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Can Fuzzy Logic Bring Complex Problems into Focus?
Modeling Imprecise Factors in Environmental Policy

Thomas E. McKone* and Ashok W. Deshpande**

*University of California, Berkeley
**Former Deputy Director, National Environmental Engineering Research Institute,
India

In modeling complex environmental problems, we often fail to make precise
statements about inputs and outcome.  In this case the fuzzy logic method native to the
human mind provides a useful way to get at these problems.

Introduction
You and a friend walk outside on an April morning. You announce that the

weather is “mild”.  Your friend declares it “cold”.  Who is wrong? Or are you both
right?  We all recognize that language can be imprecise and that words such as cold,
hot, or mild do not have well-defined boundaries.  In 1965, Lotfi Zadeh introduced
fuzzy logic as a means of processing data by extending classical set theory to handle
partial membership1. Classical set theory deals with sets that are “crisp” in the sense
that members are either in or out according to rules of binary logic.  For example the
apple in the basket is Red OR Not Red (binary logic). Some of the apples could be
categorized as Red AND Not Red (fuzzy logic).  Many of the concepts that we deal with
in everyday life and in fields such environmental health involve factors that defy
classification into “crisp” sets—safe, harmful, acceptable, unacceptable, etc. A classic
example is when a regulator, who after she carefully explains the result of a detailed
quantitative risk assessment to a community group is then asked “But are we safe?” In
this case, “safe,” defies crisp classification because it is a multivariate state with
gradations, that very among different individuals and groups.

Fuzzy logic has become a common way of dealing with information in a number
of fields, such as control theory, smart machines, investment analysis and so on. But the
application of fuzzy sets can and has been extended to environmental science and
policy.  For anyone who has worked on health and environmental issues, it becomes
immediately obvious that we deal constantly with fuzzy concepts—hazard, acceptable,
safe, etc. Even concepts such as carcinogen and neurotoxin define fuzzy sets whose
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members are selected by experts who review and make judgments on conflicting
toxicology or epidemiology. In spite of their relevance and early efforts to promote
their use in risk assessment2, fuzzy logic applications are still rare in risk assessment or
other environmental assessments.

In this paper we consider whether and how fuzzy logic and fuzzy arithmetic apply
to risk assessment and environmental policy.  We use a case study assessment of water
quality in the Ganga river of India to illustrate this evaluation. Our goal is to consider
whether and how much this approach can be applied more broadly for environmental
assessments.

Fuzzy Sets, Fuzzy Logic, and Fuzzy Arithmetic
Fuzzy concepts come largely from the field of soft computing and have links to

many earlier influences, among them Zadeh’s 1965 paper on fuzzy sets1 and his paper
on the analysis of complex systems and decision processes3. Confronting fuzzy
concepts requires three skills—(1) the ability to construct fuzzy sets (those with partial
membership) and the ability to perform (2) logical operations and (3) arithmetic
operations on those sets.  Each of these capabilities must be employed to carry out our
case study.  We introduce them briefly here.

Fuzzy Sets
In contrast to classical sets, fuzzy sets include objects with partial membership.

Some view a person whose age is 45 as “old” and others as “young”.  So this person’s
age has partial membership in both the fuzzy set “old” and the fuzzy set “young”. The
process of defining membership produces a “membership” function for fuzzy sets.
This is illustrated in Figure 1 where we show example membership functions in the
linguistic sets “cold”, “mild”, or “hot” for a range of temperatures. In the language of
fuzzy sets this figure represents functions µA that express the degree of membership of

elements x (temperatures) in the set A, where A=cold, mild, or hot. µA is a set of

ordered pairs where the first element of the ordered pair is from the set x of
temperatures and the second element from the interval [0,1] that expresses
membership in A.  Here 0 represents non-membership, 1 represents complete
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membership, and values in between represent intermediate degrees of membership.
We can determine membership in a fuzzy set either by observation or by eliciting
characterizations from experts or users.

At this point it is useful to make a distinction between fuzzy logic and probability
theory, a distinction that involves the difference between the notions of probability and
a degree of membership. In contrast to probability density functions, fuzzy
membership functions express the possibility of an outcome rather than its probability.
Probability statements are about the likelihood of outcomes.  In a probabilistic
approach, we model uncertainty  by expressing our belief that an event either occurs or
does not.  But with fuzzy logic we model uncertainty as the degree of membership in
set that defines an outcome.

Fuzzy Logic
Fuzzy logic is the key to building models of fuzzy systems by providing rules for

operations on fuzzy sets. The first thing to recognize is that fuzzy logic is a
generalization of standard Boolean logic. In other words, if we keep the fuzzy values at
their extremes of 1 (completely true), and 0 (completely false), fuzzy logic reduces to
standard binary logic.

Three basic operations apply to fuzzy sets—negation, intersection, and union. To
negate a fuzzy set, one simply subtracts the membership value in the fuzzy set from 1.
For example, in Figure 1 the membership value in “cold” at 5 °C is 1. With negation, the
membership value at 5 °C becomes 0. The intersection of two sets is the minimum of
the two membership values at each point on the x-axis.  In Figure 1 the set “cold” has a
membership of 0.7 corresponding to x = 14°C and the fuzzy set “mild” has a
membership of 0.3 corresponding to x = 14°C. The intersection has a membership value
of 0.3 at x = 14°C. The union of two sets is the maximum of the two membership values
at each point on the x-axis.  Referring again to Figure 1, the union of the sets “cold” and
“mild” at x = 14°C has membership 0.7.  In mathematical terms, we have:
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Negation: µnot A(x) = 1 – µA(x)

Intersection: µA∩B(x) = Min[µA(x), µB(x)]

Union: µA∪B(x) = Max[µA(x), µB(x)]

For fuzzy sets, there are extensions of these standard set operations (union,
intersection, etc.) and fuzzy sets operators that are uniquely fuzzy operations with no
counterpart in ordinary set theory.  For example there are families of functions such as
the triangular norm (t-norm) for intersection and the t-conorm (or s-norm) for unions
that introduce different options for binary mapping to aggregate two membership
functions.  Operations that are unique to fuzzy sets also include concentration, dilation,
normalization, intensification, fuzzification.  These operators leave classical (crisp) sets
unchanged. The concentration operation compresses a membership function and
reduces the degree of membership of marginal members by squaring the degree of
membership of each member in the set. The dilation operator expands the membership
function of the peripheral members by taking the positive square root of the degree of
the membership of each set element.  Normalization modifies the membership value of
all elements by the factor needed to increase the membership status of at least one
member to a maximum of 1. Intensification makes a fuzzy set less fuzzy by increasing
by some defined factor the degree of membership of all set elements that have
membership greater than 0.5 and decreasing the degree of membership of elements
with membership less than 0.5. Fuzzification operates in reverse of intensification and
makes the set fuzzier.

Fuzzy Arithmetic
In addition to logic operations, there are interval arithmetic operations that apply

to fuzzy sets. Fuzzy arithmetic provides the foundation for possibility theory
introduced by Zadeh3 and further developed by Kaufmann and Gupta4 and Dubois and
Prade5. Although it is analogous to probability theory, possibility theory can be carried
out under weaker assumptions and thus used when limited experimental or
observational information is available.
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Among the important arithmetic operations on fuzzy sets are addition,
subtraction, multiplication, division, and degree of match (DM), which we define and
use for the example below.  Addition produces a set with an interval range that includes
all of the sums of the addends of the two sets being added.  For example, if we add
numbers from set A in the range [1, 5] with numbers from set B in the range [2,4], we
obtain a set of numbers C in the range [3, 9].  Members, x, of set A with membership
function µA(x) and members, y, of set B with membership function µB(y), produce

elements, z=x+y, in set C that have membership µC(z) determined as

€ 

µC (z) = min
sup z= x+y

 [µA (x),µB (y)]   (Eq 1)

Which means that we calculate the degree of membership in C for each pair x,y derived
from A and B as min[µA(x),µB(x)] then determine µC(z) s the maximum (sup) among all

combinations x=y the produce a given z value. A similar approach applies to
subtraction, multiplication, and division. The DM operator finds its place in fuzzy-rule
based systems. DM is the measure of overlap in the membership functions of two fuzzy
sets.  For arbitrary sets A and B, DM(A, B) is defined as:

  

€ 

DM(A,B ) =
µA∩B ( x )dx∫

µA( x )dx∫
(Eq 1)

in which x denotes the range of parameter values (dissolved oxygen, fecal coliform
level, etc) and µA∩B(x) is the membership function for the intersection of fuzzy sets A

and B.

How it Works:  Bathing Water Quality in the Ganga River
We illustrate the use of fuzzy logic in environmental health assessment with fuzzy

descriptions of bathing water quality in the river Ganga, India. When Ganga water
quality progressively deteriorated due to indiscriminate discharge of municipal sewage
and industrial effluents, Deshpande et al.6 used fuzzy classification to characterize water
quality after the implementation of pollution control measures. Ceremonial bathing
plays a vital role in cultural, social, and religious life of India. The process of defining
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water quality for bathing involves a great deal of uncertainty. We focus on the
acceptability of water for bathing at two sampling stations, Rishikesh on the upstream
of the river and Varanasi where the pollution is  severe. Both places are important for
religious bathing, but Varanasi is of particular importance as tens of thousands of
people take a religious bath daily at defined ghats (bathing places).

This example presents modeling of both the statistical uncertainty in the field data
and cognitive uncertainty in judgments of experts. Water quality experts have identified
five parameters for defining river water quality for bathing—fecal coliform (FC),
dissolved oxygen (DO), biochemical oxygen demand (BOD), pH and turbidity.
Measured values of these parameters must communicate river water quality to policy
makers and the public at large. But how? Observed values of these parameters are
uncertain due to measurement error and natural variability. Quantitative risk
assessment is precluded by the absence of adequate exposure and dose-response
models for each of these five parameters.  Another approach to communicate water
quality is an aggregated water quality index (WQI) expressed in numbers ranging
between 0 and 100. If WQI is less than 20, the water quality is considered bad and so on.
One problem with this type of highly subjective approach, is that final score fails to
communicate the uncertainty in (a) the measurement of these factors, (b) the
interpretation of an acceptable range for each parameter, and (c) the method used to
integrate these dissimilar factors.  Neither risk assessment nor WQI can signify the
degree of certainty attached to any linguistic description of results. So we introduce
fuzzy logic to characterize water quality in a way that provides linguistic terms (highly
accepted,…,not accepted) with quantified degrees of certainty. The result is an
alternative approach with more fidelity to the type uncertainties involved in this
particular problem.

This is but one example of a fuzzy logic application to environmental quality.
There or others in the current literature.  For example Regan et al.7 have demonstrated
the advantages of using fuzzified definitions of “endangered” in conservation biology.
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Matching Fuzzy Values
We construct fuzzy sets to represent in linguistic terms both field observations on

parameter values and judgments of experts about acceptability of each parameter value
range. The degrees of match between observations and fuzzy terms relating to
acceptability are used to establish overall water quality. This process is illustrated in
Figure 2. First, we fit the measured parameter to a convex normalized fuzzy-interval as
shown in the top diagram of Figure 2.  The membership function here represents the
range of a given water quality parameter, such as fecal coliform level.  We next use
expert elicitation to construct fuzzy sets for modeling expert opinion in classifying a
specific factor, such as fecal coliform level, as being “very good”, “good”, “fair” or
“poor”. The values for which all experts assign the same value are given membership
1.0 and the values for which no expert assigns that term are given membership 0.0.  We
derive values of the membership functions in between by connecting the 0 and 1
membership values with a continuous straight line.  This is shown in the middle
diagram of Figure 2.  We use the DM operator (described above) to determine the
degree of match between the convex normalized fuzzy numbers describing observed
parameter value ranges and the fuzzy sets describing the experts’ quality classification
ranges. This is shown at the bottom of Figure 2. Table 1 provides the results of this
process with the DM values at Rishikesh and Varanasi for each linguistic class. The
numerator for each DM is derived from the fuzzy interval corresponding to the
experts’ water quality classification.

Fuzzy Rule Based System
We construct rules that classify water based on the status of the quality parameters

as expressed by DM.  Figure 3 provides the flow chart used to develop these rules and
three primary attributes to classify quality—bacteriological status, biochemical status,
and physical status.  Bacteriological status is linked to fecal coliform levels and physical
status is linked to turbidity, but biochemical status is linked to three secondary
attributes—DO, BOD, and pH.  At each stage of this hierarchical structure, we apply the
experts’ acceptability rules in order to classify water quality and obtain a degree of
certainty about the classification. Examples of these rules at each stage and the
corresponding DM for Varanasi (in parentheses) are:
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At the first stage
If   DO is <good>  (0.16) and

   BOD is <very good> (0.13) and
   pH is <good>  (0.30)

Then biochemical status of water will be <good> (0.13).

At the second stage
If   Bacteriological status of water is <good> (0.8) and

  Biochemical status of water is <good> (0.13) and
  Physical status is <very good> (0.98)

Then the water quality for bathing is <accepted> (0.13)

Of course there are many rules of this type needed to specify our water quality
systems.  One of the challenges of fuzzy applications is checking the reasonableness of
all these rules. As we see from the example above, the conjunctive (intersection)
operator applies when we want to find the DM of one or more antecedent rules, that is

 DM (of a rule with steps 1,2,3…n ) = Min (DM1, DM2, DM3,… DMn)   (Eq 2)

We must also address the DM for cases of “disjuncts.”  Disjuncts are different rules that
lead to the same classification. For example at the right of Figure 3 there can be multiple
rules that result in the classification of water as “accepted”.  In this case we apply the
disjunctive (union) operator:

DM (of disjuncts 1,2,…n)  = Max(DMdisjunct1, DM disjunct2, … DM disjunct1)      (Eq 3)

The lower part of Table 1 describes at Rishekesh and Varanasi the degree of certainty
for each linguistic classification that we obtained by using the DMs from the upper part
of the table and with a set of acceptance rules.   We note here that at Rishekesh the
water quality is “accepted” with certainty 0.41. The next certainty value of 0.36 for “just
accepted” indicates that the outcome is more towards “just accepted” than towards
“highly accepted”.  Water at Varanasi is “not accepted” with degree of certainty 0.98.
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This indicates an urgent need to intensify the pollution control efforts along the river
Ganga with focus on the reduction on bacterial counts. In following this example, the
reader must recognize our goal here is to present only the inputs, intermediate steps,
and results of the analysis. Many of the essential details could not be presented in this
type of summary paper.

The Outlook for Fuzzy Logic in Environmental Policy
Over the last few decades, soft computing tools such fuzzy logic based methods,

neural networks, and genetic algorithms have had significant and growing impacts.
But we have seen only limited use of these methods in environmental fields such as risk
assessment, cost-benefit analysis, and life-cycle impact assessment.  Because fuzzy
methods offer both new opportunities and unforeseen problems relative to current
methods, it is difficult to determine how much impact such methods will have on
environmental policies in the coming decades.  Here we consider some obvious
advantages and limitations.

Quantitative models with explicit and crisp delineations of systems have long been
the currency of discourse in engineering and the physical sciences, where basic physical
laws form the foundations of analyses.  These fields place high value on the causal
linkages implicit in model structure and parameterization. But problems that involve
human values, language, control theory, biology, and even environmental systems
have had to rely more on descriptive and empirical approaches8.  In these latter fields
our goal is often to summarize the observations in an efficient and useful manner.  For
these important areas of science and health, fuzzy logic based methods should be
further investigated as alternative and perhaps more appropriate methods to confront
uncertain and complex systems.

For the types of complex and imprecise problems that arise in environmental
policy, the ability to model complex behaviors as a collection of simple if-then rules
makes fuzzy logic an appropriate modeling tool. Because fuzzy arithmetic works well
for addressing linguistic variables and poorly characterized parameters, fuzzy methods
offer the opportunity to evaluate and communicate assessments based in linguistic
terms that could possibly match those of the public and decision makers.  Moreover
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approximate reasoning methods such as fuzzy arithmetic do not require well-
characterized statistical distributions as inputs.  Another key advantage of fuzzy logic in
risk assessment is the ability to merge multiple objectives with different values and
meaning, for example combining health objectives with esthetic objectives.  It also
provides rules for combining qualitative with quantitative objectives.

But we must recognize and confront the potential limitations of fuzzy logic for
expressing health risk and other environmental impacts. One problem is the strong
reliance on subjective inputs.  Although this is a problem in any type of impact
assessment, fuzzy methods might provide more opportunity to abuse the use of
subjective inputs.  Moreover, although well suited to addressing uncertainty (lack of
knowledge), some argue that for addressing variability (heterogeneity) fuzzy logic has
not been shown as superior to standard statistical descriptions. Ferson and Tucker have
noted that that, because it can fail to capture the value range of complex data sets and
the correlations among parameters, fuzzy arithmetic may not be appropriate for
routine use in risk assessments concerned primarily with variability9. However, Ozbek
and Pinder (2003a) have addressed both variability and uncertainty in a fuzzy logic
approach to the risk equations in a groundwater remediation problem.10 They use
statements and preferences of practicing toxicologists to construct fuzzy rules and relate
these rules to relate a pattern of exposure of benzene to its carcinogenic effects. Rules
describing individual susceptibility address parameters typically represented by
variability in other risk assessments. The rules constrain the risk model in a way that
preserves interindividual differences.

Although probabilistic assessments based on tools such as Monte Carlo are
analogous to assessments based on fuzzy logic, these two methods differ significantly
both in approach and interpretation of results. One key advantage of fuzzy logic over
Monte Carlo methods is the ability to confront linguistic variables (safe, unsafe,
acceptable, unacceptable).  With Monte Carlo methods, we must often force continuous
distributions to fit linguistic variables for probabilistic assessments. Fuzzy arithmetic
combines outcomes from different sets in a way that is analogous to but different from
Monte Carlo methods. Possibility theory can be used as an alternative to probabilistic
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analysis, but this creates the potential for interpreting membership functions as
probability distributions.

Concluding Points
Fuzzy logic represents a significant change in both the approach to and outcome

of environmental evaluations. Risk assessment is currently based on the implicit
premise that probability theory provides the necessary and sufficient tools for dealing
with uncertainty and variability. The key advantage of fuzzy methods is the way they
reflect the human mind in its remarkable ability to store and process information which
is consistently imprecise, uncertain, and resistant to classification. Our case study
illustrates the ability of fuzzy logic to integrate statistical measurements with imprecise
health goals. But we submit that fuzzy logic and probability theory are complementary
and not competitive.

In the world of soft computing, fuzzy logic has been widely used and has often
been the “smart” behind smart machines. But it will require more effort and case
studies to establish its niche in risk assessment or other types of impact assessment.
Although we often hear complaints about “bright lines,” could we adapt to a system
that relaxes these lines to fuzzy gradations? Would decision makers and the public
accept expressions of water or air quality goals in linguistic terms with computed
degrees of certainty? Resistance is likely. In many regions, such as the US and European
Union, it is likely that both decision makers and members of the public are more
comfortable with our current system in which government agencies avoid confronting
uncertainties by setting guidelines that are crisp and often fail to communicate
uncertainty. But some day perhaps a more comprehensive approach that includes
exposure surveys, toxicological data, epidemiological studies coupled with fuzzy
modeling will go a long way in resolving some of the conflict, divisiveness, and
controversy in the current regulatory paradigm.
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Table 1 Degree of Match Between Field Data and Fuzzy Terms and the Resulting Fuzzy
Description of Water Quality with Degree of Certainty

Degree of match between parameters and linguistic class
Linguistic class

Sampling
Location

Parameter Very good Good Fair Poor

Fecal
coliform

0.21 0.80 0.36 0

Dissolved
Oxygen

0.45 0.16 0 0

BOD 0.13 0.58 0.40 0.02
pH 0.41 0.30 0.23 0.10

Rishikesh

Turbidity 0.98 0.03 0 0
Fecal

coliform
0 0 0.01 0.98

Dissolved
Oxygen

0.16 0 0 0

BOD 0.50 0.33 0.12 0
pH 0.68 0.47 0.29 0.06

Varanasi

Turbidity 0.68 0.51 0 0

                     
Description of water quality with degree of certainty

City
Water quality description Rishikesh Varanasi

Highly accepted 0.21 0
Accepted 0.41 0

Just accepted 0.36 0.01
Not accepted 0.10 0.98
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Figure 1.  Degree of membership of a range of temperatures  in the fuzzy sets “cold”, “mild”, and “hot”.
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Figure 2. The process for constructing fuzzy numbers and degree of match between the membership
functions of observed concentrations and fuzzy terms
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Figure 3.  Hierarchical structure for water quality classification.




