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Abstract

Expanding the Atomistic Study of the Optical and Electronic Properties of Nanomaterials

by

Daniel Weinberg

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Eran Rabani, Chair

The optical and electronic properties of semiconductor nanomaterials have long attracted
significant interest due to the strong absorption and tunable spectra caused by quantum
confinement. These materials have potential applications ranging from solar energy conver-
sion and lighting to single photon sources and quantum computing. However, to realize any
of these applications the role of the atomistic detail of these materials cannot be ignored.
Understanding role of defects, traps, and structural distortion on the excited states of these
materials remains a great challenge for modern computational science. Semiemperical pseu-
dopotential models represent the leading way to understand the complexity of nanoscale
systems in atomistic detail. In this dissertation we expand the applicability of these models
to new materials where additional effects, like strong spin-orbit coupling must be consid-
ered. We also use these methods to help examine the dynamics of excited states in these
nanomaterials, revealing the crucial roles of defects, distortions, and traps.

We develop a formulation of the semiempirical pseudopotential method that includes the
effects of spin-orbit coupling and other nonlocal terms in the potential. By using a separable
form of these non-local terms we maintain a favorable computational scaling and thus keep
the ability to investigate nanomaterials of experimentally relevant sizes. We apply this
method to lead halide perovskite nanocrystals (NCs), promising materials for solar energy
conversion that are known for their strong spin-orbit coupling. The atomistic study of
these systems allows for an understanding of how distortion of the NC structure impacted
the exciton fine structure, determining that contrary to some suggestions the ground state
exciton is a dark state.

The results of atomistic electronic structure methods also aid in developing kinetic models
of excited state species in various nanomaterials. The dynamics of the transfer of holes from
multi-excitonic II-VI NCs is explored as a competition between transfer, trapping, and non-
radiative Auger recombination (AR). Pseudopotential calculations provide crucial insight in
the AR rates and how those are impacted by the presence of trapped species. A similar
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kinetic model describing carrier recombination in few-layer black phosphorous is informed
by density functional theory calculations of surface oxygen defects.

This dissertation shows both the expansion of the semiemperical pseudopotential method and
the application of the method to inform studies of material properties and design principles.
The combination of theoretical development and experimental collaboration shows the utility
of these models to solve practical problems of broad scientific import. By expanding the
applicability of these methods to new materials, these detail atomistic calculations can now
be applied to even more experimentally relevant systems.
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They enter the new world naked,
cold, uncertain of all
save that they enter. All about them
the cold, familiar wind—

Now the grass, tomorrow
the stiff curl of wildcarrot leaf
One by one objects are defined—
It quickens: clarity, outline of leaf

But now the stark dignity of
entrance—Still, the profound change
has come upon them: rooted, they
grip down and begin to awaken

—William Carlos Williams, Spring and All
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Chapter 1

Introduction

Semiconductor nanocrystals (NCs) provide a diverse playground within which to investi-
gate the behavior of electronic excitations with a wide range of electronic densities of states
and fundamental dynamic processes. Quantum confinement effects cause NCs to have dis-
crete spectra at low excitation energies, like those in atoms and molecules, while at higher
excitation energies they more resemble bulk materials with increasingly high densities of
states [1–7]. The structure of NCs also derive from the bulk limit, but at the surface can
be significantly modified by the termination of the crystal lattice. Understanding the inter-
twined effects of NC size, shape, structure and composition on the nature and degeneracy
of electronic states has been a topic of extensively study [2, 8–15].

1.1 Effective Mass Models

Developing a theoretical description of the electronic excitations in semiconductor NCs
presents a series of challenges. NCs contain orders of magnitude more atoms and valence
electrons than the molecules that conventional quantum chemistry techniques have been
perfected on. This prohibits the application of these techniques to all but the very smallest
NCs. More progress has been made starting from the other limit: the bulk material. Con-
tinuum effective mass-style models had great early success describing quantum confinement
and dielectric screening as a function of NC size [8, 16]. When expanded beyond the qual-
itative single-band effective mass models, sophisticated multi-band models have provided
quantitative descriptions of exciton fine structure and splittings as a function of NC size,
shape and composition [12, 17–19]. Further inclusion of many-body exchange interactions
within excitons allowed for the accurate description of optically forbidden dark excitons and
explained the non-monotonic temperature dependence of radiative lifetimes in NCs [20–23].

The qualitative picture offered by the single band models begins by assuming a parabolic
dispersion of the bands near the band gap. This implies that the electron and hole quasipar-
ticles can be treated as free particles with a renormalized effective mass related to the band
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curvature by:

m∗
e/h =

1

h̄2

(
∂2ϵ(k)

∂k2

)−1

, (1.1)

where ϵ(k) refers to the valence or conduction band energies for the hole or electron masses
respectively. The effect of confinement can then be treated as the imposition of potential
barriers around these particles with the appropriate size and geometry [8, 12, 24]. For
a spherical particle of radius a with an infinite potential barrier, the electron and hole
confinement energies may be approximated as:

E
e/h
nl =

h̄2ϕ2
nl

2π2m∗
e/ha

2
, (1.2)

where ϕnl is the nth zero of the spherical Bessel function of order l (i.e. jl(ϕnl) = 0). For a
cuboidal particle with dimensions ax/y/z these energies can be approximated as:

Ee/h
nxnynz

=
h̄2

2π2m∗
e/h

(
n2
x

a2x
+
n2
y

a2y
+
n2
z

a2z

)
. (1.3)

Both of these equations clearly show the inverse quadratic size dependence of these energy
levels with smaller particles showing much higher confinement energies. Within an inde-
pendent particle approximation, the energy for generating an electron and a hole in these
confined systems is then the sum of the bulk band gap and the two confinement energies.
Thus at the large size limit the bulk material properties are recovered, but for small parti-
cles confinement will result in a strong size dependence in the excitation energies of these
materials.

To truly begin to grasp the optical properties of these systems we must move beyond
the independent electron and hole energy levels which fail to capture the significant effect
of the electron-hole Coulomb attraction. This interactions binds the electrons and holes
into excitons, and lowers the energy of excitation. This Coulomb attraction is especially
important in these systems as the electron and holes are both confined to the same nanoscale
region. The energy of this interaction rises as 1/a, slower than the energy of confinement,
resulting in a crossover behavior of competing effects as a function of size [8, 25]. The
relevant length scale for this competition is the exciton Bohr radius,

aB =
h̄2ϵr
µe2

, (1.4)

where ϵr is the relative permittivity of the material and µ =
m∗

em
∗
h

m∗
e+m∗

h
is the exciton reduced

mass [12]. For sizes much greater than the exciton radius, known as the weak confinement
regime, the confinement energy is smaller than the exciton binding energy and thus the
exciton center of mass is confined. For sizes well below the exciton radius, what is known
as the strong confinement regime, the confinement of the individual electron and hole states
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is stronger than their attractions. Optical transitions in this regime look like transitions
between individual hole and electron levels with the energy only slightly modified by the
Coulomb attraction. Between these two regimes is the intermediate confinement regime
where the intertwined effects of confinement and exciton binding are less clear cut. In some
cases, if the electron and hole effective masses are mismatched, the heavier quasiparticle
will feel only the average potential of the lighter and faster particles, localizing this heavy
particle to the center of the nanocrystal [12].

These considerations within a single band approximation are sufficient for a qualitative
picture, but to make quantitative contact with experimental results the theory must incorpo-
rate the details of the band structure beyond just the effective masses. Real band structures
have band degeneracies and couplings that complicate the parabolic approximation. To
move beyond this, various multi-band effective mass models have been constructed [12].
These models vary in what bands and inter-band couplings are considered most important
based on the material parameters. For the zinc blende materials, the degeneracy of the va-
lence band requires at least considering the coupling of the light hole and heavy hole bands.
The spin split-off band can also be included to better describe the excited hole states [12].
For wide gap materials, the coupling of the valence and conduction bands can be neglected,
however in materials with very small gaps (such as InAs and InSb) the coupling of the va-
lence and conduction bands must also be considered [26]. These multi-band models write
the quasiparticle wave functions as a linear combination of the bulk Bloch functions un of
the relevant bands n, each modulated by envelope function fn(r):

ψi(r) =
∑
n

f i
n(r)un . (1.5)

The Bloch functions are unit-cell periodic functions, and the couplings between them can
be calculated from the bulk and used to create the interband coupling Hamiltonian [26].
For spherical dots, the total angular momentum of the quasi-particles is a good quantum
number and thus the angular and radial parts of the envelope functions can be separated
and the angular parts found exactly. The inter-band coupling Hamiltonian then leads to a
series of coupled differential equations solving for the radial parts of the envelope functions
and the energies of the corresponding states [12]. The results of these models have shown
quantitative agreement with the size dependence of key absorption features in diverse quan-
tum dot systems [12]. Further consideration of excitonic effects has allowed for the study
of the exciton fine structure including optically forbidden dark excitons and explained the
non-monotonic temperature dependence of radiative lifetimes in NCs [20–23, 27].

1.2 Pseudopotential Models

Despite these developments, the effective mass models remain inextricably tied to the bulk
material properties which keeps them blind to any atomistic detail that may be important
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to the NCs properties, particularly for strongly confined NCs. To better describe the com-
plications of real NC structures, semiempirical pseudopotential models, popularized in the
1970s and 1980s to describe the electronic and optical properties of bulk semiconductors and
surfaces [28], were employed and further developed to study excitons in a variety of semicon-
ductor NCs [10, 29–31]. These models demonstrated remarkable success in postdicting and
predicting the exciton fine structure [22, 32] as well as the roles of defects [33, 34], stress,
and strain on the electronic structure [35, 36].

The application of this atomistic model to these NC systems allowed for investigation of
several effects the effective mass models were unable to fully consider, including the effect
of surface structure and orientation in NCs [10, 37]. This allowed for the identification of
significant facet dependence in the rate of radiative recombination in Si NCs [10], and ad-
ditional facet dependence of wave function symmetry and allowed transitions in InAs/GaAs
pyramidal NCs [37]. Because the NCs represent finite systems, the pseudopotential model
required adaptation from the initial bulk material formulation [10]. In the bulk, the recip-
rocal space pseudopotential V (Q) need only be defined at values of Q that correspond to
the bulk reciprocal lattice. However, to apply this to a finite system the pseudopotential
must be given a continuous form as the breaking of translation symmetry removes the Bragg
condition on the scattered waves. To obtain these continuous pseudopotentials, a functional
form is chosen and then fit to reproduce either the discrete reciprocal space potential [38],
key band parameters [10], or entire bulk band structures [31].

These theories involved some level of empiricism from simply fitting the pseudopotentials
to recover bulk band quantities rather than deriving the potentials from first principles. Ad-
ditional connections to ab initio theory were made by deriving the pseudopotentials from the
self-consistently determined screened potential from the local density approximation (LDA)
of the bulk material [39]. By performing calculations on an ensemble of bulk crystal struc-
tures and then averaging over the resulting potentials, a transferable, structurally averaged,
and spherically symmetric potential could be obtained that still reproduced the LDA results
with high fidelity [39]. This potential could then be tweaked slightly to bring the the exci-
tation energies into line with experimental results. This process amounted to only a slight
perturbation and could be done while maintaining near unity wavefunction overlap with the
LDA wavefunctions [39]. Additional nonlocal terms of the pseudopotentials and spin-orbit
coupling could also be incorporated by simply taking the usual nonlocal parts of the LDA
pseudopotentials unmodified [30, 40].

These methods could be directly compared to the effective mass methods, and revealed
a series of discrepancies. In spherical CdSe NCs, the pseudopotential method found a sig-
nificantly higher density of hole states with energies more than 0.5 eV below the band edge
than was predicted by the effective mass models [41]. The approximation of parabolic bands
in the effective mass model was implicated in these missing states. At higher excitation en-
ergies the relevant k vectors shift away from the band extrema and the parabolic expansion
no longer holds. Additional discrepancies were revealed by projecting the wavefunctions of
the pseudopotential model into the effective mass-style form similar to Equation 1.5. While
the effective mass model for spherical particles preserves rotational symmetry, the atomistic
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nature of the pseudopotential model means that this symmetry does not hold. Thus there
is considerable breaking of symmetries in the pseudopotential model that the effective mass
model forbids, which has significant implications for which optical transitions are allowed and
disallowed [41, 42]. To further understand the impact of the approximations of the effective
mass models, the effective mass model parameters could be extracted from the bulk band
structures produced by the pseudopotential model [41, 43, 44]. This allowed for a direct
comparison of the two theories and their underlying assumptions. Generally the effective
mass models overestimated the confinement energies in NCs and in narrow band gap ma-
terials like InAs the contribution from other band extrema to NC states was not described
correctly [43].

In this dissertation, we present our work expanding upon and applying the pseudopo-
tential model to a wide variety material systems, including systems not previously studied
using these models. In the recent years, experimental development has shifted to explore new
quantum dot materials. Of particular interest are the lead halide perovskite materials, due
to their remarkable defect tolerance, size tunability, and strong and narrow emission [45–47].
They have attracted considerable interest for the development of LED technology [45], and
as potential quantum light sources [48–51]. Describing these perovskite materials presents
additional challenges not faced in the modeling of traditional II-VI and III-V semiconduc-
tor NCs. In lead halide perovskites, the bands near the band gap are impacted by strong
spin-orbit coupling. This requires incorporating the nonlocal effects of this interaction into
the pseudopotential model. Furthermore, the structure of perovskite materials is extremely
flexible and can undergo structural phase transitions [52, 53], requiring the model to go
beyond simply considering strain effects as had been done previously [35, 36, 54].

In Chapter 2 we describe the atomistic approach we have adopted to calculate quasipar-
ticle excitations and neutral excitations in semiconductor NCs. First principles approaches,
such as time-dependent density functional theory (DFT) [55–57] or many-body perturbation
approximations [58], are limited to describing excitons in relatively small clusters, typically
those with fewer than 100 atoms, due to their steep computational scaling [59, 60]. To make
meaningful contact with experimental results on NCs that contain thousands of atoms and
tens of thousands of electrons, we rely on the semiempirical pseudopotential model [10, 30,
31, 42] to describe quasiparticle excitations. We use a converged real-space grid method to
represent the single-particle states combined with the filter diagonalization method [61, 62]
to compute the single-particle states near the band edge and at higher excitation energies.
We then use a subset of converged quasiparticle eigenstates to solve the Bethe-Salpeter equa-
tion [63] within the static screening approximation to account for electron-hole correlations
in neutral optical excitations [64]. We also provide validation of the approach for the quasi-
particle and optical gaps and the exciton binding energies for II-VI and III-V semiconductor
NCs in both the strongly (R < aB) and weakly (R > aB) confined regimes.

In the second half of Chapter 2 we discuss the incorporation of spin-orbit coupling and
other non-local terms into the pseudopotential model. We discuss the derivation of the
appropriate terms in the Hamiltonian and how to implement them efficiently both in the
calculation of bulk band structures and confined states in NCs. We show how the imple-
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mentation of a separable form for the nonlocal potential can improve both the accuracy and
efficiency of these calculations.

In order to apply these pseudopotential models to new materials they must be parameter-
ized to recreate bulk band structures. This fitting process is discussed in Chapter 3. In this
chapter we discuss the practical considerations involved in fitting pseudopotentials, a highly
non-linear fitting process. Various strategies for overcoming local minima are discussed and
the details of the fitting process for two example systems are reviewed. The process of fit-
ting pseudopotentials for InAs/InP core-shell quantum dots is discussed, where a the same
In pseudopotential was required to describe both materials. On the other hand the fitting
process for CsPbI3 perovskite required different pseudopotentials for I and Pb that depended
on the structural phase of the material. These two examples highlight the extent to which
these pseudopotential models require a specific understanding of the important properties
of the material under study.

We then apply these developments in Chapter 4 to resolve a important point of contention
regarding the ordering of bright and dark states in perovskite NCs. Here, the atomistic nature
of the pseudopotential method allowed for the effects of nanoscale lattice distortion in these
NCs to be fully incorporated into the electronic structure calculations. We find that some
effective mass-type models [65, 66] had overestimated the role of the Rashba effect and that
the ground state exciton is a dark state [67, 68]. We further examine the effects of lattice
distortion and NC shape anisotropy on the level splitting among the bright states of these
NCs.

The utility of the pseudopotential method goes beyond simply calculating spectra. As
shown in Chapter 5 this method also gives access to the dynamics of excited state species.
In this chapter the dynamics of the transfer of holes from multi-excitonic NCs is explored
as a competition between transfer, trapping, and non-radiative Auger recombination (AR).
Pseudopotential calculations provided crucial insight in the AR rates and how those are
impacted by the presence of trapped species. The concept of trapping is explored from a dif-
ferent angle in Chapter 6 where density functional theory is employed to study the resilience
of few-layer black phosphorous to surface oxygen defects from an ab initio perspective. In
both of these chapters the electronic calculations are used to inform kinetic master equation
models of carrier dynamics in these nanomaterials.
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Chapter 2

Expanding the Pseudopotential
Hamiltonian

Applications of the semiempirical pseudopotential method have often ignored nonlocal effects
such as spin-orbit coupling, however these effects can be incorporated into this approach [30,
35, 69, 70]. The method to do so will be the focus of this section. Sec. 2.1 gives an overview
of the pseudopotential method and where nonlocal affects may arise. Sec. 2.2 describes the
incorporation of these effects in the calculation of bulk band structures. Sec. 2.3 describes
the incorporation of these effects into calculations of finite systems using real-space grid
methods. The parts of this chapter are adapted with permission from Jasrasaria, D.; Wein-
berg, D.; Philbin, J. P.; Rabani, E. Simulations of nonradiative processes in semiconductor
nanocrystals. J. Chem. Phys. 2022, 157, 020901.

2.1 Introduction to the Pseudopotential Method

The diversity of dynamic processes in semiconductor nanocrystals (NCs) requires a compre-
hensive model that captures a wide spectrum of physics. The finite size of NCs modifies the
electronic structure relative to the bulk material—the continuous conduction and valence
bands of the bulk are split into discrete states for finite crystals. This quantum confine-
ment of carriers gives rise to NCs’ hallmark size-dependent optical properties. To properly
describe these optical properties, a model must go beyond the ground electronic state and
describe the excited electronic states, as well. While these excited states are generally well
understood in bulk semiconductors, quantum confinement complicates our understanding by
significantly enhancing the electron-hole interactions in nanoscale systems [42]. The small
size of NCs compared to the exciton Bohr radius forces the electron and hole closer to each
other than they would be in bulk, increasing the strength of their Coulomb interactions. Ad-
ditionally, dielectric screening is reduced at the nanoscale as quantum confinement widens
the band gap and increases the energy required to polarize the medium. This effect leads
to a size-dependent reduction in screening, further contributing to size-dependent modifica-
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tions of excited states in NCs. These enhanced interactions must be properly considered in
order to describe the correlations between electrons and holes and achieve agreement with
experimental measurements.

Experimentally relevant NCs are highly crystalline, and in the interior of the structure
they closely resemble the corresponding bulk materials. The atomic configuration aligns
closely with the bulk crystalline lattice across the majority of unit cells, suggesting that a
description based on bulk bands would be a valid starting point. However, NCs possess
additional features that distinguish them from bulk. The NC surface truncates the lat-
tice symmetry, which gives rise to quantum confinement. Core-shell structures also form a
nanoscale heterojunction that can introduce significant amounts of strain into the crystal
structure [71, 72]. Both these internal interfaces and surfaces cause deformations from crys-
tallinity on the scale of individual atoms, so accurate modeling of NCs must include this
atomistic detail. For example, localized trap states at surfaces or interfaces due to atomic
defects are ubiquitous in experimental studies of NCs, where they are observed to rapidly
quench photoluminescence and result in significantly lower quantum yields [73, 74]. An
atomistic description of the NC structure allows for the introduction of site-specific defects
or alloying to understand their roles in trap formation and to determine the dynamics of
trapping in NC systems [34, 75]. Finally, in order to make meaningful contact with exper-
imental measurements on NCs that contain thousands of atoms and tens of thousands of
electrons, computational evaluation of the model must scale moderately with system size
in comparison to first principles approaches. Because NC systems have important size de-
pendent properties, such as optical gaps [76], radiative lifetimes, and Auger recombination
(AR) lifetimes [77], and the scaling of these properties with system size is often an impor-
tant question, the ability to access experimentally relevant sizes with volumes ranging across
multiple orders of magnitude is crucial.

These considerations have informed our development of the semiempirical pseudopoten-
tial model as a sufficiently detailed description of NCs that can also tackle calculations of
experimentally relevant systems. For example, a CdSe quantum dot only 4 nm in diameter
has over 1000 atoms and 4000 valence electrons, so the conventional workhorses of quan-
tum chemistry, such as density functional theory (DFT) and related methods for excited
states, despite making significant progress [56, 57], are still far from being able to tackle
this problem. On the other hand, continuum models based on the effective mass approxi-
mation have produced successful predictions for simple, linear spectroscopic observables [12]
but are unable to capture many of the more complicated dynamic processes that determine
the timescales of processes, such as nonradiative exciton relaxation and AR. Furthermore,
these continuum models are, by nature, blind to atomistic detail, such as defects, strain at
heterostructure interfaces, and facet-dependent properties [78, 79].

Our approach is based on the semiempirical pseudopotential method [10, 31, 42], which
was first developed to characterize the band structures of simple bulk materials [28] and
was later extended to describe the role of surfaces [80] and confinement [10, 29]. The basic
assumption made within this method is that the bulk band structure can be described by a
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simple, non-interacting model Hamiltonian:

ĥqp = t̂+ v̂(r) = t̂+
∑
α

v̂α(Rα) , (2.1)

where t̂ is the single-particle kinetic energy operator, and v̂ is the pseudopotential, which is
given by a sum over all atoms, α, of a atomic pseudopotential, v̂α(Rα), which may be entirely
local or include nonlocal terms and is centered at Rα, the position atom α. The parameters
used to describe the pseudopotential of each atom are obtained by fitting the reciprocal-
space pseudopotentials to the bulk band structure obtained either from experimental mea-
surements or high-accuracy electronic structure calculations, such as DFT+GW [28, 69].
Within the fitting procedure, we describe the real-space atomistic pseudopotential, v̂α(r),
by its reciprocal-space counterpart, ˆ̃vα(q). The functional form of the local reciprocal-space
pseudopotential used for the work presented throughout this dissertation is:

ˆ̃vα(q) = aα0
q2 − aα1

aα2 exp(a
α
3 q

2)− 1
. (2.2)

The addition of nonlocal terms and their functional form will be the subject of discussion in
this chapter.

Figure 2.1: (a) The bulk band structures of wurtzite CdSe (left) and CdS (right) obtained
from the pseudopotential Hamiltonian (red points) are compared to literature values [81]
(black lines). The resulting band structures show excellent agreement across the entire
Brilouin zone. (b) The corresponding real-space pseudopotentials for Cd, Se, and S. The
inset illustrates a cross-section of the pseudopotential for a wurtzite 3.9 nm CdSe NC as
constructed from these atom-centered functions.

The fitting of parameters {a0, a1, a2, a3} proceeds by comparing the generated band struc-
tures to the expected band structures with special care taken to correctly capture the band
gaps and effective masses. Additional discussion on the fitting process is the subject of
Chapter 3. As shown in Fig. 2.1a, the model using a local-only pseudopotential captures
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all band features and describes the band structure across the entire Brillouin zone. The
real-space forms of the corresponding pseudopotentials are illustrated in Fig. 2.1b, where
the pseudopotentials have been simultaneously fit to generate the correct band structures
for both wurtzite and zincblende CdSe and CdS. Pseudopotential parameters for Cd, Se, S,
In, As, and P that are used for electronic structure calculations in this section are collected
in Table 2.1.

Table 2.1: Pseudopotential parameters for Cd, Se, S, In, As, and P. Cd, Se, and S parameters
were fit to simultaneously reproduce wurtzite and zincblende CdSe and CdS bulk band
structures. In, As, and P parameters were fit to simultaneously reproduce zincblende InAs
and InP bulk band structures. All parameters are given in atomic units.

a0 a1 a2 a3
Cd -31.4518 1.3890 -0.0502 1.6603
Se 8.4921 4.3513 1.3600 0.3227
S 7.6697 4.5192 1.3456 0.3035

In 49.6411 1.8874 3.5301 0.4235
As 25.7465 2.6905 1.5253 0.5721
P 28.8706 2.5839 1.5821 0.5622

Once the pseudopotentials have been fit to describe bulk systems (the fits are not unique
and often other physical measures are used to choose the best set of parameters [30]), they
are used to construct the NC Hamiltonian. The central assumption made here is that the
pseudopotentials that describe single particle properties in the bulk are also adequate when
applied to quantum confined nanostructures. While this may seem to be a large leap, the
error introduced by this assumption is relatively small compared to the fundamental band
gap [82]. A cross-section of the resulting pseudopotential for a wurtzite 3.9 nm CdSe NC is
shown in the inset of Fig. 2.1b, illustrating both the near-periodic potential in the interior of
the NC and the manner by which it is modified at the surface. The NC atomic configurations
are obtained by first pruning a bulk structure such that all atoms are bonded to at least two
other atoms. The atomic positions are then relaxed using molecular dynamics-based geome-
try optimization with previously-parameterized force fields [83, 84], which include two- and
three-body terms to enforce tetrahedral bonding geometries and produce NC configurations
that are relatively crystalline in agreement with experiment [85]. In the case of core/shell
structures, the core is cut from bulk, and the shell material is grown on the surface using
the lattice constant of the core material. The subsequent geometry optimization allows the
shell to relax and results in compressive strain on the core to minimize the stress along the
core/shell interface [86, 87].

The description of the surface of the NC presents a challenge, as simply terminating the
NC may result in dangling bonds. These dangling bonds can give rise to localized electronic
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states within the band gap, which act as traps. For the II-VI and III-V families of semicon-
ductors, we have found that dangling bonds from the non-metal atoms result in hole traps
slightly above the valence band maximum, but metal dangling bonds do not result in electron
traps due to the light electron effective mass relative to the hole effective mass [34, 75]. To
passivate the surface of the NC, the outermost layer of atoms is replaced with passivation po-
tentials that mimic the effect of organic ligands that terminate the surfaces of experimentally
synthesized NCs, pushing the mid-gap states out of the band gap [10]. Lead halide perovskite
NCs do not require passivation as if they are terminated to only leave halide dangling bonds.
This procedure for building NC structures can be easily adapted to produce more compli-
cated NCs, such as the core/shell NCs, nanorods, and nanoplatelets. Further modification,
such as alloying, multi-layered NCs, dimer NC assemblies, and structural defects can also be
modeled with atomistic detail.

Figure 2.2: (a) Densities of the quasi-electron (red) and quasi-hole (blue) wavefunctions
reveal that they are periodic across several unit cells in the interior of the NC. The electron
states are labeled based on the symmetry of the envelope function in analogy to effective
mass descriptions. (b) The densities of single-particle states (DOS) for wurtzite CdSe NCs of
different sizes shows the effects of quantum confinement and the larger density of hole states
in these II-VI systems. The inset illustrates the DOS across a larger energy range (that is
scaled to the fundamental gap, Eg, of each NC), where the continuum of high energy states
can be seen. The diameters of the NCs illustrated are 2.2 nm (orange), 3.0 nm (red), 3.9 nm
(green), and 4.7 nm (blue).

While a NC of experimentally relevant size will have many single-particle states (see
Fig. 2.2b), only a few highest-energy, occupied and lowest-energy, unoccupied states are
relevant to describing the optical properties near the band edge. These single-particle states
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are obtained using the filter diagonalization method [61, 62], which provides a framework
to extract all the eigensolutions within a specific energy window. This process can be done
with nearly linear scaling with the system size due to the locality of the single-particle
Hamiltonian, making feasible the calculation for NCs with volumes spanning several orders of
magnitude. Even with nonlocal potentials, this scaling can be preserved if the nonlocal effects
are contained withing a small volume around each atom. As the pseudopotentials are fit to
reproduce quasiparticle band structures, the eigenstates of the pseudopotential Hamiltonian
are assumed to describe the quasi-electron and quasi-hole wave functions of the NC. Examples
of the quasi-electron and quasi-hole densities are shown in Fig. 2.2a. We see that both the
electron and hole states show Bloch-like oscillations, which are significantly more pronounced
for the hole, and the electron states show a progression of envelope functions with s-type then
p-type characteristics, in line with effective mass descriptions of NC electronic states [12, 41].

Figure 2.3: Gaps for wurtzite CdSe quantum dots of different sizes (left). The optical gaps
computed by our semiempirical pseudopotential method agree with experimental measure-
ments of the optical gap by Fan et al. [88] (black squares) and Yu et al. [89] (black triangles).
The inset shows the exciton binding energy, EB, computed by our method and compared
to values computed by Franceschetti and Zunger [90] (black asterisks). Gaps for zincblende
CdSe/CdS core/shell nanoplatelets with different thicknesses of CdS shell (middle). The op-
tical gaps calculated by our method compare favorably with those measured experimentally
by Hazarika et al. [87] (black squares). Gaps for zincblende InAs quantum dots of differ-
ent sizes (right). The fundamental gaps calculated are in excellent agreement with those
measured by Banin et al. [91] using scanning tunneling microscopy (black squares), and the
optical gaps compare well with those measured by Guzelian et al. [92] (black triangles) and
computed by Franceschetti and Zunger [93] (black asterisks).

As previously stated, connection to experiments also requires an accurate description
of the neutral excited states probed by optical spectroscopy. To account for electron-hole
correlations, we use the single-particle eigenstates as the basis to solve the Bethe-Salpeter
equation (BSE) [63] for the correlated excitonic states using the static screening approxi-
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mation [94]. This approach explicitly includes electron-hole correlations, which allows for
the accurate description of excitons across all confinement regimes using just one formalism,
instead of relying on different approximations for different regimes. We take the excitonic
states to be a linear combination of noninteracting, electron-hole pair states:

|ψn⟩ =
∑
ai

cna,iâ
†
aâi|0⟩ , (2.3)

where â†a and âi are electron creation and annihilation operators in quasiparticle states a
and i, respectively. The indexes a, b, c, . . . refer to quasi-electron (unoccupied) states while
the indexes i, j, k, . . . refer to quasi-hole (occupied) states. The expansion coefficients ca,i
are determined by solving the eigenvalue equation [63]:

(En −∆εai)c
n
a,i =

∑
bj

(
Kd

ai;bj +Kx
ai;bj

)
cnb,j , (2.4)

which also determines the energy of exciton n, En, in terms of the direct and exchange parts of
the electron-hole interaction kernel [63], Kd

ai;bj and K
x
ai;bj, respectively, and the quasiparticle

energy difference, ∆εai = εa− εi. The direct part of the kernel describes the main attractive
interaction between quasi-electrons and quasi-holes while the exchange part controls details
of the excitation spectrum, such as the singlet-triplet splittings. Importantly, the direct term
is mediated by a screened Coulomb interaction [63], which we approximate using the static
screening limit with a dielectric constant that is obtained directly from the quasiparticle
Hamiltonian [42] and that depends on the size and shape of the NC. The binding energy of
excitonic state n, En

B, is calculated as:

En
B =

∑
abij

(
cna,i
)∗ (

Kd
ai;bj +Kx

ai;bj

)
cnb,j . (2.5)

As this model was built on semiempirical foundations, it is necessary to validate the
resulting calculations on well-known NC properties before using the model to explore more
complex phenomena. Furthermore, the fitting was carried out on pure bulk materials, so
it is important to assess the performance of the model on different NCs across a range
of sizes and compositions. One of the most fundamental properties we need to capture
is the optical gap. As shown in Fig. 2.3, we obtain results that compare favorably with
experiments with respect to the magnitude of the gap and the scaling with NC size for
several different NC compositions and geometries. We additionally validate properties, such
as exciton binding energies [64, 95], exciton fine structure effects on polarized emission
[95, 96], radiative and Auger recombination lifetimes [64, 77, 97], and optical signals of
trapped carriers [34]. The strong agreement we obtain between theoretical predictions and
experimental observations across a variety of system sizes, compositions, and dimensionalities
demonstrates that our approach is suitable for understanding and rationalizing trends across
a wide range of nanomaterial systems. Additionally, this model is extremely versatile and
lends itself to new development and expansion, such as the incorporation of nonlocal and
spin-orbit terms which we now turn to.
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2.1.1 Nonlocal pseudopotentials

Nonlocal terms can enter our pseudopotential for several reasons and have been widely used
since the early development of the method [40, 80, 98–100]. The basic physical motivation
for the pseudopotential theory is that a the highly oscillatory valence wave functions may be
smoothed out by replacing the true potential with a pseudopotential which creates a smooth
core region, however doing this in a systematic manner will in general result in nonlocal
terms in the pseudopotential. This can be seen via the Phillips-Kleinmann cancellation
theorem [101]. If we take a generic single particle Hamiltonian with a local potential ĥ =
t̂ + v (r̂) where we know the eigenvalues and states (|Ψn⟩, En) we can attempt to rewrite
a highly oscillatory valence state |Ψv⟩ as the sum of a smooth “pseudo” state |Φv⟩ and
contributions from core states |Ψc⟩:

|Ψv⟩ = |Φv⟩+
∑
c

av,c |Ψc⟩ . (2.6)

If we now consider how the Hamiltonian acts on this smooth state |Φv⟩

ĥ |Φv⟩ = Ev |Ψv⟩ −
∑
c

av,cEc |Ψc⟩ (2.7)

= Ev |Φv⟩ −
∑
c

av,c(Ec − Ev) |Ψc⟩ (2.8)

= Ev |Φv⟩+

[∑
c

(Ec − Ev) |Ψc⟩ ⟨Ψc|

]
|Φv⟩ , (2.9)

we see that if we subtract the term in brackets to the Hamiltonian then we will have a
new Hamiltonian for which the smooth state is an eigenstate with the proper energy. This
motivates the pseudopotential of the form

v̂p = v(r̂) +
∑
c

(Ev − Ec) |Ψc⟩ ⟨Ψc| , (2.10)

which is now clearly both nonlocal and energy dependent, but crucially since Ev − Ec > 0
the the pseudopotential is now shallower and smoother in the core region than the original
potential. This construction is not generally used to generate pseudopotentials for practical
use, but clearly shows how nonlocal terms may enter into the theory from the beginning.
For many properties of semiconductor systems, however, the impact of nonlocality may be
ignored, and fully local pseudopotential theories have been of great utility as we have seen
in the previous section.

The introduction of spin-orbit coupling into the Hamiltonian forces the consideration
of nonlocal terms. The operator describing spin-orbit coupling can be derived from the
consideration of the effects of relativity on the electric field of the nuclei from the rest frame
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of an electron. The electron will experience some portion of this electric field as a magnetic
field

B′ = −γv
c
×E , (2.11)

where if we assume that the electric field emanates radially from the nucleus we can simplify
to

B′ = γ
p

mc
× 1

er

dV

dr
x ≈ 1

emrc

dV

dr
L . (2.12)

This magnetic field couples to the electron spin, and while in general the form of dV
dr

is not
known it can be written as some radial function, vSO(r) that also absorbs all the coeffecients

hSO = vSO(r)L̂ · Ŝ . (2.13)

This operator is clearly nonlocal as the angular momentum operator, L̂, depends on both
position and momentum.

The presence of the angular momentum operator suggests the common approach through
which to incorporate additional nonlocal effects. Instead of using only a local form of the
pseudopotential, each atomic pseudopotential may be expanded in the angular momentum
subspaces around the given atom:

v̂α =
∑
l

vαl (r̂α)P̂
α
l , (2.14)

where P̂α
l =

∑
m |l,m⟩α ⟨l,m|α is the projector onto the l angular momentum subspace

around atom α and r̂α = |r̂ −Rα| is the distance to atom α. In the case of spin-orbit
coupling these may be total angular momentum subspaces formed from the coupling of
electron spin and orbital angular momentum. Additionally, it is generally practical to assign
one of the angular momenta the role of the local potential, and keep only the difference
between that potential for the other angular momentum subspaces. In our case we have
chosen to make the l = 0 subspace (i.e. the s orbitals) the local potential so, the potential
then becomes

v̂α = vαloc(r̂) +
∑
l ̸=0

δvαl (r̂α)P̂
α
l . (2.15)

The pseudopotential Hamiltonian we will then use in the following section is:

ĥ = t̂+
∑
α

[
vαloc(r̂α) +

∑
l ̸=0

δvαl (r̂α)P̂
α
l + v̂αSO(r̂α)L̂

α · Ŝ

]
. (2.16)

A crucial consideration when using the semi-empirical pseudopotential method is that
the same pseudopotential Hamiltonian will have to be used both for computing bulk band
structures with a plane wave basis during the fitting process, and for computing quasiparticle
states of finite systems on a real space grid. For a local potential ensuring this correspondence
is simple, however when a nonlocal potential is used the decision of how to represent the
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nonlocal operator will have a significant impact on both the efficiency and accuracy that
may be different depending on which basis is being used. Thus, ensuring the correspondence
of the pseudopotential Hamiltonian used for fitting with the Hamiltonian used for finite
systems becomes less trivial and will be examined in the following sections.

2.2 Bulk Calculations with a Nonlocal Potential

To calculate a bulk material band structure using these nonlocal pseudopotentials with spin
orbit coupling, we solve the pseudopotential Hamiltonian given in Eqn. 2.16 in a basis of
spinor plane wave states. As we know our solutions will have the Bloch form, we can consider
the Hamiltonian associated with a specific vector k in the first Brillioun zone. Our basis is
the set of states |K, s⟩ where K = k +G for all G that are in the reciprocal space lattice
of the material and s ∈ {↑, ↓} is a one-electron spin function.

The kinetic energy matrix is already diagonal in this basis,

⟨K, s|t̂|K ′, s′⟩ = h̄2K2

2m
δK,K′δs,s′ , (2.17)

and the local part of the potential is known to be

⟨K, s| vαloc(r̂) |K ′, s′⟩ =

(
atoms∑

α

ṽα(|K −K ′|)ei(K−K′)·Rα

)
δs,s′ , (2.18)

where ṽα(|K − K ′|) is the k-space pseudopotential around atom α, which is located at
position Rα. This part couples different K-basis states only as long as they have common
spin, so it has zeros in both of the off-diagonal quadrants.

We will now turn to the spin-orbit operator. For simplicity will initially consider only
the case of a single atom, dropping the αs where they are redundant, and will later show the
simple extension to multiple atoms.

V̂SO = vSO (r̂) L̂ · Ŝ (2.19)

=
∑
l

l∑
m=−l

∑
σ

∫
r2dr vSO (r̂) |lmrσ⟩ ⟨lmrσ| L̂ · Ŝ (2.20)

=
∑
l

∑
mm′

∑
σσ′

∫
r2dr |lmrσ⟩Ll

m,m′ · Sσ,σ′vSO (r) ⟨lm′rσ′| (2.21)

where a resolution of the identity has presented the operator in a matix form in the basis of
spherical harmonic functions with definite spin and radius which have wavefunctions:

⟨lmrσ|r′σ′⟩ = Y ∗
lm (r′)

δ (r − r′)

r2
δσσ′ (2.22)
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where Ylm (r′) is the standard spherical harmonic of degree l and order m evaluated at the
point on the unit sphere corresponding to the direction of r′. Note that we will use the
quantum mechanical conventions on phase and normalization of spherical harmonics. This
basis is a useful as it nearly diagonalizes the operator and only leaves the key mixing of
spin and orbital angular momentum. While a basis of total angular momentum eigenstates
would fully diagonalize the spin-orbit operator, they would require considering both the up
and down spin components for each function. Because we are working in a spinor basis it is
much easier to use basis functions of definite spin.

To convert this to the plane wave basis we need to know the change-of-basis matrix
elements

⟨lmrσ|kσ⟩ = 1√
Ω

∫
d3r′

δ (r − r′)

r2
Y ∗
lm (r′) e−ik·r′ (2.23)

This can be simplified using the plane wave expansion

e−ik·r = 4π
∞∑
l=0

l∑
m=−l

(−i)l jl (kr)Y ∗
lm (k)Ylm (r) (2.24)

and the orthogonality of spherical harmonics∫∫
Ylm (r)Yl′m′ (r) dθdϕ = δll′δmm′ . (2.25)

Applying these equalities, the overlap integral can be simplified to

⟨lmrσ|kσ⟩ = 1√
Ω

∫
d3r′ δ (r − r′)

r2
Y ∗
lm (r′) e−ik·r′

(2.26)

=
4π√
Ω

∞∑
l′=0

l′∑
m=−l′

(−i)l
′
Y ∗
l′m′ (k)

∫
d3r′

δ (r − r′)

r2
Y ∗
lm (r′) jl′ (kr

′)Yl′m′ (r′) (2.27)

=
−4πi√

Ω
Y ∗
lm (k) jl (kr) (2.28)

plugging this into Eqn. 2.21 we get

⟨kσ| V̂SO |k′σ′⟩ =
∑
lmm′

16π2

Ω

[
Ylm (k)Y ∗

lm′ (k′)Ll
m,m′ · Sσ,σ′

∫ ∞

0

r2dr jl (kr) vSO (r) jl (k
′r)

]
(2.29)

The part with the L operator can be simplified further following the approach of Weisz
[102]. To do this we first make a rotation of the coordinate systems so that k ∥ z and
k′ ∥ x sinα + z cosα so

k× k′

kk′
= z× x sinα = y sinα , (2.30)
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and so that the spherical harmonic that has been aligned with the z axis has a simple form
as

Ylm (k) = Ylm (z) =

√
2l + 1

4π
δm,0 . (2.31)

We the take the vector Lm,m′ one component at a time. We start with the z component
where, since and Lz

0,m′ = 0, we can clearly see that∑
mm′

Ylm (k)Lz
m,m′Y ∗

lm′ (k′) = 0 . (2.32)

Now we can turn to the x and y components where we will avail ourselves of the raising and
lowering operators to express

Lx
m,m′ =

1

2

(
L+
m,m′ + L−

m,m′

)
(2.33)

Ly
m,m′ =

−i
2

(
L+
m,m′ − L−

m,m′

)
. (2.34)

Since the raising and lowering operators can only change m′ by one we can see that we only
need to consider the terms where m′ = ±1. For the raising operator we get that

∑
mm′

Ylm(k)L
+
m,m′Y

∗
lm′(k′) =

∑
mm′

√
2l + 1

4π
δm,0

√
l(l + 1)δm−1,m′Y ∗

lm′(k′) (2.35)

=

√
2l + 1

4π

√
l(l + 1)Y ∗

l,−1(k
′) . (2.36)

Similarly for the lowering operator we get that

∑
mm′

Ylm(k)L
−
m,m′Y

∗
lm′(k′) =

√
2l + 1

4π

√
l(l + 1)Y ∗

l,1(k
′) . (2.37)

Now, since we have aligned our axes such that k′ lies in the x-z plane, Yl,m(k
′) is purely real

and thus,
Yl,1(k

′) = −Y ∗
l,−1(k

′) = −Yl,−1(k
′) . (2.38)

We can use this now to show that the x component comes to∑
mm′

Ylm(k)L
x
m,m′Y ∗

lm′(k′) =
1

2

∑
mm′

Ylm(k)
(
L+
m,m′ + L−

m,m′

)
Y ∗
lm′(k′) (2.39)

=
1

2

√
2l + 1

4π

√
l(l + 1)

(
Y ∗
l,1(k

′) + Y ∗
l,−1(k

′)
)

(2.40)

= 0 . (2.41)
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and the y component∑
mm′

Ylm(k)L
y
m,m′Y

∗
lm′(k′) =

−i
2

∑
mm′

Ylm(k)
(
L+
m,m′ − L−

m,m′

)
Y ∗
lm′(k′) (2.42)

=
−i
2

√
2l + 1

4π

√
l(l + 1)

(
Y ∗
l,1(k

′)− Y ∗
l,−1(k

′)
)

(2.43)

= −i
√

2l + 1

4π

√
l(l + 1)Yl,1(k

′) (2.44)

= −i
√

2l + 1

4π

√
l(l + 1)

[
−

√
2l + 1

4πl(l + 1)
P 1
l (cosα)

]
(2.45)

= i
2l + 1

4π
P 1
l (cosα) , (2.46)

where P 1
l is the first order associated Legendre polynomial of degree l. Generalizing out

from our specially rotated coordinate system we can say that∑
mm′

Ylm(k)L
l
m,m′Y ∗

lm′(k′) = i
k × k′

|k × k′|
2l + 1

4π
P 1
l

(
k · k′

kk′

)
. (2.47)

If we consider the first few associated Legendre polynomials of order 1,

P 1
1 (cosα) = − sinα (2.48)

P 1
2 (cosα) = −3 cosα sinα (2.49)

P 1
3 (cosα) =

3

2
(1− 5 cos2 α) sinα , (2.50)

we see the expression can be simplified in terms of the vectors k and k. Truncating to keep
only the l = 1 components I get∑

mm′

Y1m

(
k̂
)
Y ∗
1m′

(
k̂′
)
Lm,m′ = −i 3

4π

k× k′

kk′
. (2.51)

The final generalization to a multi-atom unit cell is made by recognizing the different
positions merely impact the phase at which the plane waves meet the atomic potential, which
gives a form which corresponds with that considered by Hybersten and Louie [69]:

VSO (kσ,k′σ′) = −i12π
Ω

k× k′

kk′

[∑
α

∫ ∞

0

r2dr j1 (kr) v
α
SO (r) j1 (k

′r) ei(k−k′)·Rα

]
· Sσ,σ′ (2.52)

To validate this approach, I compared the results of my band structures to those obtained
by Williamson [42] using a very similar pseudopotential method, but a distinct implementa-
tion of the spin-orbit coupling effects.
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Figure 2.4: A comparison of the InAs band structure including spin-orbit effects, calculated
by Williamson [42] (red points), and that calculated using the procedure discussed herein
(black lines).

The band structures shown in Figure 2.4 show very strong agreement, particularly around
the band gap at the Γ point. The disagreement farther away from the band gap likely comes
from the particularities of the Williamson calculation. Due to the computational limitations
of the time the pseudopotential calculations were not performed in a converged plane wave
basis, but were calculated using a kinetic energy cut-off of 2.5 Hartree [42].

The additional nonlocal parts of the pseudopotential can also be considered in this plane
wave basis. Considering the terms found in Equation 2.16 we can tackle them in a very
similar manner to the spin-orbit terms.

δV̂nonloc =
∑
α

∑
l ̸=0

δvαl (r̂α)P̂
α
l (2.53)

=
∑
α

∑
l ̸=0

∑
m

∫
r2 |lmrασ⟩ dr δvαl (r̂α) ⟨lmrασ| (2.54)

Using the same overlap matrix elements we calculated earlier we can see that

⟨kσ| δV̂nonloc |k′σ′⟩ =
∑
α

∑
l ̸=0

∑
m

16π2

Ω
Ylm

(
k̂
)
Y ∗
lm

(
k̂′
)[∫ ∞

0

r2dr jl (kr) δv
α
l (r) jl (k

′r)

]
(2.55)
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which can be simplified by the addition theorem of the spherical harmonics to get

⟨kσ| δV̂nonloc |k′σ′⟩ =
∑
α

∑
l ̸=0

∑
m

4π(2l + 1)

Ω
Pl

(
k · k′

kk′

)[∫ ∞

0

r2dr jl (kr) δv
α
l (r) jl (k

′r)

]
(2.56)

Using these nonlocal terms in conjunction with the spin-orbit terms of the pseudopotential
gives independent control over each of the total angular momentum components. Based
on the addition of angular momenta the total angular momentum state |j,mj, l⟩ will see a
potential equal to

v(r) = vloc(r) +

[
j(j + 1)

2
− l(l + 1)

2
− 3

8

]
vso(r) + δvl(r) . (2.57)

This independent control of each of the angular momentum components allows for significant
additional flexibility for fitting the pseudopotentials to reproduce literature band structures.
For example when fitting the pseudopotential forms for the CsPbI3 perovskites, the nonlocal
potential was crucial to better fitting the effective masses and band gaps.

2.3 Using a Nonlocal Pseudopotential in Confined

Systems

As discussed previously, in order to use these pseudopotentials for calculations in finite
systems it is necessary to understand how to represent them on the real-space grid used in
these calculations. For the local potential this was an intuitive and straightforward process,
but the introduction of nonlocal elements requires additional considerations. Equation 2.21
suggests a simple way to do this, however a detailed analysis will show that this naive
approach is inefficient and prone to significant error, requiring the development of a different,
separable form of the spin-orbit operator.

In these finite systems we want to calculate the action of the Hamiltonian on a state
expressed in a basis of real space spinor grid points, i.e the set of basis states |r, σ⟩ where
r = nxax + nyay + nzaz for integers n{x,y,z} and grid basis vectors a{x,y,z}. To evaluate the
correspondence of the real-space form of the nonlocal operator I first solved for eigenstates
at the Γ point in the plane wave basis |ψn⟩ =

∑
G,σ cn,G,σ |G, σ⟩as described above. I then

cast that state into the real space basis by evaluating ψn(r, σ) =
∑

G cn,G,σe
−iG·r at all

of the points r on the real space grid. The operator in the real-space representation is
then applied and both the expectation value, ⟨ψ| Ô |ψ⟩, and the quality of the eigenstate,
⟨ψ| Ô |ψ⟩2 − ⟨ψ| Ô2 |ψ⟩ is calculated to determine if the operator is in fact identical in the
two representations.
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2.3.1 Naive formalism and error

The action of the spin orbit operator in real space takes the form of

⟨r, σ| V̂SO |ψ⟩ = ⟨r|
∑
σ′

∫
dr′ψ (r′, σ′)

[
atoms∑

α

|lα = 1⟩λαvSO (|rα|) L̂α ⟨lα = 1|

]
|r′⟩ · ⟨σ| Ŝ |σ′⟩

(2.58)

=
atoms∑

α

λαvSO (|rα|)

∗
∑
σ′

1∑
m,m′=−1

Y1,m (rα)Lm,m′

∫
dr′

δ (rα − r′α)

r′2
Y ∗
1,m′ (r′α)ψ (r′, σ′) · Sσ,σ′

(2.59)

It turns out that its very hard to take the integrals of the form

⟨lmrσ|ψ, σ′⟩ =
∫
dr′

δ (rα − r′α)

r′2
Y ∗
1,m′ (r′α)ψ (r′, σ′) δσ,σ′ (2.60)

=

∫ π

0

dθ′ sin θ′
∫ 2π

0

dϕY ∗
l,m (θ′, ϕ′)ψ (r, θ′, ϕ′, σ′) δσ,σ′ (2.61)

on a rectangular grid as it requires a set of points all at radius r from atom α. As an initial
attempt we tried to approximate the delta function with a Gaussian sharply peaked at the
appropriate radius, and integrate over all rectangular grid points within a cutoff radius Rc.

⟨lmrσ|ψ, σ′⟩ ≈ 1√
2πa2

∫ Rc

0

dr′
∫ π

0

dθ′ sin θ′
∫ 2π

0

dϕ′ exp

(
−(r − r′)2

2a2

)
Y ∗
l,m (θ′, ϕ′)ψ (r′, θ′, ϕ′)

(2.62)

=
1√
2πa2

∫∫∫
r′<Rc

dr′

r′2
exp

(
−(r − r′)2

2a2

)
Y ∗
l,m (r′)ψ (r′) (2.63)

Numerically calculating this approximation shows that this integral is poorly behaved
numerically since the Gaussian will no longer be normalized for short r where there is a
significant portion of the function that falls in negative r and thus isn’t included in the
integral. Furthermore this is highly computationally inefficient as for each point within
the cutoff radius the integral runs over all other points in that sphere giving a scaling of
O (N2

nonloc) where Nnonloc is the number of grid points in the cutoff radius.

2.3.2 Derivation of projector formalism

The issue here is that the radial part of the angular momentum eigenfunctions |lmrσ⟩ is a
delta function of radius which is not well defined on our rectangular grid. We then need
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to find a different set of angular momentum eigenfunctions with a radial part more easily
represented on this grid, but that still capture the spatial variation of the spin-orbit coupling.
We do this by assuming the spin orbit operator can be put into a separable form (similar to
the Kleinman-Bylander form [103, 104]) and then derive the radial functions needed to give
equality with the non-separable form up to a certain kinetic energy cutoff.

Taking the spin-orbit coupling around a single atom:

V̂SO ≈ |l = 1⟩ vSO(|r|)L̂ · Ŝ ⟨l = 1| (2.64)

=
∑
σ,σ′

∑
m,m′

∫
r2dr |1m, r, σ⟩Lm,m′vSO(r) · Sσ,σ′ ⟨1m′, r, σ′| (2.65)

and we know that the plane wave matrix elements will be

⟨k, σ| V̂SO |k′, σ′⟩ = −i12π
Ω

k× k′

kk′
· Ŝσσ′

∫ ∞

0

dr r2j1 (kr) vSO (r) j1 (k
′r) (2.66)

We want to rewrite the spin-orbit operator in a separable form with some to-be-determined
radial functions ϕn

V̂ sep
SO =

∑
σ,σ′

∑
m,m′

∑
n

|1m,ϕn, σ⟩Lm,m′ · Sσ,σ′ ⟨1m′, ϕn, σ
′| , (2.67)

where
⟨rσ|1mϕnσ

′⟩ = Y ∗
1m(r)ϕn(r)δσσ′ . (2.68)

We want these functions such that we best approximate the full operator on the plane waves
by the separable operator:

⟨k, σ| V̂ sep
SO |k′, σ′⟩ =

∑
n

[
1

Ω

∑
m,m′

∫
dr′eik·rϕn (r)Y1m (r)Lm,m′

∫
dr′eik

′·r′ϕ∗
n (r

′)Y ∗
1m (r′)

]
· Ŝσσ′

(2.69)

=
16π2

Ω

∑
m,m′

Y1m (k)Y ∗
1m′ (k′)Lm,m′ · Ŝσσ′

∗
∑
n

∫
r2drj1 (kr)ϕn (r)

∫
r2drj1 (k

′r)ϕ∗
n (r) (2.70)

=− i
12π

Ω

k× k′

kk′
· Ŝσσ′

∑
n

∫
r2drj1 (kr)ϕn (r)

∫
r2drj1 (k

′r)ϕ∗
n (r)

(2.71)

Thus, by equating the plane wave matrix elements of the non-separable (Equation 2.66) and
separable (Equation 2.71) forms, we can see that we are looking for ϕn such that,∑

n

∫
r2drj1 (kr)ϕn (r)

∫
r2drj1 (k

′r)ϕ∗
n (r) ≈

∫ ∞

0

dr r2j1 (kr) vSO (r) j1 (k
′r) , (2.72)
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for all k, k′ below a given kinetic energy cutoff. The right hand side above is the matrix we
call V̄SO (k, k′), and let us call the identical integrals on the left hand side

bn (k) =

∫
r2drj1 (kr)ϕn (r) (2.73)

We find the optimal bn by an eigendecomposition of V̄SO. Taking a linearly spaced sampling
of k values up to a kmax

{
ki : i ≤ N, ki =

ikmax

N

}
we find the eigenvalues and orthonormal

eigenvectors of V̄SO, which we call {λn} and {un (k)}. The eigendecomposition gives us that
V̄SO (k, k′) =

∑
n bn (k) bn (k

′) where

bn (k) =
√
λnun (k) (2.74)

From the definition of bn as a function of k we can then extract ϕn (r) using the orthogonality
of the spherical Bessel functions∫ ∞

0

r2drjl (qr) jl (q
′r) =

π

2q2
δ (q − q′) (2.75)

thus ∫ ∞

0

k2dk j1 (r
′k) bn (k) =

∫ ∞

0

k2dk

∫ ∞

0

r2drj1 (r
′k) j1 (rk)ϕn (r) (2.76)

=

∫ ∞

0

r2drϕn (r)

∫ ∞

0

k2dkj1 (r
′k) j1 (rk) (2.77)

=

∫ ∞

0

r2drϕn (r)
π

2r2
δ (r − r′) (2.78)

= ϕn (r
′)
π

2
(2.79)

The eigenvalues of V̄SO (k, k′) are quite rapidly decaying so the full matrix can be well-
approximated with only a handful of ϕn, as can be seen in Figure 2.5.

With these radial functions in hand we can calculate the action of the spin-orbit operator
on a real space wavefunction

⟨r, σ| V̂ sep
SO |ψi⟩ =

∑
σ,σ′

∑
m,m′

∑
n

⟨r, σ|1mϕnσ⟩Lm,m′ · Sσ,σ′ ⟨1m′ϕnσ
′|ψi⟩ (2.80)

=
∑
σ,σ′

∑
m,m′

∑
n

Y1,m (r)ϕn (r)Lm,m′ · Sσ,σ′

∫
d3r′Y ∗

1,m′ (r′)ϕn (r
′)ψi (r

′, σ′)

(2.81)

=
∑
σ,σ′

∑
m,m′

∑
n

Y1,m (r)ϕn (r)Lm,m′ · Sσ,σ′Pn,m′,σ′ (2.82)
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Figure 2.5: (top left) The matrix of the right hand side of equation 2.72. (top right) The
matrix of the left hand side of equation 2.72 using 5 projection functions. (bottom left) The
real space projectors ϕn defined above. (bottom right) The error between the right and left
sides of equation 2.72.
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Using this we can calculate the expected energy levels at the gamma point within the plane
wave formalism and the real space formalism. Comparing the energy of the spin-orbit split-
off band as a function of the number of projectors used (with a quite small real-space grid),
we see the convergence of the real space formalism to the plane wave values.

This same formalism can be applied to the calculation of any other nonlocal parts of the
pseudopotential Hamiltonian. For a general nonlocal atomic potential δV l(r) we can form
the same matrix

δV̄l(k, k
′) =

∫
r2dr jl(kr)δV l(r)jl(k

′r) (2.83)

and solve again for the eigenvalues and eigenvectors {λn} and {un(k)} and define

bn(k) =
√

|λn|un(k) (2.84)

which give us that

δV̄l(k, k
′) =

∑
n

sgn(λn)bn(k)bn(k
′) (2.85)

where here we must be careful to preserve the sign of the eigenvalues λn as the nonlocal
potential may have both negative and positive eigenvalues.

We can then define the real-space projectors equivalently

φn(r) =
2

π

∫ ∞

0

k2dk jl(r
′k)bn(k) (2.86)

giving a separable form for the nonlocal operator

δV̂
sep

l =
∑
n

∑
m

∑
σ

sign(λn) |lmφnσ⟩ ⟨lmφnσ| . (2.87)

Notably this is even easier to calculate than the spin-orbit potential as there is no mixing
of spin or angular momenta components meaning all sums are only over a single set of
coordinates.

2.3.3 Evaluation of numerical accuracy

There are several mutually dependent parameters that control the convergence of equation
2.72. The first parameter to consider is kmax, the maximum value of k or k′ for which
V̄SO(k, k

′) is calculated. This is also then the highest value of k for which the eigenfunctions
un(k) are defined, and through equation 2.79 determine the maximum frequency components
in the real-space radial projectors ϕn(r).

The next important convergence parameter to consider is the number of projectors ϕn

used in the sum. As Figure 2.5 shows, using only a few projectors can approximate the
underlying matrix V̄SO(k, k

′) quite effectively, but the number of projectors needed for overall
convergence of the real-space operator can also depend on the other convegence factors.
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Figure 2.6: (left) The convergence of the spin orbit energy in a InAs unit cell as a function of
the number of projectors used, with a constant grid spacing of 0.13 Bohr. (right) The same
value as a function of the grid spacing, all using 5 projection functions. The different colored
points represent the effect of adjusting the kinetic energy cutoff of the matrix V̄ (k, k′).

The good convergence of the real space calculation to the plane wave result in the unit cell
calculation was only possible with a very fine real space grid. In order to perform calculations
on nanocrystals of reasonable sizes, the grid spacing must be on the order of 0.5 Bohr. For
the convergence between the plane wave and real space calculations, a grid spacing of ∼0.25
Bohr was required. This would obviously severely limit the potential applications of this
method. The source and solution to this issue has been explored in depth in Ref. [105] where
it is termed “wrap around error”.

In essence, if the radial part of the projectors contains Fourier components at frequencies
higher than the frequency of the real space grid, then these components will be double
counted in the discrete sum over real space grid points. Thus when generating the radial
part of the projectors, the kmax should be lower than 2π

∆x
. Thus for a ∆x ≈ 0.5 we should

have a kmax ≈ 10. Applying this solution to nanocrystal calculations shows that this can be
effective, introducing only a few meV of shift in energies and gaps while allowing for the use
of appropriate grid spacings to study larger nanocrystals. The projector method can also be
used in the plane wave bulk band structure calculations so any errors associated with a finite
cutoff and number of projectors will be resolved in the band structure fitting procedure.
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Chapter 3

Fitting Pseudopotentials for New
Materials

The pseudopotential method presented in Chapter 2 requires specific pseudopotentials for
each material to be studied. The form presented in that section is generally extremely flexible
and has been adapted to a wide range of materials, but this also requires that the parameters
be fit to describe each of these materials. Additionally, as was mentioned above, the param-
eters for a given material are often not unique, and there may be several pseudopotentials
that describe a given material with associated strengths and weakness. In this chapter we
will give an overview of the process through which pseudopotential parameters for a material
can be determined, discuss some of the practicalities of this highly non-linear fitting process,
and give a two examples of how this process has been employed to enable the study of new
material systems. The description of the InAs/InP fitting is adapted with permission from
Enright, M. J; Jasrasaria, D; Hanchard, M. M.; Needell, D. R.; Phelan, M. E.; Weinberg, D.
et al. Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emis-
sive InAs/InP/ZnSe Quantum Dots The Journal of Physical Chemistry C 2022 126 (17),
7576-7587.

3.1 Producing Pseudopotentials

The goal of the pseudopotential fitting process is to find a pseudopotential for the material
under consideration that will reproduce the bulk material band structure. This need not
be the only consideration, and early formulations of this theory took a slightly different
approach. In this early realization the pseudopotentials were first approximated by enforcing
a circularized approximation onto the Kohn-Sham potential from density functional theory
(DFT) using the local density approximation (LDA)[39, 40]. The pseudopotentials generated
this way produced strong agreement with the LDA band structures and thus inherited their
flawed description of excited state energies, leading to wildly underestimated band gaps. To
correct this, the pseudopotentials were allowed to vary somewhat in order to produce the
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experimentally determined band gaps. Care was taken in this process to ensure that this
variation was small and that the pseudopotential wave-functions still closely resembled the
LDA Kohn-Sham states, just with corrected energies.

We do not take quite such careful care to compare between our pseudopotential wave func-
tions and ab initio wavefunctions, but instead rely on the careful reproduction of high-quality
band energies that have strong agreement with experiments. For many of the standard II-
VI and II-V materials these band structures are taken from the empirical pseudopotential
method [28], which fit discrete form factors to reproduce the extensive experimental char-
acterization of these materials. For materials without such a long history of careful study,
finding high-quality band structures in the literature can present a greater problem. The
results of band structures calculated with DFT are often in poor agreement with experi-
mental results, and will vary significantly based on the specific approximations employed.
Adding many-body corrections to DFT calculations produces significantly better agreement
with experimental results, but these results still show significant variations based on spe-
cific implementations. These variations are particularly pernicious when fitting interoperable
pseudopotentials for a class of materials. As we will discuss in the examples below, it may be
necessary to fit a pseudopotential for In that works both in InAs and InP, or to understand
how the pseudopotential for I may need to change as CsPbI3 undergoes a phase transition.
In both of these cases band structures of multiple materials (or the same material in dif-
ferent configurations) are needed, and if these band structures are calculated at different
levels of approximation then it may be impossible to disentangle the intended effect from
any difference in errors between the approximations.

This makes clear an initial difficulty of this method, which is that to produce these semi-
empirical pseudopotentials we must rely on computationally expensive and complicated ab
inito methods, which still may not reach full agreement with experiment and may require
further modification. The extent to which this further modification should be undertake
introduces a degree of uncertainty into the process and potentially can only be known based
on the agreement of final results with expectations. The idea scenario would be one where
a consistent set of ab initio calculations, potentially at a quite sophisticated level to capture
experimental results, and were used and the pseudopotentials were then fit to reproduce these
results. In this way the pseudopotential method would give access to the electronic structures
of large systems with the known level of error associated with the ab initio method used to
generate those bands. Regardless of how band structures are obtained the pseudopotentials
much be fit to reproduce them, so we now turn to consider that process.

3.2 The Fitting Algorithm

As discussed in Section 2.2, bulk band structures using the pseudopotential method are cal-
culated using an independent electron Hamiltonian where potential energy operator is a sum
of atom-centered pseudopotentials. These are parameterized by a number of independent
variables to describe the local, non-local, and spin-orbit coupling parts of the potential for
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each atom, which we will here call {aαi } as the ith parameter describing the potential around
atom α. Thus the number of independent parameters to fit to may climb quite quickly.
In the case of CsPbI3 there were 7 independent parameters for each atom, although it was
quickly determined that the parameters for Cs were not impactful on the band structure.

The band structures are generated by calculating these energy levels independently at
a series of points along a given path through the first Brillouin zone of the material. This
gives a set of band energies ϵn(k) of the nth band at point k in the Brillouin zone. These
energies are then compared to those from the target band structure En(k) and the overall
quality of fit is described by a cost function C(En(k), ϵn(k)) which may chosen in various
to emphasize specific features of the bands and should equal 0 when En(k) = ϵn(k) for all
bands and k-points. The goal of fitting is to minimize this cost function against the {aαi }.

We have implemented this minimization using a stochastic descent based on a modifi-
cation of the Metropolis algorithm. After an initial calculation the all the the parameters
are modified by random step in parameter space and then the band structure is recalculated
and the cost function evaluated with these new parameters. This move is then accepted or
rejected with the Metropolis acceptance criterion. If the cost function at the new parameter
set is lower then the move is accepted, but if the cost is higher the move is accepted with a
probability

P (∆C) = exp{−β∆C} (3.1)

where ∆C is the change in the cost function and 1
β
is the fitting “temperature”. The purpose

of this temperature is to allow the fitting procedure to escape shallow local minima with a
depth on the order of a few times 1

β
. The appropriate range of this temperature will depend

on the cost function being used and the quality of any initial guess. If the initial guess could
be very far off, a low β (high “temperature”) can be used to more fully explore the potential
parameter space, while if the initial guess only needs minor refinement a high β can be used
to focus the fitting on steps that decrease the cost function.

3.2.1 Determining Parameter Step Sizes

As discussed in previously common way to parameterize the local part of the pseudopotentials
is through the reciprocal space function

ṽαloc (q) = aα0
q − aα1

aα2 exp (a
α
3 q

2)− 1
(3.2)

where q is the reciprocal coordinate. The impact of the four fitting parameters on the
band structures is non-linear and occurs over very different parameter ranges. In order to
appropriately sample the parameter space it is important to correctly scale the step size used
for each of the parameters. A overly large step size for one parameter might cause the fitting
process to be dominated by that parameter, or an overly small step size might prevent that
parameter from fully exploring the potential parameter space. Thus the relative step size
for each parameter is controlled along with a global step size that is allowed to vary with
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Figure 3.1: The percentage of accepted moves as a function of the paramter step size δPb0 for
the fitting of cubic CsPbI3

the fitting temperature. Thus at step n, each parameter will be:

aαi (n) = aαi (n− 1) + ξδαi ∆ (3.3)

where ξ is a uniformly distributed random variable on the range [−1, 1], δαi is the parameter
specific scaling and ∆ is the global step scaling.

To determine the optimal relative parameter step size for each parameter, a fixed value
of β is chosen and all of the other the parameters are fixed by setting their step sizes to zero.
The sampling is then run with different step sizes for the parameter of interest, and the
appropriate step size is the one that gives an acceptance of around one half. By repeating
this process for all of the parameters, the relative step sizes for each can be determined.

3.2.2 Avoiding Local Minima

As alluded to earlier, the “temperature” has a significant impact on the fitting algorithm. At
high temperatures the algorithm will explore the parameter space more freely, but may not
fully optimize around a given local minimum, while at low temperatures the algorithm may
become stuck in a local minimum. This is exemplified by the behavior in Figure 3.2, where
the trajectories at different temperatures are compared to the behavior of a pure random
walk where the overall displacement would grow as the square root of the distance traveled.
As we see, at low temperature the fit is unable to exit an initial local minimum, while at high
temperature the fit freely explores a wide parameter space without extensively optimizing.
To combine these two regimes a tempering algorithm can be implemented. In this algorithm,
the fitting process will switch between the high temperature and the low temperature regimes
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Figure 3.2: Analytics of the fitting of cubic CsPbI3. On the top row, the square root of
the total distance traveled, D =

∑n−1
i=0 |x(i) − x(i + 1)|, and the distance from the starting

parameters sets for three different fitting attempts. On the bottom row, the corresponding
values of the cost function. On the left low temperature and small steps size (β = 100 and
∆ = 0.01) gets stuck in a local minimum. In the middle high temperature and large step
size (β = 1 and ∆ = 0.5) explores the parameter space. On the right a tempering run that
switches between the two regimes and hops to many local minima.

to allow for minimization within a local minimum, and exploration to other local minima.
The decision to switch to a higher temperature should be made when a long series of moves
at the lower temperature have failed to further decrease the cost function.

This tempering algorithm also reveals something about the nature of the cost function
landscape. As we can see in the right hand column of Figure 3.2, after each period at
higher temperature the fitting then relaxes quickly before plateauing, presumably near the
bottom of some local minima. We can see that these are in fact all distinct local minima
(even when the plateau value is very similar) as their distances from the starting point are
distinct. Allows us to intuit that the fitting landscape is quite rough, and presents many local
minima with a wide range of optimal costs. This type of optimization problem is extremely
challenging and does not have easy solutions. It suggests that potentially greater care should
be taken in picking the cost function as there may be a choice that would produce a smoother
landscape with fewer local minima.
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3.3 Fitting InAs/InP Band Offsets

To perform atomistic calculations on InAs/InP core/shell quantum dots (QDs) we developed
a model within the semi-empirical pseudopotential method that involves fitting a single
pseudopotential each for In, As, and P that reproduces accurate band structures for both
bulk InAs and bulk InP [40, 106]. We used only a local potential for this work.

The bulk band structure is calculated from the reciprocal-space pseudopotentials by the
direct diagonalization of the Hamiltonian within a plane wave basis over a single primitive
unit cell. For both InAs and InP, the unit cells used for calculation were the standard
zincblende primitive cell with axes (0, 1

2
, 1
2
), (1

2
, 0, 1

2
), (1

2
, 1
2
, 0) in units of the lattice spacing,

which was taken as 6.057 Å and 5.826 Å for InAs and InP, respectively.
The band structures depend on the 4 pseudopotential parameters for each atom via the

potential energy term of the Hamiltonian. Thus, these parameters were fit simultaneously
to reproduce reference InAs and InP bulk band structures, which were calculated using the
discrete symmetric and anti-symmetric form factor method [28]. These band structures
match well to experimental results, but they only give band energies up to an additive
constant. Thus, the band offsets between the constituent materials, which are of critical
importance for studying core-shell systems, must be corrected manually. We take the valence
band maximum of InP to lie 0.42 eV below that of InAs [107, 108]. The sensitivity of the
core-shell nanoparticle calculations to this parameter was also examined. The band offset
value has an impact on the extent to which the valence band-edge hole localizes to the core
InAs, with a larger band offset increasing localization, but with no significant qualitative
differences.

The initial pseudopotential parameters for both InAs and InP were taken as the param-
eters for In and As that have been used previously [37]. From these initial parameters, band
structures were calculated and compared to reference band structures using a band-weighted
cost function. To optimize the fit near the band gap, the cost function was chosen to em-
phasize the difference between the calculated energy ϵn(k) of band n at point k in the first
Brillouin zone and the reference energy En(k) for the bands near the band gap. The cost
function to do this is given by:

C =
1

NkNi

∑
k

∑
n∈0..7

n(7− n)(ϵn(k)− En(k))
2 (3.4)

where Ni is the number of bands considered (8 in this case) and Nk is the number of k-points
sampled. In our calculations the band gap lay between bands 3 and 4, so the cost function
emphasized the contribution of those bands to the fit. Bands higher than band 7 were not
included.

In this case tempering was implemented differently than discussed above. The fitting
started with a short (∼100 step) random walk through the 3-species parameter space. The
16 parameter sets with the lowest values of the cost function were then further refined using
the Metropolis algorithm procedure described above to produce band structures that closely
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Figure 3.3: Comparison of the literature and best-fit band structures for InAs (left) and InP
(right) shows strong agreement, especially near the band gap. Small deviations from the
expected band structure away from the gamma point should have minimal impact on QD
electronic properties, which are dominated by the behavior near the band gap.

agree with the reference. The final best-fit parameters for the pseudopotentials are collected
in Table 2.1. The fit band structures match very closely to the expected band structure as
seen in Figure 3.3.

3.4 Fitting Cubic and Orthorhombic CsPbI3 Phases

For the CsPbI3 perovskites we faced the opposite problem from the InAs/InP QDs. Here
we had a material with single chemical composition, but multiple crystalline phases with
distinct band structures. Not only that but the purpose of the project was to understand
any impacts a change in crystal structure might have on the electronic states of perovskite
nanomaterials (for more on this see Chapter 4). While for InAs/InP the goal was to find a
single pseudopotential for In that would describe both band structures, it was quickly deter-
mined that separate parameters would have to be fit for both the cubic and the orthorhombic
phases of CsPbI3. Not only that, but the fitting in these systems required the description of
spin-orbit coupling.

The introduction of spin-orbit coupling along with the larger unit cell of the orthorhombic
phase of CsPbI3 significantly slowed the evaluation of the band structure calculations. For
the InAs/InP calculations a kinetic energy cutoff of 10 Hartree was sufficient to converge
the band structure. This translated to a basis set of 900 plane wave. For the orthorhombic
CsPbI3, due to a significantly larger unit cell and the distinction of spin up and down
compenents, a kinetic energy cutoff of only 7 Hartree translated to more than 11000 spinor
plane wave basis states. This 12-fold increase in the basis set size means that determining
the band energies for the perovskite systems at a given set of pseudopotential parameters
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was more that 1000 times slower than for the InAs/InP. To overcome this obstacle, much of
the initial fitting was carried out using a much smaller basis set and then the final refinement
was taken in the converged basis set.

Additionally, this slower evaluation of band energies forced judicious choices of which
k-points to evaluate the band energies at. In Figure 3.4 the 16 k-points where the fitting for
the orthorhombic CsPbI3 band structure was are shown. They are intentionally clustered
around the high symmetry points with the hope that aligning the positions and slopes of the
band crossings at these points would lead to agreement across the rest of the band structure.
Special attention was taken to fit the bands at the Γ point where the band gap of the material
is located. Along with placing extra fitting points in that region, each k-point was given a
weight and the fit at that k-point was magnified by that weight. Furthermore, one of the
stubborn issues that arose from using fewer points in the fitting was a difficulty capturing
the proper effective masses of the valence and conduction bands. Thus a point near the band
gap was introduced into the fitting for the sole purpose of calculating the effective massed
by finite difference. The effective mass around the Γ point was calculated as:

m∗
e/h = ±1

2

(∆k)2

ϵ(Γ)− ϵ(Γ + ∆k)
, (3.5)

with the ± referring to the electron and hole effective masses. To take all of that into
account, a different cost function from the InAs was used:

C =
1

NkNi

∑
k

∑
n

w(k)(ϵn(k)− En(k))
2 + wm[(m

∗
e −M∗

e )
2 + (m∗

h −M∗
h)

2] , (3.6)

where w(k) refers to the weight of that k-point, wm is the weighting of the effective mass, and
M∗

e/h refers to the expected electron and hole effective masses. These Weights are collected
in table 3.1. This use of the effective masses and the weighting of the most important k-
points allowed for many of the difficulties associated with the large unit cells of CSPbI3
to be circumvented and produce pseudopotentials that effectively fit both the cubic and
orthorhombic phases of the material.
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Figure 3.4: The points where the orthorhombic CsPbI3 band structure was fit against.

Table 3.1: k-points and weights for fitting orthorhombic CsPbI3.

k-point kx (2π
a0
) ky (2π

a0
) kz (2π

a0
) weight

0.00 0.40 0.00 5
0.00 0.45 0.00 5

Y 0.00 0.50 0.00 10
0.00 0.50 0.45 5

T 0.00 0.50 0.50 10
0.00 0.45 0.50 5
0.00 0.05 0.50 5

Z 0.00 0.00 0.50 10
0.00 0.00 0.45 5
0.00 0.00 0.10 5
0.00 0.00 0.05 5

Γ 0.00 0.00 0.00 100
0.01 0.00 0.00 0
0.10 0.00 0.00 5
0.45 0.00 0.00 5

X 0.50 0.00 0.00 10
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Chapter 4

Exciton Fine Structure in Perovskite
Nanocrystals

Calculating the optical properties of perovskite nanocrystals (NCs) required the realization
of the advancements to the pseudopotential method discussed in Chapter 2 to account for
the highly important effects of spin-orbit coupling in these systems and the completion of
the fitting process described in Chapter 3. In this chapter we develop a model that combines
the atomistic determination of the structure of perovskite NCs via a force field with the
pseudopotential method for electronic states. This method allows us to examine the exciton
fine structure in these systems which has been a matter of debate in the field. The content of
this chapter is adapted with permission fromWeinberg, D.; Park, Y.; Limmer, D. T.; Rababi,
E. Size-Dependent Lattice Symmetry Breaking Determines the Exciton Fine Structure of
Perovskite Nanocrystals. Nano Lett. 2023, 23 (11), 4997-5003.

4.1 The Impact of the Rashba Effect on Exciton Fine

Structure

Lead-halide perovskite nanocrystals (NCs) have attracted significant attention due to their
remarkable optical and electronic properties that could lend themselves to diverse applica-
tions [109–111]. Perhaps most interestingly, these materials show remarkably fast radiative
lifetimes, which shorten at low temperatures in contrast to other nanomaterials [65, 112–
117]. This anomalous temperature dependence of the radiative lifetimes has led to specula-
tion that these materials could exhibit a reversal of the typical exciton fine structure (FS)
measured in all other nanomaterials to date [21, 65, 66]. Specifically, Becker et al. [65] pro-
posed that the lowest excitonic state is a bright state, i.e that it has an optically allowed
transition to the material ground state. If that is the case, at low temperatures the carriers
will preferentially be in the bright, rapidly emissive state rather than depending on thermal
fluctuations to reach an emissive state. Understanding the excitonic fine structure in these
materials is important to assess their suitability as quantum light sources, which depends
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in part on the uniquely fast radiative lifetimes [48–51]. The argument for a bright excitonic
ground state was supported by a detailed analysis of the physics of excitons in perovskite
NCs from an effective mass model. We will briefly revisit this before describing our atomistic
approach to this problem, which can provide a definitive ordering of bright and dark states
in lead-halide perovskite NCs.

In the typical picture, electrons and holes are bound into excitons by their strong Coloumbic
attraction forming a hydrogenic series of states that may be modified by confinement effects
of the NC [118]. For systems with negligible spin-orbit coupling, the electron and hole spins
are decoupled from the spatial degrees of freedom and simple addition of angular momentum
describes the resulting triplet and singlet spin functions. The electron-hole exchange interac-
tion slightly reduces the strength of exciton binding for excitons with spin-singlet character,
introducing a spin dependence into the exciton FS. Notably, for materials like perovskites
with significant spin-orbit coupling, the spatial and spin degrees of freedom are not separa-
ble. Further, it is known that the excited state properties of the perovskites are sensitive to
the lattice structure, as the charge-lattice coupling in these materials is significant [119–122].

In the specific case of the perovskite NCs studied here, the conduction band is composed
mainly of of Pb-6p orbitals which are strongly split by spin-orbit coupling. The conduction
band edge is composed of the the J = 1/2 total angular momentum subspace formed from
the addition of the spin and the orbital angular momentum. The valence band has s-type
symmetry and thus is not split by spin-orbit coupling [123]. In the exciton, this causes
the exchange interaction to split three bright states with mixed spin-triplet and spin-singlet
character above a dark ground state with pure spin-triplet character. These bright states
each have dipoles polarized normal to one of the nanocrystal facets, corresponding to the
⟨100⟩ family of directions in the cubic lattice and which we take as the Cartesian principle
axes. For such a cubic crystalline structure these three bright states are perfectly degenerate
and are often referred to as “bright triplets” due to their total angular momentum triplet
character, however this should not be confused with their spin character.

Any deviation from this cubic structure will result in splitting among these bright states.
Perovskite materials are known to progress through a series of symmetry lowering phase
transitions as temperature is reduced [52, 53], and Figure 4.1(b) illustrates the effect of these
distortions on the exciton FS. A tetragonal distortion caused by rotation of the lead-halide
octahedra around the z-axis splits the z-oriented state higher in energy, but the symmetry in
the x-y plane maintains the degeneracy of those two states. At lower temperatures, tilting
of the octahedra breaks that symmetry and further splits the bright states in the x-y plane
into two states polarized at 45◦ angle to the principle axes [124]. These symmetry lowering
splittings are observed experimentally as a splitting of the excitonic emission into two or
three distinct lines [65, 114, 125], but on their own they do not lead to a reversal of the
bright-dark level ordering.

The theorized bright ground state may be arrived at through the influence of the Rashba
effect [126]. This additional term in the k · p Hamiltonian comes from the co-existence
of strong spin-orbit coupling and inversion symmetry breaking. The additional “effective
exchange” [65] term only enters the Hamiltonian through two parameters– a magnitude and
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Figure 4.1: (a) The effects of electron-hole interaction, (b) lattice distortion, and (c) the
previously proposed [65] role of the Rashba effect on the exciton FS.

direction along which inversion symmetry is broken. This, by nature, is blind to the atomistic
detail of the symmetry breaking at the nanoscale, and leaves unknown the exact nature of a
NC structure that would give rise to such a level ordering.

In fact, several recent measurements [114, 125, 127] have detected a signature of a dark
ground state several meVs below the bright states. Under the influence of a external magnetic
field, the Zeeman effect couples dark states to energetically close bright states, resulting in
an emergent emission line. Under these conditions the dark ground state can be directly
observed. The fine structure splittings are instead explained in terms of the interplay of
crystal structure and NC shape anisotropy [125].

Various theoretical attempts have been made to provide additional understanding of
atomistic detail of this effect, as well as provide tools to understand how to disentangle the
Rashba effect, the crystal field splitting, and NC shape anisotropy to determine the level
ordering and splitting in these NCs. Within an effective mass model, the Rashba splitting
as indicated by the energy difference between Z and X/Y excitons is predicted to increase to
the bulk limit with increasing NC size [66]. On the other hand, the effect of shape anisotropy
should be lesser for larger NCs [128]. This does, however, lead to a troubling question: If
the Rashba effect is more pronounced for larger NCs, but absent in the bulk, where would
the transition to more bulk-like behavior occur? The resolution of this must come from an
atomistic theory that can also describe how the structure of small NCs may be distorted and
how that of large NCs converges to the bulk limit. These questions involving the Rashba
effect have also been considered in the context of 2D layered perovskites, where theoretical
studies using both phenomenological [129] and BSE-based [130] models of the electron-hole
exchange interaction show that specific polar lattice distortions may be sufficient to cause a
bright excitonic ground state. On the other hand, a recent theoretical investigation focusing
on methylammonium lead iodide considered the effect of methylammonium relaxation within
a fixed tetragonal lead iodide framework and found only weak a Rashba effect insufficient to
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Figure 4.2: (a) Renderings of 1.9nm, 3.1nm, 4.4nm, and 5.7nm CsPbI3 NC cubes after
structural relaxation. Cs atoms are shown in teal, I atoms in purple and Pb are shown as
grey coordination octahedra. (b) The average Pb-I-Pb bond angle and (c) the extent of
lattice anisotropy induced by the relaxation for cubic (blue squares), orthorhombic (green
diamonds) and relaxed (black circles) structures. Red and black x symbols represent the
results from DFT calculation and bulk simulation, respectively.

cause level inversion [67].

4.2 Atomistic Structure of Perovskite NCs

To fully understand the intertwined roles of the Rashba effect and lattice symmetry we must
consider the full structure of perovskite NCs in atomistic detail, especially including the lead
halide framework that contributes most strongly to the valence and conduction band states.
To do this, we use a previously developed atomistic force field [131] to find the lowest energy
configuration for a series of CsPbI3 perovskite NCs shown in Figure 4.2(a). The bulk prop-
erties of this model have been extensively validated [132, 133] and the parameters used are
reproduced in Table 4.1. For each size of NC, we take the unrelaxed orthorhombic structure
as an initial configuration for relaxation. However, since the corresponding structure doesn’t
satisfy the condition of charge neutrality, to reduce the effect from surface boundaries of
NC and to stabilize the NC structure instead of having organic ligands on the surface in
the experiments, relying on the fact that the electronic structure of CsPbI3 perovskite is
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Table 4.1: Force field parameters from Ref. [131]

Pb I Cs Cs (Surface)

q (e) 0.85 -0.57 0.86 qsurf
σ (Angstrom) 3.210 4.014 3.584 3.584

ε (eV) 0.001086 0.06389 0.07728 0.07728

largely determined by the lead halide octahedra. Using the force field parameters adopted
from Ref. [131] which are parameterized to reproduce the energy difference between different
crystal structures, the partial charge of surface Cs atoms, qsurf, is defined as

qsurf = −NPb qPb + NI qI + NCs qCs

Nsurf

(4.1)

where qα is a partial charge of atom α listed in Table 4.1 and Nα is the number of α atoms
in each NC with α ∈ {Pb, I, Cs}. The subscript surf is used to refer to surface Cs atoms
whereas the subscript Cs indicates the core Cs atoms. With the modified initial configuration,
the structure of each NC size is minimized using conjugate gradient algorithm based on the
pairwise interaction uij between atom i and j described by Lennard-Jones potential with
Coulombic interaction

uij(r) =
qiqj
4πε0r

+ 4εij

[(σij
r

)12
−
(σij
r

)6]
, r < rc (4.2)

where i, j ∈ {Pb, I, Cs, surf}, ε0 is the vacuum electric permittivity, and the cutoff distance
rc is set to be the maximum length of each NC among three different axis times

√
3 to take

care of the fact that periodic boundary condition cannot be applied for NC. Lennard-Jones
parameters ε and σ of each atom are listed in Table 4.1. Where parameters not listed can
be derived using following combining rules εij =

√
εiεj and σij = (σi+σj)/2. Minimizations

were performed using the LAMMPS package [134].
A DFT structural minimization was also performed on a 1.26 nm NC using the PBE

exchange correlation functional. The electronic calculation used a kinetic energy cutoff of
65 Rydbergs and a charge density cutoff of 530 Rydbergs. The structure was optimized to
a force threshold of less than 10−4 atomic units using Quantum Espresso [135–137]. The
results of this calculation show strong agreement with the structure calculated by the force
field.

As the measurements of the exctionic FS occur at cryogenic temperatures, these single
minimized structures accurately represent the atomic configuration of the NCs in these ex-
periments, and the effects of lattice dynamics may be ignored. The relaxed structures can be
compared to the bulk cubic and orthorhombic structures on the basis of the average Pb-I-Pb
bond angles. These are shown in Figure 4.2 (b) and reveal that these relaxed structures
lie somewhere between the cubic and orthorhombic structures. The cubic structures have
no octahedral rotation and therefore all bond angles are 180 degrees. For the orthorhombic



CHAPTER 4. EXCITON FINE STRUCTURE IN PEROVSKITE NANOCRYSTALS 42

structures the significant octahedral rotation leads to an average bond angle of 154 degrees.
The smallest relaxed structures take more cubic forms, but the larger ones approach the
orthorhombic configuration which is the stable bulk structure.

To quantify the extent to which the NC relaxation breaks crystal symmetries we define a
lattice anisotropy parameter. It is defined by taking the average of the Pb-Pb distances along
each of the principal axes, and then finding the difference between the direction with the low-
est average and the direction with the highest average. We plot this parameter against NC
size in Figure 4.2 (c). For the cubic structures this is always zero, and for the orthorhombic
structures the elongated z-axis gives a small constant anisotropy. The small relaxed struc-
tures are highly symmetric so this anisotropy is near zero, but as the size increases beyond
2 nm in size, octahedral rotations begin to emerge. These are not uniform throughout the
NC, however, and remain suppressed at the surface leading to significant lattice anisotropy.
Significant deviation from the cubic crystal structure is not unexpected, as although cubic
phase QDs have been stabilized at room temperature and somewhat below [47], the cryo-
genic temperatures at which the FS measurements take place should favor the orthorhombic
structure. The size-dependent effect has been observed experimentally [138], and is driven
by a competition between surface energy and bulk phase stability which had been previously
explored using a continuum model [139]. The predicted phase crossover around 2.7 nm aligns
well with the region of highest lattice anisotropy. Additionally, for both average bond angle
and lattice anisotropy parameter, the results from the smallest and largest nanocrystals agree
well with the results from DFT calculation and bulk CsPbI3 simulation, respectively, which
lends confidence to our ability to produce an atomistic description of complex structural be-
havior at the nanoscale. This size dependent effect has not previously been considered in the
context of the exciton FS, and will play a crucial role in understanding the size dependence
of the FS splittings.

4.3 Electronic States in Relaxed NCs

Obtaining the exciton FS from these relaxed NC configurations requires an electronic struc-
ture method that is responsive to the atomistic detail of the material. While these materials
are too large for ab-initio theories such as DFT combined with many-body perturbation
techniques, semi-empirical methods are able to access the size ranges necessary. We em-
ploy the semi-empirical pseudopotential method [10, 30, 31, 42], which assigns each atom
in the NC an effective potential derived from bulk band structures. These pseudopotentials
include both local and non-local components that capture the effect of spin-orbit coupling.
As our relaxed NCs lie somewhere in between the cubic and orthorhombic crystal phases,
pseudopotentials have been fit to describe the band structures of both phases individually.
The pseudopotentials used in the NC calculations are linearly interpolated between these,
based on the local NC structure. This way, the electronic structure is sensitive to local defor-
mations or distortions in the lattice. The optical absorption spectrum is computed using the
Bethe-Salpeter equation (BSE) within the static screening approximation, which describes
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the bound excitonic states in the basis of free electron-hole pairs [63, 94]. This approach
allows for equal treatment of the direct and exchange terms in a non-perturbative manner,
and fully takes into account the effects of spin-orbit coupling. This treatment is essential to
determining the full excitonic spectrum of these NCs and the FS splitting.

As discussed in Chapter 2, the electronic Hamiltonian is a single electron operator

Ĥ = T̂ +
atoms∑

α

[
V̂ α
loc + V̂ α

nonloc + V̂ α
SO

]
(4.3)

where T̂ is the kinetic energy operator, V̂ α
loc is the local part of the pseudopotential around

atom α, V̂ α
nonloc describes angular momentum-dependent corrections to the local pseudopo-

tential around atom α, and V̂ α
SO describes the spin orbit coupling around atom α. The local

part of the potential is defined in by a reciprocal space function

ṽαloc (q) = aα0
q − aα1

aα2 exp (a
α
3 q

2)− 1
(4.4)

where q is the reciprocal coordinate, and the parameters aα0 . . . a
α
3 are fit based on the atom α

and are listed in Table 4.2. The potential is defined in terms of the position-space counterpart
of ṽαloc (q), which we call vαloc (r). The local part of the potential is given by

V̂ α
loc = vαloc (|r̂ −Rα|) (4.5)

where r̂ is the position operator, Rα is the position of atom α. The angular momentum-
dependent part of the pseudopotential gives a correction to the local part of the pseudopo-
tential for the electrons in p-type orbitals.

V̂ α
nonloc = δvαl=1 (|r̂ −Rα|) P̂α

l=1 =
[
aα4 exp

(
− |r̂ −Rα|2

)
+ aα5 exp

(
− (|r̂ −Rα| − ρ)2

)]
P̂α
l=1

(4.6)
where P̂α

l=1 is the projector onto the l = 1 angular momentum subspace around atom α, ρ is
a shift of 1.5 Bohr, and the aα4 and aα5 parameters are fit based on atom α. The spin-orbit
coupling acts only on the p-type orbitals as well and has the form

V̂ α
SO = vαSO (|r̂ −Rα|) L̂α · ŜP̂α

l=1 = aα6 exp

(
− |r̂ −Rα|2

w2

)
L̂α · ŜP̂α

l=1 (4.7)

where L̂α is the vector of electron orbital angular momentum operators around atom α, Ŝ
is the vector of electron spin operators, w is a width of 0.7 Bohr and aα6 is fit based on atom
α. The total potential can be rewritten as three separate, spherically symmetric potentials
felt by s-type (along with d-type and higher angular momentum) orbitals, p 1

2
-type orbitals

and p 3
2
-type orbitals. The s-type orbitals feel the local potential only:

vs (r) = vαloc (r) (4.8)
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The p 1
2
-type orbitals feel a combination of the angular momentum dependent potential and

the spin-orbit potential

vp 1
2

(r) = vαloc (r) + δvαl=1 (r)− vαSO (r) (4.9)

while the p 3
2
-type orbitals feel a different combination

vp 3
2

(r) = vαloc (r) + δvαl=1 (r) +
1

2
vαSO (r) (4.10)

The single particle Hamiltonian was solved via the filter diagonalization method [61, 62]
on a real-space grid with a grid spacing of 0.5 Bohr. This finer grid spacing was used to ensure
sufficient convergence of the non-local parts of the Hamiltonian. The non-local operators
were implemented via a modified Kleinman-Bylander representation [104, 105, 140]. On the
order of a few hundred states in the energy range near the band gap were converged.

The pseudopotential parameters were fit for each atom in a particular crystal structure
in order to reproduce bulk band structures. For the perovskite system we are investigating
here, we generated best fit parameter sets for both the cubic and the orthorhombic crystal
structures. The best fit was determined by using the pseudopotential Hamiltonian within
a converged plane-wave basis to generate the bulk band structures of the respective phases,
with care taken to properly describe the non-local and spin-orbit interactions [30, 35, 69,
70]. These pseudopotential band structures were then compared to literature GW band
structures [141]. In order to better compare with experimental results, the band gap of the
GW calculations for the cubic structure, which differed significantly from measurements of
the bulk band gap, was corrected by a static shift of the valence band. The GW calculations
of the orthorhombic band structure agreed with experiment and were used without modifi-
cation. The valence band offsets between the cubic and orthorhombic phase were calculated
from DFT using Quantum Espresso [135, 136].

The seven pseudopotential parameters per atom were fit for each phase using a Monte-
Carlo fitting procedure where the objective function emphasized the closeness of fit around
the band gap as well as the effective mass of the bands at the gaps. The parameter space was
extensively searched to find the best parameters. Initial fitting showed that contribution from
the Cs ion was nearly zero, consistent with the understanding across lead halide perovskite
materials that the valence and conduction bands are composed mainly of lead and halide
orbitals [123]. Thus the potential around the Cs atoms was set to zero and the fits were
further refined considering only the lead and iodine parameters.

The results of the fitting are shown in Figure 4.3. The orthorhombic band structure
generated from our pseudopotentials has a hole effective mass of 0.320 me and an electron
effective mass of 0.386 me. The cubic band structure generated from our pseudopotentials
has a hole effective mass of 0.289 me and an electron effective mass of 0.309 me. These
slightly overestimate the masses of the literature structures, leading to some small additional
confinement effects in the NCs.
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Figure 4.3: The band structures generated by the pseudopotential method (black lines) and
the literature band structures (red points).

For relaxed nanocrystal structures, there is no bulk phase that perfectly matches the
nanocrystal structure. This requires that the pseudopotential around each atom adapt to
the local structure. We do this by linearly interpolating between the pseudopotentials for
the cubic and orthorhombic structures. The relaxed nanocrystal Hamiltonian is then

Ĥ = T̂ +
atoms∑

α

(xα)
[
V̂ α,ortho
loc + V̂ α,ortho

nonloc + V̂ α,ortho
SO

]
+ (1− xα)

[
V̂ α,cubic
loc + V̂ α,cubic

nonloc + V̂ α,cubic
SO

]
(4.11)

where xα ∈ [0, 1] denotes the extent of orthorhombic distortion. For iodine atoms bonded
to two lead atoms this was determined by the Pb-I-Pb bond angle, θα. Lead atoms were
assigned the average of the distortion parameters of the six bonded iodine atoms. For the
cubic phase the Pb-I-Pb bond is straight, θ = 180◦ while for the orthorhombic phase there
are two bond angles of θα = 150.8◦ and θα = 160.6◦. Thus the orthorhombic distortion was
calculated as

xα =
180− θα

180− 160.6
(4.12)

where if the angle was less than 160.6 degrees the atom was assigned a fully orthorhombic
pseudopotential. Iodine atoms not bonded to two lead atoms (dangling iodine at the surface)
were assigned the cubic pseudopotential. It is important to note that for the local part of the
pseudopotential, V̂loc, a linear interpolation between the orthorhombic and cubic operators
does not mean a linear interpolation of the parameters listed in Table 4.2.

The linear interpolation was deemed reasonable based on the closeness of the pseudopo-
tentials for the cubic and orthorhombic phases, as shown in Figure 4.5.The choice of the Pb-
I-Pb bond angle as the key parameter for interpolation was motivated by the observed relax-
ation effects consisting mainly of octahedral rotations and tilts, which are well-parameterized
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Table 4.2: Best pseudopotential parameters, in Hartree atomic units.

Iodine Orthorhombic Cubic

a0 117.89162750 113.75644925
a1 2.12591587 2.14135468
a2 2.91148249 2.84227140
a3 0.58243028 0.56706414
a4 0.16631532 0.04515637
a5 -0.02486412 0.00220169
a6 2.23037552 3.03441874

Lead Orthorhombic Cubic

a0 97.86083166 88.83030750
a1 2.25710305 2.60529157
a2 3.71951773 4.28692327
a3 0.55872538 0.51950186
a4 1.40412238 1.06405744
a5 -0.01566674 -0.00808029
a6 7.94721141 7.78990812

by these bond angles. This simple parameterization is not sensitive to all possible lattice
distortions, such as changes to Pb-I bond length without bond angle changes, but such
distortions are not significant in the relaxed structures we consider. To ensure that this
interpolation did not cause significant issues with with electronic structure, band structures
were calculated using unit cells with distortions between those of the cubic and orthorhombic
structures. The energies of the valence and conduction band edges from these calculations
are shown in Figure 4.4 as the structure is distorted from the cubic to the orthorhombic form.
Because the orthorhombic structure differs from the cubic structure only by slight rotations
of the lead-iodide octahedra it was simple to construct such structures and calculate their
band structures both using the interpolated pseudopotentials and DFT, again within the
Quantum Espresso [135, 136] package. The DFT results are known to significantly underes-
timate the band gap of the cubic structure, but our pseudopotential method, being trained
on the corrected band structures, is able to match much better to experimental results at the
end-points. The interpolated pseudopotentials generate non-monotonic trend in the band
gap with overall a slight decrease in the band gap over the sequence of structures from cubic
to orthorhombic, while the DFT shows a monotonic increase. However, the DFT increase
seems to stem only from the previously mentioned underestimation of the band gap in the
cubic phase. Without resorting to extremely computationally costly techniques like GW, we
are satisfied that the pseudopotentials are able to smoothly interpolate between the cubic
and orthorhombic phases without issue.

The impact of the choice of interpolation scheme was further assessed by considering the
extreme case of no interpolation at all. The optical properties NCs with relaxed crystals
structures were calculated using either exclusively the cubic or orthorhombic pseudopoten-
tials. In Figure 4.6 we show the that the impact of the interpolation on the optical gap serves
to simply bring the gaps of relaxed NCs in line with experiments with no impact on the split-
ting of dark and bright excitons and only a minor impact on the splitting between bright
excitons. This strongly suggests that even a more detailed treatment of the interpolation
would not have an impact on our results.
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Figure 4.4: Comparison of DFT (blue) and pseudopotential (red) band edges in bulk struc-
tures interpolated between the cubic and orthorhombic phases.

4.4 Optical Properties of Perovskite NCs

The excitonic states were calculated using the Bethe-Salpeter equation (BSE) within the
Tamm-Dancoff approximation, which writes the excitonic states as linear combinations of
non-interacting electron-hole pair states [63]. The nth excitonic state, |ψn⟩, is written as

|ψn⟩ =
∑
ai

cna,i |a, i⟩ (4.13)

where the indices a, b, c, . . . refer to electron (unoccupied) states, and the indices i, j, k, . . .
refer to hole (occupied) states, |a, i⟩ refers to the non-interacting pair state, and the expansion
coefficients, cna,i, are determined by the eigenvalue equation

(En −∆εa,i) c
n
a,i =

∑
bj

(
Kd

ai;bj +Kx
ai;bj

)
cnb,j (4.14)
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Figure 4.5: Pseudopotentials for iodine and lead atoms in the cubic (dotted lines) and
orthorhombic (dashed lines).

Figure 4.6: (top) The lowest optical excitations for NCs with a relaxed crystal structure,
but either using the interpolated pseudopotentials (black) or only the orthorhombic or cubic
pseudopotentials (red and green respectively). (middle) The splitting between the lowest
dark and bright excitonic states for the same calculations. (bottom) The splitting among
the three lowest bright excitonic states for the same calulations.
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which also determines the energy of the nth excitonic state En. The electron hole interaction
kernel, which describes the binding of the independent electron-hole states into correlated
excitonic states, has two parts: the direct interaction Kd describes the coulomb attraction
between the electron-hole pair, while the exchange interaction Kx controls the details of the
excitonic spectrum, crucially including the singlet triplet splitting under consideration here.
The direct interaction is calculated using a screened coulomb interaction W (|r − r′|) within
a static screening approximation as:

Kd
ai;bj = −

∫
dxdx′ϕ∗

a (x)ϕ
∗
j (x

′)W (|r − r′|)ϕi (x
′)ϕb (x) , (4.15)

where the integrals over x = (r, σ) index over both the position and spin degrees of free-
dom. The static dielectric constant used in the calculation is ϵ = 6.1 [142]. The exchange
interaction is calculated with the bare coulomb interaction v (|r − r′|) to be

Kx
ai;bj =

∫
dxdx′ϕ∗

a (x)ϕ
∗
j (x

′) v (|r − r′|)ϕb (x
′)ϕi (x) (4.16)

This form of the exchange interaction does not distinguish between the so-called short-range
and long-range exchange terms, but includes both on equal footing [143]. Note that due
to the integrals over spin, the exchange interaction only couples excitons with spin-allowed
electron-hole overlap. The interaction kernel matrices are solved in the basis of band-edge
states. The binding energy of the nth excitonic state, En

B, is calculated as

En
B =

〈
K̂d + K̂x

〉
n
=
∑
abij

(
cna,i
)∗ (

Kd
ai;bj +Kx

ai;bj

)
cnb,j. (4.17)

Generally 60-80 electron states and a similar number of hole states were selected to form the
basis for solving the BSE, which were sufficient to converge the excitonic fine structure for
the low energy states under consideration here.

We can evaluate the success of this method by comparing the computed optical gaps
to a wide range of experimental results. In Fig. 4.7(a) we show the lowest excitonic states
(dark and bright) of the relaxed NCs across a range of sizes. The excitation energies for
the cubic and orthorhombic structures are plotted in Fig. 4.8, and show a strong agreement
with experimental PL measurements [47, 144, 145, 147, 148]. The relaxed structures show a
stronger confinement effect, with the smallest NCs having higher excitation energies than the
other structures due to the effects of relaxation on the angles between lead halide octahedra.
The smallest relaxed structures differ significantly from either the cubic or orthorhombic
geometries, and this forces the electron and hole quasiparticle states further apart in energy,
opening the optical gap. For the larger NCs, the effect is the opposite as the optical gaps
fall somewhat below that of the other structures and experiments. This can be understood
through the simple bonding and anti-bonding picture of the bulk lead halide perovskites band
structure. In the bulk, the upper valence band consists of antibonding states between Pb-6s
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Figure 4.7: (a) The lowest bright (red) and dark (black) excitonic states for relaxed NCs
as a function of size along with experimental data [47, 144–148]. (b) Exciton binding ener-
gies ignoring dielectric confinement effects [149, 150] for relaxed NCs as a function of size.
(c) A level diagram describing the splittings calculated. (d) Calculated splitting between
the bright and dark excitonic states. (e) Splitting among the bright excitonic states for
orthorhombic (top, green diamonds) and relaxed (bottom, black circles) NCs with experi-
mental splittings [117, 124, 151, 152]. (f) Electron density plots for the HOMO (bottom)
and LUMO (top) states.

and I-5p orbitals, and the lower conduction band consists of antibonding states between
Pb-6p and I-5p orbitals, dominated by the Pb-6p orbitals [123, 153, 154].

In the NCs the hole and electron quasi-orbitals (shown in Figure 4.7(f)) maintain much
of their bulk character. For the smallest relaxed NCs, the Pb-I bond lengths are at a
maximum, decreasing their antibonding interaction and lowering the valence band energy.
The Pb-Pb distance is also exceptionally long lessening their interaction and pushing the
conduction band higher in energy. This distortion changes character once the NCs pass
the critical threshold of 3-4 nm in length where octahedral tilting brings the Pb atoms
closer together, and the decreased Pb-I-Pb bond angle somewhat lessens the antibonding
interaction. This brings the valence band quasiparticle energies into line with those of the
orthorhombic structures, but the decreased Pb-Pb distances still drive the conduction band
to fall below that of the fully orthorhombic structures.
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Figure 4.8: The lowest bright (red) and dark (black) excitonic states for NCs with orthorhom-
bic and cubic structures as a function of size along with experimental data [47, 144–146, 148].

While the relaxation has some impact on the overall excitation energies, Figure 4.7(d)
shows that it has little to no impact on the splitting between dark and bright states. For
the cubic, orthorhombic and relaxed structures studied, the ground state exciton remains
dark up to 6nm NCs, and the trend with increasing size shows that a positive dark-bright
splitting is expected for all sizes of NCs. This is consistent with the recent calculations by
Biffi et al. [67] which considered MAPbI3 NC with atomistic electronic theory while only
allowing relaxation of the MA cations. We find that expanding the relaxation to the lead
halide octahedral backbone does not result in a level inversion and does not support a strong
Rashba effect in these materials. If either relaxation, or the enforcement of an orthorhombic
crystal structure caused a significant Rashba effect, then the dark-bright splitting would be
qualitatively different from that of the cubic structures which always have inversion symmetry
and thus no Rashba effect.

A deeper understanding of the exciton fine structure can come from investigating the

spin statistics of the lowest excitonic states. While the total spin Ŝ2
tot =

(
Ŝe + Ŝh

)2
need

not be a good quantum number, the expectation value of the total spin will still be indicative
of the degree of spin-singlet versus spin-triplet character. The effect of the exciton spin on
the exchange interaction is the key factor in energetically separating spin singlet and triplet
states. The exciton spin operator is the sum of the electron and hole spin operators,

Ŝtot = Ŝe + Ŝh (4.18)
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The total spin of an excitonic state can be calculated as,

⟨ψn| Ŝ2
tot |ψn⟩ = ⟨ψn| Ŝ2

e + Ŝ2
h + 2Ŝe · Ŝh |ψn⟩ (4.19)

=
∑
ai;bj

cnbj (c
n
ai)

∗ ⟨a, i|
(
Ŝ2
e+ + Ŝ2

h + 2Ŝe · Ŝh

)
|b, j⟩ (4.20)

=
∑
ai;bj

cnbj (c
n
ai)

∗
(
⟨a| Ŝ2

e |b⟩ δij + ⟨i| Ŝ2
h |j⟩ δab + 2 ⟨a| Ŝe |b⟩ · ⟨i| Ŝh |j⟩

)
(4.21)

=
∑
ai;bj

cnbj (c
n
ai)

∗
(
3/4δabδij + 3/4δijδab + 2 ⟨a| Ŝe |b⟩ · ⟨i| Ŝh |j⟩

)
(4.22)

= 3/2 + 2
∑
ai;bj

cnbj (c
n
ai)

∗ ⟨a| Ŝe |b⟩ · ⟨i| Ŝh |j⟩ (4.23)

Importantly, the spin of the hole states must be treated as that of time-reversed electronic
states, meaning that while the electron spin matrix elements are simply,

⟨a| Ŝe |b⟩ =
1

2
⟨a| σ̂ |b⟩ (4.24)

the hole spin matrix elements are given by

⟨i| Ŝh |j⟩ =
1

2

[
⟨i| Θ̂†

]
σ̂
[
Θ̂ |j⟩

]
(4.25)

= −1

2
⟨j| σ̂ |i⟩ (4.26)

where σ̂ is the vector of Pauli spin matrices.
As shown in Figure 4.9, the total spin expectation value for the dark states is very close to

2, the value for a triplet state. The bright states have lower total spin, close to the value of 4
3

predicted by effective mass theory [66, 128], indicative of a significant spin-singlet character.
The implications of this can be understood through the expectation values of the exchange
interaction for each of the states. Only the bright states, with their partial spin-singlet
character, feel the effects of exchange. This spin structure is present in all the structures we
consider, ensuring a dark excitonic ground state regardless of structural relaxation.

The crystal structure does, however, have a significant impact on the splitting among
the bright states as seen in Figure 4.7(e). The cubic structures are not shown as the bright
levels are always degenerate. Considering the orthorhombic structures, the bright-bright
splitting decreases with increasing NC size, contrary to the predictions of a model where the
Rashba effect is sufficiently strong to cause a bright-dark inversion [66]. What is observed
is consistent with a simple crystal-field splitting that would approach the bulk at large NC
sizes [155, 156]. The relaxed crystal structures are where we would expect to see signatures of
the Rashba effect emerge if it was present, as the ions are allowed to relax and could strongly
break inversion symmetry. These signatures are not present, and the complex behavior that
we do see in the bright-bright splittings is due to the NC size dependent structural transition
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Figure 4.9: The total spin expectation value (left) and the exchange energy as a fraction of
the total exciton binding energy (right) for the lowest dark (black) and bright (red) excitonic
states in relaxed NCs as a function of size.

discussed earlier. The smallest NCs have more symmetric structures and thus smaller bright-
bright splittings. For the larger NCs the structures become nearly orthorhombic and thus
the splittings resemble those of the orthorhombic NCs. Both of these splittings match well
to experiments [114, 117, 124, 151, 152], although the lack of data for extremely small NCs
make the predictions of the relaxed structures difficult to verify. Additional measurements
of the exciton FS in extremely small perovskite NCs could help resolve questions of the
structure of these smallest clusters.

The polarization dependent emission spectra can also be calculated from our atomistic
theory. Simulated spectra were calculated from the oscillator strengths of the transition from
each excitonic state to the ground state. These spectra are shown in Figure 4.10 for NCs of
various crystal structures all with 3.8 nm edge lengths.

f(x,y,z) (E) =
∑
n

δ (E − En)
∑
ai

cna,i
∣∣⟨i| µ̂(x,y,z) |a⟩

∣∣2 (4.27)

where cna,i are the BSE expansion coefficients for electron state |a⟩ and hole state |i⟩ into
excitonic state n with energy En. The dipole operator µ̂x,y,z is broken down along the three
principal axes as shown in color in Figure 4.10, and the average of the three polarizations
is used for the total spectrum shown as the black line in Figure 4.10. In agreement with
the effective mass models, we observe only one peak for the cubic structure, lying around
20 meV above a dark ground state. For the orthorhombic structure, the splittings due to
lattice distortion are clearly recovered and the polarization of the lower two excitonic states is
aligned with the orthorhombic crystal axes rather than the faces of the NC, also in agreement
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Figure 4.10: Simulated absorption spectrum for a 3.8 nm NC with various crystal structures
with the lowest excitonic state set to the energy zero. The polarized spectra along the z
(green), y (blue) and x (red) are also shown with an offset for clarity.

with the effective mass models [124]. The spectra for the relaxed structures show similarities
to the orthorhombic structure, but the lower two excitonic states are close enough in energy
that they may not be resolvable into separate peaks. The results for the relaxed structures
add the additional structural complexity not considered in an effective mass model. Taken
as a whole, the results of our model conclusively show that the inversion symmetry breaking
in perovskite NCs is not sufficient to produce a bright ground state.

While it is easy to simulate a perfectly cubic NC, experiments tend to produce a dis-
tribution of NCs that differ from the perfect cubic geometry. This NC shape anisotropy is
also known to impact the excitonic fine structure and may be implicated in the diversity
of fine structure splittings observed experimentally [125]. In Figure 4.11 we consider the
effect of shape anisotropy on NCs of cubic, orthorhombic and relaxed crystal structures. We
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Figure 4.11: (b) The standard deviation of the bright excitonic states for the cubic (top),
orthorhombic (middle) and relaxed (bottom) crystal structures. The sizes of the symbols
represent the sizes of the NCs along the x and y directions. The largest symbols correspond
to N = 6 and the smallest to N = 4. (a) The polarization-dependent spectra for NCs
consisting 5× 5× 3 lead-halide octahedra (aspect ratio of 0.6) and (c) 5× 5× 8 octahedra
(aspect ratio of 1.6) similarly arranged by crystal structure.
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generated a series of NCs consisting of N ×N × Z lead-halide octahedra where N = 4, 5, 6
and Z = 3, . . . , 8. We define the aspect ratio as Z/N and in Figure 4.11(b) we plot the
standard deviation of the bright states for each of these NCs. In Figure 4.11(a) and (c) we
show the polarization dependent spectra of the bright states for an aspect ratio less than 1
and greater than 1 respectively. For the NCs with cubic crystal structures the bright-bright
splitting is zero for cube-shaped crystals, and either adding or removing layers from such
a NCs causes a finite splitting. As the axis of shape anisotropy was chosen as the z-axis,
the x- and y-polarized excitons remain degenerate, as seen in the plotted spectra. For an
aspect ratio less than 1 the z-polarized exciton is split higher in energy. For an aspect ratio
greater than 1 the z-polarized exciton is lower in energy than the x- or y-polarized ones. This
behavior agrees well with what has been derived from various effective mass models [114,
124, 125].

The NCs with an orthorhombic crystal structure show a significant degree of bright-
bright splitting at all aspect ratios, consistent with effective mass theories [114, 124, 125].
Additionally, the extent to which the z-polarized exciton is split lower at large aspect ratio
appears suppressed, as it can be seen to be essentially degenerate with the lower x/y-polarized
exciton in the middle panel of Figure 4.11(c). The relaxed structures show a unique behavior
with significant bright-bright splittings at aspect ratios less than 1, which are due almost
entirely to the z-polarized exciton splitting to lower energy. This behavior is the opposite of
that observed in the orthorhombic and cubic phases, and may result from surface relaxation
effects that become more dominant for plate-like geometries. At larger aspect ratios, the
relaxed structures show small splitting that depends only weakly on aspect ratio. This may
be due to the size-dependent effects discussed above. As single NC measurements remain
extremely challenging, especially those correlated to NC shape data, understanding the exact
impacts of NC shape anisotropy is still an experimental challenge.

In conclusion, we calculate the exciton FS for lead-halide perovskite NCs using a fully
atomistic theory to obtain relaxed NC crystal structures and the electronic states of these
relaxed NCs. The structural relaxation reveals in atomistic detail previously predicted struc-
tural transitions, and the electronic theory reproduces experimental optical gaps with ex-
cellent agreement. This atomistic theory would be able to discern the causes and nature of
a Rashba effect caused by collective inversion symmetry breaking if it was present in these
systems. None of the signatures of a significant Rashba effect are found in this study. For
all NCs studied the excitonic ground state is optically dark, and we conclude that it should
remain so for all NC sizes. The explanation of the anomalous temperature dependence
of radiative lifetimes in perovskite NCs must lie elsewhere and will be a subject of future
investigation.
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Chapter 5

Kinetics of Hole Transfer from
Multiexcitonic Quantum Dots

The pseudopotential methods discussed in Chapter 2 can provide utility beyond simply
examining the optical signatures of nanomaterials, such as in Chapter 4. These methods can
also give access to the rates of dynamic excited state processes in these nanomaterials. In
this chapter we utilize this insight into these dynamics to inform a kinetic master equation
describing the transfer of holes from multiply excited quantum dots to molecular acceptors
attached at the surface. The content in this chapter is adapted with permission from Yan
C.; Weinberg, D.; Jasrasaria, D. et al. Uncovering the Role of Hole Traps in Promoting
Hole Transfer from Multiexcitonic Quantum Dots to Molecular Acceptors. ACS Nano 2021
15 (2), 2281-2291.

5.1 Introduction

As compared to molecular light absorbers, QDs have the capacity to concentrate many ex-
cited charge carriers within a small volume following multiple photon absorption or charge
multiplication processes, due to their large absorptivity and high density of available elec-
tronic states [157, 158]. The multiexcitonic state of a QD can enable photophysical processes
that are inaccessible by single-excitonic states, such as the transfer of multiple charges on
ultrafast time scales [159, 160] and the tunneling transport of electrons across high energy
barriers [161]. The efficient extraction of charge carriers from multiexcitonic QDs would also
be particularly useful for reactions related to photocatalytic solar fuel generation, as these
chemical transformations universally involve multielectron catalysis.

As depicted in Figure 5.1A, the multiexcitonic state of a QD can undergo multiexcitonic
dissociation (MED) to transfer charges to acceptors, thereby creating a charge-separated
state, which generally has a long lifetime. However, as the excitons are confined in the small
volume of a nanocrystal, the Coulomb interaction between multiple excitons unavoidably
leads to Auger recombination (AR), which nonradiatively annihilates an exciton and creates
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a hot electron–hole pair. The AR rate increases nonlinearly with the number of excitons in
a QD [158]. On fast time scales from several to hundreds of picoseconds, AR can swiftly
annihilate charge carriers until the QD is brought to the single-excitonic state [158]. Hole
transfer rates are typically much slower, and yet ideally QDs could be designed such that,
when multiply excited, hole transfer could still compete efficiently against AR.

Ultrafast multiple electron transfer occurring within a few picoseconds has been observed
to compete effectively against AR events in a number of systems, including CdS QDs [162],
CdSe QDs [163], CdSe/CdS core/shell QDs [159], and PbS QDs [164]. In contrast, the
transfer of multiple holes from a QD to acceptors is typically much more challenging and
had not been observed until a recently reported case, where up to 5.6 holes were extracted
from a CsPbClxBr3–x QD to tetracene acceptors [165]. As the inefficient part of the redox
cycle, hole transfer processes often form the bottleneck for improving the overall performance
of photocatalysts and photovoltaic devices [166]. Furthermore, the accumulation of holes on
the widely studied metal chalcogenide QDs leads to their eventual photodegradation [167].
Therefore, it is very desirable to provide mechanistic insights for devising pathways that
could efficiently extract multiple holes from a QD.

For metal chalcogenide QDs, hole trap states are prevalent on the surface due to un-
derpassivated chalcogenide atoms [33, 168]. The multitude of these relatively localized hole
traps play an important role in mediating hole transfer from delocalized valence band (VB)
states to surface bound acceptors [169–171]. Hole-trapping states also affect the AR lifetimes
by altering the electron–hole interactions and, therefore, significantly impacting the kinetic
competition between hole transfer and AR dynamics [172–174]. Ultrafast transient absorp-
tion (TA) spectroscopy provides the time resolution required to directly track the population
of holes in different states as they migrate from QDs to acceptors. Previous works with TA
methods by Lian et al. and Weiss et al. have established that phenothiazine derivatives
can serve as a class of hole acceptors for CdS QDs or nanorods with both the high driving
force and the necessary optical signature in TA to track hole transfer [169, 175, 176]. In
these model systems, ultrafast hole trapping was observed within ∼1 ps following photoex-
citation, and trap-mediated hole-transfer dynamics were investigated under single-excitonic
or biexcitonic conditions.

Herein, we utilized TA spectroscopy to investigate the hole-transfer dynamics from three
different cadmium chalcogenide QDs to a synthesized phenothiazine derivative, which binds
to the QD surface via a carboxylate group (Figure 5.1B). The QDs were excited by a pump
pulse of 415 nm wavelength and the average initial number of excitons per QD, 〈N0〉,
was experimentally calibrated to range from ∼1 to 19. The hole acceptor, 4-(3-bromo-7-
(dihexylamino)-10H-phenothiazin-10-yl)benzoic acid (NPTZ), is designed to carry functional
groups on the phenothiazine ring to shift the photoinduced absorption (PA) signal of its ox-
idized form to the longer wavelength region >600 nm. The shifted PA feature enables us to
track the hole transfer in CdSe and CdSe/CdS QDs by avoiding interference with exciton
bleaching (XB) signal.

In the QD-NPTZ systems, the time-dependent populations of the trapped holes and
the oxidized ligands were separately tracked and analyzed so that we could systematically
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Figure 5.1: A) The Jablonski diagram of the QD-NPTZ system used to study multi-excitonic
hole transfer dynamics. The fast Auger recombination dynamics (green dashed arrow) com-
petes with multi-excitonic dissociation dynamics (black arrow). B) Schematic illustration of
multi-excitonic hole transfer from QDs to NPTZ ligands. C) Normalized absorption spectra
of the investigated QDs dissolved in toluene. The excitation wavelength used in TA exper-
iments was 415 nm (∼3.0 eV). D) The diagram shows the energy levels of QDs and NPTZ
ligand relative to the ferrocene/ferrocenium redox couple in acetonitrile. Trapping states are
omitted from the display. The scaled length of the blue arrows is 3.0 eV. For the core/shell
system, both CdSe core and CdS shell contribute to photo-absorption.
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investigate the interplay between charge trapping, hole transfer, and Auger recombination
dynamics. To describe the observed kinetics, we test two types of kinetic models where the
hole-trapping states are kinetically coupled to or decoupled from the VB populations. For
QDs passivated with oleate ligands (referred to as native QDs), our results indicate that the
hole-trapping states exist in a fast trapping/detrapping equilibrium with the VB, and the
trapped holes can be rapidly consumed by AR events. In contrast, the hole-trapping states in
QDs capped with NPTZ ligands are kinetically decoupled from VB states and have prolonged
lifetimes. Fluence dependent hole transfer kinetics were observed at intermediate times of
10s to 100s of ps, after AR would be expected to relax the QDs to single-excitonic states.
These decoupled trapping states resemble the long-lived charge-separated states proposed
to account for the “dark states” in QD single particle blinking experiments [177, 178]. The
long-lived, trapped holes can serve as a reservoir to temporarily store charges and then slowly
transfer to NPTZ over the course of 10s to 100s of ps. In the most efficient system, up to
three holes were transferred to NPTZ per CdS QD.

5.2 Transient Absorption Spectroscopy of QDs

To investigate the competition between hole transfer and AR kinetics, we examined a series
of QDs of different sizes and compositions. As the AR lifetime of a QD generally increases
with the volume of a QD [77, 158], we present the results obtained from the following systems:
a small CdSe QD (d = 2.5 nm); a large CdS QD (d = 5.1 nm); and a core/shell CdSe/CdS
QD (dtotal = 4.8 nm, dcore = 2.3 nm) with a quasi-type II band structure.

To promote the transfer of multiple holes, the QDs were functionalized with the highest
possible surface coverage of the NPTZ ligands. The NPTZ ligands replace the native oleate
ligands in a 1-to-1 stoichiometry and bind to cadmium ions on the QD surface via their
carboxylate group. The 1-to-1 stoichiometry and surface coverage of the NPTZ ligand can be
determined by the 1H nuclear magnetic resonance technique (Table S1). Because the NPTZ
ligands are significantly larger molecules than the oleate ligands, the surface coverages of
NPTZ ligands saturates at around 20% for all the QDs. For the 2.5 nm CdSe, we calculated
that there are ∼25 NPTZ ligands bound per QD. For the 5.1 nm CdS and 4.8 nm core/shell
QD, there are ∼75 NPTZ ligands bound per QD.

The UV–vis absorption spectra of the three types of QDs are shown in Figure 5.1C. In the
TA experiments, the pump wavelength was set above the band edge energy of the QDs at 415
nm (∼3 eV) to access levels deep in the energy bands and create a large number of excitons.
The energy diagrams of the QDs and NPTZ are shown in Figure 5.1D. The absorption
feature of the phenothiazine ring located in the UV region (>3 eV) will not be excited [169,
176]. The driving force of hole transfer from all three types of QDs to the NPTZ molecule is
sufficiently high [166], as the highest occupied molecular orbital (HOMO) of NPTZ is located
0.7 and 1.2 eV above the VB band edges of CdSe and CdS, respectively [166]. Photoinduced
charge transfer from the QDs to NPTZ is energetically prohibited. The blue arrows in Figure
5.1D point to the highest possible conduction band (CB) levels to which the electrons can
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be promoted by the 415 nm excitation. These levels are significantly lower than the lowest
unoccupied molecular orbital (LUMO) of NPTZ. The HOMO and LUMO positions of NPTZ
were determined from cyclic voltammetry and UV–visible absorption spectroscopy.

Photoexcited hot electrons and holes rapidly cool on a subpicosecond time scale to energy
levels near the band edges, as shown by the solid and empty circles, respectively, in Figure
5.1D. The strongly quantum confined 2.5 nm CdSe QD and the weakly quantum confined 5.1
nm CdS QD differ significantly in the VB edge energies but have similar CB edge energies.
For the 4.8 nm CdSe/CdS QD containing a 2.3 nm CdSe core, the 415 nm pump pulse
excites both the CdSe core and the CdS shell. Due to the small size of the core, the energy
levels of CdSe and CdS form a quasi-type II alignment causing the electron wave function
to distribute throughout both the core and the shell while the hole wave function localizes
mostly to the core after cooling [94, 159, 179]. In the core/shell system, the driving force
for hole transfer is determined by the CdSe core, and the transfer to surface ligands needs
to overcome the energy barrier of the CdS shell [166, 170].

We measured the TA spectra for a series of excitation fluences for both of the native
QDs capped with oleate ligands and the QDs with surface-bound NPTZ ligands. For each
TA measurement, the initial average number of excitons per QD, ⟨N0⟩, was experimentally
determined from the calibrated energy per pump pulse, the effective absorbance at 415
nm for each pump pulse energy, the excited sample volume, and the concentration of QD
in solution. To reduce the spread of ⟨N0⟩ caused by the attenuation of the pump pulse
through the sample while maintaining a reasonable signal level for TA experiments, the
optical densities at 415 nm for all the samples were kept around 0.2. The relative standard
deviation of the calculated ⟨N0⟩ is ∼15% for all of the samples.

In Figure 5.2, the TA spectra of CdS QDs with native oleate ligands and NPTZ ligands
are displayed as examples to illustrate the major TA features used for kinetic analysis.
The major negative XB feature around 450 nm shown in Figure 5.2A is associated with the
bleaching of the first excitonic transition from 1Sh to 1Se of the QD. The change of absorbance
induced by the pump pulse, ∆A, was divided by the steady-state linear absorbance at the
first excitonic absorption peak, A0. The lowest CB level (1Se state) can accommodate at
most two electrons, and therefore, the XB signal at the band edge will be close to the
saturation level of ∆A

A0
∼ 1 when the CB is populated by two or more electrons [159, 175]. At

the early time t = 10ps, both the QDs with and without NPTZ ligands showed nearly full
saturation of the band edge XB signal as seen by the black lines in Figure 5.2A. For QDs
without NPTZ added (top panel), the XB signal decayed to ∆A

A0
∼ 0.5 at longer delay times

t > 100ps, indicating that fast AR processes have brought the system from a multiexcitonic
state to a single-excitonic state. For CdS QDs bound with NPTZ ligands (bottom panel), the
full saturation level lasts for several nanoseconds (ns), indicating that >1 electron remains
on the CB. For systems where less than 2 holes were transferred, we did not observe the
lasting saturation of the band edge XB signals on ns time scales (Figures 5.3 and 5.4).
This XB signal cannot, however, be used to determine the dynamic behavior of the holes
associated with these electrons. Tracking the hole population requires detailed analysis of
other spectroscopic data discussed below.
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Figure 5.2: Examples of TA spectra at various delay times showing the exciton bleaching (A)
and photo-induced absorption (B) features of CdS QDs without NPTZ (top panels) and with
NPTZ (bottom panels) added. The excitation power is 1.25 µJ per pulse and ⟨N0⟩ ≈ 19.
The inset in the upper panel of (B) indicates that the broad offset-like PA feature originates
from the absorptions promoting the trapped holes into densely spaced levels deep in the
VB. The green shaded area in the bottom panel of (B) highlights the PA peaks of NPTZ+•

radical on top of the PA feature of trapped holes.

‘
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Figure 5.3: Examples of TA spectra of the native CdSe QDs (A) and CdSe QDs with NPTZ
(B). Left panels display XB signals and right panels display PA signals. The data shown here
were measured at ⟨N0⟩ ∼ 4 with a pump pulse energy of 1.25 µJ. A0 is the linear absorbance
measured by UV-Vis at the first excitonic absorption center.

In Figure 5.2B, the positive PA features of CdS are shown in the range of 535-735 nm.
Based on theoretical [34] and experimental evidence [159, 180] this broad but weak PA signal
is assigned to the transitions promoting trapped holes into deeper levels of the VB (inset
in the upper panel of Figure 5.2B). The high density of states in the VB causes the broad
feature of the PA signal. The hole trapping states in native QDs dispersed in colloidal
solutions are typically attributed to under-passivated surface chalcogenide atoms. The PA
signal of trapped holes shares the same broad, offset-like feature for all the three types of QDs
measured here. The transient kinetics of the trapped hole population are largely independent
of the wavelength chosen for analyzing the PA signal. To avoid overlapping with the PA
signal of oxidized NPTZ ligands, we chose to use 710 nm as the wavelength for tracking the
population of trapped holes because the signal amplitude at 710 nm was unaffected by the
deconvolution of the contribution from the molecular acceptors. Hole transfer and AR of
multi-excitonic states can be inferred from the decay kinetics of the broad PA feature. As
discussed later, the decay kinetics of the population of trapped holes represented at 710 nm
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Figure 5.4: Examples of TA spectra of the native 3ML CdSe/CdS QDs (A) and native 3ML
CdSe/CdS QDs with NPTZ (B). Left panels display XB signals and right panels display
PA signals. Due to the redshifted tail of XB features as compared to other QDs studied
here, part of the NPTZ+• PA band is convoluted with the XB tail. Data deconvolution was
performed in the wavelength region of 625-735 nm. The data shown here were measured at
⟨N0⟩ ∼ 19 with a pump pulse energy of 1.27 µJ. A0 is the linear absorbance measured by
UV-Vis at the first excitonic absorption center.
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were qualitatively different for QDs with or without NPTZ ligands due to the altered nature
of hole trapping states.

For NPTZ-capped QDs, the oxidation of NPTZ ligands by hole transfer gives rise to the
new absorption band in the region from 550-670 nm (green shaded area in Figure 5.2B).
This PA band is assigned to the transiently generated NPTZ+• radical, and the extinction
coefficient of the PA peak at 650 nm was estimated from steady-state oxidation titrations.
Compared to the phenothiazine molecule, the amine group and the bromine atom on the
aromatic ring of NPTZ shifted the radical absorption peak from 520 nm to 650 nm. For
the CdSe and the core/shell QDs studied here, the shifted peak allows the radical PA signal
to be resolved from the tails of the XB signal, which is larger in amplitude by orders of
magnitude. For CdSe QDs larger than d = 3.5 nm or CdSe/CdS QDs larger than the one
studied here, the XB signal would redshift enough to severely interfere with the NPTZ+•

radical signal. The signal of the NPTZ+• radical and the broad signal of trapped holes can
be de-convoluted from each other by a fitting protocol [169, 176]. The de-convoluted PA
amplitude of NPTZ+• at 650 nm directly tracks the average number of holes transferred per
QD, ⟨NHT⟩, which was calculated by the ratio of the concentration of the NPTZ+• radical
to the concentration of QDs.

To deepen our mechanistic understanding of the hole transfer process, we developed a
kinetic model of the dynamics of the hole populations on both the native QDs and QDs with
NPTZ hole acceptors. As discussed below for Figure 5.9, the kinetic model incorporates
three hole populations: valence band holes, trapped holes, and holes transferred to NPTZ
ligands. The population of trapped holes can be tracked with the broad PA signal at 710 nm,
and the population of holes transferred to NPTZ ligands can be monitored by the 650 nm
NPTZ+• absorption band. While the population of valence band holes cannot be measured
directly in the optical range of our experiments, it can be inferred from the initial excitation
conditions. The processes of trapping, de-trapping, AR, and hole transfer connect these hole
states and give rise to the complex dynamic behaviors we observe and simulate within our
kinetic model.

5.3 Determination of Auger Recombination Channels

and Rates

5.3.1 Theoretical Modeling of AR Channels

To identify AR channels in the presence of hole trapping states, AR lifetimes were computed
and compared for two types of initial biexcitonic states: i) two electrons in the CB and
two holes in the VB; ii) two electrons in the CB, one hole in the VB, and one hole in a
surface trapping state. CdSe QDs are chosen as a model system, and calculations were
performed on CdSe QDs of different sizes. First, nanostructure configurations for CdSe
QDs were obtained by cleaving a sufficiently large wurtzite crystal with a lattice constant
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Figure 5.5: Single-particle charge carrier densities for the conduction band edge (red), valence
band edge (blue), and hole trap (orange) states of the 3.86 nm CdSe QD.

of bulk wurtzite CdSe (a = 4.30Å, c = a
√

8
3
) such that all atoms are bonded to at least two

other atoms. This structure was then optimized via the conjugate gradient minimization
algorithm implemented in LAMMPS [181] using Stillinger-Weber interatomic potentials [83].
The outermost layer of atoms was removed and then the subsequent monolayer was replaced
with ligand potentials, representing the passivation layer, where each Cd (Se) atom was
replaced by a ligand potential for Se (Cd). Surface hole traps were modeled by the removal
of a passivation ligand from a Se atom on the surface, which creates a localized trap state
about 500-750 meV above the VB maximum. Four structures were modeled and studied here:
Cd93Se93 (d = 2.15 nm); Cd222Se222 (d = 3.00 nm); Cd435Se435 (d = 3.86 nm); Cd753Se753
(d = 4.71 nm).

All calculations were performed within the semi-empirical pseudopotential method for
CdSe structures [31] implemented on real-space grids with spacing less than 0.8 a.u., which
is sufficient to converge results. The filter-diagonalization technique was applied to obtain
quasiparticle states ϕ(re) and ϕ(rh) at the valence and conduction band edges, respectively.
This process involves filtering states at target energies near the LUMO and HOMO en-
ergies using an interpolation polynomial of length Nc ≈ 2048. The states obtained from
filter-diagonalization are eigenstates of the single-particle Hamiltonian. The charge carrier
densities for the conduction band edge (red), valence band edge (blue), and a hole trap
(orange) states of the 3.86 nm CdSe QD obtained from filter diagonalization are illustrated
below in Figure 5.5.

These single-particle states were used as input to the Bethe-Salpeter equation (BSE),
which solves for the coefficients (ca,i) used to describe correlated electron-hole pair (i.e.
excitonic) states as a linear combination of non-interacting electron-hole pairs:

ψ(re, rh) =
∑
a,i

ca,iϕa(re)ϕi(rh) (5.1)
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where a refers to electron states and i refers to hole states. The number of single-particle
states used in the BSE was 120-200, with larger numbers of single-particle states needed
for larger systems. The exciton energies and AR lifetimes are converged with the number
of single-particle states used. The electron-hole kernel in the Bethe-Salpeter equation in-
cludes both the screened direct Coulomb attraction and exchange-like repulsive term. This
is discussed in detail in Chapters 2 and 4.

The biexcitonic AR lifetime (τAR,2) was computed using Fermi’s golden rule, where we
average over thermally distributed initial biexcitonic states (|B⟩) and sum over all final decay
channels into single excitonic states (|S⟩), which are coupled by the Coulomb scattering (V̂ ):

τ−1
AR,2 =

∑
B

e−βEB

ZB

[
2π

h̄

∑
S

∣∣∣⟨B| V̂ |S⟩
∣∣∣2δ(EB − ES)

]
(5.2)

where ZB =
∑

B e
−βEB is the partition function for the biexcitonic states and β = 1

kBT
at

T = 298K.
The initial biexcitonic state and final single excitonic states are given, respectively, by:

|B⟩ =
∑
b,j

∑
c,k

cBb,jc
B
c,kϕb(re)ϕc(r

′
e)ϕj(rh)ϕk(r

′
h) (5.3)

|S⟩ = ϕa(re)ϕi(rh) (5.4)

The indices a, b, c, . . . refer to electron (unoccupied) states and the indices i, j, k, . . . refer
to hole (occupied) states with corresponding energies ϵa and ϵi. The interacting electron-hole
pair (excitonic) states obtained from BSE were used in the initial biexcitonic states, while
the final excitonic states were obtained using filter-diagonalization calculations with target
energies resonant with the initial biexcitonic state. A longer interpolation polynomial length
of Nc ≈ 8192 was used for those filter calculation, reflecting the greater density of single-
particle states at energies high above the band edge. The initial biexcitonic state includes
correlations within electron-hole pairs but ignores them between the two excitons [64]. The
correlations in the final electron-hole pair are also ignored.

Therefore, the AR lifetime was computed as

τ−1
AR,2 =

∑
B

2πe−βEB

h̄ZB

∑
a,i

∣∣∣∣∣∑
b,c,k

cBb,ic
B
c,kVabck

∣∣∣∣∣
2

δ(EB − ϵa + ϵi) (5.5)

+
∑
B

2πe−βEB

h̄ZB

∑
a,i

∣∣∣∣∣∑
j,c,k

cBa,jc
B
c,kVijck

∣∣∣∣∣
2

δ(EB − ϵa + ϵi) (5.6)

where the first term represents the electron channel (final electron-hole pair involves a hot
electron) and the second term represents the hole channel (final electron-hole pair involves
a hot hole). The Coulomb coupling Vrsut is given by

Vrsut =

∫∫
ϕ∗
r(r)ϕs(r)ϕu(r

′)ϕ∗
t (r

′)

|r − r′|
d3rd3r′ (5.7)
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The initial biexcitonic states including a trapped hole are composed of one exciton with
a trap coefficient (ctr) of approximately 1 (ctr =

∑
a |ca,tr|

2 ) and another exciton with a
trap coefficient of approximately 0, where ca,tr refers to the coefficient of an noninteracting
electron-hole pair with the hole in the single-particle trap state. The calculated AR rates
were Boltzmann-averaged over five different trap locations that were evenly distributed across
the surface of the nanostructure.

As discussed above and depicted in Figure 5.6 below, AR can occur through different
negative trion pathways (electron channels) and positive trion pathways (hole channels),
leading to different final single electron-hole pair configurations. Channels A and C are
the VB AR pathway shown in Figure 5.9B, and channel B is the VB-trap AR pathway in
Figure 5.9B. While Figure 5.6 shows trion decay channels, the calculation performed here use
biexcitonic initial states, so the initial and final state configurations also include a spectator
ion that does not participate in AR. For channel A and D, the final state is a hot electron
and a spectator hole in VB or trap. For channels B and C, the final state is a hot hole and
a spectator electron. The rate of each of these channels was determined by examining the
partial sum over final states just corresponding to that channel. For example, the rate of
channel A is given by the sum over final states that correspond to the configuration shown
in Figure 5.6 (with the appropriate spectator ion):

τ−1
AR,2 =

∑
B

e−βEB

ZB

[
2π

h̄

∑
S∈A

∣∣∣⟨B| V̂ |S⟩
∣∣∣2δ(EB − ES)

]
(5.8)

The total rate for a given biexcitonic state is a sum of the rates of all the channels. For
the biexcitonic state with two electrons in the CB and two holes in the VB, the channels
only involve holes in the VB, and the summation is as follows:

τ−1
AR,2 =

(
τ−1
AR,2

)
A
+
(
τ−1
AR,2

)
C

(5.9)

While for the bi-excitonic state including a trapped hole (two electrons in the CB, one hole
in the VB, and one hole in the trap), the channels involve both the VB hole and the trapped
hole, and the summation is as follows:

τ−1
AR,2 =

(
τ−1
AR,2

)
A
+
(
τ−1
AR,2

)
B
+
(
τ−1
AR,2

)
D

(5.10)

We found that the rates for channels A, B, and C are comparable, while the rate for
channel D, however, is 3-4 orders of magnitude smaller than the others. Therefore, we
conclude that recombination of an electron and trapped hole is slow, and AR through channel
D (or AR of a biexciton with two trapped holes) is negligible. The summed biexcitonic AR
lifetimes with or without the trapped hole are very similar, as collected in Table 5.1 below,
illustrating that the surface-trapped holes do participate in AR on similar timescales as VB
holes. For channel B, the Coulomb coupling that drives AR requires some overlap between
the two holes in the initial biexciton, overlap between one hole and the conduction band-
edge electron in the initial biexciton, and overlap between the other hole and the hot hole in
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Figure 5.6: Different trion channels, identifiable by their initial and final states, for VB (A
and C) and VB-trap (B) Auger recombination. The fourth “spectator ion” of the initial
state is not illustrated, as its energy is unaffected by AR. Channels A-C have comparable
rates, while the rate of channel D is < (10 ns)−1.
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Table 5.1: Calculated AR lifetimes for an initial biexcitonic state with all carriers at the
band-edge and for an initial biexcitonic state with three band-edge carriers and one hole
localized at a surface trap state.

Diameter of CdSe NC (nm) Band Edge τAR,2 (ps) Trap τAR,2 (ps)
2.15 7.88 7.60
3.00 16.39 14.90
3.86 47.46 51.69
4.71 144.72 142.71

the final single exciton. Even though trapped holes are localized to the surface, there is still
some wavefunction overlap with the holes at the VB edge, and there is favorable wavefunction
overlap with hot hole states in the VB that have more oscillatory wavefunctions delocalized
throughout the nanocrystal. Therefore, the rate of channel B can be comparable to that of
A and C. The trion with two holes trapped at different sites, however, will not undergo AR
as there is little to no overlap between those states. These findings are consistent with our
previous calculations on the photoinduced transient absorption spectra of surface-trapped
holes [34].

5.3.2 Fitting to Experimental Data

The experimental biexcitonic Auger recombination rates for the native CdS, CdSe, and
CdSe/CdS core/shell QDs studied in this work were determined from the decay of the XB
feature (Figure 5.7) measured using band edge excitation wavelength in TA experiments.
The band edge excitation ensures that there are no more than two excitons per QD as there
are only two optical excitons possible at that energy. For each QD sample, XB decays were
measured at a high excitation fluence with ⟨N0⟩ ∼ 2, and a lower fluence with ⟨N0⟩ < 2. The
bi-excitonic AR rates can be extracted by simultaneously fitting the decay curves at the low
and high fluences as described below. The native QD solutions contained in a 2 mm cuvette
have an optical density of 0.8 at the first excitonic absorption peak center. The CdS QDs
were excited at 450 nm with 350 nJ and 700 nJ per pulse; the CdSe QDs were excited at
510 nm with 600 nJ and 1250 nJ per pulse; and the CdSe/CdS were excited at 545 nm with
1000 nJ and 1800 nJ per pulse.

If absorption events are assumed to be statistically independent and equally probable with
probability p, then the number of excitations per QD is binomially distributed. Therefore,
immediately after photoexcitation, ⟨N0⟩ is 2p. The initial peak value of the XB signal
(∆Amax) is proportional to ⟨N0⟩. At some intermediate time (∼500 ps), when AR is assumed
to be complete but radiative recombination is still not significant, all the particles that were
initially doubly excited become only singly excited, so the average number of excitons per
particle is ⟨N(t)⟩ = p2 + 2p(1 − p) = p(2 − p). Taking the ratio of the optical signal at
this intermediate time (∆Aint) with the maximum bleach signal eliminates the constant of
proportionality between the number of excitations and optical signal, and allows solving for
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Figure 5.7: Fits of the experimental XB signals for CdS QDs (top), CdSe QDs (middle), and
core/shell CdSe/CdS QDs (bottom).

the excitation probability p = 2(1 − ∆Aint

∆Amax
). From there, the constant of proportionality

between the XB signal and ⟨N(t)⟩ can also be derived, allowing us to convert the measured
kinetics to the decay of ⟨N(t)⟩ as a function of time in Figure 5.7.

For the systems studied here, all doubly excited particles rapidly (∼10-100 ps) undergo
AR, resulting in an exponential recovery of the XB signal, until they are all singly excited.
These singly excited states decay much more slowly (∼10 ns) via radiative recombination.
The separation of timescales of AR and radiative recombination makes a bi-exponential
model a good fit for these systems and excitation conditions. We took the average number
of excitons per particle to be given by:

⟨N(t)⟩ = wAR,2e
−t/τAR,2 + wrade

−t/τrad (5.11)

where wAR,2 and wrad are the weights of the bi-excitonic Auger recombination and radiative
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Table 5.2: Bi-excitonic decay parameters extracted from the exponential fits of the decay of
the XB bleaching signal under band-edge excitation conditions.

System τAR,2 (ps) τresid (ps) τrad (ns)
High Fluence Low Fluence

wAR,2 wresid wrad wAR,2 wresid wrad

CdSe 3 - ∼3 1 - 1 0.3 - 0.8
CdSe/CdS 22 200 ∼20 0.775 0.225 1 0.57 0.17 0.96

CdS 35 500 >20 0.800 0.200 1 0.45 0.11 0.9

recombination, respectively, and τAR,2 and τrad are their respective lifetimes. The weights
were determined by the initial conditions. The AR weight is the fraction of particles doubly
excited wAR,2 = p2, and the radiative weight is the number of particles that are at least
singly excited wrad = p2 + 2p(1 − p). To fit the Auger and radiative recombination rates,
the AR rate was estimated from those calculated within the semi-empirical pseudopotential
method described above in Table 5.1 and the initial underestimate for radiative lifetime was
taken to be 1 ns. The radiative lifetime was increased from there to give an approximate fit
and then both rates were tuned until they simultaneously fit experimental data at low and
high fluence conditions.

For core/shell CdSe/CdS and CdS QDs, a biexponential fit was unable to fully reproduce
the experimental data, and a triexponential fit was used to include the weight and rate of a
minor residual process:

N(t) = wAR,2e
−t/τAR,2 + wrade

−t/τrad + wreside
−t/τresid (5.12)

The sum of the Auger and residual weights is equal to the expected fraction of doubly
excited particles. As the weight of this slower, residual process was relatively minor, the
fastest timescale was taken as the AR lifetime. These AR rates are also consistent with the
scaling laws of AR lifetimes [77]. The fitting parameters are listed in Table 5.2.

5.4 Understanding Hole Transfer through a Kinetic

Model

5.4.1 Observation of Multi-Hole Transfer

In Figure 5.8A-C, the de-convoluted kinetics of NPTZ+• at 650 nm are shown in the time
range from 5 ps to 7 ns for the three QD systems studied here. For conditions with large ⟨N0⟩,
the broad PA signal background from QDs measured prior to t = 5 ps has time-dependent
slopes, which are difficult to analyze, so that data are not shown here. The pump pulse
energies applied for each type of QD are in the interval between 0.07 µJ and 1.27 µJ per
pulse. For CdS QDs and CdSe/CdS core/shell QDs, the excitation energies produce an ⟨N0⟩
ranging from ∼2 to 19. Due to their smaller molar extinction coefficient at 415 nm, the ⟨N0⟩
for the CdSe QDs ranges from 0.5 to 4.4.
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The kinetic plots in Figure 5.8A-C show that the photo-excited dynamics of a QD with
NPTZ under multi-excitonic conditions take place on multiple timescales. In the first ∼10
ps, the CdS QDs (Figure 5.8A) display a very rapid initial increase in the NPTZ+• signal,
whereas the hole transfer signal of the other two QDs is insignificant in this time period.
After ∼10 ps, all the QD systems exhibit an exponential increase in the NPTZ+• signal over
the next ∼100 ps. In the period from 1-7 ns, the hole transfer rate approaches zero for all QD
systems. The population of transferred holes is generally stable with long charge-separation
lifetimes. For the systems where multiple holes are transferred at high excitation fluences,
the NPTZ+• signals decay due to charge recombination between the radical and QDs on this
long timescale, e.g., the pink trace of CdS in Figure 5.8A. For the CdS QDs, the transfer of
multiple holes with ⟨NHT⟩ > 2 was observed at the conditions of high ⟨N0⟩. For the CdSe
and CdSe/CdS QDs, more holes were transferred as the excitation fluence was increased,
but overall fewer than two holes were transferred from a QD to NPTZ molecules. The solid
lines are modeling results, which will be discussed in the next section.

For efficient hole transfer to occur at short timescales and under multi-excitonic condi-
tions, the hole transfer rate constant, kHT, should be comparable to the AR rate constant,
kAR [158]. The bi-excitonic AR rates determined from native QDs are (3.0 ps)−1, (22 ps)−1,
and (35 ps)−1 for the CdSe, CdSe/CdS, and CdS QDs, respectively (Table 5.2). Given the
number of excitons per QD as N , kAR scales as N(N − 1) for the larger CdSe/CdS and CdS
QDs; kAR scales as N2(N −1) for the strongly quantum confined 2.5 nm CdSe QDs [77, 158,
182]. Based on the scaling laws and biexciton AR rates, we can calculate that most of the
charge carriers in multi-excitonic QDs will be consumed by AR mechanism within the first
10 ps the AR rate constants for just three excitons would be faster than (10 ps)−1 for all the
QDs here.

We found here that only the CdS QDs have comparable rates of hole transfer and AR.
In Figure 5.8A, for ⟨N0⟩ = 7, 12, 19, we can see that the CdS QD is capable of transferring
a significant number of holes to NPTZ within the first 10 ps. For ⟨N0⟩ = 19, ∼2 holes can
be transferred per CdS QD within 10 ps. In both the CdSe/CdS and the CdSe QDs, kAR

well outcompetes kHT, and very few holes are transferred per QD within 10 ps, as seen in
Figure 5.8B-C. For the CdSe QDs, the AR lifetime decreases to sub-picosecond level when
⟨N0⟩ > 2 For the CdSe/CdS QD, kAR is similar to that of the CdS QD, yet kHT is much slower
than (10 ps)−1 due to the presence of 3ML CdS shell, which forms an energy barrier for the
hole to tunnel to the NPTZ ligands. Previously, it had been reported that the hot carriers
produced by AR processes could efficiently promote ultrafast electron transfer across energy
barriers [160, 161]. Here we did not find this mechanism acting efficiently for hole transfer in
the CdSe/CdS QDs despite applying conditions with large ⟨N0⟩ values, presumably because
the effective mass of a hole in the VB is much larger than the effective mass of electrons
in the CB, and the cooling rate of hot holes is much faster than that of hot electrons.46
Comparing to the more efficient 5.1 nm CdS QD system, the 2.5 nm CdSe QD has similar
hole transfer rates but much faster AR rates; the 3ML CdSe/CdS QD has similar AR rates
but much slower hole transfer rates. Therefore, the CdSe and CdSe/CdS QDs investigated
here are not able to transfer as many holes per QD as the CdS QDs under multi-excitonic
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Figure 5.8: (A-C) TA kinetic traces of NPTZ+• radical population monitored at 650 nm
for the three types of QDs excited at various fluences and ⟨N0⟩. The amplitude of NPTZ+•

PA signal was de-convoluted to remove the contribution of the trapped hole PA signal. The
left axis is associated with the PA signal amplitude, which is linearly related to the average
number of holes transferred per QD, shown by the right axis. Solid lines are the results of
the kinetic model with a decoupled trap population. (D-F) The hole transfer quantum yield
(black) and the maximum number of holes transferred to NPTZ ligands per QD (blue) at
each excitation power or ⟨N0⟩.
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conditions.
The hole transfer quantum yield (HTQY) of the three types of QDs measured at each

⟨N0⟩ were plotted in Figure 5.8D-F. HTQY is defined as the percentage ratio between the
maximum number of holes transferred per QD within the 7 ns observation period and the
initial number of excitons ⟨N0⟩. At the lowest value of ⟨N0⟩ for each type of QD, the HTQY
was measured as around 30∼40%. We observe the general trend in Figure 5.8D-F that the
HTQY decreases as ⟨N0⟩ increases. Due to the very fast kAR of 2.5 nm CdSe, the maximum
number of holes transferred per QD has already started to saturate at an ⟨N0⟩ of 4.4. For the
larger CdSe/CdS, the number of holes transferred per QD increases almost proportionally as
⟨N0⟩ increases but is consistently lower than that of the CdS QD at a similar value of ⟨N0⟩.

The above analysis based on the scaling law of kAR indicates that the hole transfer rates
during the period of 10-100 ps would be largely independent of excitation fluences for multi-
excitonic QDs with large ⟨N0⟩ values. However, data for all the QDs in Figure 5.8A-C
show that both the hole transfer rate and the number of holes transferred during the period
of 10-100 ps increases as ⟨N0⟩ increases. Roughly 0.5-1.5 holes were transferred to NPTZ
per QD transferred in the 10-100 ps period, depending on ⟨N0⟩. For CdSe and CdSe/CdS
QDs, nearly all of hole transfer takes place in this period. For CdS QDs, because the hole
transfer rate is competitive with the AR rate, both the holes transferred in the first 10 ps
and the holes transferred in the 10-100 ps contribute significantly to the overall number of
transferred holes. The observed fluence dependence indicates that multiple carriers must
remain on these QDs for longer timescales than expected.

With the introduction of NPTZ ligands, we postulate that multi-exciton dissociation
during AR events cause holes to populate surface trap states that are de-coupled from the
native states of the QD (Figure 5.9A). These hole trapping states are likely formed as a
result of the presence of hole accepting ligands and, thus, have much weaker electron-hole
coupling as compared to the electron-hole pair forming an exciton or charges in shallow
traps. The de-coupling of the new hole trapping states from native QD states, similar to a
charge-separated state, can result in long carrier lifetimes since AR is suppressed. In this
mechanism, though the hole transfer rate is generally slower than AR kinetics, holes can first
accumulate in the de-coupled surface traps and then further transfer to NPTZ over longer
time periods.

5.4.2 Kinetic Modeling and the Role of Hole Traps

To corroborate this mechanism, we developed a kinetic model to simulate the process of trap-
mediated hole transfer. However, this first involved developing an understanding of the QDs
without NPTZ ligands. A kinetic model was developed to describe trapping, de-trapping,
AR, and radiative recombination in native QDs capped with oleate ligands. Hot carrier
cooling was ignored, as that is known to be very fast (∼100 fs) relative to the timescales
of the other processes considered [183]. The model described in this section was used to
simulate the hole trap kinetics without NPTZ, which is shown in Fig. 5.11A-B.
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Figure 5.9: A) A schematic showing the energy levels involved in modeling the kinetics of hole
transfer and hole trapping under multi-excitonic conditions. B) Auger channels considered
for QDs with hole trapping states. The three red arrows are associated with three different
trion channels.

In order to maintain a unified description between the strongly and weakly quantum
confined regimes of the different QDs studied here, as described below, the kinetic model
considers independent electrons and holes and represents AR processes in terms of the dif-
ferent trion pathways in Figure 5.6. The biexciton AR rates (kAR,2) extracted from band
edge excitation, as discussed in Section 5.3.2, are considered as the combination of channel
A (two electrons and one hole, rate kAR,−) and channel C (two holes and one electron, rate
kAR,+). For each non-interacting biexciton there are two possible negative trion channels
and two possible positive trion channels, so the trion rates are related to the biexciton rate
by kAR,2 = 2kAR,+ + 2kAR,−. To keep the number of independent parameters in the model
to a minimum, we made the assumption that the positive and negative trion rates are the
same so kAR,+ = kAR,− = 1

4
kAR,2 . Also, as shown above in Section 5.3.1 by AR calculations

comparing VB and VB-trap AR, the rates of pathways involving two valence band holes
are similar to those involving one valence band and one trapped hole. The three trion AR
pathways, illustrated as A-C in Figure 5.6, were included in the kinetic model with the rate
as 1/4kAR,2. Channel D involving two electrons and a trapped hole is significantly slower
and was, therefore, neglected. Additionally, radiative recombination was only allowed for
holes at the valence band, as the optical oscillator strengths for radiative recombination of
trap states are known to be very weak [184].

Mathematically, the model consists of a set of coupled differential equations describing
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the time-evolution of the number of valence band holes (nVB) and the number of trapped
holes (ntrap) in a QD:

ṅVB = ktrap,Rntrap − ktrapnVB − kAR,−SA − kAR,+SC − kradnVB (5.13)

ṅtrap = −ktrap,Rntrap + ktrapnVB − kAR,+SB

where ktrap and ktrap,R are the trapping and de-trapping rates, respectively, the kAR,± are
the positive and negative trion rates referenced above, and SA,SB,SC describe the non-linear
scaling factors of the AR pathways A-C depicted in Figure 5.6.

The scaling factors of the AR processes depend on the type of QD. The smallest particles
(2.5 nm CdSe QDs) are in the strongly confined regime, where the confinement energy
is comparable to the exciton binding energy (∼300 meV), so electrons and holes are the
fundamental quasiparticle in the kinetic model [64]. As there are three independent particles
involved in each trion pathway, the scaling factor is a cubic function of the populations [158].
Note that due to charge neutrality, the number of electrons is equal to nVB + ntrap. For
pathway A, which involves two electrons and one VB hole,

SA,conf =

(
nVB + ntrap

2

)
nVB , (5.14)

where the first term is the binomial coefficient
(
n
k

)
= n!

k!(n−k)!
. Pathway B involves one

electron, one VB hole, and one trapped hole, so

SB,conf = (nVB + ntrap)nVBntrap . (5.15)

Finally, pathway C, which involves one electron and two VB holes, has a scaling factor of

SC,conf = (nVB + ntrap)

(
nVB

2

)
. (5.16)

For the larger particles, the electrons and holes form well-bound excitons and thus they
do not interact independently. This changes the scaling factor of the AR pathways to be
quadratic rather than cubic in the populations [158]. The scaling for pathways A and C is
the number of ways to pick two valence band excitons,

SA = SC =

(
nVB

2

)
, (5.17)

while the scaling for pathway B is the number of ways to pick one valence band and one
trapped exciton:

SB = nVBntrap . (5.18)

The coupled set of equations 5.13 was solved for a given set of initial conditions using the
Gillespie algorithm, a trajectory-based Monte Carlo algorithm with variable time step [185].
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An ensemble of Ntraj =10,000 trajectories was initialized with an average VB population
⟨nVB(0)⟩ and trapped hole population ⟨ntrap(0)⟩. The average total initial number of holes
per particle ⟨nVB(0)⟩+ ⟨ntrap(0)⟩ was taken to correspond to experimental estimates of ⟨N0⟩.
Each initial population was distributed according to its respective Poisson distribution so
that the number of trajectories with an initial population of m holes in the VB/trap was
given by:

Ntraj(nVB/trap(0) = m) = Ntraj

〈
nVB/trap(0)

〉m
e−⟨nVB/trap(0)⟩

k!
. (5.19)

On any given trajectory, the populations are always integer values and the dynamic processes
are captured as discrete events. These events are chosen by a weighted stochastic process such
that the average across all trajectories reproduces the solution to the differential equations.
This average across all 10,000 trajectories was calculated as the output of the model and
shows a smooth functional form with little to no remaining stochastic noise.

The results of the kinetic model were compared to the experimental kinetics of the broad
PA feature at 710 nm via global fittings across a range of excitation fluences. As the time-
resolved data from each fluence had slightly different time steps, the data were linearly
interpolated to a set of consensus time steps that matched well with the actual time values.
This process produced no visual change in the kinetic data and made comparisons and cal-
culations significantly easier to implement. The broad PA signal at 710 nm allows the trap
population to be directly probed, however, it also presents the challenge that the proportion-
ality constant (α) between the average number of trapped holes per particle ⟨Ntrap⟩ and the
absorbance ∆A(t) at 710 nm is experimentally unknown. To fit the experimental data, the
proportionality constant α was determined on the fly for each type of QD simulated. This
was done by taking the value of ∆A(t) at an intermediate time (t = 250 ps in general) and
finding the conversion to the number of trapped holes that minimized the mean square error
between the simulated trajectory and the data across all fluences. This gave the conversion
factor as simply the arithmetic mean across all fluences of the ratios between the modeled
number of trapped holes per particle (ntrap,model) and the optical signal at the same time:

α =

〈
ntrap,model(t)

∆A(t)

〉
(5.20)

The fitting process is shown graphically in Figure 5.10. We began with the extracted AR
rates for the trion pathways, estimates of the trapping and de-trapping rates, and an estimate
of the initial population of VB holes and trapped holes for each fluence. These parameters
were used to generate candidate model kinetic traces for each fluence. The proportionality
factor between the optical signal and the number of trapped holes, α, was calculated on
the fly as described above. Comparison between the candidate simulated kinetics and the
experimentally observed kinetics then informed an update of the initial conditions and trap-
ping and detrapping rates. This update-and-comparison cycle was continued, conducting a
search over reasonable parameter space, until a satisfactory fit was established. The final
rates resulting from this procedure for each of the different particles are detailed in the Ta-
bles 5.3 below, with the associated initial hole population in VB and trap listed in Table 5.4.
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Figure 5.10: Fitting procedures of the native QD model

Table 5.3: Fitting rates for the native particle model

ktrap (ps−1) ktrap,R (ps−1) kAR,+ = kAR,- (ps
−1) krad (ps−1)

CdSe 1.4 1.25 0.0 0.00033
CdSe/CdS 0.15 1.25 0.01 0.00005

To eliminate the effects of cooling dynamics and other very short timescale processes, the
fitting started with initial conditions at a pump-probe delay of 3 ps. The rising dynamics
of the trap and valence band signals were not considered, but the rapid rise in the trap
population suggests that the rates of trapping and de-trapping are quite fast to allow for
rapid equilibration at ∼3 ps. The initial population of holes in the trap states at 3 ps is
meant to capture both direct cooling to the traps and the fast equilibration with the valence
band. As shown in Table 5.4, the total number of holes in the initial conditions obtained
from the model were found to match the estimates of ⟨N0⟩ given by experiments.

Figure 5.11 illustrates the PA signal at 710 nm of trapped holes in both native (panels
A and B) and NPTZ functionalized quantum dots (panels C and D). The population of
trapped holes in the native CdSe and CdSe/CdS QDs decays rapidly before converging to
a long-lived plateau level, which represents the single-excitonic state. Most of the trapped
holes are consumed within the first 10 ps on a timescale consistent with AR scaling laws and
matching the CB bleaching kinetics (Figure 5.12). This observation indicates that these traps
participate in AR. In contrast, for the QDs with the NPTZ hole acceptors, the population
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Table 5.4: Initial hole population for the native QD model

CdSe CdSe/CdS
⟨N0⟩ ⟨NVB⟩ ⟨Ntrap⟩ ⟨N0⟩ ⟨NVB⟩ ⟨Ntrap⟩
1.4 0.65 0.65 6.4 4.8 0.7
2.5 1.5 1.5 12 8.1 1.1
4.2 2.1 2.1 19 11.5 1.9

Figure 5.11: TA kinetic traces of the PA signals at 710 nm measured at a series of ⟨N0⟩ dis-
played for CdSe QDs with native oleate ligands (A), and with NPTZ ligands (C); CdSe/CdS
QDs with native oleate ligands (B), and with NPTZ ligands (D). The modeled kinetics of
trapped holes shown as solid lines through the data points of TA signal at 710 nm. The left
axis refers to the measured PA signal amplitude, and the right axis refers to the estimated
number of trapped holes associated with the optical signal.
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Figure 5.12: The XB decay kinetics of native CdS (A), CdSe (B), and CdSe/CdS (C) QDs
show fast Auger recombination dynamics and converge to the single excitonic signal level
within 10-100 ps. When NPTZ ligands are introduced, the XB signals of CdS (D), CdSe
(E), and CdSe/CdS (F) QDs show fluence-dependent signal levels at long delay times greater
than 100 ps due to hole trapping and hole transfer from QD to NPTZ ligands.

decay slows to timescales of 10s-100s ps, and the population plateaus at a level dependent on
⟨N0⟩. Compared to the kinetics in Figure 5.11A and B, the PA signals of QDs with NPTZ
ligands also showed maxima at later times with different amplitudes. These comparisons
indicate that the nature of the trapped holes is different from those in the native QDs. The
decay curves measured at 710 nm for CdS QDs show similar contrasts between native QDs
and QDs with NPTZ ligands.

For the native QDs, the shape of the simulated decay curve is largely governed by the
trapping and de-trapping rates, as these rates control the distribution of total hole population
into the VB and traps which determine the overall AR rates of the system. Literature results
and the observed rapid rise of the trap signal informs that the hole trapping rate in the model
should be set as faster than (1 ps)−1 [176, 186]. To globally fit the experimental data across
a range of ⟨N0⟩ and prevent excessive trapping to slow the simulated decay curves, the
de-trapping rate has to be comparable to the trapping rate, allowing the trapped holes to
establish a rapid equilibrium with the VB holes. In Figure 5.11A and B, the modeling results
of the first 100 ps using parameters fit within these constraints agree well with experimental
data. For CdSe QDs, the kinetic model estimates that the number of holes in the VB is
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comparable to the number of trapped holes, ⟨Ntrap⟩, represented by the TA signal amplitude
at 710 nm. For CdSe/CdS QDs, the majority of holes remain on the VB while only a few
holes were trapped, which is consistent with the disfavored energetics of trapping states on
CdS surface versus the energy of the CdSe VB [170]. It is important to note here that
the equilibrium model employed here focuses on the ultrafast multi-carrier dynamics on the
picosecond timescale, and much slower non-radiative and radiative events on the nanosecond
timescale are not included in the model. For a single-excitonic QD, the trapping could
become irreversible at longer timescales and cause the photoluminescence quantum yield to
decrease.

In Figure 5.11C and D, we can see that a fast equilibration between VB and trapped
holes is not consistent with the trapped hole PA signals observed in QDs functionalized
with NPTZ ligands. When the hole acceptors are present, the decay rates of trapped hole
population decrease significantly. The kinetic model for QDs with NPTZ ligands needs to
account for kinetic data of both the NPTZ+• at 650 nm and trapped holes at 710 nm. The
minimal modification of the native QD kinetic model (given in equation 5.13) needed to
capture the dynamics of hole transfer would be the addition of an NPTZ+• population (nHT)
as well as the process of hole transfer from the trap state to the NPTZ ligand (with a rate
kHT). This translates into a modified set of differential equations for the populations:

ṅVB = ktrap,Rntrap − ktrapnVB − kAR,−SA − kAR,+SC − kradnVB (5.21)

ṅtrap = −ktrap,Rntrap + ktrapnVB − kAR,+SB − kHTntrap

ṅHT = kHTntrap

However, the output trajectories of ⟨Ntrap⟩ and ⟨NHT⟩ from this coupled trap model failed
to simultaneously account for the measured kinetic traces of trapped holes at 710 nm and
NPTZ+• at 650 nm, respectively. Examples of the simulated kinetics using this coupled trap
model are illustrated in Figure 5.13. It is clear that the modeled trapped hole population
decays much faster than observed in the experimental data for NPTZ modified QDs in
Figure 5.11C-D due to fast AR and equilibration with the VB. If the VB and the traps
rapidly equilibrate, as in the native QD model, then the QD will reach a single excitonic
state on the timescale of AR. To slow down the decay of trapped hole population, we first
considered modifying the parameters of coupled model so that the de-trapping rate is much
slower than the fast trapping rate. While this modification prevented the fast loss of trapped
hole population, it resulted in the trapping of almost all holes, and subsequently the transfer
of all these holes (up to 19 in the case of CdSe/CdS core/shell QD) to the NPTZ ligands,
which significantly exceeded the experimentally measured transfer.

Careful examination of how the trapping, de-trapping, and trap AR processes affect the
modeled trap population and NPTZ+• population suggested that the trap states and VB
must be decoupled. This modification limited the number of holes that could trap, allowing
for reasonable levels of hole transfer to the NPTZ ligands. Adjusting the model to incorporate
this decoupling corresponds to setting the trapping rate ktrap, de-trapping rate ktrap,R, and
the scaling of the trapped hole AR channel SB all to zero. This decoupling allowed for
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Figure 5.13: Simulated kinetics using the coupled trap model for hole transfer show a rapid
decay in the population of trapped holes that is inconsistent with the timescales observed
experimentally. Additionally, this model does not capture the plateau of the trapped hole
population at a fluence-dependent value as seen experimentally. The initial conditions,
trapping, and de-trapping rates for the simulated kinetics shown here were taken from the
native QD model for the corresponding fluence, but the qualitative inconsistencies persist
across a large range of parameters.

the mathematical elimination of the VB population from the equations that describe hole
transfer.

In Figure 5.11C and D, the PA signal shows fluence-dependent plateau levels that last
hundreds of ps. The plateau phenomena suggest that only a fraction of the trapped holes
can be transferred to NPTZ acceptors. Therefore, the trapped hole population is further
divided into ‘active’ holes which can transfer to NPTZ, and ‘passive’ holes which are unable
to transfer during our observation time window due to kinetic barriers, such as the hole
being localized at a trap state far from a NPTZ ligand. Since the surface coverage of
NPTZ is only ∼20%, the holes trapped at sites which are not adjacent to a NPTZ ligand
would need to undergo a series of slow hole hopping events to reach NPTZ ligands, which
have been measured to occur over timescales longer than several nanoseconds [176, 187,
188]. The initial number of trapped holes, ⟨Ntrap⟩, and the fraction of active traps are fitting
parameters for the model. The fraction of active traps falls around 50%, and is held constant
across excitation fluences to allow for the model to capture the plateau levels. The simplified
equations that describe the populations in the decoupled hole transfer kinetic model are:

ṅtrap,active = −kHTntrap,active (5.22)

ṅHT = −kHTntrap,active

These equations describe simple exponential transfer from the active trap sites to the NPTZ
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Table 5.5: Initial hole populations for the decoupled trap hole transfer model

CdSe CdSe/CdS
⟨N0⟩ ⟨Ntrap,active⟩ ⟨Ntrap,passive⟩ ⟨NVB⟩ ⟨N0⟩ ⟨Ntrap,active⟩ ⟨Ntrap,passive⟩ ⟨NVB⟩
0.5 0.12 0.19 0.19 2.5 0.45 0.25 1.80
1.4 0.34 0.50 0.56 6.3 0.72 0.40 5.18
2.6 0.51 0.75 1.34 12 1.07 0.60 10.33
4.4 0.64 0.94 2.82 19 1.35 0.75 16.90

molecules. ntrap,active is the number of transferable holes in a QD. The sum of the number of
passive holes, ntrap,passive, and ntrap,active equals the total number of trapped holes, ntrap, in the
decoupled model. The population in the hole traps could be populated at early time directly
by cooling of hot holes or Auger-assisted trapping. The model does not consider the early
time dynamics and starts to fit the deconvoluted kinetic data at t = 5 ps. The simultaneous
fits of NPTZ and trapped hole populations shown in Figures 3 and 5 of the main text illustrate
the general agreement between the timescale of hole transfer and the loss of trapped hole
population. The modeled trap population, however, does deviate from experiment for lower
fluences and early times. This is likely because this completely decoupled model simplifies
the kinetics without considering any AR events involving hole traps or processes such as the
continued trapping of AR-generated hot holes.

The procedure for fitting is shown graphically in Figure 5.14. The hole transfer rate con-
stants from de-coupled surface trap states to the NPTZ ligand were extracted from the data
of the first 100 ps of the lowest ⟨N0⟩ for each of the three types of QDs (black kinetic traces
in Figure 5.8A-C) with a single exponential functional form. The obtained rate constants
are (31±3 ps)−1, (73±20 ps)−1, and (27±2 ps)−1 for CdSe, CdSe/CdS, and CdS QDs, re-
spectively. The remaining fitting parameters were the initial populations of the active traps,
⟨Ntrap,active⟩, and passive traps, ⟨Ntrap,passive⟩. The sum of the two trapped hole populations
is the total average number of trapped holes per QD, ⟨Ntrap⟩. The difference between ex-
perimentally measured ⟨N0⟩ and the initial value of ⟨Ntrap⟩ is assigned to the average initial
number of holes in VB, ⟨NVB⟩, which does not affect fittings in the decoupled model. The
initial number (at t = 5 ps) of ⟨Ntrap,active⟩ could be inferred to be approximately equal to the
maximum of the observed ⟨NHT⟩, the experimentally determined number of holes transferred
per QD. Then the portion of holes in passive traps was adjusted such that the long-time
plateaus in the hole PA signal matched the model. For the CdSe QDs 40% of trapped holes
were allowed to transfer, while for the core/shell CdSe/CdS QDs 65% of trapped holes were
allowed to transfer. These values were determined by adjusting the initial conditions until
a satisfactory fit was found through an update-and-compare cycle similar to that described
above for the native QDs. The output trajectories of ⟨Ntrap⟩ and ⟨NHT⟩ were simultaneously
fit to the measured kinetic traces of trapped holes at 710 nm and NPTZ+• at 650 nm, re-
spectively, using conversion factor α determined on the fly. The initial populations of the
model found by the fits are collected in Table 5.5.
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Figure 5.14: Fitting procedures of the hole transfer model of QD-NPTZ system

Simulating transfer using this model shows good agreement with the hole transfer dynam-
ics on CdSe and CdSe/CdS QDs as short time transfer is not significant for these particles.
The modeling of the CdS QDs is more difficult, because the significant contribution of short
time transfer means that the trap-mediated mechanism cannot account for the full dynamics
of hole transfer in this system and other pathways such as direct transfer from VB can also
be important.

The long-lived charge carriers are important for improving the efficiency of multi-excitonic
hole transfer. The overall results here demonstrate that, in general, QDs with longer AR
lifetimes and faster hole transfer rates are preferred for promoting rapid hole transfer un-
der multi-excitonic conditions. However, the observed fluence-dependence of intermediate
timescale transfer suggests that the AR kinetics can be circumvented by the long-lived trap-
ping of multiple holes. The failure of the coupled model indicates that the trapped holes
in QDs with NPTZ ligands are kinetically de-coupled from the VB. It is possible that hole
accepting ligands such as NPTZ alter the energy levels of trapping sites of native QDs or
create new trapping sites as they replace the oleate ligands on QD surface. Previous work on
hole accepting ligands has shown that their attachment to QDs can produce surface states
that are localized toward these ligands [171]. These new trapping states could also be unable
to participate in the VB-trap AR channel because their wave function becomes much more
separated from carriers in CB and VB states than traps in native QDs, therefore effectively
acting as a charge-separated state.

The fitting lines in Figure 5.8 and Figure 5.11, using fitting parameters consistent with
both NPTZ+• and trapped hole PA data, show that the decay of the trapped hole population
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within the first 250 ps can be largely accounted for by the rise of the NPTZ+• population
across various excitation fluences. In the modeling of these NPTZ modified systems, the
valence band and the traps are assumed to be completely decoupled. There may, however,
still be some level of de-trapping or AR occurring at reduced rates compared to the native
QDs, which may account for some of the discrepancies between model and experimental
kinetics. For instance, in the case of CdSe with ⟨N0⟩ = 4.4, the simulated decay of trapped
holes in Figure 5.11C clearly causes the simulated growth of NPTZ+• population in Figure
5.8B to largely miss the experimental trace, suggesting that some trapped holes could be
annihilated by AR without transferring to the NPTZ. Nevertheless, the de-coupled nature
of the simplified model captures the major features of the observed decay kinetics and shows
large contrast to the coupled model that describes native QDs. This kinetic model allowed
us to identify long-lived trapped holes as the reservoir of carrier responsible for the observed
fluence dependent hole transfer at intermediate times. Trapping a large number of holes at
early times can then be a key to achieving high HTQYs under multi-excitonic conditions, as
the holes in these de-coupled trapping states have long lifetimes. In the CdSe and CdSe/CdS
QDs studied here, the model suggests that the number of holes trapped is yet only a small
fraction of ⟨N0⟩, resulting in the limited HTQY.

5.5 Conclusion

In summary, we have applied ultrafast TA spectroscopy to examine the hole transfer dynam-
ics from three types of cadmium chalcogenide QDs to NPTZ ligands under multi-excitonic
conditions. The results indicate that the transfer of multiple holes from QDs to molecular
acceptors at short times is possible when the hole transfer rate and AR rate are compara-
ble. Furthermore, the hole transfer mediated by trapping states occurs on the timescale of
10s-100s ps, much longer than the AR lifetimes of the QDs studied here. The determination
of these AR lifetimes and channels through the semiemperical pseudopotential method in-
formed the modeling of the kinetics data which suggested a two-stage transfer mechanism.
First, holes can directly transfer to NPTZ ligands under the short lived multi-excitonic
state. Next, multiple irreversibly trapped holes in the de-coupled trapping states with long
AR lifetimes can gradually transfer charge to acceptors. The results here suggest that care-
ful engineering of hole trap states both in number and kind is required in order to achieve
effective hole transfer over non-radiative recombination events when QDs are operating in
the multi-excitonic regime.
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Chapter 6

Defects and Carrier Recombination in
Black Phosphorous

While the preceding chapters have focused on developments using the semiempirical pseu-
dopotential method to understand the atomistic details of nanomaterials, there is also a
important place for ab-inito methods such a density functional theory (DFT) to contribute.
In particular when the configuration of particular structural defect needs to be determined
in detail, and the relevant structure is small enough to be computationally tractable, such
an ab-inito method can replace the force fields used to determine the optimized structures
such as in Chapters 4 and 5.

In this chapter we use ab-initio DFT calculations along with kinetic modeling to under-
stand carrier recombination in few-layer black phosphorous (BP). Spectroscopy reveals that
the mechanism of recombination in these materials evolves from excitionic-dominated to free
carrier-dominated as the thickness of the material increases. The kinetic modeling reveals
weak Auger recombination and surface recombination effects, and the DFT calculations con-
firm that this low surface recombination is due to the benign nature of oxygen defects on
the surface of BP. Several types of oxygen defects are studied and are found to not create
mid-gap trap states. This highlights the potential of BP materials in optoelectronic device
applications. The content of this chapter is adapted with permission from Higashitarumizu,
N., Uddin, S.Z., Weinberg, D. et al. Anomalous thickness dependence of photoluminescence
quantum yield in black phosphorous. Nat. Nanotechnol. 2023 18, 507–513.

6.1 Introduction

Carrier recombination in very thin layers of van der Waals (vdW) semiconductors such
as monolayers of transition metal dichalcogenides (TMDC) are excitonic due to reduced
Coulomb screening and have been extensively studied [189, 190]. However, exciton to free-
carrier transition in these semiconductors is difficult to study as they become indirect with
increasing thickness [191]. In contrast, the dominant optical transition in black phosphorus
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(BP) remains directat all thicknesses due to the strong interlayer electronic state coupling
[192, 193]. Moreover, BP has shown tremendous technological potential in mid-infrared
detection and emission [194–198]. BP therefore provides an ideal platform to explore how the
recombination mechanism evolves from excitonic to free-carrier nature in a semiconductor.
Here we explore the room temperature photoluminescence (PL) quantum yield (QY), a key
metric of optoelectronic performance that directly dictates the maximum device efficiency,
with BP thickness from monolayer to the bulk limit. We find that, at the same level of defect
density, larger exciton binding energy leads to more light emission and monolayer BP has
the highest PL QY. This corroborates past findings in monolayer TMDCs, where excitons
can recombine completely radiatively [189, 199].We also observe that surface recombination
velocity in black phosphorus is two orders of magnitude lower than passivated silicon; the
most electrically inactive surface known to modern semiconductor industry [200]. Even when
the surface is degraded by oxygen plasma, the surface recombination rate remains unchanged.
From density functional theory calculations, we see that oxidation of BP surface does not
produce defect levels inside the bandgap, consistent with our finding that the nonradiative
surface recombination is independent of the quality of the surface.

Few layers of BP were mechanically exfoliated in nitrogen environment from bulk crystals
onto quartz substrates. Optical contrast was used to identify flakes with desired thickness
and atomic force microscopy was then used to measure layer thickness [197, 201]. Photolu-
minescence spectra shown in Figure 6.1A highlights a thickness-dependent optical bandgap
ranging from 1.75eV for a monolayer to 0.3eV for bulk BP. A large change in optical bandgap
is observed with thickness for up to six layers of BP(Figure 6.1B), beyond which the bandgap
redshifts very slowly with thickness (Figure 6.1B inset). A similar dichotomy is also present
in the exciton binding energy curated from the experimental and theoretical works in the lit-
erature (Figure 6.1C). Up to five layers the exciton binding energy is larger than the average
room temperature thermal energy, and the photogenerated carriers will be excitons. Above
five layers the binding energy falls below the thermal energy, so photogenerated electron-hole
pairs will thermalize and relax as free carriers.

6.2 Steady State Modeling of Carrier Recombination

We first explore the radiative excitonic recombination in black phosphorus. PL spectra
of monolayer BP is shown in Figure 6.2A with different generation rates. The PL peak
positions for one to five layers of BP do not show any change with generation rate, indicating
absence of photodegradation (Figure 6.2B). Calibrated PL QY of BP measured in nitrogen
environment decreases drastically from monolayer to five layers at a generation rate of 3.6×
1026 cm−3s−1 (Figure 6.2C). PL QY at different generation rates from monolayer to five
layers are shown in Figure 6.2D. We note that the monolayer has the largest PL QY in
this range. Large exciton binding energy in monolayers leads to strongly-bound, robust
excitons in phosphorene which then recombine radiatively. We also do not observe any
signature of exciton-exciton annihilation that plagues other excitonic materials, as illustrated
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Figure 6.1: (A) Normalized photoluminescence spectra of black phosphorus from monolayer
to bulk. (B) Optical Bandgap at different thicknesses, PL peak redshifts slightly with increas-
ing thickness at large thicknesses too. (C) Excitonic binding energy at different thicknesses
shows excitonic to free-carrier transition. Thermal energy kT at room temperature is shown
where k is the Boltzmann’s constant and T is the temperature.
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Figure 6.2: (A) PL spectra of monolayer black phosphorus at different generation rates. (B)
PL peak position as a function of generation rate and thickness. (C) PL QY at a generation
rate of ∼ 3.6× 1026 cm−3 s−1 for different thickness. (D) PL QY as a function of generation
rate for different thicknesses.

in Figure 6.2B. Both facts are reminiscent of monolayers of transition metal dichalcogenides
(TMDC), where strongly -bound excitons can recombine completely radiatively despite the
presence of large native defect density [189, 194]. PL QY drastically decreases at all pump
when BP thickness is increased (Figure 6.2D). Such decrease with thickness is also observed
in semiconducting TMDC monolayers and generally has been attributed to the dominance of
the indirect transition when thickness is increased beyond monolayer. However, BP remains a
direct band gap material when thickness is increased, therefore the observed PL QY decrease
with thickness arises from an increase in screening and the decrease in exciton binding
energies. As all of these layers are sourced from the same bulk material, our results show
that for the same level of defect density, increasing binding energies can lead to increasing
radiative recombination.

Before we investigate radiative free-carrier recombination in black phosphorus we first
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discuss carrier recombination in conventional free-carrier semiconductors. A nonequilib-
rium population of electron and holes can relax in a conventional semiconductor mainly
through four different pathways: Shockley-Read-Hall (SRH), surface, bimolecular radiative,
and Auger recombination. The generation rate G in steady state is balanced by the rates of
all of all the recombination channels; for the case of a semiconductor with low background
doping:

G =

(
A+

2S

d

)
n2 − n2

i

n
+B(n2 − n2

i ) + 2Cn(n2 − n2
i ) , (6.1)

where n is the carrier concentration, ni is the intrinsic carrier concentration, d is the semicon-
ductor thickness, and A, B, C and S are the SRH, radiative and Auger recombination coeffi-
cients, and surface recombination velocity (SRV), respectively. Photoluminescence quantum
yield (QY) is calculated according to a standard ABC recombination model as:

QY =
B(n2 − n2

i )

G
. (6.2)

Defect-mediated nonradiative SRH recombination, and surface recombination dominate
at low generation rates and lowers the QY. Nonradiative Auger recombination dominates
and lowers QY at high generation rates. The surface recombination rate depends inversely
on the semiconductor thickness. Contrary to the excitonic regime, PL QY of BP increases
when thickness is increased in the free-carrier regime (Fig. 6.3A). We do not observe a com-
mon QY roll-off at all thicknesses at low generation rates, so the SRH process is negligible
(A ≈ 0). We note a thickness dependent QY roll-off at low generation rates, which is indica-
tive of surface recombination (S ̸= 0). A thickness independent QY roll-off is observed at
high generation rates, therefore the Auger process in thick BP is insensitive to the thickness
(C ̸= 0,∂C

∂d
≈ 0). The radiative bimolecular recombination coefficient B of BP was exper-

imentally measured employing the Shockley-van Roosbroeck relation and is comparable to
other reports in the literature. The surface recombination velocity and Auger coefficient are
fitted with the available data using the theoretical expression of QY (Figure 6.3B). Note
that, the experimental data of all different thicknesses form an overdetermined overcomplete
system for two thickness-independent parameters: C and S, and no other combination of
values leads to a fit.

Now we can summarize carrier recombination in BP (Fig. 6.3C). At the monolayer limit,
excitonic recombination leads to bright luminescence. At the intermediate thickness, QY is
low due to surface recombination. At large thicknesses, only Auger recombination limits the
QY. Our model can be further modified to include excitons. As excitons are formed from
and dissociate into electron and holes, the exciton and carrier concentration are related by:

nX

n2
= KXe

Eb/kT (6.3)

where Eb is the exciton binding energy and KX is the pre-exponential Arrhenius factor. The
generation rate can be written as

G =
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i ) (6.4)
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Figure 6.3: (A) Experimental PL QY vs generation rate for different thickness black phos-
phorus. (B) Dominant recombination pathways active in black phosphorus with different
thickness. (C and D) PL QY as a function of generation rate for select and all thicknesses
from theoretical model.
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The simulated QY vs. generation rate at all thicknesses are shown in Fig. 6.3D which
captures the essential features observed in the experiment.

6.3 Modeling Surface Defects

We observed a surface recombination velocity of (7±2)×10−3 cm/s and an Auger coefficient
of (6 ± 1) × 10−43 cm6/s for BP. The Auger coefficient is consistent with other reports on
the literature [202], although no work has reported the surface recombination velocity. The
observed SRV is two orders of magnitude lower than passivated silicon: the most electrically
inactive surface known to modern semiconductor industry (Fig. 6.4A). Such extraordinarily
low SRV indicates that BP surface is naturally passivated as far as nonradiative recombina-
tion is concerned and could originate from the BP oxide that forms on the BP surface or
its van Der Waals nature. Generally, in covalently bonded semiconductors dangling bonds
at the surface introduce electronic energy levels inside the normally forbidden gap, referred
to as surface or interface states. Such states greatly enhance nonradiative electron–hole
recombination at the surface by acting as steppingstones for transitions between the con-
duction and valence bands. Since each recombination event at the surface requires precisely
one electron and one hole, as well as an interface state, surface passivation in conventional
semiconductors have two fundamental avenues: either reduce the number of interface surface
states, or reduce the concentration of one or other carrier at the surface.

Ab initio density functional theory (DFT) calculations support the conclusion that the
BP surface is naturally passivated and resistant to the formation of in-gap defect states from
surface oxidation. DFT calculations were carried out using the Quantum Espresso [135–
137] package, using the PBE form of the general gradient approximation to the exchange-
correlation energy [203] with Grimme-D2 [204] dispersion corrections, which have been shown
to sufficiently describe oxygen defects in black phosphorous systems [205]. Core electrons for
both oxygen and phosphorous were described using the optimized norm-conserving Vander-
bilt pseudopotentials [206] obtained from pseudoDojo [207]. The wavefunctions and electron
densities were represented in a plane-wave basis with cutoffs of 65Ry and 520Ry, respec-
tively and the Brillion zone was sampled using a 4x3x1 Monkhorst-Pack (MP) grid [208].
Optimized geometries and lattice parameters for pristine black phosphorous as well as black
phosphorous with bridging and terminal oxygen defects were obtained for monolayer through
4 layer systems consisting of a 3x3x1 supercell with over 2nm of vacuum in the out-of-plane
direction to avoid interactions with periodic replicas. Forces were minimized to less than
0.001 eV/Åand pressures to less than 0.5 kbar. Using the converged densities at the optimal
geometries, band structures were calculated along the path connecting the high symmetry
points Gamma-X-M-Y-Gamma. The density of states was calculated using the tetrahedron
method [209] using a finer 16x12x1 MP grid. Our calculations examine bridging and terminal
oxygen defects on the surface of few-layer black phosphorous (Fig. 6.4B and 6.5A-C), which
past work has shown to be the thermodynamically stable oxygen defects in phosphorene.
[205] The calculated densities of states show, consistent with other studies [205, 210], that
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Figure 6.4: (A) Surface recombination velocities (SRV) of different semiconductors with
bandgap. (B and C) Schematic crystal structure and DOS for four layer BP: intrinsic, and
with a terminal oxide and bridging oxide atom. (D) Auger coefficient of different semicon-
ductors with bandgap.
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Figure 6.5: Band structures were calculated for pristine black phosphorous (a), black phos-
phorous with a terminal oxygen defect (b) and black phosphorous with a bridging defect (c)
for a number of layers n=1,2,3,4. Shown are the DFT band structures (d) and electronic
density of states (e) for the optimized atomic positions for the native system (black), the
terminal oxide (red), and the bridging oxide (green) for n=2. These reveal a slight opening
of the band gap but no significant modification of the bands or electronic density of states.
This band gap modification becomes less pronounced with additional layers (f).

these defects do not form electronic states within the bandgap (Fig. 6.5D) and that a slight
broadening opening of the bandgap occurs with oxidation (Fig. 6.4C). This opening of the
bandgap is seen to decrease with the number of layers. (Fig. 6.5F). The small energy scale
of this band opening, and the fact that any oxide layer is spatially much thinner than the
electron Bohr radius, lead us to conclude that the primary reason of low SRV must be from
the lack of interface surface electronic states and not due to the exclusion of carriers from
the from wide wider bandgap oxide at the surface.

Auger recombination is typically pronounced in small bandgap semiconductors, however
in BP the observed Auger coefficient is also low compared to other semiconductors (Fig.
6.4D). This originates from the relationship between the empirical ratio of the Auger lifetime
(τa) to the radiative lifetime (τr) and the bandgap (Eg), which is given by:

τa
τr

∝ exp

(
m∗

e

m∗
h +m∗

e

Eg

kT

)
, (6.5)

where m∗
e and m∗

h are the effective masses of electrons and holes, respectively. As electrons
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and holes have similar effective masses in BP, the effective mass ratio is much higher than
that of other small-bandgap semiconductors and results in suppressed Auger recombina-
tion. The effect of low Auger recombination is readily observed experimentally comparing
electroluminescence and photoluminescence of BP with that of other small-bandgap semi-
conductors in the high-injection regime. Note that, the expression for Auger lifetime above
is overly simplistic and further calculations that consider the total band structures are nec-
essary. As a consequence of BP oxide being inactive for carrier recombination, the surface
can be intentionally damaged without sacrificing optoelectronic quality. We used atomic
force microscope (AFM) amplitude and phase maps to examine a 54.2 nm thick BP surface
after exfoliation, three, and ten seconds of O2 plasma. As cleaved surface shows atomically
flat surface. The AFM phase contrast depends on the tip–sample energy dissipation, which
can change with surface properties [211, 212], thus the uniform phase image guarantee the
pristine BP feature. Just in three seconds, small islands were formed indicating a localized
oxidation on BP surface. Above ten seconds the surface morphology becomes smooth again
suggesting a complete surface oxidation. Although we can see partial and complete oxidation
of the surface after plasma treatment, we do not see any effect on the PL QY. Such insen-
sitivity of surface recombination to the surface quality in a nanometer thick flake is indeed
striking. Even with the harsh oxidation with plasma treatment, the interface between BP
and BP oxide can be steep due to a layer-by-layer oxidation as reported before [213]. We
also have observed this insensitivity on other thicknesses.

6.4 Conclusion

In conclusion, we have explored radiative recombination in BP when the nature of recombi-
nation varies from excitonic to free carrier. We found that at similar defect density excitonic
BP has the highest luminescence efficiency. We also observed lowest surface recombination
velocity in BP due to oxidation not creating defect levels inside the bandgap, an observation
confirmed by ab-initio DFT calculations. In the future, photonic patterning of BP surface to
enhance light outcoupling and integration with photonic circuits becomes possible as surface
quality does not determine optoelectronic quality. By expanding upon our approach, surface
recombination in other van der Waals system could also be explored.
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Chapter 7

Summary

In this dissertation we explored the optical and electronic properties of a wide variety of
semiconductor nanomaterials in atomistic detail. We expanded the semiempirical pseudopo-
tential method the lead halide perovskite materials, incorporating the effects of spin-orbit
coupling and lattice distortion. We additionally use these atomistic methods to understand
the excited state dynamics of diverse nanomaterial systems including core/shell quantum
dots and 2D black phosphorous.

We developed a formulation of the semiempirical pseudopotential method that includes
the effects of spin-orbit coupling and other non-local terms in the potential. We showed how
using a separable form for these non-local terms reduces the computational cost while making
a small controlled approximation. This was crucial to our ability to study nanomaterials of
experimentally relevant sizes. We applied this method to lead halide perovskite nanocrystals,
promising materials for LEDs, quantum light sources, and other diverse aplications that are
known for their strong spin-orbit coupling. The atomistic study of these systems allowed for
an understanding of how distortion of the nanocrystal structure impacted the exciton fine
structure, determining that contrary to some suggestions the ground state exciton is a dark
state.

The results of atomistic electronic structure methods also aided in developing kinetic
models of excited state species in a variety of nanomaterials. The dynamics of the transfer
of holes from muti-excitonic CdSe and CdS NCs was explored as a competition between
transfer, trapping, and non-radiative Auger recombination (AR). Pseudopotential calcula-
tions provided crucial insight in the AR rates and how those were impacted by the presence
of trapped species. A similar kinetic model describing carrier recombination in few-layer
black phosphorous was informed by density functional theory calculations of surface oxygen
defects which revealed a remarkable insensitivity to surface oxidization.

This dissertation shows both the expansion of the semiemperical pseudopotential method
and the application of the method among others to inform studies of material properties and
design principles. The combination of theoretical development and experimental collabo-
ration shows the utility of these models to solve practical problems of scientific import.
By expanding the applicability of these methods to new materials, these detail atomistic
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calculations can now be applied to even more experimentally relevant systems.
Future work on this topic might expand on the perovskite model by better incorporat-

ing the effects of the lattice. In this work we focus on static lattice distortion in a single
minimized configuration, however this does not fully capture the impact of the perovskite
lattice. Electronic excitation will couple to the lattice causing significant polaronic effects.
Incorporating those into the model will require expanding on the work of Jasrasaria on
exciton-phonon coupling in nanomaterials [54]. This may be complicated as the perovskite
structures fluctuate much further from their equilibrium positions than the III-V or II-VI
semiconductors do.

A model of exciton-phonon coupling in perovskites could also allow for the resolution
of the questions around the temperature dependence of the radiative rates that led to the
proposition of a bright excitonic ground state. The rate at which the exctions cool to their
ground states, and the temperature dependent structure of the NCs may pay important
roles which our current model is unable to resolve. Future work in this direction will require
a more sophisticated model of how the pseudopotential should vary with lattice distortion
which may require parameterization from a large dataset of ab initio calculations at various
geometries, including defects. Uncovering the atomistic dynamics of excitations in these
systems may pave the route towards more fully understanding the incredible defect tolerance
of perovskites.
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