UC Irvine

UC Irvine Previously Published Works

Title

Nonequivalence of the One-Channel ND Equations with Inelastic Unitarity and the Multichannel ND-1 Equations

Permalink
https://escholarship.org/uc/item/9vr6v7qb

Journal

Physical Review Letters, 14(8)
ISSN
0031-9007

Authors

Bander, Myron
Coulter, Philip W
Shaw, Gordon L

Publication Date

1965-02-22

DOI
10.1103/physrevlett. 14.270

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0

Peer reviewed

NONEQUIVALENCE OF THE ONE-CHANNEL N / D EQUATIONS WITH INELASTIC UNITARITY AND THE MULTICHANNEL $N D^{-1}$ EQUATIONS

Myron Bander*

Stanford Linear Accelerator Center, Stanford University, Stanford, California
and
Philip W. Coulter \dagger and Gordon L. Shaw \dagger
Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California
(Received 28 December 1964)

Consider a partial-wave elastic-scattering amplitude ${ }^{1}$ for two spinless particles of equal mass, M, as a function of $s=4\left(k^{2}+M^{2}\right)$:

$$
\begin{equation*}
A=\frac{1}{2 i \rho}(S-1)=\frac{1}{2 i \rho}\left(\eta e^{2 i \delta}-1\right)=B+{ }^{R} A, \tag{1}
\end{equation*}
$$

where ρ is a kinematical factor and the "generalized potential" B is regular in the physical region, whereas R_{A} has cuts only for s $>4 M^{2} \equiv s_{E}$. The inelastic partial-wave cross section σ_{r} is determined by η alone:

$$
\begin{equation*}
\sigma_{r}^{l}=\pi k^{2}(2 l+1)\left(1-\eta^{2}\right) . \tag{2}
\end{equation*}
$$

Given B and η, we can determine $A \equiv N / D$ using
the Frye-Warnock equations ${ }^{2,3}$

$$
\begin{aligned}
& \frac{2 \eta(s)}{1+\eta(s)} \\
& \quad \operatorname{ReN}(s) \\
& \quad=\bar{B}(s)+\frac{1}{\pi} \int_{s_{E}}^{\infty} \frac{\left[\bar{B}\left(s^{\prime}\right)-\bar{B}(s)\right] 2 \rho\left(s^{\prime}\right) \operatorname{ReN}\left(s^{\prime}\right) d s^{\prime}}{\left(s^{\prime}-s\right)\left[1+\eta\left(s^{\prime}\right)\right]},
\end{aligned}
$$

$$
\bar{B}(s)=B(s)+\frac{\mathrm{P}}{\pi} \int_{s_{I}}^{\infty} \frac{\left[1-\eta\left(s^{\prime}\right)\right] d s^{\prime}}{2 \rho(s)\left(s^{\prime}-s\right)},
$$

$$
D(s)=1-\frac{\mathrm{P}}{\pi} \int_{s_{E}}^{\infty} \frac{2 \rho\left(s^{\prime}\right) \operatorname{Re} N\left(s^{\prime}\right) d s^{\prime}}{\left(s^{\prime}-s\right)\left[1+\eta\left(s^{\prime}\right)\right]}
$$

$$
-i \frac{2 \rho(s)}{1+\eta(s)} \operatorname{ReN}(s) \theta\left(s-s_{E}\right),
$$

$$
\begin{equation*}
\operatorname{Im} N(s)=\frac{1-\eta(s)}{2 \rho(s)} \operatorname{Re} D(s) \theta\left(s-s_{I}\right) \tag{3}
\end{equation*}
$$

[in addition to the usual left-hand cut in $N(s)$], where s_{I} is the lowest inelastic threshold. On the other hand, consider a set of coupled twobody channels with potentials $B_{i j}$. The amplitudes

$$
A_{i j}=\left(S_{i j}-\delta_{i j}\right) \frac{1}{2 i\left(\rho_{i} \rho_{j}\right)^{1 / 2}}
$$

may be determined by the multichannel $N D^{-1}$ formalism from the $B_{i j}$. Now take B_{11} and η determined from the $\left|A_{i j}\right|^{2}$ and calculate A from (3). ${ }^{4}$

The purpose of this note is to demonstrate by a simple example that the solution A is not in general equal to $A_{11}{ }^{5}$ We find in our simple two-channel example described below that a sufficient condition for the two amplitudes A [calculated from (3)] and A_{11} (calculated by the multichannel $N D^{-1}$ equations) to be identical is that the diagonal forces B_{22} are not strong enough to produce bound states in channel 2 in the absence of coupling between the channels. As one increases the strengths for the B_{22} beyond the value necessary to produce binding, complex-conjugate pairs of zeros in S_{11} move onto the physical sheet through the inelastic cut $\left(s>s_{I}\right)$. The two calculations then disagree. Thus the physical situation in which we have a B_{22} strong enough to produce a bound state in channel 2 and then weakly couple it to the open channel 1 to produce a narrow resonance in A_{11} cannot be reproduced in the one-channel calculation (3). In addition, we demonstrate that, in our simple example, there are no poles of the S matrix on the physical sheet for complex values of s. (There did occur "ghost" poles on the negative real axis for some values of the $B_{i j}$, in which case A_{11} and A disagree. However, we disregard these unphysical situations.)

In order to carry out a substantial amount of the calculations analytically, we consider a two-channel nonrelativistic s-wave $\left[\rho_{i}=(s\right.$ $\left.\left.-s_{i}\right)^{1 / 2}\right]$ system with the input (symmetric) B given by a single pole

$$
\begin{equation*}
B_{i j}=g_{i j} /(s+m) \tag{4}
\end{equation*}
$$

Then

$$
\begin{gather*}
A_{i j}=g_{i k}\left(D^{-1}\right)_{k j} / s+m \\
\frac{1}{4}\left(1-\eta^{2}\right)=\rho_{1} \rho_{2}\left|A_{12}\right|^{2} \theta\left(s-s_{2}\right) \\
D_{i j}=\delta_{i j}-g_{i j} \varphi_{i} \\
\varphi_{i}=-\frac{1}{2\left(s_{i}+m\right)^{1 / 2}}+\frac{\left(s_{i}+m\right)^{1 / 2}}{s+m}-\frac{\left(s_{i}-s\right)^{1 / 2}}{s+m} \tag{5}
\end{gather*}
$$

The procedure is as follows: For given $g_{i j}$ and m, calculate A_{11} and η from (5). Then using B_{11} and η as input we calculate A from (3) and compare it with A_{11}. [The integral equation (3) for $\operatorname{ReN}(s)$ is solved numerically by the matrix inversion technique.] The next step in the program is to locate the zeros and poles of S_{11} $=2 i \rho_{1} A_{11}+1$. This problem is easily reduced to solving a quartic equation in the variable $\left(s-s_{2}\right)^{1 / 2}$; the same equation gives both zeros and poles of S_{11} as a function of the three $g_{i j}$'s for a given input pole position m. After solving for the roots, we determine whether they correspond to poles or zeros of S_{11} on the physical sheet [where $\operatorname{Im}\left(s-s_{2}\right)^{1 / 2} \geqslant 0$ and $\operatorname{Im}\left(s-s_{1}\right)^{1 / 2}$ $\geqslant 0$] by putting these values back into the expression for S_{11}. We find that there are no poles in S_{11} on the physical sheet for complex values of s.

Now for given g_{11} and g_{12}, take g_{22} small; then we find from our numerical calculations that A_{11} agrees with A as calculated from (3). Increase g_{22} : For all $g_{22}>$ some value $\bar{g}_{22}\left(g_{11}, g_{12}\right.$, $m)>2\left(s_{2}+m\right)^{1 / 2}$ (the value for which channel 2 in the absence of coupling to channel 1 develops a bound state), the two amplitudes A_{11} and A disagree. Returning to the location of the zeros in S_{11}, we find that \bar{g}_{22} corresponds to the value for which a (double) zero in S_{11} occurs along the real axis above the inelastic threshold, i.e., η for some $s>s_{2}$ is equal to zero. We see for this situation that the integral equation (3) for ReN is no longer Fredholm. For $g_{22}>\bar{g}_{22}\left(g_{11}, g_{12}, m\right)$, a pair of zeros in S_{11} (at complex-conjugate points) move from the real axis onto the physical sheet.

We investigated in great detail the case g_{11} $=0$, i.e., no left-hand cut in channel 1. In this case the Ball-Frazer ${ }^{6}$ representation is applicable: We write a dispersion relation for the phase shift in channel 1 (which is valid when the S matrix has no zeros on the physical sheet):

$$
\begin{equation*}
\delta=-\left(s-s_{1}\right)^{1 / 2} \frac{\mathrm{P}}{2 \pi} \int_{s_{2}}^{\infty} \frac{\ln \eta\left(s^{\prime}\right) d s^{\prime}}{\left(s^{\prime}-s_{1}\right)^{1 / 2}\left(s^{\prime}-s\right)} \tag{6}
\end{equation*}
$$

In addition, we note that the quartic equation for the zeros in S_{11} reduces to a cubic. We find that in all cases ($g_{11}=0$) that both one-channel calculations (3) and (6) for A agree. They both break down and disagree ${ }^{7}$ with the twochannel A_{11} when zeros in S_{11} appear on the physical sheet, coming through the inelastic cut. It is clear that A as calculated from (6)
will disagree with A_{11} then, since zeros in S_{11} amount to cuts in δ which are not taken into account by (6).

The appearance of zeros (at α and α^{*}) of S_{11} on the physical sheet through the inelastic cut will also cause the Froissart ${ }^{8}$ one-channel N / D formalism to disagree with A_{11}. He introduces

$$
R=\exp \left[-\frac{i\left(s-s_{\mathbf{1}}\right)^{1 / 2}}{\pi} \int_{s_{I}}^{\infty}\left(s^{\prime}-s_{1}\right)^{\frac{1}{1 / 2}}\left(s^{\prime}-s\right)\right]
$$

and notes that $R^{-1} S$ satisfies elastic unitarity. However, R is not unique since we could multiply it by the factor

$$
G=\frac{\left[\alpha-i\left(s-s_{1}\right)^{1 / 2}\right]\left[\alpha^{*}-i\left(s-s_{1}\right)^{1 / 2}\right]}{\left[\alpha+i\left(s-s_{1}\right)^{1 / 2}\right]\left[\alpha^{*}+i\left(s-s_{1}\right)^{1 / 2}\right]} .
$$

This would presumably bring the one-channel calculation in agreement with the multichannel one. The G factor is clearly related to specifying the Castillejo-Dalitz-Dyson ambiguity. ${ }^{9}$

In summary, we found in our simple example that a sufficient condition for the one-channel calculation (3) to agree with the multichannel amplitude A_{11} is that the diagonal forces in the channels not explicitly considered should not be strong enough to produce bound states in the absence of coupling to channel $1 .{ }^{10}$ We speculate that this condition will hold in general.

It would be of interest to investigate more complicated examples, in particular, more complicated input "potentials" B and systems with more than two channels.
We would like to thank Professor M. Nauenberg for helpful discussions.
*Supported by the U. S. Atomic Energy Commission. \dagger Supported in part by the U. S. Air Force through the U. S. Air Force Office of Scientific Research Contract No. AF49(638)-1389.
${ }^{1}$ We use units $\hbar=c=1$.
${ }^{2}$ G. Frye and R. Warnock, Phys. Rev. .130, 478 (1963).
${ }^{3}$ P. Coulter, A. Scotti, and G. Shaw, Phys. Rev. 136, B1399 (1964).
${ }^{4}$ We consider the situation in which all the channels i have thresholds s_{i} greater than that of channel 1.
${ }^{5}$ A similar problem has been considered from a different approach by G. Chew (private communication) and E. Squires (to be published).
${ }^{6}$ J. Ball and W. Frazer, Phys. Rev. Letters 7, 204 (1961).
${ }^{7}$ Note that a numerical comparison between A_{11} and A as calculated by (6) can be made to more significant figures than the calculation (3) since (3) involves the solution of an integral equation in addition to numerical integration.
${ }^{8}$ M. Froissart, Nuovo Cimento 22, 191 (1961).
${ }^{9}$ L. Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 101, 453 (1956).
${ }^{10}$ Thus, for example, it is felt that the conclusions of reference 3 are valid.

