate if and how the probabilistic se-
quencing of events is encoded in sensory-motor circuitry.

We focus on nucleus HVC of the songbird forebrain, which is
analogous to vocal premotor areas of human cortex (Doupe and
Kuhl, 1999). HVC provides descending motor control for the
temporal structure of learned song (Fig. 1E) and participates in
syllable sequencing (Nottebohm et al., 1976; McCasland, 1987;

Vu et al., 1994; Yu and Margoliash, 1996; Hahnloser et al., 2002;
Fee et al., 2004; Ashmore et al., 2005; Sakata and Brainard, 2008;
Long et al., 2010). In HVC, as in many sensory-motor circuits,
including the human speech system, the same neurons that are
responsible for the control of behavior are also responsive to the
sensory stimuli associated with the behavior (i.e., the sound of
one’s own voice) (Rizzolatti and Craighero, 2004; Prather et al.,
2008; Sakata and Brainard, 2008; Edwards et al., 2010). For ex-
ample, HVC neurons respond more strongly to playback of the
bird’s own song (BOS) than to manipulated versions of BOS,
such as songs with reverse syllable ordering, suggesting that auditory
responses of HVC neurons can be used as a read-out of how se-
quences are encoded in the song system (Margoliash and Fortune,
1992; Lewicki and Konishi, 1995; Nishikawa et al., 2008).

Previous work has primarily characterized the statistics of behav-
ioral sequences as the probability of transitioning from a given event
to subsequent events, here termed divergence probability. Figure 1C
displays a divergence diagram for the songs of an individual Ben-
galese finch. In this diagram, the thickness of each edge reflects the
divergence probability of transitioning from a given syllable (x) to
any other syllable (y) [defined for pairwise transitions as follows:
D(xy) � P(y�x)]. Because syllable sequences are produced according
to divergence probability, it has been hypothesized that HVC en-
codes divergence probability (Nakamura and Okanoya, 2004; Ni-
shikawa et al., 2008; Jin, 2009). In contrast, for neural networks that
are sequentially activated by sensory or motor patterns, postsynaptic
Hebbian learning rules could result in the encoding of an alternative
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representation of sequence statistics, which we term convergence
probability (Bouchard et al., 2012). Figure 1D shows a convergence
diagram, in which each edge reflects the probability of transitioning
to a given syllable from any other syllable [C(xy) � P(x�y) where C
indicates convergence probability]. Note that for variable sequences,
divergence and convergence probabilities can differ (Fig. 1C, D). In
this study, we take advantage of the distinction between different
probabilistic characterizations of variably sequenced syllables to ex-
amine whether and how convergence probability is encoded in
sensory-motor networks.

Materials and Methods
For each of the seven birds in this study, we extensively characterized the
statistics of syllable sequencing during singing to generate individually cus-

tomized stimuli that would allow us to investigate how responses of HVC
neurons depend on sequence probability. For each bird, we analyzed a suf-
ficient number of syllable transitions (up to several thousand) to achieve a
reliable characterization of the underlying probabilistic structure of syllable
sequences. To investigate the effects of syllable sequence on the auditory
responses of HVC neurons, we conducted acute electrophysiological record-
ings from individual neurons (single unit) and small clusters of neurons
(multiunit) in sedated, adult male Bengalese finches. Based on the observed
response characteristics and previous in vivo and in vitro studies (Hahnloser
et al., 2002; Mooney and Prather, 2005), it is likely that the neurons we
recorded are primarily HVC inhibitory interneurons. Previous studies have
shown that this population receives convergent input from neurons that
transmit descending motor control signals (Mooney and Prather, 2005;
Rosen and Mooney, 2006; Bauer et al., 2008; RA projection neurons, Fig. 1E).
Therefore, HVC interneurons are an appropriate target for monitoring the
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Figure 1. Bengalese finch song, probabilistic characterization of sequence statistics, and sensory-motor organization of the song system. A, B, Example of Bengalese finch (Bf) song. A,
Oscillogram (sound amplitude vs time) of a single Bf song segment, below which are the labels arbitrarily assigned to syllables. B, Spectrogram (power at frequency vs time) of the same song. C,
Divergence diagram of syllable sequencing compiled from a large corpus of songs from this bird. Each node corresponds to a unique syllable from the bird’s repertoire. Edge thickness corresponds
to the observed divergence probability for transitions between syllables, and dots denote transition destination. The divergence probability for transition “xy,” denoted D(xy), reflects the probability
that an “x” will be followed by a “y” [i.e., P(y�x)]. D, Convergence diagram compiled from the same corpus of songs as in C. The convergence probability for transition “xy,” denoted C(xy),
reflects the probability that a “y” will be preceded by an “x” [i.e., P(x�y)]. Convergence and divergence probabilities can differ for the same transition. For example, in this case the
divergence probability for transitions from “a” to “b” was approximately one-half [D(ab) � P(b�a) � 0.55], whereas the convergence probability for transitions to “b” from “a” was 1
[C(ab) � P(a�b) � 1.0]. E, Diagram of the avian song system. Acute recordings were made in nucleus HVC (used as proper name). There is a premotor latency of 30 –50 ms (�TMotor)
between activity in HVC and subsequent vocalization. In addition, there is a latency of 15–20 ms (�TAuditory) for auditory activity to reach HVC. This makes for a total auditory-motor
latency between premotor activity and resulting auditory feedback of 45–70 ms.
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population of RA projection neurons, and thus the integrated auditory re-
sponse properties of neurons providing descending motor commands for
song.

Animals. Seven adult male Bengalese finches (age �110 d) were used in
this study. During the experiments, birds were housed individually in
sound-attenuating chambers (Acoustic Systems), and food and water
were provided ad libitum. Light:dark (14:10) photocycles were main-
tained during development and throughout all experiments. Birds were
raised with a single tutor. All procedures were performed in accordance
with established animal care protocols approved by the University of
California–San Francisco Institutional Animal Care and Use Committee.

Electrophysiology. Several days before the first experiment was con-
ducted on a bird, a small preparatory surgical procedure was performed.
Briefly, birds were anesthetized with Equithesin, a patch of scalp was
excised, and the top layer of skull was removed over the caudal part of the
midsagittal sinus where it branches, as well as 0.2 mm rostral, 1.9 mm
lateral of the branch point. A metallic stereotaxic pin was secured to the
skull with epoxy and a grounding wire was inserted under the dura. For
neural recordings, birds were placed in a large sound-attenuating cham-
ber (Acoustic Systems) and stereotaxically fixed via the previously im-
planted pin. For the first penetration into a hemisphere, the second layer
of skull was removed, the dura was retracted, and polydimethylsiloxane
(Sigma) was applied to the craniotomy. Using the caudal branch point of
the midsagittal sinus as a landmark, extracellular electrodes were inserted
at stereotaxic coordinates for HVC (see coordinates above). At the end of
a recording session, craniotomies were cleaned and bone wax was used to
cover the brain. For subsequent penetrations into a previously exposed
hemisphere, bone wax was removed and dura was retracted.

During electrophysiological recordings, birds were sedated by titrating
various concentrations of isoflurane in O2 using a non-rebreathing an-
esthesia machine (VetEquip). Typical isoflurane concentrations were be-
tween 0.0125% and 0.7% and were adjusted to maintain a constant level
of sedation. Sedation was defined as a state in which the bird’s eyes were
closed and neural activity exhibited high rates of spontaneous bursts and
maintained responsiveness to auditory stimuli. Within this range, both
bursting baseline activity and highly selective BOS responses were simi-
lar to those previously found in the sleeping bird or in urethane-
anesthetized birds. In one experiment, urethane was used instead of
isoflurane. The results of this experiment were qualitatively similar to
those of non-urethane experiments and were pooled with the rest of the
data. Recordings were performed in sedated, head-fixed birds to achieve
stable neuronal recordings in a controlled environment for the long du-
rations required of the experimental paradigm. This preparation allowed
for multiple experiments to be conducted in the same bird over the
course of several weeks. Throughout the experiment, the state of the bird
was gauged by visually monitoring the eyes and respiration rate using an
IR camera. Body temperature was thermostatically regulated (39°C)
through a heating blanket and custom equipment. Sites within HVC
were at least 100 �m apart and were identified based on stereotaxic
coordinates, baseline neural activity, and auditory response properties.
Experiments were controlled and neural data were collected using in-
house software (Multikrank; written by B. D. Wright and D. Schleef,
University of California, Berkeley, CA). Electrophysiological data were
amplified with an AM Systems amplifier (1000�), filtered (300-10,000
Hz), and digitized at 32,000 Hz.

Playback of auditory stimuli. Stimuli were band-pass filtered between 300
and 8000 Hz and normalized such that BOS playback through a speaker
placed 90 cm from the head had an average sound pressure level of 80 dB at
the head (A scale). Each stimulus was preceded and followed by 0.5–1 s of
silence and a cosine-modulated ramp was used to transition from silence to
sounds. The power spectrum varied �5 dB across 300–8000 Hz for white-
noise stimuli. All stimuli were presented pseudorandomly.

Song analysis. All behavioral analyses and stimulus creation were done
using custom code written in MATLAB software (Mathworks). Several
days before a pinning surgery was performed, an adult male Bengalese
finch was placed in a sound-attenuating chamber (Acoustic Systems) to
collect audio recordings. An automated triggering procedure was used to
record and digitize (44,100 Hz) several hours of the bird’s singing. These
recordings were then scanned to ensure that �50 bouts were obtained.

Bouts were defined as continuous periods of singing separated by at least
2 s of silence.

Bengalese finch songs typically consist of between 5 and 12 distinct
acoustic events termed syllables organized into probabilistic sequences.
Each bout of singing consists of several renditions of sequences, with each
sequence containing between 1 and �40 examples of a particular syllable.
The syllables from 15 to 50 bouts were hand labeled and then analyzed as
described below.

Analysis of song syntax. In this study, we examine how auditory re-
sponses to a target syllable, that we designate s0, vary as a function of
preceding sequences of length L (SL). For example, in the sequence “abc,”
L � 2, S 2 � “ab” and s0 � “c.” We refer to sequences of length L preceding
a particular target syllable s0 as SLs0. To characterize the statistical struc-
ture of syllable sequences, several related measures of sequence produc-
tion were calculated, each with distinct meanings:

The marginal probability of a unique sequence of length L character-
izes the overall frequency with which a particular sequence of a given
length (occurring NSL times) was produced relative to the number of all
sequences of that length (NL):

P�SL	 �
NSL

NL
(1)

Note that when L � 1, this is equivalent to P(s), which is the overall
frequency of syllable s relative to all other syllables.

The convergence probability characterizes the probability that a par-
ticular sequence (SL) occurred before a given target syllable (s0; see also
Fig. 1):

C�SLs0	 � P�SL�s0	 (2)

In terms of sequential ordering relative to the target syllable (s0), in
the special case where L � 1, C � P(s
1�s0). For first-order Markov
sequences, P(SL�s0) can be decomposed into the product of pairwise
probabilities:

C�SLs0	 � P�SL�s0	 � �i�0
�L
1	 P�si
1�si	 (3)

However, given the non-Markovian nature of Bengalese finch syllable
sequences, this decomposition is only an approximation. Therefore, our
core analyses uses the empirically measured values of C(SLs0) instead of
the Markov approximation.

The divergence probability characterizes the probability that a partic-
ular target syllable (s0) followed a given sequence (SL) (Fig. 1):

D�SLs0	 � P�s0�SL	 (4)

in terms of sequential ordering relative to the target syllable (s0) in the
special case where L � 1, divergence probability D � P(s0�s
1).

Marginal probability, convergence probability, and divergence prob-
ability are related through Bayes theorem:

D�SLs0	 P�SL	 � P�SL, s0	 � C�SLs0	 P�s0	 (5)

where P(SL, s0) here denotes the probability of the combined sequence SL

followed by s0 [P(SLs0)], which for our purposes is simply the probability
of the sequence SLs0 occurring.

We estimated the sampling error in our calculation of probabilities by
randomly resampling (with replacement) 50% of the labeled songs 1000
times. For each of the 1000 resamplings, we calculated convergence prob-
abilities on each half of the dataset. We used the mean absolute difference
between convergence probabilities calculated on each half as our mea-
sure of sampling error. Across sequence lengths, L � [1:9], the mean
estimation error was �2%.

Construction of synthetic BOS stimuli. As noted above, Bengalese finch
song consists of many acoustically distinct syllables separated by periods
of silence called intersyllable gaps. Over several bouts of singing, a bird
will produce hundreds of examples of each of these syllables and each
example, although identifiable as a particular syllable, will have subtle
acoustic differences. The same holds for the intersyllable gaps. Our goal
was to examine how auditory responses to individual syllables are mod-
ulated by sequence variability. To isolate sequence variability from these
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other sources of variability found in song, we created synthetic stimuli
(sBOS and pseudorandom, see below). These stimuli consisted of one
representative exemplar of each syllable selected from among those nat-
urally produced by the bird; in addition, these stimuli were constructed
using the median of all intersyllable gaps for each intersyllable gap.

To arrive at an objective procedure for selecting the exemplar syllable,
first, for each syllable, we calculated a feature vector that incorporates param-
eters based upon the syllable’s amplitude, spectral, and temporal profile
(Sakata and Brainard, 2008). Next, these feature vectors were grouped ac-
cording to syllable type. Therefore, each distinct syllable type is represented
by hundreds of points in a feature cloud corresponding to the individual
examples of that syllable. Finally, we chose a representative exemplar from
near the center of mass of each cloud. To evaluate how far each example of a
syllable was from the center of mass, for all syllables (xj) belonging to each
unique syllable type (s), the Mahalanobis distance (MD) between an instance
of the syllable and the group mean (�s) was calculated as follows:

MD�xj, �s, �s� � �� xj � �s	 �s

1� xj � �s	� (6)

where s is the within-group covariance matrix.
Creation of pseudorandom stimuli. To probe how sequences are en-

coded in the population of HVC neurons, a stimulus set that consisted of
10 strings of 1000 pseudorandomly ordered syllables was constructed.
We used the same exemplar syllables and median intersyllable gap as
were used for synthetic BOS stimuli (see above). These 10 strings con-
sisted of two distinct subsets of sequences randomly strung together:
those that were naturally produced by the bird and those that contained
no naturally occurring syllable transitions. To generate natural strings of
length L, we randomly selected from among all unique sequences of
syllables of length L produced by the bird. All natural sequences of a
particular length had an equal probability of being chosen. To generate
non-natural sequences of length L � [1:10], we first randomly generated
sequences of syllables in which each syllable that the bird produced had
an equal probability of occurring in any of the L positions. Sequences
with C � 0.01 were considered non-natural. These sequences were then
screened and only those sequences with no natural transitions were se-
lected. Natural and non-natural sequences were included with equal
probability and with equal probability of being of any length (L � [1:
10]). This procedure was repeated until 10 strings of 1000 syllables were
created. The equal balancing of natural and non-natural sequences was
used to achieve good sampling of both types of sequences because of the
relatively small number of naturally occurring sequences compared with
all NL combinations of N syllables organized into length L sequences.
During playback, these 10 strings were presented randomly interleaved,
separated by 2 s of silence. Each of the 10 strings was presented between
10 and 20 times per site.

In pseudorandom stimuli, by design, every sequence produced by the
bird (of length 1–10) has an equal probability of occurring. The proba-
bility of a given sequence being inserted in the pseudorandom stimulus is
1/M, where M is the total number of unique sequences of a given length
for that bird. Note that the number of possible sequences rapidly in-
creases with sequence length: for N unique elements, the number of
possible sequences of length L is NL. Therefore, the number of occur-
rences of a given sequence will tend to decrease with increasing sequence
length. However, for naturally occurring sequences, this effect is inde-
pendent of the probability of the sequence because all sequences of a
given length have equal probability of being included in the stimulus
during construction. Further, because Bengalese finch syllable sequences
occupy a relatively small subset of the space of all possible sequences of a
given length, the effect of increasing sequence length on frequency of
occurrence is much less than the theoretical value of 1/NL.

This stimulus set is analogous to a “colored” white-noise stimulus like
that which might be used to map out the receptive field of primary
sensory neurons using the reverse correlation technique. Reverse corre-
lation works by correlating the occurrence of spikes with values of the
preceding stimulus. The general technique of reverse correlation calcu-
lates functions that describe how the system transforms, or filters, the
input (stimulus) into the output (spikes). By pseudorandomly arranging

syllables into long strings, we have in effect created colored noise in
sequence space. Tracking the neural response to single syllables preceded
by different sequences allows us to determine how the evoked response
depends on the length and probability of the preceding sequence, which
is analogous to reverse correlation.

Spike sorting and calculation of instantaneous firing rates. Single units
were identified events exceeding 6 SDs from the mean and/or were spike
sorted using in-house software based on a Bayesian inference algorithm,
as described previously (Sakata and Brainard, 2008). Multiunit neural
data were thresholded to detect spikes �3 SDs away from the mean. Both
single and multiunit spike times were binned into 5 ms compartments
and then smoothed using a truncated Gaussian kernel with a SD of 2.5 ms
and total width of 5 ms.

Characterization of neural responses to individual syllables. To charac-
terize the responses to individual target syllables (s0), we defined a re-
sponse window that started 15 ms after the onset of the syllable and
extended 15 ms after the offset of that same syllable. The 15 ms offset
reflects HVC response latency and was derived by looking for the peak in
the cross-correlation of the smoothed neural response with a binary
representation of song. A binary representation of song was one in which
the amplitude waveform has been replaced with 1 s throughout an acous-
tic event and 0 s elsewhere. This response latency is similar to that found
in awake Bengalese finches (Sakata and Brainard, 2008).

We created stimuli consisting of long strings of pseudorandomly se-
quenced syllables that contain many instances of a particular sequence
SLs0. An entire pseudorandom stimulus (10,000 syllables) was repeated
between 10 and 20 times at each recording site. Within the pseudoran-
dom stimuli, we define a sequence SLs0 as above (see Analysis of song
syntax) with the additional constraint that the transition to the first
syllable in the sequence (SL) constitute a non-natural transition. The time
varying spike rate in response to a particular instance of SLs0 found in the
pseudorandom stimuli, R(SLs0,t), was defined as the average spike rate
during SLs0, where the average was taken across repetitions of the stimuli.
These responses were then averaged across all instances of SLs0 found in
the stimulus, yielding R� (SLs0,t). The mean response rate to the last sylla-
ble in a sequence (s0), R� (s0�SL), was calculated by averaging each R(SLs0,t)
across the target syllable’s response window and then averaging across all
instances of SLs0. In the text, when the response to a particular SLs0 is
displayed, we plot R� (SLs0,t) or R� (s0�SL) and the SE measure is calculated
across all instances of SLs0 found in the stimulus.

Syllables that naturally occur as repeats (e.g., “dddd”) exhibited spike
rate adaptation in response to repeated transitions. We therefore in-
cluded in our analysis only the response to the first repeat (e.g., “d”) in
such sequences. This excluded 2/40 syllables from our analysis, yielding
the 38 syllables that were the focus of our main analysis.

Modulation of responses to individual syllables by probability in pseudo-
random stimuli. In our analysis of how responses to individual syllables
were modulated by preceding sequences, each of the 38 unique syllables
in the pseudorandom stimuli contributes one set of data points. First, at
each of the 18 recording sites, the response to each s0 when preceded by a
particular sequence [R� (s0�SL)] was extracted for each length as described
above. Because results across different sites within a bird were signifi-
cantly correlated (average between site correlation coefficient, r � 0.42;
Sutter and Margoliash, 1994), these responses were then averaged across
sites within a bird. We note that, given the strong correlation between
multiunit sites within a bird, the averaging of responses across multiunit
sites is the statistically conservative approach because it effectively re-
duces the sample size used for statistical testing. All results hold whether
this averaging is performed or not. When we report the slopes of response
modulation by probability, �R/�P, we use the slopes from linear regres-
sions (�1; see below, Univariate regression analysis of the un-
normalized responses [R� (s0�SL)] at each site versus the (un-normalized)
convergence or divergence probabilities.

To combine data across syllables and sites, the extracted responses
[R� (s0�SL)] were first normalized across sequences of a given length for
each site so that the maximum value was 1 and then averaged across sites,
yielding R� N(s0�SL). This quantifies the average amount by which the re-
sponse to s0 was modulated by SL relative to all other sequences of length
L. We used these normalized response modulations to summarize the
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effect of convergence and divergence probability on auditory responses
across syllables and sequence lengths. Because both C and D will vary
across the different syllables and will generally change systematically with
increasing sequence length, to combine data from different syllables and
lengths, C and D were normalized to the maximum for each syllable at a
given sequence length. Responses to sequences with identical probability
were averaged together.

Calculation of integration functions. To characterize how responses to
individual syllables were modulated by the length and probability of
preceding sequences, we binned convergence probability into three
increasing, nonoverlapping categories [low: C � 0; medium:
0�C�max( C); high: max( C)]. For selection of the high-probability se-
quences, for each syllable, the most probable sequence of 5 preceding
syllables (S 5s0) was found. Sequences of length L � [1:4] were chosen as
the appropriate length substring of S 5s0 and sequences of length L � [6:9]
were selected as the most probable sequence of the corresponding length
that contained the previous length sequence. For example, if the target
syllable was “g” and the most probable length L � 5 preceding sequence
was S 5 � “bcdef,” the length L � 4 sequence would be S 4 � “cdef,” and
the length L � 6 sequence would be S 6 � “abcdef,” provided that “a” was
the most likely syllable to precede “bcdef.” Therefore, for the most prob-
able sequences, sequences of length L contained the length L-1 sequence.
Therefore, a change in the response to the last syllable when increasing
the number of preceding syllables results strictly from the inclusion of the
additional syllable. Medium-probability sequences were the naturally
produced sequences that were not included in the high probability set.
Low-probability sequences were composed of increasingly long se-
quences of syllables containing no natural transitions. Due to the sto-
chastic nature of the stimuli, there were occasionally cases in which
appropriate sequences for a particular length and probability category for
a given syllable were not present. Therefore, to be included in these
analyses, we required that for a given probability category, each syllable
have an appropriate sequence for at least 7 lengths.

For calculation of average integration functions, at each site we first
calculated R� (s0�SL) as above (see above, Characterization of neural re-
sponses to individual syllables). R� (s0�SL) was then normalized by the
maximum response across string lengths and probability category. These
normalized integration functions were then averaged across sites. To
average data from different syllables and compare responses across prob-
ability categories, we subtracted the average response to s0 independent
of preceding sequence identity (i.e., the response at L � 0) independently
for each probability category, where the average is taken over syllables.
This ensures that the average response modulation starts at zero and
allows negative values. We then divisively normalized so that the average
maximum value across probability categories and lengths was 100. This
yields R� N(s0�SL, C, L), which quantifies the average amount by which the
response to s0 was modulated by the length and convergence probability
of the preceding sequence. Therefore, the average integration functions
(Fig. 6D) describe how, on average, the magnitude of the neural response
to a syllable was modulated by the length and probability of the preceding
sequence, expressed as a percentage of the average maximum difference
from the response at L � 0.

Statistics. Data are reported as mean � SE unless otherwise indicated.
Data in Figure 2B and Figure 3C were analyzed using the Wilcoxon’s
signed-rank test. Data in Figure 4F were analyzed using the one-sample,
two-way Student’s t test against the null hypothesis of 0 mean. Data in
Figure 5B were analyzed using Wilcoxon’s signed-rank test. The first
sequence length to reach asymptote for high probability integration
functions (Fig. 6D) was determined using a serial Z test between the data
at each sequence length and the estimated asymptotic value and SD of the
estimate. Results were considered significant if the probability of type I
errors was �� � 0.05. Bonferroni corrections were used to adjust � levels
when multiple comparisons were performed.

Throughout the results, we averaged neural data across sites within a
bird to avoid pseudoreplication due to strong correlations between sites
(mean between site correlation coefficient, r � 0.45).

Univariate regression analysis. Linear regressions of response to syllable
s0 as a function of convergence probability were performed with the
model:

R� �s0�SL, C�SLs0		 � �0 � �1C�SLs0	 (7)

Analogous models were used for regressions of responses as a function of
divergence probability, as well as normalized responses versus normal-
ized probabilities (see above, Modulation of responses to individual syl-
lables by probability in pseudorandom stimuli).

Regressions of response modulation as a function of sequence length
for the probability categories low, medium, and high (see above, Calcu-
lation of integration function) were performed with the linear model:

R� N�s0�SL, L, C	 � �0 � �1L, C 	 �Low, Medium, High�

(8)

and the sigmoidal model:

R� N�s0�SL, L, C	 �
�0

1 � e
�1��2
L	, C 	 �Low, Medium, High�

(9)

The sigmoidal model was fit by an iterative minimization of the RMS
error using the nlinfit function in MATLAB.

We used the Akaike’s Information Criterion (AIC) to determine the
goodness of fit for linear versus sigmoid models of the high and medium
probability integration functions as follows:

AIC � 2p � 2 log�
r
2	 (10)

where p is the number of parameters in a given model (linear: p � 2,
sigmoidal: p � 3) and 
 2

r is the estimated residual variance. By this
metric, the high-probability sequences were more parsimoniously fit
with a sigmoid than a line, whereas the converse was true for medium
probability sequences.

General linear model analysis. Syllable transitions in Bengalese finch
song can be non-Markovian such that probabilities for some transi-
tions depend not only on the current syllable, but also on the preced-
ing syllable transitions (data not shown, see also Nakamura and
Okanoya, 2004; Jin and Kozhevnikov, 2011; Katahira et al., 2011;
Warren et al., 2012). Because of this complexity, we analyzed in two
complementary ways the statistics of syllable sequencing and how
they relate to auditory responses of HVC neurons. In the first ap-
proach (as described above), which contributes to the primary anal-
ysis presented here, we measured the relative probabilities with which
entire sequences of syllables occurred. This approach captures non-
Markovian contributions to sequence statistics, but does not assess
directly how responses depend on the probabilities of transitions at
specific locations within the sequences. In the second approach, which
contributes to our analysis using general linear models (GLMs), we mea-
sured the relative probabilities with which pairwise transitions between syl-
lables occurred. This approach assumes that transitions are Markovian and
thus only approximates the actual statistics of sequencing, but it enables an
analysis that directly assesses contributions of transitions at specific locations
within sequences.

One consequence of the non-Markovian nature of Bengalese finch
song is that as the length of the preceding sequence increases, the
divergence and convergence probabilities between two particular syl-
lables will change. Increasing sequence length causes divergence
probabilities to approach 1, reflecting the intuition that, as the length
of the conditioning sequence increases, the probability of the upcom-
ing syllable becomes more certain; conversely, convergence probabil-
ity shrinks to a finite number, reflecting the intuition that, given a
single syllable, the probability of having transitioned from a particu-
lar sequence becomes lower as the length of the sequence increases.
Therefore, the distributions of C and D will be different for long
sequences, reflecting the different kinds of information contained in
these characterizations. This raises the possibility that differences ob-
served using the entire conditioning sequence may be the result of
numerical differences in the underlying distributions at large se-
quence lengths. We therefore used a GLM as a second approach to
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investigate how the statistics of syllable sequencing relate to the audi-
tory responses of HVC neurons.

The GLM used to investigate how responses to syllables were modu-
lated by different probabilistic characterizations of the preceding se-
quence (Fig. 5B) was as follows:

R�s0	 � � � �i�0

�L
1	 �iF�si, si
1	, L 	 �1 9� (11)

where R(s0) is the response to the target syllable and F(si,si-1) denotes the
various naturally occurring local probabilities of si and si-1. Here, F(si,si-1)
was either: convergence probability [P(si-1�si)], divergence probability
[P(si�si-1)], the marginal probability of individual syllables [P(si-1)], or the
logarithm of convergence probability [log10P(si-1�si)], For example, if we
are examining the response to s0 � “d” as a function of the convergence
probability of the length 3 sequence (S 3 � “abc”) we have:

R(d) � � � �0P(c�d) � �-1P(b�c) � �-2P(a�b)
To maintain a paired comparison of the data going into the different

probability functions F, we restricted our analysis to naturally occurring
sequences: P(si-1�si) � 0 or, equivalently, P(si�si-1) � 0. We note that this
imposition slightly alters the interpretation of the marginal probability of the
preceding syllable P(si-1) because it is now restricted to P(si-1) � P(si-1�si) � 0,
i � [0 L]. We believe that this is a more appropriate quantity to exam-
ine because HVC auditory responses are greater for natural versus
unnatural sequences (Margoliash and Fortune, 1992; Lewicki and
Arthur, 1996). The model was fit simultaneously for all syllables using
all natural sequences of a particular length preceding a particular
target syllable s0 found in our dataset.

The GLM used to investigate how responses to syllables were modu-
lated by the convergence probability at a particular transition in the
preceding sequence in Figure 7A was as follows:

R�s0	 � � � �i�0

8 �iP�si
1�si	, (12)

where R(s0) is the response to a particular instance of s0 in the stimulus
(averaged across sites after normalization across lengths) and the sub-
script denotes location in the sequence, with 0 being the target syllable
and indices increasing with location in preceding sequence. The model
was fit for each syllable individually using all sequences of length 9 pre-
ceding the target syllable found in the pseudorandom dataset (i.e., no
averaging across multiple instances of the same sequence). The weight
assigned to each transition location (�i) quantifies the relative influence
of the convergence probability at that location in the sequence on the
auditory response to the terminal syllable [R(s0)].

Analysis of effects of marginal probabilities on auditory responses. We
used partial correlation analysis to examine the degree to which single-

syllable and joint-sequence probability were correlated with the auditory
responses across different syllables. Partial correlation analysis quantifies
the degree of association between two variables (here, measured neural
responses and probability) while controlling the effect of a set of other
variables (here, the acoustic structure of the syllables). We quantified the
acoustic structure of the syllables using the same 16-dimensional feature
vector used for selection of representative syllables. Therefore, we can
think of a 17-dimensional vector describing the acoustic structure of the
syllables (16-dimensional) and the probability of the syllable occurring
(1-dimensional). For each of these features, we decorrelated each one of
the features with every other feature and then decorrelated the auditory
responses with all of the acoustic features. Correlating the decorrelated
residuals between acoustic features and probability with the decorrelated
residuals between acoustic features and auditory responses results in
the partial correlation coefficient between probability and auditory
responses. In the current context, the partial correlation coefficient quanti-
fies the unique contribution of the single-syllable marginal and joint-
sequence probabilities to auditory responses. The results of this analysis
examined the slopes and combined regressions for single-syllable marginal
and joint-sequence probability. Across analysis metrics (distribution of
slopes and combined regression analysis), we detected no significant modu-
lation of auditory responses due uniquely to either of these probabilities
(slopes are not different from 0, p � 0.4, t test and combined regressions are
not significant).

Results
Synthetic stimuli that isolate sequence variability are effective
at driving HVC auditory responses
To isolate the influence of sequence variability on HVC re-
sponses, we created synthetic stimuli (sBOS) in which every syl-
lable in the bird’s repertoire was replaced by a prototypical
syllable of the same type and each intersyllable gap was replaced
by the median of all gaps (see Materials and Methods). HVC
neurons responded equally well to sBOS stimuli and the natural
BOS stimuli from which they were derived. Figure 2A illustrates
an example of responses to these two stimuli at one recording site
in HVC. As previously reported, neurons in Bengalese finch HVC
responded vigorously to BOS and responses were locked to sylla-
bles (Nakamura and Okanoya, 2004; Sakata and Brainard, 2008).
In this case, BOS and sBOS evoked similar auditory responses
that were greater than responses to a temporally reversed version
of BOS (rBOS). Similarly, across 47 multiunit sites in 7 birds,

A B

Figure 2. Synthetic version of BOS, which isolates sequence variability, is an effective stimulus. A, Example spectrograms of BOS and sBOS. Below each spectrogram is the spike raster and
associated instantaneous spike rate from one HVC site recorded over 50 trials; black lines indicate responses to BOS or sBOS, gray lines indicate responses to a control stimulus, rBOS. B, Average
auditory responses (divisively normalized to baseline firing rate, mean � SE) to BOS, sBOS, and rBOS. (nonsignificant: p � 0.5, Wilcoxon signed-rank test; ***p � 10 
10, with Bonferroni
correction; data from 47 sites in n � 7 birds).
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responses to BOS and sBOS were significantly greater than re-
sponses to rBOS (Fig. 2B; p � 10
10, Wilcoxon signed-rank test,
n � 7 birds, with Bonferroni correction, m � 3 comparisons) and
were not significantly different from each other (p � 0.5). These
data demonstrate that synthetic versions of BOS elicit auditory
responses comparable to natural versions of BOS. Therefore, we
can construct effective stimuli that allow us to manipulate se-
quences independent of other song parameters.

Responses to individual syllables depend on the convergence
probability of preceding sequences
We next systematically examined how responses to individual
“target” syllables from a bird’s song varied as a function of the
sequences that preceded them. To do so, we created stimuli con-
sisting of 10,000 pseudorandomly ordered syllables constructed
from the same syllables and median intervals used in the sBOS
stimuli (Fig. 3A, see Materials and Methods). We found that
auditory responses to the last syllable following the same long
sequences (of length 7) in both sBOS and pseudorandom stimuli
(Fig. 3B,C) were highly correlated (r � 0.93, p � 10
8, n � 11
sites) and not significantly different from each other (p � 0.5,
Wilcoxon signed-rank test, n � 11 sites). Therefore, these pseu-
dorandom stimuli effectively drive HVC auditory responses and
enable us to systematically probe how the responses to individual
target syllables vary as a function of both the length and proba-
bility of the sequences that precede them.

We used these pseudorandom stimuli to test the hypothesis
that HVC auditory responses to a target syllable are modulated by
the convergence probability of preceding sequences. For each
target syllable and preceding sequence length (for lengths L �
1–9), we identified each unique sequence within the pseudoran-
dom stimuli that terminated in the target syllable. We averaged
the responses to each unique sequence and calculated the conver-
gence probability (from the corpus of naturally produced songs)
for the entire preceding sequence of length L (SL) given the ter-
minal target syllable s0 [C (SLs0) � P (SL�s0); e.g., “kabc,” L � 3,
SL � “kab,” s0 � “c,” C � P (kab�c) � 0.63]. We then linearly
regressed the responses to a target syllable against the conver-
gence probability of the preceding sequence to determine
whether the responses to syllables varied systematically with con-
vergence probability. Figure 4A–C illustrates an example of how
the response to the target syllable “c” (shaded region) depended
on the convergence probability of preceding sequences of length
3. Within the bird’s repertoire of songs, the sequence “abk” (left)
was never produced before “c,” whereas sequences “fjb,” “cab,”
and “kab” were produced 2%, 25%, and 63% of the time given
terminal syllable “c.” In this case, responses to the target syllable
monotonically increased with increasing convergence probabil-
ity (Fig. 4B,C; slope � 196 Hz/unit change in C). Figure 4D, E
illustrates a second example from a different bird of how re-
sponses to a target syllable varied as a function of the convergence
probability of preceding sequences (in this case of length 4). As in
the previous example, responses to the target syllable (“b”)
monotonically increased with increasing convergence probabil-
ity (slope � 289 Hz/unit change in C).

Across all experiments with pseudorandom stimuli, we con-
sistently observed an increase in responses to target syllables as a
function of convergence probability. Our dataset contained a
total of 945 cases in which we could examine this relationship
(corresponding to 38 unique target syllables, each preceded by
multiple sequences of a given length from 1–9 recorded across
18 multiunit sites from 6 birds). For 809/945 cases (86%)
best-fit regressions had positive slopes (as in Fig. 4 B, E), indi-

cating increasing responses as a function of convergence prob-
ability. The distribution of slopes (Fig. 4F ) was significantly
�0 (diamond, mean slope � 90 Hz/unit change in C, p �
10 
10, one-sample, two-tailed t test, n � 945). Similar results
were obtained for a restricted examination (for length 3 and 4)

A

B

C

Figure 3. Pseudorandom sequences are effective auditory stimuli. A, Illustrative pseudoran-
dom stimulus sequence. Pseudorandom stimuli were designed to contain naturally occurring
sequences (examples in black boxes) of various lengths randomly interleaved with non-
naturally occurring sequences (examples in gray ovals). Within the pseudorandom stimuli, we
define a natural sequence of length L (e.g., SL � “efgffab,” L � 7) preceding a target syllable
(e.g., s0 � “c”) as a string of L syllables sequenced as in BOS, preceded by a syllable that does not
naturally occur before the first syllable [i.e., P(x�e) � 0]. A sample BOS segment is shown above
and lines connect naturally occurring sequences that were present in both sBOS and pseudo-
random stimuli. B, Example of auditory responses at one site to the same naturally occurring
sequence (“efgffabc”) that occurred in both sBOS (gray) and pseudorandom (black) stimuli
(mean � SE). In this case, the response to the last syllable (shaded region) was the same
regardless of which stimulus it occurred in. C, Average magnitude of auditory responses to a
syllable when preceded by the same sequence of 7 syllables in sBOS and pseudorandom stimuli.
Each datum corresponds to one recording site and shows the mean � SE of the responses to all
syllables. Thin gray dashed line is unity. Thick black line is from regression. Responses were not
different between stimuli ( p � 0.5, Wilcoxon signed-rank test) and exhibited a strong linear
relationship (r � 0.93, p � 10 
8).
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of 9 single-unit recordings from putative HVC inhibitory in-
terneurons (inset, slope � 0 in 13/14 cases, average slope � 96
Hz/unit change in C, p � 10 
3, one-sample, two-tailed t test,
n � 14 syllables). Therefore, auditory responses of HVC neu-
rons are positively modulated by the convergence probability
of the preceding sequence.

Previous recordings from HVC have shown that responses are
much larger to natural than to unnatural sequence variants and
that some neurons exhibit a categorical response to particular
syllables (Margoliash and Fortune, 1992; Lewicki and Konishi,
1995; Lewicki and Arthur, 1996; Prather et al., 2009; Fujimoto et
al., 2011). Therefore, one might expect categorical responses to
natural versus unnatural sequences with no modulation due to
probability beyond that. To investigate whether the positive
modulation of auditory responses is the result of graded or cate-
gorical encoding, we combined data from different recording
sites, syllables, and sequence lengths (from 1– 6) by normalizing
both mean responses and convergence probability for a given
target syllable to their maximum values for a given length (see

Materials and Methods). We grouped the normalized probabili-
ties for each syllable and sequence length into six monotonically
increasing bins and averaged normalized responses in each bin
(Fig. 4G).

We found that, on average, convergence probability explained
25% of the variability in responses to individual syllables pre-
ceded by sequences of length 1– 6 (R 2 � 0.252 � 0.090, mean �
SD) and responses to syllables increased as a graded, monotonic
function of the convergence probability of the preceding se-
quences (Fig. 4G). The best-fit line to the means (black dashed
line) had a slope of 22% (95% confidence interval, 14%–29%),
indicating that, on average, there was a �22% modulation of
auditory responses by a unit change in convergence probability.
Similar results were obtained from the single-unit recordings
(Fig. 4G, inset), where linear regression indicated that conver-
gence probability explained 28% of the variation in auditory re-
sponses and modulated the magnitude of the response by 33%
(R 2 � 0.28, slope � 0.33, p � 10
4). These results demonstrate
that auditory responses to a given syllable are positively modu-

Slope (Hz/unit change in probability)

1 41 75 120 59

0

kabc
cabc
fjbc

136 91411

A B C

ED

F G

Figure 4. Convergence probability of preceding sequences modulates auditory responses to single syllables in a positive, linear manner, A, Average time varying responses (mean � SE) and
accompanying stimuli for length 3 sequences with varying convergence probability, followed by the target syllable “c.” B, Average responses to the target syllable “c” (mean � SE for shaded region
in A) when preceded by the sequences in A. C, Response waveform for syllable “c” when preceded by the 3 naturally occurring sequences shown in A. D, E, Second example illustrating increasing
responses to target syllable “b” as a function of convergence probability for preceding length 4 sequences. D, Average time varying responses (mean � SE) and accompanying stimuli for length 4
sequences with varying convergence probability, followed by the target syllable “b.” E, Average responses to the target syllable “b” (mean � SE for shaded region in D) when preceded by the
sequences in D. F, Distribution of slopes for regression of responses to target syllables against convergence probability of preceding sequences for entire dataset (***p � 10 
10, one sample t test,
n � 945 cases). Black diamond: mean slope (90 Hz/unit change in C ). Inset shows histogram of slope values for experiments on single units (***p � 10 
3, one-sample t test). Black diamond:
mean � 96 Hz/unit change in probability. G, Response modulation as a function of convergence probability for all syllables and sequences of lengths 1– 6 (mean � SE). The slope of the regression
line (dashed line) was significantly different from 0 (***p�10 
3). Inset shows results from single units, mean�SE, and best-fit line (***p�10 
4). Number of unique instances of the sequences
in B, E, and G are indicated at bottom of plots.
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lated in a graded fashion by the conver-
gence probability of the preceding
sequence.

Convergence probability explains more
of the sequence-induced variation in
auditory responses than other
probabilistic characterizations
We found that convergence probability
could account for more of the sequence-
induced variation in auditory responses
than a variety of alternative probabilistic
characterizations. In particular, diver-
gence probability has been the primary fo-
cus of prior experimental and theoretical
studies of sequencing in songbirds
(Okanoya and Yamaguchi, 1997; Woolley
and Rubel, 1997; Nakamura and
Okanoya, 2004; Sakata and Brainard,
2006; Nishikawa et al., 2008; Sakata and
Brainard, 2008; Jin, 2009; Fiete et al., 2010;
Katahira et al., 2011; Warren et al., 2012).
Therefore, we first examined the degree to
which auditory responses were modu-
lated by convergence probability compared with divergence
probability. We found that auditory responses were only
weakly modulated by divergence probability. The best linear
fit of auditory responses as a function of divergence probabil-
ity indicates that responses are modulated by only 8% over a
unity change in divergence probability (Fig. 5A, gray dashed
line; data for convergence probability are replotted in black for
comparison). This is significantly less than the response mod-
ulation due to convergence probability (22%, p � 0.05), and
was not significantly different from 0 (95% confidence inter-
val of slope for divergence probability: 0%–16%). Moreover,
divergence probability explained less of the variation in re-
sponses than did convergence probability (R 2 for divergence
probability � 0.152 � 0.049, mean � SD vs R 2 for conver-
gence probability � 0.252 � 0.090, mean � SD). Further-
more, a serial regression analysis revealed that divergence
probability accounted for only 5% of the residual variability
that could not be accounted for by convergence probability.
Therefore, convergence probability provided a better account
of sequence-induced modulations of auditory responses than
did divergence probability.

We additionally used a general linear model (GLM; see Mate-
rials and Methods) to compare how well convergence probabil-
ity, divergence probability, and several other probabilistic
characterizations of sequence statistics could explain responses to
target syllables. The GLM provides a single framework that can
be used to compare the relative explanatory value of distinct
probabilistic characterizations. This analysis quantifies how well
the responses to a target syllable could be explained by a weighted
sum of the transition probabilities between each pair of syllables
within the sequences preceding the target syllable (see Materials
and Methods). We quantified how well the model explained re-
sponse variations (for sequences of length L � 1–9) using the
correlation coefficient (R value). Figure 5B displays the distribu-
tion of R values for models using convergence probabilities (C)
and divergence probabilities ( D) to characterize the pairwise
transitions between syllables. Consistent with our previous
analyses, the correlation coefficients for the GLM were signif-
icantly greater when convergence probability rather than di-

vergence probability was used to describe the probabilities of
transitions ( p � 0.01, Wilcoxon signed-rank test, n � 9
lengths).

We also used GLMs to test how well two other statistical char-
acterizations of sequencing could account for variation in HVC
auditory responses. First, we tested how well the log of the con-
vergence probability between pairwise transitions could explain
variation in responses. This value [log10 (C)] was tested based on
previous findings from primates suggesting that the nervous sys-
tem may preferentially represent the logarithm of the probability
of sequential sensory events that lead to reward (Yang and
Shadlen, 2007; Pouget et al., 2013). Second, we tested how well
the probability with which individual syllables in the preceding
sequence were produced could account for variation in responses
to the target syllables. This value [M] was tested because both
theory and experiments in other systems indicate that the overall
frequency of occurrence of a stimulus can shape the strength of
responses to that stimulus (Barlow, 1961; Machens et al., 2005).
Again, each of these probabilities provided significantly less
explanatory power than did convergence probability (Fig. 5B,
*p � 0.05, **p � 0.01, Wilcoxon signed-rank test, Bonferroni
corrected for m � 3 comparisons).

Finally, we investigated whether responses across syllables
varied as a function of how frequently the syllable occurred in the
bird’s repertoire and how frequently the syllable and preceding
sequence of length L occurred jointly. These quantities were cho-
sen because they provide additional tests of the possibility that the
frequency with which a stimulus is experienced will influence the
strength of the response to that stimulus (Barlow, 1961; Simon-
celli and Olshausen, 2001; Machens et al., 2005). They also are of
potential significance because they are related to the divergence
probability and convergence probability by Bayes theorem (see
Materials and Methods). We found that neither the marginal
probability of target syllables nor the joint probability of target
syllables and preceding sequences accounted for significant
amounts of response variation across syllables (see Materials and
Methods, Analysis of effects of marginal probabilities on auditory
responses).

C
D

A B

Figure 5. Convergence probability explains more variation in auditory responses than other probabilistic characterizations of
sequencing. A, Response modulation as a function of convergence probability (black) and divergence probability (gray) for all
syllables and sequences of lengths 1– 6, as well as the best-fit lines from linear regression (***p � 10 
3; nonsignificant: p �
0.05; H0: slope � 0). B, Correlation coefficients resulting from fitting a GLM to auditory responses using four different probabilistic
characterizations of sequence statistics as regressors. (*p � 0.05, **p � 0.01, Wilcoxon signed-rank test, with Bonferroni
correction, n � 9 for all distributions). Boxes indicate median, 25th, and 75th percentiles, whiskers extend to � 2.7 SD, �95%
confidence intervals.
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Temporal integration for auditory responses extends over
many syllables and depends on convergence
probability
Our finding that responses to a given syllable depend on the
convergence probability of preceding sequences implies that
there is some form of temporal integration for HVC auditory
responses. Therefore, we next used responses to sequences ex-
tracted from pseudorandom stimuli to measure systematically
the temporal extent of integration and how integration depends
on convergence probability. We measured responses to the 38
unique syllables in our dataset as a function of the length and
probability of preceding sequences. To examine how integra-
tion depends on convergence probability, we separately mea-
sured integration over sequences with low, medium, and high
convergence probabilities [low: C � 0; medium: 0 � C � max
( C); high: C � max ( C)].

Figure 6, A and B, shows an example of temporal integration
over sequences with high convergence probabilities. Here, we mea-
sured how responses to the target syllable “d” (s0 � “d”) varied as a
function of the length of the most common preceding sequences.
For length 0, we identified in the pseudorandom stimuli each occur-
rence of syllable “d” when it was preceded by a non-naturally occur-

ring syllable transition (L � 0, top).
Corresponding neural responses were ex-
tracted and averaged (L � 0, bottom). For
length 2, the most common sequence pre-
ceding “d” was “bc.” Therefore, we identi-
fied in the pseudorandom stimuli each
occurrence of the sequence “xbcd” (where
“xb” is an explicitly unnatural transition,
L � 2, top) and extracted and averaged the
corresponding neural activity (L � 2, bot-
tom). Similarly, for length 6, the most com-
mon sequence preceding “d” was “ibabbc”
and we therefore identified each occurrence
of the sequence “xibabbcd” (L � 6, top) and
extracted and averaged corresponding neu-
ral activity (L � 6, bottom). These examples
illustrate that as more naturally occurring
syllable transitions preceded the target sylla-
ble “d,” the elicited response (shaded area)
progressively increased. The sequence inte-
gration function in Figure 6B summarizes
how the response to syllable “d” was modu-
lated as the length of the most common pre-
ceding sequence was increased from 0 to 9.
In this example, integration extended over
�6 syllables (i.e., responses reached asymp-
tote after �6 syllables).

Across our dataset, for high-proba-
bility sequences, integration extended
over �7 syllables. The average integration
function (see Materials and Methods) for
high-probability sequences is plotted in
Figure 6D (black diamonds, mean � SE;
solid line, sigmoid fit, R 2 � 0.22, p � 0.01,
n � 31 syllables, for which sequence
lengths were well sampled; see Materials
and Methods). Response modulation was
significantly different from the fit asymp-
tote for length 6, but not for length 7 (se-
rial Z test of response modulation against
estimated asymptotic values from fit sig-

moid, p � 0.05, see Materials and Methods), indicating that in-
tegration extended over �7 syllables. Each syllable plus adjacent
gap in our Bengalese finch songs is �100 ms in duration. There-
fore, for sequences with high convergence probability, auditory
responses integrated over �700 ms.

For medium-probability sequences, the pattern of temporal
integration was strikingly different from that for high-probability
sequences. An example integration curve for a medium-probability
sequence is displayed in Figure 6C; here, responses increased in a
linear manner and did not asymptote. On average, medium proba-
bility sequences gave rise to a similar pattern of response integration
(Fig. 6D, dark gray circles: solid line, linear fit, R2 � 0.05, p � 0.05,
n � 34 syllables). As with high-probability sequences, increasing the
length of medium-probability sequences also caused increasing re-
sponse modulation; however, the rate at which responses increased
with increasing sequence length (the slope or “gain” of integration)
was lower than for high-probability sequences. Furthermore, re-
sponse modulation continued to increase over the entire range of
sequence lengths included in our stimuli (up to length 9) without
reaching apparent asymptote. These data indicate that for naturally
occurring sequences with medium convergence probability, the gain
of the integration process (i.e., slope of integration function) is less

A B

C

D

Figure 6. Integration of auditory responses extends over many syllables and is dependent on convergence probability. A, B,
Example of response integration for high-probability sequences. A, Series of acoustic stimuli (x: non-naturally sequenced syllables,
conditioned on subsequent sequence) and resulting average response (mean � SE) for sequences of length L � 0 (“d”), L � 2
(“bcd”), and L � 6 (“ibabbcd”) ending in the same syllable (s0 � “d”). Dashed black line in response plots is the mean activity
during the entire pseudorandom stimulus. B, Average (� SE) response modulation (left ordinate) and response rate (right
ordinate) for “d” and best-fitting sigmoid function. C, Example of response integration for medium-probability sequences. Average
(�SE) response modulation (left ordinate) and response rate (right ordinate) for the last syllable and best linear fit. D, Average
response modulation for sequences of high probability (black diamonds with sigmoidal fit), medium probability (dark gray circles
with linear fit), and low probability (light gray squares with linear fit). Data are presented as means � SE.
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than that for high convergence probability
sequences. Moreover, the temporal ex-
tent of integration for medium proba-
bility sequences (�9 syllables, �900
ms) was greater than that observed for
high-probability sequences (7 syllables,
�700 ms).

In contrast to the positive integration
observed with natural sequences (i.e., C �
0), for sequences with low convergence
probability (i.e., no naturally occurring
transitions, C � 0), the integration process
consisted of a low gain suppression of audi-
tory responses (Fig. 6D, light gray squares:
solid line, linear fit, R2 � 0.36, p � 0.01, n �
37 syllables). This indicates that as a target
syllable is preceded by progressively longer
sequences of non-naturally occurring tran-
sitions, responses to the target syllable de-
cline from their “baseline” values at length 0.
Again, for the low-probability sequences,
the extent of temporal integration was also
�9 syllables (lack of asymptote for decrease in response modula-
tion). These results demonstrate that HVC auditory responses inte-
grate over long temporal extents and that the sign, gain, and
temporal extent of integration depend on convergence probability.

The preceding analyses examine how the responses to target
syllables are modulated as a function of the length and probability
of preceding sequences. This approach treats the sequences that
precede target syllables as single “chunks” of song. However,
these analyses do not test directly how the convergence probabil-
ity of transitions at varying locations within these sequences in-
fluence responses to the target syllable. To address this issue, we
used a GLM to measure how pairwise convergence probability at
different transition locations in the preceding sequence modu-
lated auditory responses to the last syllable in the sequence (see
Materials and Methods). The weights assigned by the model (�i)
for various transition locations (i) describe the effect of the prob-
ability at that transition location on the response.

In Figure 7A, we plot the linear weights, �i (mean � SE, n � 38
syllables), for convergence probability as a function of the tran-
sition location (i). We found that the mean weights were all pos-
itive, indicating that increasing the convergence probability at all
transition locations resulted in increases in responses to the last
syllable in the sequence. Furthermore, the average weights de-
rived from convergence probability exhibited a fairly systematic
decrease as a function of increasing transition location preceding
the target syllable. However, it is noteworthy that the assigned
distributions of weights are significantly �0 (p � 10
2, t test, n �
38, Bonferroni corrected for m � 9 comparisons) until the ninth
preceding transition, indicating that the pairwise convergence
probabilities at distant transitions affect auditory responses to
individual syllables. Therefore, we found that more distant tran-
sitions generally affected auditory responses to a lesser degree,
with the influence of probability effectively disappearing by the
ninth preceding transition.

These results from pseudorandom stimuli predict that HVC
auditory responses to BOS stimuli should increase for several
hundred milliseconds after song onset. In Figure 7B we present
the average (black, mean � SE, n � 47 sites) baseline normalized
auditory response evoked by the first 1.5 s of sBOS stimuli (same
normalization as in Fig. 2B). The dark gray line corresponds to
the best fitting sigmoid function, with the estimated asymptotic

value demarcated in light gray (� 1 SD of estimated value). As
predicted from the auditory responses to a given syllable pre-
sented in the pseudorandom stimuli, on average, auditory re-
sponses to sBOS stimuli increased for several hundred
milliseconds before reaching an asymptote after �1 s (�10
syllables).

Discussion
Encoding of convergence probability
Previous studies using zebra finches have shown that auditory
responses in HVC are sensitive to sequence (Margoliash and For-
tune, 1992; Lewicki and Konishi, 1995; Lewicki and Arthur,
1996). However, zebra finches exhibit little sequence variation, so
in these studies, except for BOS, the stimuli were never heard by
birds. Indeed, for stereotyped sequences typical of zebra finches,
divergence and convergence probabilities are identical (D �
CT � 1 for all natural transitions). Therefore, they provide insuf-
ficient sequence variability to differentiate encoding of different
probabilistic characterizations. In contrast, Bengalese finches
have much more variation in syllable sequencing. This allowed us
to test how responses to sequences varied as a function of several
different characterizations of the probability with which they
were produced.

Because birds produce songs that unfold in time according to
divergence probability, it has been hypothesized that neural pop-
ulations in HVC corresponding to different syllables are coupled
by “synaptic chains” with weights that are proportional to diver-
gence probability (Nishikawa et al., 2008; Jin, 2009). Further-
more, some HVC neurons exhibit sensory-motor mirroring
(Prather et al., 2008) such that playback of a given syllable might
activate the same neurons that are engaged during production of
that syllable. Therefore, activity during playback of a sequence of
syllables could propagate along the same synaptic chain that is
engaged during production of that sequence. In this case, neuro-
nal activity in HVC in response to a given syllable might be pos-
itively modulated by the accumulated divergence probability of
the preceding sequence.

In contrast to divergence probability, convergence probability
reflects the temporal association of events that might naturally
become engrained by postsynaptic Hebbian plasticity mecha-
nisms that operate widely in the nervous system (Hebb, 1959;
Miller et al., 1989; Dan and Poo, 2004; Bouchard et al., 2012). We

A B

Figure 7. Evidence for integration from GLM analysis and sBOS responses. A, Auditory responses depend on convergence
probability at distant transition locations. Linear weights (�i) describing modulations of auditory responses due to pairwise
convergence probability as a function of the location of the transition (i). Data are presented as means � SE, n � 38 for all. B,
Long-time dependent integration in sBOS responses. The average baseline normalized auditory response evoked by the first 1.5 s
of sBOS stimuli (black, mean�SE, n�47). The dark gray line corresponds to the best-fitting sigmoid function, with the estimated
asymptotic value demarcated in light gray (� 1 SD of estimated value). Dark gray boxes demarcate the average approximate
location of syllable centers.
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found that responses to a syllable increased monotonically with
the convergence probability of preceding sequences (Fig. 4G).
Moreover, several alternative probabilistic characterizations (in-
cluding divergence probability) explained significantly less vari-
ation in auditory responses than did convergence probability
(Fig. 5). It is possible that other experimental approaches would
detect a more salient encoding of divergence probability or other
probabilistic characterizations in HVC. Indeed, an encoding of
divergence probability must in some sense be present in the brain
and may be present in HVC, because the nervous system gener-
ates behavior that reflects divergence probability. However, in
our auditory playback experiments, HVC neurons most ro-
bustly encoded the convergence probability of produced syllable
sequences.

Probability-dependent sequence integration
We found that auditory responses in HVC can integrate over at
least nine syllables, and this integration depends on the conver-
gence probability of preceding sequences: convergence probabil-
ity modulated the sign, gain, and temporal extent of integration
(Figs. 6, 7). This probabilistic integration is reminiscent of neural
integration in primate parietal cortex during sensory discrimina-
tion tasks (Yang and Shadlen, 2007; Pouget et al., 2013). For
songbirds, such integration could serve a role in perception and
discrimination of songs, which may be mediated in part by HVC
(Gentner et al., 2000).

Because auditory responses to target syllables integrated over
more syllables when preceded by medium-probability sequences
than by high-probability sequences, the integrative limits ob-
served for high-probability sequences likely result from a limit of
the firing rate of neurons, not from a limit of the “memory ca-
pacity” of the circuit per se. We found that responses to syllables
were approximately linearly proportional to the convergence
probability of preceding sequences (Fig. 4) and integration ap-
peared to be linear up to a threshold (Fig. 6). These findings
suggest a model in which a linear sequence integrator, the inputs
of which are weighted by convergence probability (positive
weights for C � 0, negative weights for C � 0), is constrained by
biophysical saturating nonlinearities on neural firing.

Previous examinations of integration in zebra finches report
shorter integration times than we found for Bengalese finches
(Dave and Margoliash, 2000; Kojima and Doupe, 2008). Our
results suggest this difference can be explained by the high degree
of stereotypy of zebra finch song. The correspondingly high val-
ues of convergence probability predict a steep slope for integra-
tion in the zebra finch, causing firing rate saturation after just a
few syllables. Conversely, species with highly variable sequences
might exhibit even longer integration times than those observed
for the Bengalese finch.

In contrast to our results, previous examination of sequence
tuning in Bengalese finches using pairwise sequences did not find
HVC responses that were positively correlated with sequence
probability (Nishikawa et al., 2008). However, this previous
study examined divergence probability, not convergence proba-
bility. In addition, the differences between integration functions
for high- and medium-probability sequences that we observed
(Fig. 6D) predict that responses to individual syllables may not be
easily distinguishable between these two categories when only
preceded by one syllable.

The precise mechanisms that enable long-time scale integra-
tion of auditory responses remain to be determined. However, it
is noteworthy that, during song production, there are also long-
time scale interactions: the probabilities associated with a given

transition during song production can depend on the precise
sequence of preceding syllables (i.e., not first-order Markovian;
Nakamura and Okanoya, 2004; Jin and Kozhevnikov, 2011; Ka-
tahira et al., 2011; Warren et al., 2012). Such long-timescale
dependencies in both song production and HVC auditory re-
sponses may result from overlapping mechanisms. These mech-
anisms likely involve the interaction of local circuit processing
within HVC with activity propagating across the song-system via
internal feedback loops through the brainstem (Ashmore et al.,
2005; Long and Fee, 2008; Wang et al., 2008).

Sensory-motor mapping for sequential behaviors
In principle, encoding of convergence probability could result
from Hebbian plasticity operating on sequential patterns of
purely sensory, or purely motor, activity (Bouchard et al., 2012).
However, for sensory-motor structures such as HVC, an
intriguing possibility is that the encoding of convergence
probability reflects the association of sensory activity arising
from previous actions with motor activity associated with the
production of current actions. This might arise because, dur-
ing the course of normal behavior, the brain experiences the
probabilistic association between sensory feedback signals
from previous actions and premotor activity controlling the
current action (Wiener, 1948; Todorov and Jordan, 2002;
Sakata and Brainard, 2006, 2008). Therefore, associational
learning rules such as Hebbian plasticity could shape sensory-
motor circuits to reflect the probabilistic correspondence
between premotor activity controlling current actions and
sensory feedback resultant from previous actions. Under these
conditions, postsynaptic Hebbian plasticity can shape synap-
tic weight distributions to reflect convergence probabilities
(Bouchard et al., 2012), resulting in an encoding of conver-
gence probability in auditory responses. Indeed, in Bengalese
finches, HVC neurons are responsive to sound during both
singing and quiescence, with the magnitude of responses to
BOS being similar to that observed here (Sakata and Brainard,
2008). Therefore, one explanation for our results is that audi-
tory tuning of neurons in the song system is derived from the
individual’s unique feedback statistics experienced during
singing.

Many behaviors, like birdsong, are subserved by sensory-
motor circuits that both control the sequencing of actions and
receive sensory feedback arising from those actions (Dave and
Margoliash, 2000; Heyes, 2001; Sakata and Brainard, 2008; Ed-
wards et al., 2010). Indeed, some sensory-motor neurons exhibit
“mirrored” motor activation and sensory responses, with activity
that is modulated during both the performance of an action and
during sensory perception of that action (Dave and Margoliash,
2000; Rizzolatti and Craighero, 2004; Wilson et al., 2004; Prather
et al., 2008; Sakata and Brainard, 2008; Edwards et al., 2010).
Sensory feedback arising from an action is necessarily delayed
relative to premotor activity that generates the action (Fig. 1E;
Wiener, 1948; Brainard and Doupe, 2000; Troyer and Doupe,
2000a, 2000b; Todorov and Jordan, 2002; Sakata and Brainard,
2006, 2008). These considerations have several implications for
the role of feedback in sequence production and the mapping
between sensory feedback and ongoing motor activity. First, dur-
ing sequence production, sensory feedback from the previous
action may contribute to the activity generating the next action in
the sequence; that is, sensory feedback may contribute to the
propagation of activity from one sequence element to the next
and thus influence sequence probabilities (Lashley, 1951; Gross-
berg, 1986; Sakata and Brainard, 2006, 2008; Hanuschkin et al.,
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2011). Second, because sensory feedback from previous actions is
mapped onto motor activity for current actions, the motor field
of mirror neurons should be delayed relative to their sensory
field. This interpretation suggests that for birdsong, the sensory-
motor “mirroring” that has been described previously (Dave and
Margoliash, 2000; Prather et al., 2008) may reflect the mapping of
auditory responses to previous syllables onto the motor activity
for current syllables.

The results described here for HVC may apply broadly to
other sensory-motor circuits; both sensory-motor delays and
Hebbian plasticity are ubiquitous in the nervous system (Wiener,
1948; Grossberg, 1986; Troyer and Doupe, 2000a,b; Todorov and
Jordan, 2002; Dan and Poo, 2004) and these could interact to
engrain convergence probabilities associated with repeated
sensory-motor associations. Therefore, an encoding of conver-
gence probability may be a widespread feature of sensory-motor
circuits that control sequential behaviors and of neural systems in
general.
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