
UC Irvine
UC Irvine Previously Published Works

Title
Nonequivalence of the One-Channel ND Equations with Inelastic Unitarity and the 
Multichannel ND-1 Equations

Permalink
https://escholarship.org/uc/item/9vr6v7qb

Journal
Physical Review Letters, 14(8)

ISSN
0031-9007

Authors
Bander, Myron
Coulter, Philip W
Shaw, Gordon L

Publication Date
1965-02-22

DOI
10.1103/physrevlett.14.270

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9vr6v7qb
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


VOLUME 14, NUMBER 8 PHYSICAL REVIEW LETTERS 22 FEBRUARY 1965

NONEQUIVALENCE OF THE ONE-CHANNEL N/D EQUATIONS

WITH INELASTIC UNITARITY AND THE MULTICHANNEL Nn-1 EQUATIONS 

Myron Bander*
Stanford Linear Accelerator Center, stanford University, stanford, California 

and
Philip W. Coultert and Gordon L. Sha wt

Institute of Theoretical Physics, Department of Physics, stanford University, stanford, California 
(Received 28 December 1964) 

Consider a partial-wave elastic-scattering
amplitude1 for two spinless particles of equal
mass, M, as a function of s = 4(k 2 + M2): 

the Frye-Warnock equations2•3 

2r,(s) 
1 + r,(s) ReN(s)

A =-4-(s-1} =-4-(�2i<'.i -1) =B + RA (1)2zp 2ip ' = B(s) + .! r 00 [B(s ')-B(s) ]2p(s ') ReN(s ')ds I 

rr)sE
(s'-s)[l+r,(s')] '

where pis a kinematical factor and the "gen­
eralized potential" B is regular in the physi­
cal region, whereas RA has cuts only for s 
>4M2 sssE. The inelastic partial-wave cross
section ar

l is determined by 7/ alone:

l 2 2 a =rrk (21+1)(1-71 ).
r 

(2)

Given B and 7/, we can determine A ssN /Dusing
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B(s) = B(s) +f f oo [1-T/(s') ]ds'
1T s 1 2p(s )(s '-s) '

D(s) = 1 _ E_ f 00 2p(s ') ReN(s ')ds' 
rr s E (s '-s )[ 1 + r,(s ')]

. 2p(s) -z 1 + r,(s) ReN(s )0(s-s E),

l-7/(S) ImN(s) = 2p(s) ReD(s)0(s-s} (3)



VOLUME 14, NUMBER 8 PHYSICAL REVIEW LETTERS 22 FEBRUARY 1965

[in addition to the usual left-hand cut in N(s)],
where sr is the lowest inelastic threshold. On

the other hand, consider a set of coupled two-
body channels with potentials 8;&. The ampli-
tudes

(4)

Then

A . . = g. (D ') ./s + m,
sg zk kg

q(I-q') = p,p, ~A„('8(s-s,),

1 (s, +m)'" (s .-s)'"
Z

(p i/2+i 2(s. +m}"2 s+m s+m
2

(6)

A. =(S..-6. .)
1

ij ij ij 2i(pp)'"

may be determined by the multichannel ND

formalism from the B;&. Now take Byy and q
determined from the lA~& t' and calculate A

from (3).'
The purpose of this note is to demonstrate

by a simple example that the solution A is not
in general equal to A». ' We find in our sim-
ple two-channel example described below that
a sufficient condition for the two amplitudes
A [calculated from (3)] and A» (calculated by
the multichannel ND ' equations) to be identi-
cal is that the diagonal forces B» are not strong
enough to produce bound states in channel 2 in
the absence of coupling between the channels.
As one increases the strengths for the B» be-
yond the value necessary to produce binding,
complex-conjugate pairs of zeros in S» move
onto the physical sheet through the inelastic
cut (s &SI). The two calculations then disagree.
Thus the physical situation in which we have a
8» strong enough to produce a bound state in
channel 2 and then weakly couple it to the open
channel 1 to produce a narrow resonance in A»
cannot be reproduced in the one-channel cal-
culation (3). In addition, we demonstrate that,
in our simple example, there are no poles of
the S matrix on the physical sheet for complex
values of s. (There did occur "ghost" poles
on the negative real axis for some values of
the 8;&, in which case A» and A disagree. How-
ever, we disregard these unphysical situations. )

In order to carry out a substantial amount
of the calculations analytically, we consider
a two-channel nonrelativistic s-wave [p; = (s
-s;}'"]system with the input (symmetric) B
given by a single pole

B, . =g. ./(s+m).
U U

The procedure is as follows: For given g; and

m, calculate A» and q from (5). Then using
B„and q as input we calculate A from (3) and
compare it with A„. [The integral equation (3)
for ReN(s) is solved numerically by the matrix
inversion technique. ) The next step in the pro-
gram is to locate the zeros and poles of S»
=2ipyA»+1. This problem is easily reduced
to solving a quartic equation in the variable
(s-s,)'"; the same equation gives both zeros
and poles of S» as a function of the three g~

's
for a given input pole position m. After solving
for the roots, we determine whether they cor-
respond to poles or zeros of S» on the physi-
cal sheet [where Im(s-s, )'"& 0 and Im(s-s, )"'
& 0] by putting these values back into the ex-
pression for S». We find that there are no

poles in S» on the physical sheet for complex
values of s.

Now for given g» and &12 take g22 small; then
we find from our numerical calculations that
A„agrees with A as calculated from (3). In-
crease g». For all g» & some value g»(g», g»,
m) & 2(s, + m)'" (the value for which channel 2

in the absence of coupling to channel 1 develops
a bound state), the two amplitudes A» and A

disagree. Returning to the location of the ze-
ros in S», we find that g» corresponds to the
value for which a (double) zero in S» occurs
along the real axis above the inelastic thresh-
old, i.e., q for some s & s2 is equal to zero.
We see for this situation that the integral equa-
tion (3) for ReN is no longer Fredholm. For
g,2 &g22(g„,g„,m), a pair of zeros in S„(at
complex-conjugate points) move from the real
axis onto the physical sheet.

We investigated in great detail the case g»
= 0, i.e., no left-hand cut in channel 1. In this
case the Ball-Frazer' representation is appli-
cable: We write a dispersion relation for the
phase shift in channel I (which is valid when
the S matrix has no zeros on the physical
sheet):

(6)
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}„,P t 1nq(s')ds'
1 2v (s —s )1/2(s —s)S2 1

In addition, we note that the quartic equation
for the zeros in S» reduces to a cubic. We
f ind that in all cases (g» = 0) that both one-chan-
nel calculations (3) and (6) for A agree. They
both break down and disagreev with the two-
channel A» when zeros in S» appear on the
physical sheet, coming through the inelastic
cut. It is clear that A as calculated from (6)
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will disagree with Au then, since zeros in Su
amount to cuts in o which are not taken into
account by ( 6). 

The appearance of zeros (at a and a*) of Su
on the physical sheet through the inelastic cut
will also cause the Froissart8 one-channel N /D

formalism to disagree with A
11

• He introduces

_ [ 
i(s-s1

) 1 '2 f 00 ds'lm7(s') ] R-exp -
1T (s'-s )ll2(s'-s) ,

s1 
1 

and notes that R-1s satisfies elastic unitarity.
However, R is not unique since we could mul­
tiply it by the factor

- [a-i(s-s,)1'2 ][a*-i(s-s1)112 ]
G- [a+ i(s-s

1
)1l2 ][a* + i(s-s 

1
>112 ].

This would presumably bring the one-channel
calculation in agreement with the multichan­
nel one. The G factor is clearly related to
specifying the Castillejo-Dalitz-Dyson ambi­
guity.9

In summary, we found in our simple example
that a sufficient condition for the one-channel
calculation (3) to agree with the multichannel
amplitude A u 

is that the diagonal forces in the
channels not explicitly considered should not
be strong enough to produce bound states in
the absence of coupling to channel 1.10 We spec­
ulate that this condition will hold in general.

It would be of interest to investigate more com­
plicated examples, in particular, more com­
plicated input "potentials" B and systems with
more than two channels.

We would like to thank Professor M. Nauen­
berg for helpful discussions. 
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