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Abstract

Electron-electron and electron-phonon interactions in strongly correlated systems have at-

tracted considerable attention over the last several decades. The Hubbard, Holstein and Su-

Schrieffer-Heeger(SSH) models are iconic models to capture the physics of these interactions

and explore their rich and interesting phases caused by them, i.e. Ferromagnetism (FM),

Anti-ferromagnetism (AF), Charge Density Wave (CDW), Bond Ordered Wave (BOW), Su-

perconductivity(SC) and other exotic phases. Chapter 1 gives an introduction to the physics

related to electron-electron and electron-phonon interactions. Then the paradigmatic mod-

els, the Hubbard, Holstein and SSH which describe these interactions are introduced in

Chapter 2. Some basic properties of these models are discussed as well. Then we review the

methods we use, Mean Field Theory (MFT), Determinant and Langevin quantum Monte

Carlo (QMC) to study these systems in Chapter 3. Chapter 4 and Chapter 7 consider the

effect of non-uniform hopping on a honeycomb lattice and a layered square lattice on Holstein

electron-phonon couplings. In Chapter 5, we investigate the interplay of the flat band of a

Lieb lattice and Holstein phonons. Chapter 6 considers both electron-electron and electron-

phonon interactions and explores the competition between them and possible intermediate

exotic phases. Finally Chapter 8 gives a summary and proposes some possible directions for

future research.

xv
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CHAPTER 1

Introduction

Electron-electron and electron-phonon interactions play important roles in understand-

ing the complex phases of many materials. The Hubbard (on-site Coulomb interaction U),

Holstein (phonon displacements coupled to electron density operators), and Su-Schrieffer-

Heeger(SSH) (electron hopping terms modulated by lattice distortions) models are commonly

used to study these interactions and resultant phenomena. Metallic, (anti)ferromagnetic, su-

perconducting and inhomogeneous spin & charge orders have been observed in the Hubbard

model [3] depending on the doping and onsite Coulomb interaction strength [4, 5]. The

Holstein model has been widely explored to study conventional s-wave SC transitions [6,7],

polaron physics and charge density wave (CDW) on various geometries [1, 2, 8–16], while

the SSH interaction gives rise to the bond-ordered wave (BOW) pattern on a square lattice

when the electron-phonon coupling is larger than the critical value g > gc, antiferromagnetic

(AF) order when g < gc, and interesting topological effects. The SSH model is appropriate

to describe systems like conjugate polymers [17], organic charge transfer salts [18], metal

salts [19] and CuGeO3 [20]. It would be interesting to explore the thermal phase transitions,

whether there exists a critical coupling strength (quantum critical point) to support the cor-

responding phases on different geometries, and the effects of non-uniform hopping/different

types of energy band (in the non-interacting limit) on these orders.

In this thesis, we will introduce the models, Hubbard, Holstein and SSH in Chapter 2.

Mean Field Theory (MFT), Determinant and Langevin quantum Monte Carlo methods we

use to explore these strongly correlated systems are discussed in Chapter 3.
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After this foundation, Chapters 4-7 contain materials from four published or submit-

ted manuscripts: “ Charge density waves on a half-filled decorated honeycomb lattice”, by

Chunhan Feng, Huaiming Guo and Richard T. Scalettar, Phys. Rev. B 101 (20), 205103

(2020) [10]; “Interplay of flat electronic bands with Holstein phonons”, by Chunhan Feng

and Richard T. Scalettar, Phys. Rev. B 102 (23), 235152 (2020) [13]; “Phase diagram of

the Su-Schrieffer-Heeger-Hubbard model on a square lattice”, by Chunhan Feng, Bo Xing,

Dario Poletti, Richard T. Scalettar and George Batrouni, arXiv:2109.09206 [cond-mat.str-

el] [21]; and “Charge Singlets and Orbital Selective Charge Density Wave Transitions”, by

Yuxi Zhang, Chunhan Feng, Rubem Mondaini, George Batrouni and Richard T. Scalet-

tar, arXiv:2109.13482 [cond-mat.str-el] [22]. I now summarize those chapters briefly. They

are connected by a common computational theme: quantum Monte Carlo, and also by the

general idea of exploring long range order induced by electron-phonon interactions.

In Chapter 4, we study the Holstein model on a decorated honeycomb lattice to explore

the effects of non-uniform hopping on Holstein phonons. People have spent much effort to

investigate itinerant electrons on a honeycomb lattice, which hosts a Dirac spectrum in the

non-interacting limit [23–28]. However, this past work has mostly focussed on electron-

electron interactions (onsite Hubbard U). The non-interacting density of states (DOE)

vanishes linearly at E = 0, while on a square lattice, the DOS diverges logarithmically at

E = 0 instead. As a consequence, a nonzero critical Uc is required to support AF order

on the honeycomb lattice [29,30], whereas in a square lattice long range antiferromagnetic

(AF) correlations onset in the ground state for any finite repulsive interaction U .

Recently, the effects of electron-phonon interactions on Dirac fermions have been ex-

plored [1,2]. The more complex situation of non-uniform t has been studied within a number

of situations, perhaps most prominently in multi-band geometries where there is a natural

distinction of hopping between orbitals of different degree of overlap. In this chapter, we
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extend these investigations of the Holstein model on a ‘decorated honeycomb lattice’, con-

sisting of hexagons with internal hopping t coupled together by t ′. This modulation of the

hopping introduces a gap in the Dirac spectrum and affects the nature of the topological

phases. We determine the range of t/t ′ values which support a charge density wave (CDW)

phase about the Dirac point of uniform hopping t = t ′, as well as the critical transition

temperature Tc.

Chapter 5 discusses the effects of a flat band on electron-phonon interactions. A number

of periodic tight-binding lattices, e.g. Kagomé, Creutz, decorated honeycomb, and the dice

lattice, contain such a macroscopic degeneracy of local, zero energy eigenstates [31, 32].

One of the most prominent examples is the Lieb lattice, which is of special interest as the

structure of the CuO2 planes of the cuprate superconductors.

Existing Quantum Monte Carlo studies have investigated the properties of fermions on a

Lieb (CuO2) lattice interacting with an on-site, or near-neighbor electron-electron coupling.

Attention has focused on the interplay of such interactions with the macroscopic degeneracy

of local zero energy modes, from which Bloch states can be formed to produce a flat band

in which energy is independent of momentum. The resulting high density of states, in

combination with the Stoner criterion, suggests that there should be pronounced instabilities

to ordered phases. Indeed, a theorem by Lieb [33] rigorously establishes the existence of

ferrimagnetic order. Subsequent work further investigated flat band ferromagnetism [34–37].

Here, we again extend this past work to the new area of electron-phonon interactions,

i.e. we investigate in Chapter 5 the phases of interacting electron-phonon systems for flat

electronic bands [38]. Specifically, we study the Holstein Hamiltonian on a Lieb lattice and

find a 1/3 filling charge density wave (CDW) pattern and its partner under Particle-Hole

Transformation (PHT), at 2/3 filling, are generated spontaneously below a finite tempera-

ture.
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Furthermore, Chapter 6 presents our recent work on the Su-Schrieffer-Heeger-Hubbard

(SSHH) Hamiltonian on a square lattice, which examines the competition between electron-

electron and electron-phonon interactions. For a half-filled Holstein model on a 2D square

lattice, CDW patterns exist for any finite values of electron-phonon coupling λ [39]. When

an extra on-site Coulomb repulsion U term is included, CDW or AF order will dominate

in the system depending on the relative magnitude of U and λ [40, 41]. Interestingly, an

intermediate metallic phase between the AF and CDW phases is indicated [42–45], as well

as other exotic regimes [46].

For the 2D square lattice SSH model at half-filling, there is an AF phase when the

electron-phonon coupling λ is less than a critical value λc and a bond order wave when

λ > λc [47–49]. We study here the rich interplay of BOW and AF regimes in the SSHH

model. A phase diagram is obtained. Besides the Antiferromagnetic (AF) phase (in the

Hubbard limit) and Bond-ordered-wave (BOW) phase (in the SSH limit), there is also an

intermediate region maintaining long range AF order, which exhibits larger electron kinetic

energies and double occupancies, i.e. larger quantum fluctuations, similar to the AF phase

found in the pure SSH model.

Over the last several decades, much attention has been attracted to layered materials

including the cuprate superconductors (SC) [50–54] and bilayer graphene [55–60]. A the-

oretical motivation is that bilayer materials offer a possibility to explore the competition

between the formation of long range order at weak interlayer coupling and collections of

independent local degrees of freedom in the limit of strong interlayer coupling.

The possibility of ‘orbitally selective Mott transitions’ (OSMT) [61–72] within a multi-

band Hubbard model, in which one orbital with large on-site electron-electron repulsion U1

is insulating and another orbital, to which it is hybridized, with small U−1, is metallic, is

a problem of long-standing debate and investigation. In Chapter 7 we study an analogous
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problem, the co-existence of metallic and insulating bands in a system of orbitals with

different electron-phonon coupling and investigate the effects of interband hybridization t3.

Finally, Chapter 8 summarizes the conclusions, reviews connections, and proposes open

questions, further discussions and possible new directions in the future.
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CHAPTER 2

Models describe electron-electron and electron-phonon

interactions

Electron-electron and electron-phonon interactions play important roles in understanding

the rich and diverse phases of strongly correlated systems. The Hubbard Hamiltonian is a

paradigmatic model people widely use to study the electron-electron case, via inclusion

of an onsite Coulomb interaction. It was first proposed in the 1960’s to investigate the

ferromagnetism of transition metals [3, 73, 74]. Later, it was found to exhibit metallic,

ferromagnetic (FM), antiferromagnetic (AF) and superconducting (SC) orders, as well as

intricate inhomogeneous spin and charge patterns, depending on U and the doping [4,5].

On the other hand, the Holstein [75] and the Su-Schrieffer-Heeger (SSH) [76] models

are commonly studied to explore electron-phonon interactions. The main difference between

these two models is that in the former, the phonon displacement is coupled to the electron

density, while for the latter, phonons live on the bonds and the electron hopping is modulated.

Polarons and charge-density wave (CDW) physics on different geometries [1,2,8–16,77], and

conventional s-wave SC transitions [6,7] have been explored in the Holstein model. The SSH

model can be used to capture the physics of conjugated polymers [17], organic charge transfer

salts [18], metal salts [19] and CuGeO3.

In this chapter, we will introduce the Hubbard, Holstein and Su-Schrieffer-Heeger models

and illustrate what simplifications we need to make to extract these second quantization

Hamiltonians from real materials with complicated electron-electron and electron-phonon

interactions. We will also discuss the important properties of the models, e.g. the Particle-

Hole symmetry, and the equivalence of the Holstein model in the anti-adiabatic limit to the
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Hubbard model with attractive interactions, which shed light on the results we will present

in the later chapters.

2.1. The Hubbard Model

In the past decades, condensed matter theorists spent much effort to study the Hubbard

model, which captures the basic electron-electron repulsion in many-body problems, using

various analytical and numerical methods, including exact diagonalization (ED), static and

dynamical mean field theory (DMFT) and quantum Monte Carlo (QMC), etc. In this section

we will give an introduction to the Hubbard model, illustrating how to get the second

quantized form of the Hamiltonian, and discuss some basic concepts and interesting physics

arising from it.

The Hamiltonian of a solid includes the kinetic energies of the electrons and ions, as

well as the Coulomb interactions between these constituents. In general, we can use the

Born-Oppenheimer approximation to separate the motion of ions and electrons since ions

are much heavier than electrons. That is, the ionic coordinates R⃗α are regarded as frozen

degrees of freedom. The resulting Hamiltonian for the many-body electron problem can be

written as

Ĥ =
∑
i

(− ℏ2

2me

∇2
i ) +

∑
i

Uel−ion(r⃗i) +
∑
i ̸=j

Uel−el(r⃗i − r⃗j), (2.1)

where me is the mass of an electron, r⃗i is the position of the ith electron, and R⃗α is the

position of the αth ion. In this approximation the ion-ion term is a constant since it involves

only R⃗α and we can drop it from Ĥ. Uel−ion(r⃗i) is the electron-ion interaction,

Uel−ion(r⃗i) = −Ze2
∑
α

∣∣∣r⃗i − R⃗α

∣∣∣−1

, (2.2)

where Z is the number of positive charges of the ion. Meanwhile

Uel−el(r⃗i − r⃗j) = e2/ |r⃗i − r⃗j| (2.3)
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describes the Coulomb repulsion between electrons. We refer to these expressions as being in

“first quantized” form since they include the nontrivial quantum physics of the Schrodinger

equation but do not yet use the more abstract notation of “second quantization”.

Creation and destruction operators: Before we introduce second quantization

for the electrons, let us review the definition of creation and annihilation operators in the

Quantum Harmonic Oscillator (QHO) problem. They are expressed in terms of displacement

and momentum operators,

â† =

√
mω

2ℏ
x̂− i

√
1

2mωℏ
p̂

â =

√
mω

2ℏ
x̂+ i

√
1

2mωℏ
p̂

(2.4)

The commutation relation between the creation and annihilation operators can be easily

verified,

[â, â†] = 1 (2.5)

as a direct consequence of the relation [p̂, x̂] = −iℏ. Then the Hamiltonian for the QHO can

be written in terms of â and â†,

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2

= ℏω(â†â +
1

2
)

= ℏω(n̂+
1

2
)

(2.6)

in which n̂ = â†â is the number operator. The creation and annihilation operators have the

following properties,

â|n⟩ = √
n|n− 1⟩

â†|n⟩ =
√
n+ 1|n+ 1⟩

(2.7)
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|0⟩ is used to represent the ground state of the QHO, and hence we have â|0⟩ = 0 and ground

energy E0 = ℏω/2.

We need to emphasize that the creation and annihilation operators in the QHO problem

are for bosons and the number of particles can be 0, 1, 2, 3, . . . . It can also be easily verified

that the average number of particles satisfies the Bose-Einstein distribution,

⟨n̂⟩ = 1/(eβℏω − 1). (2.8)

The first quantized formulation of Eq. (2.1) requires that one separately impose an anti-

symmetric condition on the electron wave function ϕ(r⃗1, r⃗2, · · · , r⃗N) to respect the fermionic

character. It seems natural that a formulation which automatically includes the proper sta-

tistics might be more simple to use. This is the basic idea behind “second quantization”.

To employ second quantization for many-electron problems, we need to introduce fermion

creation and annihilation operators. The main conceptual difference is that the fermion op-

erators stand on their own instead of being related to the position and momentum operators

as for the quantum oscillator. In addition, due to the Pauli principle, the number of electrons

for a specified spin species on a particular site can only be 0 or 1. The fermion creation and

annihilation operators anti-commute with each other and we have the following relations,

{ĉiσ, ĉ†jσ′} = δi,jδσ,σ′ , {ĉ†iσ, ĉ†jσ′} = 0, {ĉiσ, ĉjσ′} = 0 (2.9)

Here i, j are site or orbital indices and σ labels the spin.

Second quantized form of the Hubbard Model: One-body operators: One

can prove that a first quantized one-body operator H(1)(r⃗), has a second quantized form

written as

Ĥ(1) =
∑
α,β

H
(1)
αβ ĉ

†
αĉβ

=
∑
α,β

∫
dr⃗ϕ∗

α(r⃗)H
(1)(r⃗)ϕβ(r⃗)ĉ

†
αĉβ

(2.10)
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Two-body operators: Similarly, one can also prove for a first quantized two-body

operator H(2)(r⃗, r⃗ ′), its second quantized form can be written as

Ĥ(2) =
∑

α,β,γ,δ

H
(2)
αβγδ ĉ

†
αĉ

†
β ĉγ ĉδ

=
∑

α,β,γ,δ

∫
dr⃗ϕ∗

α(r⃗)ϕ
∗
β(r⃗

′)H(2)(r⃗, r⃗ ′)ϕγ(r⃗
′)ϕδ(r⃗)ĉ

†
αĉ

†
β ĉγ ĉδ (2.11)

After introducing the second quantization of Hamiltonians in general, we turn to the specific

case of the Hubbard model. Considering the Hamiltonian in Eq. 2.1, we can view H(1)(r⃗i) =

− ℏ2
2me

∇2
i +Uel−ion(r⃗i)as the first quantized one-body operator and H(2)(r⃗i, r⃗j) = Uel−el(r⃗i− r⃗j)

the two-body operator. Here we make several simplifications: 1)We assume the solid has

one energy band at Fermi surface and hence each site has a single orbital (energy level); 2)

only consider the onsite Coulomb repulsion; 3) since wavefunctions die off exponentially and

hopping ‘t’ is given by the overlap of wavefunctions on different sites, it makes sense to focus

only on the nearest neighbour hopping. The abstract index α becomes the site i and spin σ

of the electron. Then

Ĥ = −t
∑
⟨i,j⟩,σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + U
∑
i

(n̂i↑ − 1/2)(n̂i↓ − 1/2)

− µ
∑
i

(n̂i↑ + n̂i↓)

(2.12)

The first term is the electron kinetic energy, describing the electron hopping process between

nearest neighbour sites ⟨i, j⟩: An electron with spin σ is destroyed on site j and then recreated

on site i. The second term delineates the onsite Coulomb repulsion. Finally, the last term

is the chemical potential. µ can be tuned to control the filling.

Particle-Hole Transformation: µ = 0 ↔ half filling: Before we discuss the Particle-

Hole Transformation, let us first introduce the concept of a bipartite lattice. This is a

geometry in which we can divide all the sites into two sublattices A and B, such that the
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nearest neighbours of a site in A are only sites in sublattice B and vice-versa. A PHT is

defined as follows:

d̂†iσ = (−1)iĉiσ (2.13)

and correspondingly we will also have

d̂iσ = (−1)iĉ†iσ (2.14)

(−1)i is defined to be +1 for sublattice A and −1 for sublattice B. If we apply this transfor-

mation to the density operator n̂iσ, we get

n̂iσ = ĉ†iσ ĉiσ → (−1)i(−1)id̂iσd̂
†
iσ = 1− d̂†iσd̂iσ. (2.15)

The numbers of particles for spin σ on site i,niσ = 0, 1 are swapped, and this directly gives

an explanation why it is called a particle-hole transformation. Now let us go back to the

original Hubbard Hamiltonian and see what we will get after the PHT. First of all, let us

apply it to the electron kinetic energy part,

ĉ†iσ ĉjσ → (−1)i(−1)j d̂iσd̂
†
jσ = d̂†iσd̂jσ. (2.16)

Since only the nearest neighbours hopping is allowed in the Hubbard Hamiltonian Eq.(2.12),

(−1)i+j = −1 and this minus sign can be used to anticommute d̂iσd̂
†
jσ back to d̂†iσd̂jσ. The

main conclusion we can get here is that the electron kinetic energy part remains unchanged

after the PHT on a bipartite lattice. Then we can move to the onsite interaction U term.

As was pointed out earlier, the density operator n̂iσ turns into 1− n̂iσ after the PHT. As a

consequence, U(n̂i↑ − 1/2)(n̂i↓ − 1/2) becomes U(1/2− n̂i↑)(1/2− n̂i↓), which is exactly the

same as the original. The last term we need to consider here is the chemical potential. Here

the sign of µ is changed under the PHT. To sum up, for the whole system the total density

ρ changes to 2− ρ and the Hamiltonian transforms to another Hamiltonian with the sign of
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chemical potential µ reversed. Thus, we have the relation

ρ(µ) = 2− ρ(−µ), (2.17)

and it can be seen obviously when µ = 0, the system is at half filling ρ = 1.

2.2. The Holstein Model

In the last section, we recognized the ions are much heavier than the electrons and

hence assumed they are frozen at their equilibrium positions. We thus consider only the

electron kinetic energy and the repulsive interactions between electrons. But in reality,

lattice vibrations (phonons) exist and we will discuss the effects of phonons on the behaviors

of the electrons and vice-versa by exploring the electron-phonon coupling.

The electron-phonon interaction term depends on the positions of both electron and ions

and can be expressed as

Ĥel−ion =
∑
i,α

V (r⃗i − R⃗α)

≈
∑
i,α

V (r⃗i − R⃗(0)
α )−

∑
i,α

ˆ⃗uα
∂V (r⃗i − R⃗

(0)
α )

∂R⃗α

,

(2.18)

where R⃗
(0)
α is the equilibrium position of the ion and R⃗α = R⃗

(0)
α + u⃗α.

The first term in the above equation has already been considered in the previous section.

We assume the electron-electron interaction is weak and we can approximate the Hamiltonian

for electrons by

Ĥe ≈
∑
b,⃗k,σ

Eb,σ(k⃗)ĉ
†
b,⃗k,σ

ĉ
b,⃗k,σ

(2.19)

where b is the band index, σ represents spin and k⃗ is the allowed momentum. We can

use this |b, k⃗, σ⟩ basis and figure out an expression for the second quantized form of the
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electron-phonon interactions. Apply Eq.(2.10) discussed above, we get

Ĥel−ph =
∑

b,⃗k,σ,b′ ,⃗k′,σ′

∫
dr⃗ϕ∗

b,⃗k,σ
(r⃗)

∑
α

ˆ⃗uα
−∂V (r⃗i − R⃗

(0)
α )

∂R⃗α

ϕb′ ,⃗k′,σ′(r⃗)ĉ
†
b,⃗k,σ

ĉ
b,⃗k,σ

(2.20)

ˆ⃗uα, the distortion of the lattice, will be expressed by phonon creation and annihilation

operators. After some algebra and assuming only a single phonon mode interacts much

more strongly with electrons, we can get a generic form for the electron-phonon coupling

Ĥel−ph =
1√
N

∑
k⃗,q⃗,σ

Ck⃗,q⃗(b̂
†
−q⃗ + b̂q⃗)ĉ

†
k⃗+q⃗,σ

ĉ
k⃗,σ
, (2.21)

where Ck⃗,q⃗ is a constant depending on the properties of real materials. b̂†−q⃗ and b̂q⃗ are just

Fourier Transform of phonon creation and annihilation operators on the different spatial

lattice sites.

We now consider a specific example of this procedure. The Holstein model [75] is the

simplest model which depicts the electron-phonon coupling. It consists of a collection of

electrons, described by fermionic creation and destruction operators ĉ†iσ, ĉiσ hopping between

near neighbor sites on the lattice. The electron density on each site, n̂i = n̂i↑ + n̂i↓ with

n̂iσ = ĉ†iσ ĉiσ, where i denotes lattice sites and σ is the spin index, couples linearly to the dis-

placement x̂i of a local quantum oscillator degree of freedom. The Hamiltonian is therefore,

H =− t
∑
⟨i,j⟩,σ

(
ĉ†iσ ĉjσ + h.c.

)
− µ

∑
i,σ

n̂iσ

+
1

2

∑
i

(
p̂2i + ω2

0x̂
2
i

)
+ λ

∑
i,σ

x̂in̂iσ . (2.22)

We have set the oscillator mass M = 1 and will also use units in which ℏ = kB = 1 and the

hopping amplitude t = 1 in the simulations presented in this thesis. The Holstein model is

just the Fourier Transform of a special case of the general form 2.21 where Ck⃗,q⃗ is a constant.
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The next topic describes symmetry conditions which aid in the interpretation of the

DQMC code.

Particle-Hole Symmetry: In discussing the Hubbard model, we showed the electron

hopping term remains unchanged under PHT so that µ = 0 is half-filling. We can follow

a similar method to derive which chemical potential value corresponds to the half filling

in the Holstein model. Excluding the electron kinetic energy term, the other parts in the

Hamiltonian

−µ
∑
i,σ

n̂iσ +
1

2

∑
i

(
p̂2i + ω2

0x̂
2
i

)
+ λ

∑
i,σ

x̂in̂iσ (2.23)

will become

−µ
∑
i,σ

(1− n̂iσ) +
1

2

∑
i

(
p̂2i + ω2

0x̂
2
i

)
+ λ

∑
i,σ

x̂i(1− n̂iσ) (2.24)

after PHT. We can define ŷi = −x̂i and the above term is equivalent to

µ
∑

i,σ n̂iσ +
1
2

∑
i

(
p̂2i + ω2

0 ŷ
2
i

)
+ λ

∑
i,σ ŷin̂iσ − λ

∑
i,σ yi (2.25)

→ 1
2

∑
i p̂

2
i +

ω2
0

2
[
∑

i(ŷ
2
i − 4λ

ω2
0
ŷi +

4λ2

ω4
0
)] + λ

∑
i,σ(ŷi − 2λ

ω2
0
)n̂i,σ + (µ+ 2λ2

ω2
0
)
∑

i,σ n̂i,σ

After completing the square, we observe the QHO shifts its center after the transformation

and chemical potential µ turns into −(µ+2λ2/ω2
0). As a consequence, we have the relation,

ρ(µ) = 2− ρ(−µ− 2λ2/ω2
0). (2.26)

The conclusion is that µ = −λ2/ω2
0 corresponds to half filling ρ = 1 in the Holstein model.

The physical picture is that the ions(phonons) can distort, lowering the energy of an electron,

and so µ must shift downwards (relative to λ = 0) to keep the lattice half filled.

Holstein model in the anti-adiabatic limit: In the anti-adiabatic limit (ω0 → ∞),

the Holstein model becomes equivalent to the attractive Hubbard model with Ueff = −λ2/ω2
0.
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This can be seen via the Lang-Firsov Transformation [78]. However, it is important to

emphasize that the Holstein model breaks the superconducting-charge symmetry present in

the attractive Hubbard model (the analogy of spin symmetry in the repulsive case), with

charge order (the analog of ordering in the Sz channel) dominating over superconducting

order (which maps onto Sx, Sy). As a result, the CDW transition in the half-filled 2D

Holstein model occurs at finite temperature [77], whereas long range magnetic order in the

2D repulsive Hubbard model occurs only at T = 0. This breaking of symmetry introduces

a fundamental difference between the physics of the repulsive Hubbard and Holstein models

with multiple hopping energy scales, which is especially marked as the phonon frequency ω0

decreases.

In particular, consider the well-known “partial” particle-hole transformation (PHT) c†i↓ →
(−1)ici↓ acting only on the down spin fermions. On a bipartite lattice, and at µ = 0, this

PHT leaves the kinetic energy unchanged as with the full PHT of Eq.( 2.13)(2.14), but now

reverses the sign of the interaction term. The different components of the spin operator map

into charge and pairing correlations,

Sz
i ≡ ni↑ − ni↓ → ni ≡ ni↑ + ni↓

S+
i ≡ c†i↑ci↓ → ∆†

i ≡ (−1)i c†i↑c
†
i↓

S−
i ≡ c†i↓ci↑ → ∆i ≡ (−1)i ci↓ci↑ (2.27)

This PHT yields insight into some of the expected physics in the presence of attractive

interactions. Long range magnetic order in the repulsive model implies long range charge and

pairing order in the attractive model. Another common phenomenon in the repulsive case is

the formation of singlets on adjacent sites. We now discuss this in detail because it will be

important to our solution of the decorated honeycomb lattice in Chapter 4. In analogy with

the formation of spin singlets in the repulsive case, for the attractive Hubbard and Holstein
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Figure 2.1. Exact diagonalization results for the ground state charge,
⟨Sz

1S
z
2 ⟩, and superconducting, ⟨Sx

1S
x
2 ⟩, correlators (in magnetic language)

on a two site Holstein dimer, as a function of ω0 at fixed Ueff = −2.89. The
vertical line at ω0 = 1 shows the phonon frequency used in the phase diagram
of Chapter 4 of this thesis. The dashed horizontal line is the Hubbard model
result at U = 2.89. It is notable that values ω0/t ≲ 1 are quite far from the
limit where the spin correlations (CDW-pairing correlations) are symmetric.

models we expect the development of ‘charge singlets’ in which the three components of

charge/pairing operators on the right side of Eq. (2.27) form local objects.

With this said, it is worth emphasizing that the Holstein ↔ Hubbard mapping is exact

only in the anti-adiabatic limit ω0 → ∞. Figure 2.1 shows the effect of finite phonon

frequency ω0 on the different components of Eq. (2.27). Symmetry is restored as ω0 → ∞,

but for the values ω0 = 0.1 to 1 used in this dissertation, |⟨Sz
1S

z
2 ⟩| ≫ |⟨Sx

1S
x
2 ⟩|. Thus,
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while the analogy to magnetic physics is useful, it is far from clear how it will manifest itself

quantitatively. (The fact that these correlators are less in magnitude than the singlet value

−1/4 is due to charge fluctuations. As U also becomes large, they approach the Heisenberg

limit −1
4
so that S⃗1 · S⃗2 = −3

4
.)

2.3. The Su-Schrieffer-Heeger Model

In the preceding section of this chapter, we introduced a type of electron-phonon in-

teraction, the Holstein model, where the phonon position operator is correlated to electron

density. Here let us discuss another type of electron-phonon interactions, where phonons

live on the bonds of the lattice and their displacements X̂ij are correlated to the electron

hopping term. The Hamiltonian is

H =− t
∑
⟨i,j⟩,σ

(
1− λX̂ij

)(
ĉ†iσ ĉjσ + h.c.

)
− µ

∑
i,σ

n̂iσ

+
∑
⟨i,j⟩

(
1

2M
P̂ 2
ij +

M

2
ω2
0X̂

2
ij

)

, (2.28)

where ĉiσ (ĉ†iσ) is electron creation (annihilation) operator for spin σ =↑, ↓ on site i, µ is the

chemical potential, M is the phonon mass and ω0 the phonon frequency. The bond phonon

displacement and momentum operators are denoted as X̂ij and P̂ij. As we discuss in Chapter

6, the magnitude of electron phonon coupling is given by the dimensionless parameter g =

λ/
√

2Mω0/ℏ, so that the coupling term is tg(b̂ij + b̂†ij)(ĉ
†
iσ ĉjσ + h.c.). n̂iσ = ĉ†iσ ĉiσ is the

density operator on site i. We will work in units for which ℏ = t =M = 1 and fix ω0 = 1.

SSH model in the anti-adiabatic limit: The SSH model turns into

Ĥeff = −t
∑
⟨i,j⟩

K̂ij −
∑
⟨i,j⟩

K̂2
ij, (2.29)
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in the anti-adiabatic limit (ω0 → ∞), since the effective electron interaction becomes instan-

taneous [48, 49]. K̂ij is the electron hopping term between site i and j. Notice that K̂2
ij

term can be re-expressed by using spin Ŝi, Ŝj and pseudospin operators η̂i, η̂j.

−1

4
K̂2

ij ∼ Ŝi · Ŝj + η̂i · η̂j (2.30)

where η̂i, η̂j can be obtained by applying PHT for spin down to the spin operators Ŝi, Ŝj.

Thus the z component of pseudospin operators corresponds to charge density wave (CDW)

order and x&y components reflect Superconductivity (SC), i.e. in the anti-adiabatic limit,

AF, SC and CDW orders become degenerate. It would be interesting to explore these orders

at finite ω0 as well.

2.4. Summary

In this chapter, we started from first quantized Hamiltonians which describe the inter-

actions between electrons and ions, and then briefly discussed the second quantized forms

of the one- and two-body operators. This allowed us to introduce the iconic models people

widely use to study electron-electron (Hubbard) and electron-phonon (Holstein, SSH) inter-

actions. The Particle-Hole symmetry of the models have also been discussed. Finally, we

introduced the effective model of the Holstein and SSH models in the anti-adiabatic limit.

All these arguments lay important foundations for our numerical solution of these models

on different geometries which will be expanded in the following chapters.
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CHAPTER 3

A Review of Mean Field Theory and Quantum Monte Carlo

Algorithms

In this Chapter, we will discuss the methods we use to study strongly correlated systems,

including the Holstein model, and the Su-Schrieffer-Heeger-Hubbard (SSHH) model. Mean

Field Theory will be introduced first. In this approach, we assume the four fermion quantum

operator terms can be replaced by quadratic terms coupled to mean values. The reduced

model can then be solved analytically. Although the results given by MFT will differ from

the exact solutions (e.g. Quantum Monte Carlo (QMC)) in many cases, the rough picture

of physics can still be captured.

After MFT, Determinant and Langevin QMC methods and their mathematical background

will be illustrated. Monte Carlo methods can be viewed as “computer experiments”, which

generate configurations with desired distributions. It is an iterative stochastic procedure and

can be used to solve complicated problems where an analytical solution is absent. Instead of

getting an exact value/equation for the target observables, Monte Carlo simulations will gen-

erate many configurations with the appropriate probability distribution and measurements

can be made based on them. After the process reaches its equilibrium, taking the average

will give us a result consistent with the exact solution within error bars.

For classical problems, the Boltzmann distribution is the appropriate statistical distribu-

tion. Each configuration has a probability proportional to e−βE, where E is the energy and

β = 1/kBT is the inverse temperature. Then we can use some well designed algorithms, e.g.

Metropolis Algorithm, to decide whether we accept or reject a suggested configuration and
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make measurements correspondingly. These methods guarantee the configurations are gen-

erated according to the Boltzmann distribution as well be shown in Sec. 3.2. For quantum

problems, there isn’t a probability distribution directly associated with classical configura-

tions since the energy, a number, is replaced by an operator, the Hamiltonian. This requires

us to map the quantum problem into a new classical problem with one higher dimension.

But we will see that the “probability” of the resulting patterns might not always be positive.

This is called the “sign problem” in QMC methods. Despite this limitation, there are still

lots of strongly correlated Hamiltonians which are free of the sign problem and can be solved

efficiently by using QMC methods. More details will be discussed in the following.

3.1. Mean Field Theory

In this section, we will use the Holstein model on a Lieb lattice as an example to dis-

cuss how to use the Mean Field Theory approach to understand the physics in a strongly

correlated system with electron-phonon interactions. The Lieb lattice is of special interest

since it contains a flat electronic band in the non-interacting limit. It is also the structure

of the CuO2 planes of the cuprate superconductors. The Lieb lattice structure is shown in

Fig. 3.1 and has three sites per unit cell and contains three unit cells along both a⃗1 and a⃗1

directions, where a⃗1 = (1, 0) and a⃗2 = (0, 1) are basis vectors. The total number of sites

N = 3× (L× L) = 3× (3× 3) = 27 in Fig. 3.1.

The Mean Field Theory (MFT) method is the simplest approach to study strongly corre-

lated systems. Although the tendency of getting an ordered pattern is overestimated in the

mean field approximation, since it ignores fluctuations. Hence, for example, the transition

temperature obtained for the Holstein model by MFT is higher than QMC results. However,

it can still be used to capture physics quantitatively to some extent. The idea of MFT

is to use some simple ansatz, i.e. some average values of the field, to replace the original

operators in the Hamiltonian. After applying the ansatz, original cubic or quartic terms in

20



Figure 3.1. The Lieb lattice geometry. Additional sites (blue and green) are
added to midpoint of each of the bonds linking the sites of a square lattice
(red). The resulting structure is bipartite and has three sites per unit cell.

the Hamiltonian can be reduced to a quadratic form and then we can solve for energy levels,

the partition function and operator expectation values analytically.

For the MFT treatment of the Holstein model we will discuss here, we use the adiabatic

approximation, ignoring the p̂2i term, and assume a staggered pattern of phonon displace-

ments with the ansatz x̂i → ⟨x̂i⟩ = x0 − ∆ and ⟨x̂i⟩ = x0 + ∆ for different sublattice A

and B&C respectively. The basic idea is that the Holstein model favors doubly occupied

sites (and hence empty ones if the filling is fixed). Inserting this ansatz into Eq. 2.22, the
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resulting quadratic fermion Hamiltonian,

ĤMF =
1

2
ω2
0

N

3
[(x0 −∆)2 + (x0 +∆)2 + (x0 +∆)2]

+ (λx0 − µ)
∑
l⃗,σ

(n̂l⃗,A,σ + n̂l⃗,B,σ + n̂l⃗,C,σ)

+ λ∆
∑
l⃗,σ

(−n̂l⃗,A,σ + n̂l⃗,B,σ + n̂l⃗,C,σ)

− t
∑
l⃗,σ

(ĉ†
l⃗,A,σ

ĉ
l⃗,B,σ

+ ĉ†
l⃗,A,σ

ĉ
l⃗,C,σ

+ ĉ†
l⃗+a⃗1,A,σ

ĉ
l⃗,B,σ

+ ĉ†
l⃗+a⃗2,A,σ

ĉ
l⃗,C,σ

+ h.c.)

(3.1)

can be diagonalized analytically, where l⃗ represents the unit cell. To do this, we take the

Fourier Transform of electron creation and annihilation operators and insert the relation

ĉ†
l⃗,A/B/C,σ

=
1√
N

∑
k⃗

ĉ†
k⃗,A/B/C,σ

eik⃗·⃗l (3.2)

into Eq. (3.1). The resulting Hamiltonian can be written into a matrix form

ĤMF =
1

2
ω2
0N(x20 +∆2) +

1

3
ω2
0Nx0∆

+
∑
k⃗,σ

(
ĉ†
k⃗,A,σ

ĉ†
k⃗,B,σ

ĉ†
k⃗,C,σ

)

λx0 − µ− λ∆ −t− teikx −t− teiky

−t− te−ikx λx0 − µ+ λ∆ 0

−t− te−iky 0 λx0 − µ+ λ∆



ĉ
k⃗,A,σ

ĉ
k⃗,B,σ

ĉ
k⃗,C,σ


(3.3)

We can diagonalize the matrix and get the three fermion energy bands,

ϵα,σ(k⃗) =

 λ∆+ λx0 − µ,

±
√

(λ∆)2 + 4t2(cos2 kx
2
+ cos2 ky

2
) + λx0 − µ

(3.4)

where k⃗ = (kx, ky); kx, ky = 2πn
L
, n = 1, 2, · · · , L (L is the number of unit cells along x/y

direction.) are allowed momentum vectors. Then the free energy can be obtained, as a
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function of x0, ∆ and inverse temperature β,

F =
1

2
Nω2

0(x
2
0 +∆2 +

2

3
x0∆)− 1

β

∑
α,σ,⃗k

ln (1 + e−βϵα,σ(k⃗)), (3.5)

At a fixed temperature T , we determine the (x∗0, ∆
∗) which minimizes F . Results obtained

by this approach will be presented in the following sections.

3.2. Markov chain Monte Carlo

A Markov chain is a process to generate a series of values X(1), X(2), · · ·X(t), · · · of a random

variable X where the probability of getting the current value X t only depends only on its

previous configuration X t−1, i.e.

P (X(t)|X(t−1), · · · , X(1)) = P (X(t)|X(t−1)). (3.6)

We will use the superscript (t) to represent the time and subscript i, j, · · · to stand for

different configurations. The probability of configuration i at time t, X t = Xi is denoted

as p
(t)
i . A Markov chain can be defined by an initial probability of all the configurations

and a transition probability matrix, with entries Pij = P (Xi|Xj), each column of which is

normalized to 1,
∑

i Pij = 1. The next time step configuration can be generated iteratively

by

p
(t+1)
i =

∑
j Pijp

(t)
j , (3.7)

where p(0) = [p
(0)
1 , p

(0)
2 , · · · , p(0)i · · · ]T is the initial probability of all configurations. We repeat

this process and get a series of values. If the series converges, we will have the stationary

condition,

pi =
∑
j

Pijpj. (3.8)
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Metropolis et al. found that we will obtain the desired distribution pi if the transition

probability obeys the detailed balance,

Pijpj = Pjipi. (3.9)

Before we move on, let us look at several important properties of a transition probability

matrix. 1) It has an eigenvalue equal to 1. This can be easily verified by considering the

normalization of each column in a transition probability matrix. A vector with all entries

equal to 1 is the left eigenvector of the transition probability matrix with eigenvalue 1, i.e.∑
i viPij =

∑
i Pij = 1 = vj. 2) 1 is the largest eigenvalue of a transition probability matrix.

Assume it has some other eigenvalue λ and the eigen-function is
∑

j Pijvj = λvi. Using the

triangle inequality, we get
∑

j Pij|vj| ≥ |λ||vi|. Take the sum over i on both sides and use

the relation
∑

i Pij = 1. We get
∑

j |vj| ≥ |λ|∑i |vi|. Then |λ| ≤ 1 is obtained.

Another important matter we need to emphasize here, which is also a requirement for

Monte Carlo methods to work, is, in order to get an unique stationary distribution, the tran-

sition probability needs to be a primitive stochastic matrix (which is also called ergodicity).

A stochastic matrix is a matrix with no negative matrix elements and each column normal-

ized to be 1. These are obviously precisely the properties a transition matrix would have.

Primitive matrices contain two properties, one is irreducible and the other one is aperiodic.

Irreducible means a matrix is not similar to a block upper triangular matrix A B

0 C

 , (3.10)
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via a permutation, where A and C are square matrices with arbitrary dimensions. Aperiodic

means a matrix cannot be transformed into the form

0 A1 0 · · · 0

... 0 A2
. . .

...

...
... 0

. . . 0

...
...

...
. . . An−1

An 0 0 · · · 0


, (3.11)

via a permutation.

Ergodicity of a matrix P guarantees the right eigenvector of it with eigenvalue equal to

1 is unique and positive. Imagine we have some initial probability

p(0) =
∑
α

aαϕα, (3.12)

where a1 = 1 and 1 ≥ |λ1| ≥ |λ2| ≥ . . . , expressed as a combination of eigenvectors ϕα with

corresponding eigenvalues λα of the probability matrix P . Let the probability matrix P act

on the initial probability p0i , k times,

P kp(0) = ϕ1 +
∑
α≥2

λkαϕα. (3.13)

When the number of Markov chain Monte Carlo iterations k is sufficiently large, the eigen-

vector with eigenvalue equal to 1 which is the target distribution dominates in the right

hand side, i.e. the probability distribution converges to the desired distribution after suf-

ficient number of iterations. This process does not depend on the initial probability p0i as

long as it is not orthogonal to ϕ1.
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3.3. Classical Monte Carlo

Monte Carlo methods have been widely used to study complicated problems, e.g. in statis-

tical physics, which we can not solve analytically. In this section we will start with classical

models and discuss how to update the configuration, whether to accept or reject the proposed

move, in order to satisfy the detailed balance and make computers generate configurations

according to the target probability distribution.

3.3.1. The master equation

As noted in the preceding section, in classical statistical mechanics, the probability of the

system in a particular state (configuration) |n⟩ with energy En is given by the Boltzmann

distribution

P (n) =
1

Z
e−βEn , (3.14)

where Z =
∑

n e
−βEn is the partition function. For a many-body problem, the size of the

Hilbert space grows exponentially with the lattice size. If the local degrees of freedom have n

choices and the total number of sites is N , then the total number of possible configurations

is nN . For a relatively large system N , the size of configuration space nN is too large

to enumerate all the states (e.g. For the Ising model (n = 2) on a 8 × 8 square lattice

(N = 64), the total number of possible states is 264. It would take 264/109 ∼ 1010 seconds ∼
105 days to generate configurations) and we need to use Monte Carlo techniques to sample

the configurations with the desired Boltzmann probability distribution efficiently. The point

is that most of the enormous number of configurations are very unlikely. Monte Carlo

“importance sampling” steers the sampling to the important region of phase space which is

much smaller. For an observable O, its average value can be calculated by

⟨Ô⟩ = 1

Nmeas

Nmeas∑
l=1

Ol, (3.15)
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where Nmeas is the number of measurements and Ol is the value for observable Ô in config-

uration l.

In the preceding section, we already argued that if the probability matrix satisfies the

detailed balance, we will get the target probability distribution. Here let us discuss it in more

detail. Let pi(t) be the probability of having configuration i at time t. Pij is the probability

per unit time for the system to transform from configuration j to configuration i. Then we

can derive the master equation which describe how the probability of configuration i evolves

with time,

dp
(t)
i

dt
=

∑
j ̸=i

[p
(t)
j Pij − p

(t)
i Pji] (3.16)

After the Monte Carlo process reaches its equilibrium, we have the stationary condition,

lim
t→∞

p
(t)
i = pi (3.17)

where pi is the desired Boltzmann distribution. It implies when t → ∞, both sides of Eq.

(3.16) tend to be 0. Naturally we can impose the sufficient but not necessary condition,

detailed balance Eq. (3.9)

3.3.2. Detailed Balance Algorithms

Metropolis Algorithm The simplest and commonly used algorithm that satisfies the

detailed balance condition is the Metropolis Algorithm. The procedures are the following:

1) suggest a move to a new configuration j from the current configuration i

2) If the new configuration is more likely than the original one, i.e. pj > pi, directly accept

the new configuration j; if the new configuration is less likely, i.e. pj < pi, accept the new
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proposed configuration with probability pj/pi. That is,

Pji =

 pj/pi = e−β(Ej−Ei), if pj < pi, or Ej > Ei

1, otherwise
(3.18)

3) take measurements and repeat all these processes

Step 1) is actually a bit subtle. One must suggest j “randomly”, i.e. not introduce any

specific bias in the selection process. For example, for a continuous degree of freedom x, step

1) might suggest x′ randomly on [x−∆, x+∆], where ∆ is some step size. But suggesting

x′ on [x − ∆, x + 2∆] would give incorrect results. It is fairly easy to see the latter choice

would violate detailed balance.

We can easily verify that constructing the transition probability matrix as above satisfies

detailed balance: if Ej > Ei, Pji = e−β(Ej−Ei), Pij = 1; and if Ej < Ei, Pji = 1, Pij =

e−β(Ei−Ej).

Heat Bath Algorithm The main difference between Heat Bath and Metropolis al-

gorithm is that Heat Bath Algorithm does not reject configurations explicitly. The new

configuration j is accepted with probability,

Pji =
1

exp[β(Ej − Ei)] + 1
(3.19)

instead of depending on the sign of Ej−Ei. It can also be verified detailed balance is satisfied

using the Heat Bath Algorithm.

3.4. Determinant Quantum Monte Carlo

In this section, we will discuss the Determinant Quantum Monte Carlo methods com-

monly used simulating in electron-electron (e.g. Hubbard) and electron-phonon (e.g. Hol-

stein and SSH) coupling models. In this approach, the full imaginary time propagator e−βĤ
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is written as a product of incremental factors e−∆τĤ . This discretization allows for the ‘Trot-

ter’ approximation, e−∆τĤ ≈ e−∆τĤ1e−∆τĤ2 with Ĥ = Ĥ1 + Ĥ2. The purpose of dividing up

the imaginary time evolution is to isolate the interactions so that the trace over the fermions

can be evaluated analytically. The key point is that a trace over a product of exponentials

of quadratic forms in fermion operators can be performed analytically. After the Trotter

approximation, electron-phonon models are already in this form. Electron-electron models

can be put in this form by introducing a Hubbard-Stratonovich field to decouple the inter-

actions. The partition function of the system can be written as a sum of a product of two

determinants which are the result of the trace, one for spin up and one for spin down. In

electron-phonon models, there are factors determined by the pure phonon part of Ĥ as well.

For the Holstein model, because the up and down species couple to the phonon coordinate

in the same way, the determinants are identical. The fermion sign problem is absent in the

resulting square of determinants.

DQMC treats interacting quantum Hamiltonians exactly. The sole (controlled) approx-

imation is in the discretization of β. With the usual choices of ∆τ the associated errors

are easily made smaller than those arising from the sampling. (The exception is for lo-

cal quantities like the energy and double occupancy whose statistical errors are extremely

small. For these observables, a ∆τ → 0 extrapolation is straightforward to perform.) Sim-

ulations are carried out on lattices of finite size, necessitating a finite size scaling analysis,

as described in the later chapters. We now provide details of this algorithm by considering

specific Hamiltonians.

3.4.1. DQMC for the Hubbard model: Hubbard-Stratonovich Transformation

In statistical mechanics, the partition function of a quantum system can be written as

Z = Tr(e−βĤ). (3.20)
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The Hubbard Hamiltonian involves an electron hopping term combined with a chemical

potential term

K̂ = −t
∑
⟨i,j⟩

(ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ)− µ
∑
i

(n̂i,↑ + n̂i,↓) (3.21)

and an onsite Coulomb repulsion term,

V̂ = U
∑
i

(n̂i,↑ −
1

2
)(n̂i,↓ −

1

2
). (3.22)

We first divide β into L terms, β = ∆τLτ and re-express the partition function as

Z = Tr(e−βĤ)

= Tr(e−∆τĤe−∆τĤ . . . e−∆τĤ︸ ︷︷ ︸
Lτ terms

).
(3.23)

and then employ the Suzuki-Trotter approximations,

e−∆τ(Â+B̂) = e−∆τÂe−∆τB̂ +O((∆τ)2), (3.24)

where Â and B̂ are operators and do not commute with each other [Â, B̂] ̸= 0. A higher

order approximation can be realized by,

e−∆τ(Â+B̂) = e−∆τ ˆB/2e−∆τÂe−∆τ ˆB/2 +O((∆τ)3), (3.25)

Apply the higher order Trotter approximation Eq.(3.25) to the partition function Eq.(3.23),

Z = Tr(e−∆τK̂/2e−∆τ ˆV (1)e−∆τK̂e−∆τ ˆV (2) . . . e−∆τK̂e−∆τ ˆV (Lτ )e−∆τK̂/2︸ ︷︷ ︸
Lτ terms

) +O((∆τ)2)

= Tr(e−∆τK̂e−∆τ ˆV (1)e−∆τK̂e−∆τ ˆV (2) . . . e−∆τK̂e−∆τ ˆV (Lτ ) +O((∆τ)2).

(3.26)

The second row in the above equation is obtained by using the cyclic property of the trace.

Since Trotter errors are accumulated in Lτ terms, the total error is of order O((∆τ)3Lτ ) ∼
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O((∆τ)2). The imaginary time step ∆τ is usually chosen to satisfy tU(∆τ)2 < 1/10 such

that the imaginary time discretization error is negligible.

Before we move on, let us introduce some general identities we need to use in the later

derivation. If the Hamiltonian in the second quantized form can be written as

H(l) =
(
ĉ†1σ ĉ†2σ · · ·

)
h(l)11 h(l)12 · · ·
h(l)21 h(l)22 · · ·

...
...

. . .



ĉ1σ

ĉ2σ
...

 (3.27)

then the partition function

Z = Tr(e−∆τH(1)e−∆τH(2) · · · e−∆τH(L))

= det(I + e−∆τh(1)e−∆τh(2) · · · e−∆τh(L))

(3.28)

and fermions Green function

Gij = ⟨ciσc†jσ⟩ = Z−1Tr(ciσc
†
jσe

−∆τH(1)e−∆τH(2) · · · e−∆τH(L))

= [I + e−∆τh(1)e−∆τh(2) · · · e−∆τh(L)]−1
ij

(3.29)

In order to use the above formalism to perform traces for fermions, we implement the

Hubbard-Stratonovich Transformation to convert the quartic onsite Coulomb repulsion term

into a quadratic form. The Hubbard-Stratonovich Transformation has many different forms

and here we will focus on the one introducing a discrete auxiliary field, which can be sampled

more efficiently. For the repulsive Hubbard (U > 0) model, the transformation is

e−∆τU(ni,↑− 1
2
)(ni,↓− 1

2
) =

1

2
e−∆τU/4

∑
si=±1

eλsi(ni,↑−ni,↓) (3.30)

where λ is defined by cosh(λ) = exp(∆τU/2). For the attractive Hubbard model (U < 0),

the transformation becomes

e−∆τU(ni,↑− 1
2
)(ni,↓− 1

2
) =

1

2
e+∆τU/4

∑
si=±1

eλsi(ni,↑+ni,↓−1). (3.31)
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Notice we need a variable at each site i of the spatial lattice and also at each imaginary

time slice l in Eq.(3.23). Applying the Hubbard-Stratonovich Transformation and using the

identities of (3.28),(3.29), we finally get the partition function, which can be expressed as a

summation of statistical weights over all the possible HS field configurations and the weight

can be written as a product of two determinants, one for spin up and one for spin down.

Z =
∑
s(i,l)

det(M↑)det(M↓), (3.32)

where s(i, l) = ±1 is Hubbard-Stratonovich (HS) variable for site i at time slice l and

Mσ = I +Bσ
LB

σ
L−1 · · ·Bσ

1 , (3.33)

where I is a N ×N identity matrix and the equal time single particle propagator

B
↑(↓)
l = e∓v(l)e−k (3.34)

Here k is the matrix corresponding to the electron kinetic energy part. Using N = 6, 1D

chain with periodic boundary condition system as an example,

k = ∆τ



−µ −t 0 0 0 −t
−t −µ −t 0 0 0

0 −t −µ −t 0 0

0 0 −t −µ −t 0

0 0 0 −t −µ −t
−t 0 0 0 −t −µ


(3.35)

Usually the “checkerboard decomposition” is employed to make the calculation of e−k rapid.

v(l) reflects the onsite Coulomb interaction, with HS variables for different sites i (which
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runs from 1 to N) and time slice l (which runs from 1 to L) on the diagonal line,

v(l) = λ



s(1, l) 0 0 · · · 0

0 s(2, l) 0 · · · 0

0 0 s(3, l) · · · 0

0 0 0
. . . 0

0 0 0 · · · s(N, l)


(3.36)

where each HS variable can be randomly chosen as ±1 initially.

The original 2D quantum problem is converted into a (2 + 1)D classical problem. s(i, l)

has an imaginary time index l in addition to its spatial index i. We can now follow the Me-

tropolis algorithm for classical Monte Carlo to sample possible configurations of HS variables

s(i, l) according to its statistical weight det(M↑)det(M↓).

Now let us discuss how to update configurations of HS variables in more detail below. If

we calculate the matrix determinant for each updated configuration, the algorithm scales as

N4L, since we have to calculate the determinant NL times to sweep over all the HS variables

s(i, l) and calculating a determinant requires N3 operations. In order to make the algorithm

more efficient, we use the “Sherman Morrison Formula” and calculate the Green function

for the updated configuration from its previous calculated Green function for the preceding

configuration.

Let us first define the single particle equal-time Green’s function

Gσ(l) = [I +Bσ
l · · ·Bσ

1B
σ
L · · ·Bσ

l+1]
−1 = [I + A(l)]−1 = [M(l)]−1 (3.37)

Note that the determinant does not depend on time slice l, i.e. we have det(Mσ) =

det(G−1
σ (l)) for arbitrary l values. Once the current time slice Green’s function Gσ(l) has

been calculated, the next time slice Green’s function Gσ(l + 1) can be derived by matrix
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multiplications, which only takes O(N2) operations,

Gσ(l + 1) = Bσ
l+1Gσ(l)[B

σ
l+1]

−1, (3.38)

because Bσ
l are sparse matrices.

One needs to sweep over all the sites at different time slices to update HS variables

configurations. Instead of calculating the new determinant for each sweep, we only care

about the ratio of the determinant for the new proposed configuration and the one for the

previous pattern, which is the probability of acceptance of the new configuration.

R = R↑R↓ =
det(M

′

↑)det(M
′

↓)

det(M↑)det(M↓)
(3.39)

Now let us derive the formula for R and express it by using Green’s function at time slice l.

Assume at time slice l after the update of HS variable on a single site i, the new A′(l) can

be expressed as

A′(l) = [I +∆(i, l)A(l)], (3.40)

where

∆(i, l)jk = δijδik[exp(2∆τs(i, l))− 1]. (3.41)
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Let us ignore the index sigma for a moment and get an expression applied for both spin up

and down,

R =
det(M′)

det(M)
= det(M′G)

= det
[(
I + (I + ∆(i, l))A(l)

)
G(l)

]
= det

[(
M(l) + ∆(i, l)A(l)

)
G(l)

]
= det

[
I + ∆(i, l)(I−G(l))

]
= 1 +∆(i, l)ii(1−G(l)ii)

(3.42)

In the above derivation, we use the identity I = G(l) + A(l)G(l) and this is obtained from

multiplying G(l) to the both sides of the relation M(l) = I + A(l). Similarly, we can also

figure out an expression for G′(l) using the Sherman Morrison Formula,

G′(l) = [M ′(l)]−1 = [I + A′(l)]−1

= [M(l) + ∆(i, l)A(l)]−1

= G(l)− G(l)∆(i, l)(I −G(l))

1 + [1−G(l)ii]∆(i, l)ii

(3.43)

Since ∆(i, l) has only one nonzero element, it is very efficient to use Eq.(3.42)(3.43) to update

phonon displacements for all the sites. Once the update is done for time slice l, we can use

Eq.(3.38) to get the Green’s function for the next time slice l + 1.

3.4.2. DQMC for the Holstein model: Feynman path integral

Unlike in the Hubbard model, where the Hamiltonian has a quartic onsite Coulomb poten-

tial term Uni↑ni↓ which can be decoupled to quadratic forms by introducing a Hubbard-

Stratonovich transformation, in the Holstein model, we have the electron-phonon coupling

term λ
∑

i,σ n̂i,σx̂i instead, where n̂i,σ = ĉ†i,σ ĉi,σ is the density operator. A path integral

converts the phonon displacement operators into numbers, thus the original Hamiltonian
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will become quadratic in terms of electron creation and annihilation operators and can be

diagonalized analytically.

Let us first use the simple Quantum Harmonic Oscillator as an example to illustrate how

to introduce a path integral to solve phonon problems and convert the original quantum d

dimensional Hamiltonian into a d+ 1 dimensional classical problem. The Hamiltonian for a

simple Quantum Harmonic Oscillator is

Ĥ =
1

2
p̂2 +

1

2
ω2
0x̂

2 (3.44)

After implementing the Trotter approximation, we will get an expression for the partition

function,

Z = Tr(e−βH) = Tr(e−∆τHe−∆τH . . . e−∆τH)

≈ Tr(e−
1
2
∆τ p̂2e−

1
2
∆τω2

0 x̂
2

. . . e−
1
2
∆τ p̂2e−

1
2
∆τω2

0 x̂
2

)

=

∫ +∞

−∞
dx1dx2 . . . dxL⟨x1|e−

1
2
∆τ p̂2e−

1
2
∆τω2

0 x̂
2|x2⟩ . . . ⟨xL|e−

1
2
∆τ p̂2e−

1
2
∆τω2

0 x̂
2|x1⟩

(3.45)

Each individual term in the above equation can be obtained by inserting eigenstates of

momentum operators. For example (recall ℏ = 1),

⟨x1|e−
1
2
∆τ p̂2e−

1
2
∆τω2

0 x̂
2|x2⟩ ∼

∫ +∞

−∞
e−∆τ 1

2
ω2
0x

2
2⟨x1|e−

1
2
∆τ p̂2 |p⟩⟨p|x2⟩dp

= e−∆τ 1
2
ω2
0x

2
2

∫ +∞

−∞
e−

1
2
∆τp2eip(x1−x2)dp

= e−∆τ 1
2
ω2
0x

2
2e

−(x1−x2)
2

2∆τ

(3.46)

Plug Eqn. (3.46) into the partition function for quantum harmonic oscillator (3.45), we get

Z =

∫
e−Sbose(xl)dx1dx2 . . . dxL, (3.47)
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where

Sbose(xl) = ∆τ(
ω2
0

2

∑
l

x2l +
1

2

∑
l

(
xl+1 − xl

∆τ
)2) (3.48)

In the Holstein model, we can follow exactly the same procedure to deal with electron-phonon

coupling term and convert the original quantum problem into a classical problem with one

higher dimension.

Z =

∫
dx⃗1dx⃗2d . . . x⃗Le

−Sbose(x⃗l)det(M↑)det(M↓), (3.49)

where Sbose(x⃗l) = ∆τ(
ω2
0

2

∑
l x⃗

2
l +

1
2

∑
l(

x⃗l+1−x⃗l

∆τ
)2) and x⃗l = (x1,l, x2,l, . . . xN,l)is a vector of

dimension N , representing the phonon displacements for different sites i = 1, 2, . . . N at time

slice l. x⃗2l is defined as x⃗2l =
∑

i x
2
i,l The integrand can be viewed as the probability P (x(i, l))

for the phonon configuration x(i, l), which depends on both site i and time slice l. It includes

both a bosonic piece from the quantum oscillator term and a product of two determinants,

one for spin up and one for spin down. For the Holstein model, because the spin-up and

spin-down species play exactly the same role in the Hamiltonian, the determinants for spin

up and down are identical. Thus the probability P (x(i, l)) is always positive and the Holstein

model is free of sign problems. x(i, τ) needs to be sampled stochastically in the simulation.

We need to follow the procedures discussed in Sec. 3.4.1 to update phonon fields x(i, l) and

calculate the acceptance probability of the suggested move and Green’s functions using the

Sherman Morrison formula.

3.5. Langevin Quantum Monte Carlo

The Langevin equation can also be applied in Monte Carlo simulations. A more detailed

discussion about the algorithm can be found in Chapter 7. Here we will discuss some

background of the Langevin QMC and show the Langevin equation satisfies the detailed

balance condition.
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Consider a system with energy E(x), which depends on the degree of freedom x. We

update the variable x via the Langevin Equation,

x′ = x− ϵ
dE

dx
+
√
2ϵTR, (3.50)

where T is the temperature and R is a random variable that obeys the Gaussian distribu-

tion p(R) = e−R2/2/
√
2π. Thus the transition probability of changing from x to x′ can be

expressed as,

P (x→ x′) = e−1/2[x′−x+ϵdE/dx]2/2ϵT/
√
2π

= e−[dx2+2ϵdE+ϵ2(dE/dx)2]/4ϵT/
√
2π,

(3.51)

where dx = x′ − x and dE = E(x′) − E(x). Similarly, we can also write out the transition

probability of x′ → x,

P (x′ → x) = e−[dx2−2ϵdE+ϵ2(dE/dx′)2]/4ϵT/
√
2π, (3.52)

Thus the ratio of these transition probabilities is,

P (x→ x′)

P (x′ → x)
= e−E(x′)/T eE(x)/T (3.53)

i.e.

P (x→ x′)e−E(x)/T = P (x′ → x)e−E(x′)/T . (3.54)

We can clearly see from the above equation that detailed balance is satisfied up to errors of

order ϵ. The application of Langevin QMC to the Holstein model on a layered square lattice

will be discussed in Chapter 7.
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CHAPTER 4

Charge density waves on a half-filled decorated honeycomb lattice

4.1. Introduction

Itinerant electrons on a honeycomb lattice host a Dirac spectrum in the absence of inter-

actions which has attracted considerable attention [23–28]. The linearly vanishing density

of states (DOS) at E = 0 forms an interesting counterpoint to that of the square lattice (of

interest to cuprate superconductivity) whose DOS diverges (logarithmically) at E = 0. An

immediate consequence is that, whereas in the square lattice long range antiferromagnetic

(AF) correlations onset in the ground state for any finite repulsive interaction U , a nonzero

critical Uc is required for AF order on the honeycomb lattice [29,30].

Recently, the effects of electron-phonon interactions on Dirac fermions have been explored

[1,2]. Similar to the case of electron-electron interactions, the semi-metallic band structure

requires a critical electron-phonon interaction strength for CDW formation at half-filling. A

crucial difference is that, unlike Neél order which occurs only at T = 0 in the two dimensional

Hubbard model [79], owing to the continuous nature of the spin symmetry being broken,

the CDW transition occurs at finite temperature.

In this chapter we extend these investigations of the Holstein model on a honeycomb

lattice by examining the effect of a regular pattern of non-uniform hopping. The particular

‘Kekulé hopping texture’ we investigate has been proposed [80] to give rise to nontrivial

topological properties associated with an opening of a gap at the Dirac point, and linked to

the ‘pseudo-angular momentum’ of electrons residing on sets of strongly hybridized hexagons.

Similar ‘decorated lattices’ have been studied previously in the context of the depleted square

lattice Heisenberg [81] and Hubbard [82] Hamiltonians as possible theoretical descriptions of
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spin liquid phases in CaV4O9 [83–87]. It was shown that while long range antiferromagnetic

correlations exist in the ground state when the hoppings t and t ′ are roughly balanced, spin

liquid phases consisting of independent spin dimers or spin plaquettes are present when the

hoppings are sufficiently unequal. Within mean field theory, a rich variety of spin-ordered

phases, characterized by different patterns of spin inside and between the plaquettes, can

arise as a function of doping and U in such decorated Hubbard models [82].

Strongly correlated physics in the presence of several kinetic energy scales gives rise to

a further variety of phenomena in other important realizations, including orbitally-selective

Mott transitions [88–94]. In the case of the Periodic Anderson Model (PAM) which includes

both conduction c and local d orbitals, a dominant interorbital hopping tcd ≳ tcc can lead

to singlet formation and a spin-liquid ground state [95, 96], as seen in QMC studies in

d = 1, 2, 3 and d = ∞ [97–100]. As in the less widely studied case of decoration, the

existence of several hopping energy scales whose difference is large disrupts magnetic order.

Most of these investigations have focused on electron-electron interactions.

We will discuss some interesting analogies between the spin-singlet formation in such

situations, and charge singlets in the electron-phonon case. However, it is important to

emphasize that the Holstein model breaks the spin symmetry present in the Hubbard model,

with charge order (the analog of ordering in the Sz channel) dominating over superconducting

order (which maps onto Sx, Sy). As a result, the CDW transition in the half-filled 2D

Holstein model occurs at finite temperature [77], whereas long range magnetic order in

the 2D Hubbard model occurs only at T = 0. This breaking of symmetry introduces a

fundamental difference between the physics of the repulsive Hubbard and Holstein models

with multiple hopping energy scales, which is especially marked as the phonon frequency ω0

decreases.
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Figure 4.1. The structure of the ‘decorated honeycomb lattice’. Two differ-
ent hopping strengths are present. Hybridization t (thin black lines) links the
sites of a collection of independent hexagons. These hexagons are then con-
nected by t ′ (thick blue lines). In the t ′ >> t limit, an alternate description
in terms of elemental dimers linked by t is a more appropriate starting point.

4.2. Model and Methods

We investigate the Holstein Hamiltonian,

Ĥ =−
∑
⟨ij⟩σ

tij
(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
− µ

∑
iσ

niσ

+
1

2

∑
i

p̂2i +
1

2
Mω2

0

∑
i

x̂2i + λ
∑
i

x̂i(n̂i↑ + n̂i↓) . (4.1)
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Here the kinetic energy sum is over sites on a hexagonal lattice, with tij = t for pairs of sites

internal to a set of hexagons, and tij = t ′ for pairs of sites bridging distinct hexagons. See

Fig. 4.1. We will report lattice sizes N in terms of the number of hexagons, i.e. the unit

cell count. Figure 4.1 corresponds to N = (3 × 3) × 6 = 54 sites. The remaining terms in

Ĥ consist of a collection of local quantum oscillators of frequency ω0 (ω0 = 1 is used in all

the simulations in this chapter) and an electron-phonon coupling λ of the fermionic charge

density n̂i↑ + n̂i↓ to the displacement x̂i. We will measure the strength of the coupling via

the dimensionless combination λD ≡ λ2/(Mω2
0 W ). In the anti-adiabatic limit ω0 → ∞,

the coupling λD can be thought of as the ratio of an effective attraction between electrons

mediated by the phonons, Ueff = −λ2/(Mω2
0), to the kinetic energy scale W . The choice

t = 1 +∆ and t ′ = 1− 2∆ keeps the bandwidth W = 6 fixed as ∆ is varied, allowing us to

study the effects of modulated hopping while keeping λD constant. We set the phonon mass

M = 1 and tune the chemical potential µ = −λ2/ω2
0 to the particle-hole symmetry point so

that the filling is always ⟨niσ ⟩ = 1
2
.

We solve for the properties of Eq. 6.1 using two methods. The first is a mean field

approach in which we make an ansatz for the phonon coordinates. (See Sec. 3.) The resulting

Hamiltonian is quadratic in the remaining fermion degrees of freedom and can be solved

analytically. The free energy is minimized within the parameter space allowed in the ansatz.

The second approach is DQMC [101,102]. Unlike MFT, it solves the many-body problem

exactly, on finite lattices. DQMC has statistical errors associated with the sampling, which

are of the order of 0.1% for local quantities like the double occupancy and energy, but

can be several percent for global quantities like structure factors in the vicinity of phase

transitions. DQMC also has ‘Trotter errors’ [103–106] arising from the discretization of

imaginary time. Because these Trotter errors are of the same order as, or smaller than,

the statistical ones for the quantities we use in determining the phase boundary, we do not
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perform any extrapolation in the imaginary time discretization. For all the work in this

chapter we use ∆τ = 0.1.

Regardless of the value of ∆, the decorated honeycomb lattice is bipartite, and hence the

local fermionic pairs which form due to the effective attractive interaction Ueff mediated by

the phonons tend to form a charge density wave phase at half-filling. Previous investigations

have determined the phase diagram in the λD-T plane for t = t ′ [1,2]. For ω0/t = 1, there

is a quantum critical point at (λD)c = 0.27 above which CDW order forms in the ground

state. Tc rises rapidly at (λD)c, reaching a maximum value Tc/t ∼ 0.2 at λD ∼ 0.5. We are

interested here in the effect of the nonuniform hoppings ∆ on Tc and on (λD)c. In the limits

∆ = 0.5 and ∆ = −1 the system separates into collections of independent hexagons and

dimers, making long range order impossible and Tc = 0 trivially.

The two site unit cell of the honeycomb lattice is expanded by the decoration, so that

now there are six bands. Figure 4.2 shows E(k⃗) for the undecorated honeycomb lattice t = t ′

(central panel); the dimer limit t < t ′ (top panel); and the hexagon limit t ′ < t (bottom

panel). In either case, the touching of the two bands at the Dirac cones which occurs at

half-filling and t = t ′ is replaced by a gap.

The associated densities of states (DOS) for the three cases are shown in Fig. 4.2 Right.

Consistent with the dispersion relations of Fig. 4.2 Left, when ∆ ̸= 0, the linearly vanishing

DOS at E = 0 of the isotropic honeycomb lattice is replaced with a gap.

The decorated lattice geometry of Fig. 4.1 has been proposed as a generalization of the

isotropic honeycomb lattice with a topological gap opened by the difference between the

inter- and intra-plaquette hoppings [80]. The six resulting bands can be viewed as arising

from the six single electron states (“orbitals”) which exist on each independent (t ′ = 0)

hexagon and whose degenerate levels are broadened when t ′ ̸= 0. The topological nature is
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Figure 4.2. Left: Energy dispersion E(k⃗) in the noninteracting (λ = 0)
limit. The Dirac points of the two bands of the honeycomb lattice, t = t ′

(middle panel), are split by the decoration t ̸= t ′. In both cases, t > t ′ and
t < t ′, a gap is opened at half-filling. See text for a discussion of differences at
other fillings. Right: Density of states for the same three cases as left panel.
A gap at half-filling is evident when t ̸= t ′.
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not like that induced by spin-orbit coupling. Instead, it is similar to the 1D Su-Schrieffer-

Heeger model, which also contains weak and strong bonds. Domain walls which arise from

t ̸= t ′ are associated with a gapless boundary state.

Other versions of decoration exist. For example, Rüegg etal [107] have explored topo-

logical insulators of a tight-binding Hamiltonian with spin-orbit and Rashba interactions on

a “star” lattice which interpolates between honeycomb and Kagomé geometries. Similarly,

when honeycomb rhodates like Li2RhO3, are pressurized various bond dimerization patterns

emerge on the Rh hexagons, and are associated with different magnetic patterns [108]. A

final example is strained graphene, in which the hoppings t1, t2, t3 along the three primitive

lattice vectors are allowed to be unequal [109–112].

As noted in the introduction, in quantum spin-1/2 and itinerant electron Hamiltonians

with repulsive interactions, unequal hoppings tend to degrade long range magnetic order.

It is worth discussing the relation between those (spin) singlet phases and the disordered

phases in the attractive Hubbard model, since that has a close connection to the Holstein

model studied here; both exhibit CDW and superconducting phases and a quantitative link

is provided by Ueff = −λ2/ω2
0.

4.3. Mean Field Theory Results

We first examine the physics of the Hamiltonian of Eq. 6.1 within mean field theory. In

this approach, we ignore the phonon kinetic energy and assume a staggered pattern for the

phonon displacements, xi = x0 + (−1)i x1. Here (−1)i = ±1 on the two sublattices of the

(bipartite) honeycomb geometry. The quadratic fermion Hamiltonian can be diagonalized,

resulting in a total free energy per site which combines both electron and phonon contribu-

tions, f(x0, x1, T ) = N ω2
0 (x

2
0+x

2
1)/2−T

∑
α ln

(
1+ e−ϵα(x0,x1)/T

)
, where ϵα are the fermion

energy levels. A nonzero bond dimerization x1 implies an associated charge modulation,

since λxi acts as a local chemical potential on site i.
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The resulting phase diagram is shown in the top panel of Fig. 4.3. Tc is decreased

by decoration, as might be expected from the Stoner criterion and the opening of a true

gap (vanishing of the Fermi surface density of states in a finite chemical potential range).

However, for λD = 2
3
, the effect is relatively small: Even in the extreme independent hexagon

and dimer limits Tc(∆ = 0.5)/Tc(∆ = 0) = 0.965 and Tc(∆ = −1)/Tc(∆ = 0) = 0.822,

respectively. The MFT Tc is nonzero even though there can be no symmetry breaking on

small finite clusters. On the other hand, for smaller λD, MFT results indicate that a critical

∆ is needed in order to have a CDW phase, which is consistent with the DQMC results in

Fig. 4.7. We have verified that, for λD > 0.24, the MFT results shown for (50×50)×6 lattices

change by less than the thickness of the lines if the lattice size is decreased to (4 × 4) × 6,

an observation which aids in interpreting the DQMC results of the next section, which are

necessarily on smaller lattices. At λD < 0.24, where Tc gets small and the CDW region is

minute, finite size effects, unsurprisingly, become more pronounced.

It is interesting to contrast this with the behavior of the simplest model of CDW physics

in this geometry, the classical lattice gas E =
∑

⟨ij⟩ Vijninj. Here ni = 0, 1 and we choose

Vij = V0(1 + ∆) or Vij = V0(1 − 2∆), with the same geometry and bond convention as in

Fig. 4.1. The total coupling
∑

j Vij at each site i is independent of ∆, in analogy to fixing

the bandwidth W . The transition temperature as a function of ∆ is given in the bottom

panel of Fig. 4.3. Within MFT, Tc is completely independent of ∆ because Tc is only a

function of the total, and invariant,
∑

j Vij. The bottom panel of Fig. 4.3 also gives the

exact Tc (obtained by Binder crossings of classical Monte Carlo simulations). The exact Tc

does depend on ∆, and can be seen to vary by a factor of three from its ∆ = 0 value when

∆ = −0.8 or ∆ = +0.4, values which approach the decoupled hexagon and dimer limits.

Unlike the MFT calculation, the exact Tc must vanish at ∆ = −1 and ∆ = +0.5, and the

lattice consists of independent clusters.
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Figure 4.3. Top: Dependence of Tc on λD of the decorated Holstein model
Eq. 6.1 within mean field theory. The CDW transition temperature is maxi-
mized for isotropic hopping (∆ = 0), and is suppressed on the dimer side ∆ < 0
and the hexagon side (∆ > 0). Bottom: Comparison of Tc given by MFT and
classical Monte Carlo for a classical lattice gas. The difference between exact
Tc and MFT Tc is more significant when ∆ approaches to the limiting cases
∆ = −1 and ∆ = 0.5.
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As we shall see in the following section, the MFT values for the critical temperature of

Fig. 4.3(top) are an order of magnitude larger than those of QMC. This is perhaps not too

surprising given the low dimensionality being studied. We note that a similar comparison of

phase diagrams for the 2D Hubbard model revealed MFT in considerable disagreement with

DQMC [113].

4.4. Quantum Monte Carlo Results

We now turn to the results of DQMC simulations which include fluctuations neglected

in the preceding MFT treatment. We begin by showing the charge structure factor,

Scdw =
1

N

∑
i,j

(−1)i+j ⟨ninj ⟩. (4.2)

with (−1)i+j = ±1 according to whether sites i, j are on the same or different sublattices. In

an ordered phase, T < Tc, we expect Scdw to grow linearly with the lattice size since ⟨ninj ⟩
is non-zero even for widely separated i, j pairs.

Figure 4.4 gives Scdw for several values of λD and lattice sizes N at low temperature,

β = 10. In a window about the isotropic Holstein limit (∆ = 0), Scdw is large and increases

with lattice size, suggesting the presence of long range charge correlations for those values.

Meanwhile, for large ∆, Scdw is small and independent of size. Two quantum critical points

(QCP) ∆c separate the CDW from charge singlet regions at the two extremes of hopping

difference ∆ = −1.0 and. ∆ = 0.5.

The difference

D ≡ Cnn − C ′
nn ≡ ⟨nini+x̂⟩t − ⟨nini+x̂⟩t ′ (4.3)

between the near-neighbor density-density correlations Cnn on the t and t ′ bonds provides

a measure of the effect of hopping difference on the order. For ∆ small, D is small. D rises
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Figure 4.4. Charge structure factor Scdw as a function of hopping difference
∆. There is a window near the isotropic point ∆ = 0 in which Scdw is large
and scales with system size, indicating long range charge order.

rapidly in the vicinity of the QCPs ∆c. See Fig. 4.5. Indeed, dD/d∆ can be regarded as a

“inhomogeneity susceptibility” which diverges at T = 0 as ∆ → ∆c.

Figures 4.4–4.5 focus on the low temperature charge correlations and identify the posi-

tions of the QCPs which bound the CDW regions near the isotropic lattice limit. Within

the CDW, there is a finite temperature phase transition as T is decreased. Crossings of the

scaled structure factor Scdw/L
γ/ν are shown in Fig. 4.6 and identify Tc in the region of small

∆ where long range order persists.
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Figure 4.5. Difference D between density correlation function on t and t ′

bonds as a function of ∆. D rises steeply in the vicinity of the CDW to charge
singlet QCP.

As discussed in the introduction, it seems natural to connect the loss of charge order in

this electron-phonon model to analogous AF-singlet transitions in Hamiltonians describing

quantum magnetism which have several exchange energy scales, e.g. the periodic Anderson

and bilayer Hubbard Hamiltonians, and the bilayer or random bond Heisenberg Hamiltoni-

ans. We have used that language extensively in the present chapter, since it does constitute

a useful touchstone. However, the fact that a finite temperature CDW transition occurs in

the Holstein model suggests care should be taken in emphasizing this connection, since the

continuous symmetry of the ordering direction forbids such a finite T transition in the 2D
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Figure 4.6. Scaled structure factor Scdw/L
γ/ν as a function of β. The scaling

exponent γ/ν = 7/4 is taken to be the 2D Ising value, and provides a good
universal crossing. The crossing points identify Tc = 1/βc.

magnetic models. Indeed, Figure 2.1 shows that the parameters explored in Figs. 4.4-4.6 are

in fact very far from the regime where the analogy is precise.

Phase diagrams are obtained for fixed λD = 0.48, varying t and t′ (top panel) and fixed

t = 0.9, t′ = 1.2, varying λD (bottom panel) in Fig. 4.7. It is numerically challenging to

attempt to extract Tc when it becomes too small. Nevertheless, we can put reliable upper

bounds on Tc by measuring Scdw at large β and verifying its value is consistent with only

short range charge correlations. Doing simulations at β up to β = 25 (temperature T = 0.04)

strongly suggests that, similar to the undecorated honeycomb case [1,2], there is a nonzero
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Figure 4.7. Top: Phase diagram of Tc as a function of ∆ when λD = 0.48. Tc
reaches its maximum for isotropic hopping (∆ = 0), and drops sharply on the
dimer side ∆ < 0 and the hexagon side (∆ > 0). Bottom: Phase diagram of
Tc as a function of λD when t = 0.9, t′ = 1.2 with (λD)c ∼ 0.32. As λD grows,
Tc increases first, as the electron-phonon coupling induces the CDW phase,
but then decreases as large values of the electron-phonon coupling cause the
polarons to become increasingly heavy [1,2]. The symbol along the horizontal
axis of panel (b) is obtained by extrapolating the sharp descent of the DQMC
data for Tc, combined with low temperature simulations which show the charge
correlations are short ranged.
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critical coupling (λD)c ∼ 0.32, for t = 0.9, t′ = 1.2, as indicated along the T = 0 axis in the

bottom panel, Fig. 4.7(bottom). Correspondingly, for fixed λD = 0.48, large β simulations

suggest there are critical hopping differences ∆c, as shown in the top panel, Fig. 4.7a. The

presence of these QCP is further supported by their appearance in the MFT results in

Fig. 4.3.

The fitting curves in Fig. 4.7 (top and bottom) are based on a simple cubic spline through

the data and hence are best regarded as ”guides to the eye”. Since this is based on an ad-hoc

functional form, there is considerable uncertainty in the positions of the QCPs which are

seen in the MFT treatment (Fig. 4.3).

We conclude by examining the single particle spectral function, A(ω), which is related

to the fermion Greens function G(τ) obtained in DQMC via,

G(τ) =

∫
dω

e−ωτ

eβω + 1
A(ω) . (4.4)

A(ω) is the many-body analog of the single-particle density of states, and hence carries

information concerning the opening of energy gaps in the excitation spectrum. We invert

Eq. 5.2 via the maximum entropy method [114]. Fig. 4.8 gives A(ω) for two values of

hopping difference on opposite sides of the CDW-charge singlet QCP. Despite the difference

in the nature of the ground state, A(ω) vanishes at the Fermi surface ω = 0 in both cases,

as T is lowered. In the case of larger ∆, this reflects the presence of a charge singlet gap. In

the case of smaller ∆, this is a CDW gap. Similar behavior occurs on the two sides of the

antiferromagnetic-spin singlet QCP in the multiband Hubbard model [115].
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Figure 4.8. Spectral function for the two cases ∆ = −0.6 in the charge liquid
phase and ∆ = −0.2 in the CDW phase.
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CHAPTER 5

Interplay of flat electronic bands with Holstein phonons

5.1. Introduction

A number of periodic tight-binding lattices contain a macroscopic degeneracy of local,

zero energy eigenstates which arise from the perfect cancellation of hopping for an appro-

priately phased occupation state [31, 32]. These include the Kagomé, sawtooth, Creutz,

diamond-octagon, square-octagon, decorated honeycomb, and finally the dice lattice, where

the phenomenon was first noted [116]. One of the most prominent examples is the Lieb

lattice, shown in Fig. 5.1, which is of special interest as the structure of the CuO2 planes of

the cuprate superconductors.

The existence of these ‘compact localized states’ is a property of the non-interacting

system. Several years after their discovery, it was pointed out that precise statements can

be made concerning the role of repulsive electron-electron interactions in flat band systems.

Specifically, the existence of a ferrimagnetic ground state can be rigorously established [33].

Subsequent work further investigated flat band ferromagnetism [34–37]. The effect of at-

tractive electron-electron interactions is also of interest [117–120], especially since the mo-

mentum at which Bose-Einstein condensation of fermionic pairs might occur is uncertain in

a flat band [121–123].

Flat bands have also been considered within the context of the Fractional Quantum

Hall Effect, [124] Chern insulating behavior, [125], Tomonaga-Luttinger liquids [126] and

Haldane phases [127]. Perhaps the most dramatic explosion of theoretical and computational

interest coincided with the recent discovery that bi-layer graphene, when twisted at a “magic

angle” of about 1.1 degrees, displays unconventional superconductivity (SC) which is likely
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closely linked to the appearance of a nearly dispersionless bands in the effective Moire pattern

lattice [128–133]. This SC is characterized by a ratio of critical temperature to Fermi

temperature higher than the cuprates.

In addition to realizations in these solid state materials, flat band physics has also been

explored in photonic Lieb Lattices [134, 135], and optical Lieb [136, 137], Kagomé [138]

and honeycomb [139] lattices.

Here, we investigate the phases of interacting electron-phonon systems for flat electronic

bands [38]. Specifically, we study the Holstein Hamiltonian on a Lieb lattice. Although there

are suggestive analogies between the Holstein model and the attractive Hubbard model, the

former has a non-trivial frequency dependent coupling which distinguishes the two situa-

tions, the most significant consequence of which is the presence of a finite temperature phase

transition even on 2D lattices which are the most commonly investigated flat band geome-

tries. It is only in the extreme anti-adiabatic limit, where the phonon frequency is one to two

orders of magnitude larger than the electronic bandwidth, that the Holstein and attractive

Hubbard models become quantitatively equivalent [10].

5.2. Holstein Model

The Holstein model [75] has been introduced in Chapter 2. The electronic density of

states in the absence of the electron-phonon interactions, is given in Fig. 5.2. The δ−function

spike at E = 0 reflects the macroscopic degenerate collection of local E = 0 vectors |ψ⟩
constructed by forming a state with equal amplitude, and with the indicated phases, on

four sites surrounding any vacant site the Lieb lattice. See Fig. 5.1. All these |ψ⟩ have the

property K̂|ψ⟩ = 0. where K̂ is the first (hopping) term in Eq. 6.1. The band structure is

given in Fig. 5.3

When λ ̸= 0, the qualitative physics of the Holstein model is as follows: at low densities

individual electrons distort the lattice sites in their vicinity. The resulting composite particle,

a ‘polaron’, possesses an increased effective mass, reflecting the fact that when the electron
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Figure 5.1. The Lieb lattice geometry. Additional sites (blue and green) are
added to midpoint of each of the bonds linking the sites of a square lattice
(red). The resulting structure is bipartite and has three sites per unit cell.
Note especially that the red sublattice contains only half as many sites as
the sublattice comprised of blue and green sites. The ± pattern on on the
four blue/green sites surrounding one of the vacancies illustrates a zero energy
mode. See text.

hops between sites, the oscillator degrees of freedom must reconfigure themselves [140–144].

These dressed quasiparticles tend to attract one another, since the distortion caused by one

provides a favorable environment for another. Indeed, solving the t = 0 Holstein model one

can see an effective attraction Ueff = −λ2/ω2
0 exists between spin up and down fermions.

This independent site form is consistent with the interaction between electrons mediated by

a phonon propagator, Veff(ω) = λ2/(ω2 − ω2
0 ), if one sets ω = 0.
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The pairs of up and down electrons which arise from this attraction can participate in

ordered phases. One possibility, which dominates on half-filled (ni,σ = 1/2) bipartite lattices

with equal number of sites in the two sublattices, such as square and honeycomb geometries,

is a CDW arrangement in which pairs occupy one of the two sublattices. CDW formation

is energetically favorable because, by surrounding itself with empty sites, a pair of electrons

has the optimal ability for virtual hopping processes to adjacent sites, thereby lowering its

energy by J ∼ −zt2/Ueff where z is the coordination number. This situation is similar to

that giving rise to antiferromagnetic order in the half-filled repulsive Hubbard model.

Another possible ordered state occurs when the pairs condense into a superconducting

phase. This is expected to occur when the system is doped away from fillings which favor

CDW order and has been studied with, for example, Eliashberg theory [145–149]. QMC

simulations have given indications of pairing as well [8,16,150].

In this chapter, we consider the CDW transition in the Holstein model on the Lieb lattice.

We set the phonon frequency ω0/t = 1 to facilitate comparisons with most of the existing

QMC literature [1, 2, 8, 11, 39, 77, 150–153]. This historical choice was in part made as

a simple starting point to explore the qualitative physics of the CDW and SC transitions,

but also because it facilitated the DQMC simulations, which were known to exhibit long

autocorrelation times at ω0/t ≲ 1/2. Recent algorithmic improvements have made possible

the study of smaller ω0 [22,154–157].

5.3. Computational Methodologies

Mean field theory method discussed in Chapter 2 will be applied to study the Holstein

model on a Lieb lattice. Although much insight can be gleaned from MFT, especially con-

cerning the possible types of order, it has a number of well-understood defects, especially

an overestimate of the tendency to long range order arising from ignoring fluctuations. This

is particularly evident in lattice models like the Hubbard and Holstein Hamiltonians where

it fails to distinguish two separate energy scales. The first is the temperature T ∼ U at

58



Figure 5.2. The density of states of the Lieb lattice. Energy levels of two
dispersing bands bracket the δ-function peak at E = 0. Particle-hole symmetry
is reflected in the property that N(E) = N(−E).

which local moments (in the case of repulsive interactions) or pairs (in the case of attrac-

tive interactions) form. The second is the temperature at which inter-site ordering occurs.

Since the former grows linearly with the interaction strength U , and the latter falls as 1/U ,

MFT overestimates Tc by a far wider margin at strong coupling than in simpler classical

descriptions of long range order such as the Ising model.
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Figure 5.3. The band structure of the Lieb lattice.

To provide a more accurate treatment of the electron-phonon correlations, we turn to

the use of the Determinant Quantum Monte Carlo (DQMC) methodology [101,158]. Sim-

ulations are carried out on lattices of finite size, necessitating a finite size scaling analysis,

as described below.
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We focus on several local observables, the density ρ = ⟨n̂i⟩ and double occupancy D =

⟨n̂i↑n̂i↓⟩, and on the CDW structure factor, the Fourier transform of the real-space density-

density correlation function.

S(q) =
∑
r

c(r) iq·r

c(r) = ⟨∆n̂i+r ∆n̂i ⟩ , (5.1)

where ∆n̂i = n̂i,B + n̂i,C − 2n̂i,A is the charge density difference within a unit cell, labeled by

i. When only the A or B/C sublattice is occupied, corresponding to one-third or two-thirds

filling, the dominant S(q) will be Scdw = S(π, π).

The spectral function A(r, ω) is obtained by an analytic continuation of the non-equal

time Greens function

G(r, τ) = ⟨ ĉi+r,σ(τ)ĉi,σ(0) ⟩

= ⟨ eτĤĉi+r,σ(0)e
−τĤĉi,σ(0) ⟩

G(r, τ) =

∫
dωA(r, ω)

e−ωτ

eβω + 1
(5.2)

We report the Fourier transform of the spectral function at zero momentum, a quantity

which is the analog of the non-interacting density of states in a correlated system.

DQMC has been used to explore various properties of the attractive and repulsive Hub-

bard models on the Lieb Lattice [123,159,160], but has not yet been used for the Holstein

model.

5.4. Results

5.4.1. Mean Field Theory

We first explore the effect of electron phonon interaction by using the mean field theory

approach described in section 3A. Since the λxini term in the mean field Holstein Hamiltonian
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Figure 5.4. Mean field order parameter ∆∗ as a function of temperature
T/t at half-filling, µ = − λ2

ω2
0
= −4. For T > Tc ∼ 1.9 t, the MFT critical

temperature, ∆∗ = 0 and each site has ρi = 1/2. For T < Tc there are
two degenerate values of ∆ = ±∆∗ which minimize F . These correspond to
1/2 − dρ and 1/2 + dρ (and hence the average density is half-filled), with dρ
gradually growing to 1/6 as T decreases (corresponding to 1/3 and 2/3 filling).

can be viewed as a chemical potential λxi acting on site i, a nonzero bond dimerization ∆

implies a staggered pattern of electron density, i.e. a CDW phase. We first fix x0 = − λ
ω2
0

so that the lattice is half filled. For T > Tc ∼ 1.9t, the order parameter ∆ = 0 minimizes

F . Below Tc, we find there is a pair of degenerate solutions ∆ = ±∆∗, corresponding the

equal weights of 1/2− dρ and 1/2 + dρ,with dρ gradually growing to 1/6 as temperature T

is lowered (corresponding to 1/3 and 2/3 filling). ∆∗ is plotted as a function of temperature
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Figure 5.5. Density ρ as a function of chemical potential µ within MFT.
Temperature T = 2 t > Tc and ρ(µ) is smooth. For temperature T = t < Tc
the density ρ(µ) has plateaus at ρ = 1/3, 2/3 corresponding the a non-zero
CDW gap. The sublatttice occupations are given by ρA = 1/2 + ∆∗ and
ρB/C = 1/2 − ∆∗ so that when ∆∗ > 0 there is a smaller number of A sites
with ρ > 1/2 and a larger number of B/C sites with ρ < 1/2 and the total
density ρ = 1/3, and vice-versa for ∆∗ > 0.

T in Fig. 5.4. All MFT results presented in this chapter are obtained on a 3× (40×40) Lieb

lattice with a dimensionless electron phonon coupling constant λD ≡ λ2

ω2
0W

=
√
2/2. Here

W = 4
√
2t is the fermion band width for a Lieb lattice in the noninteracting limit. We will

see later the MFT Tc ∼ 1.9 t is more than an order of magnitude higher than the Tc given

by DQMC.
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Figure 5.6. The spectral function A(ω) determined in DQMC calculations.
A gap opens at the Fermi surface ω = 0 as the temperature is lowered (β
increases). This provides a rough estimate of Tc.

For different chemical potential µ, we follow the same steps to determine (x∗0,∆
∗) minimiz-

ing the free energy and find ∆∗ > 0 (ρ = 1/3 CDW pattern) when µ < − λ2

ω2
0
; ∆∗ < 0 (ρ = 2/3

CDW pattern) when µ > − λ2

ω2
0
. The electron density can be obtained by n =

∑
α,k

1
1+eβϵα

.

Figure 5.5 shows the density ρ as a function of chemical potential µ. As temperature is

lowered, plateaus at ρ = 1/3 and ρ = 2/3 develop, indicating that a 1/3 filling CDW pattern

and its partner at 2/3 filling, extend over a finite range of µ, which is consistent with the

DQMC results below. A similar phenomenon is also observed in the ‘t−V model’ of spinless

fermions interacting with a nearest neighbor repulsion on a Lieb lattice. [161].
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5.4.2. Determinant Quantum Monte Carlo

We now turn to DQMC results. We begin with the spectral function in Fig. 5.6. At high

temperatures (small β) A(ω = 0) is non-zero. A gap is fully formed at βc t ∼ 6, suggesting

a transition to an insulating CDW phase.

A more accurate determination of the location of the CDW transition is obtained by a

finite size scaling analysis of Scdw. Because the low temperature phase involves occupying

one of two spatial sublattices, it breaks a Z2 symmetry, and therefore the transition should

be in the Ising universality class. Using the known 2D Ising critical exponents ν = 1 and

γ/ν = 7/4 yields the finite size scaling plots of Fig.5.7. We find βc t = 6.4±0.1. If we eschew

this knowledge and instead vary the critical exponents and minimize the scatter of the data

collapse plot, the resulting γ/ν is within 5% of the 2D Ising value. An example of such an

analysis (for the honeycomb lattice) is given in [1].

The real space density correlations c(r) provide additional insight into the nature of the

CDW order. Figures 5.8 and 5.9 give color intensity plots of c(r) for different temperatures

and initializations of the phonon displacement x(i, τ). At high temperatures, the correlations

are independent of the starting configuration and c(r) = ⟨ni+rni⟩ = ⟨ni+r⟩⟨ni⟩ ∼ 1. Short

range correlations begin to develop at β t ∼ 6 and a strong alternation between c(r) ∼ 4,

where r connects a pair of doubly occupied sites, and c(r) ∼ 0, where one of the sites is

empty, becomes apparent. In the case of the initialization in the ρ = 1/3 state (Fig. 5.8) with

only sublattice A sites occupied, density correlations referenced to an A site (top panel) show

the alternation, whereas if referenced to an unoccupied B site (bottom panel) all c(r) become

small. Conversely, for initialization in the ρ = 2/3 state (Fig. 5.9) with sublattice B,C sites

occupied, density correlations referenced to a B site (bottom panel) show the alternation,

whereas if referenced to an unoccupied A site (top panel) all c(r) become small.

Another way to examine the evolution into one of two possible ground states, character-

ized by distinct densities, is to begin several simulations with constant density ρ = 1, and
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Figure 5.7. Left: The scaled structure factor is plotted versus β for three
lattice sizes. The crossing gives the position of the CDW transition. Right: If
the horizontal (inverse temperature) axis is also scaled, a full data collapse is
obtained.

examine the final densities achieved. Figure 5.10 shows the result for four such simulations.

At small β the lattice remains half-filled, but as β increases the lattice falls into either the

ρ = 1/3 or the ρ = 2/3 minimum. The tendency for this splitting begins about β ∼ 5.

For 5 ≲ β ≲ 9 the data tend to fill the region between the upper and lower densities. This

happens because at finite temperatures and on finite lattices, tunneling between the two

minima can occur in the course of a simulation. Depending on the relative amount of time

spent at ρ = 1/3 and ρ = 2/3, the average density can take different values. For β ≳ 9 very

little tunneling occurs, and the data instead lie on just one of the two bounding lines. Note
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Figure 5.8. Density-density correlation for a 3× (4× 4) Lieb lattice at ω0 =
1, λ = 2(λD =

√
2/2). The simulation was initialized with HS field appropriate

to being in the ρ = 1/3 minimum with dominant A sublattice (‘Copper sites’)
occupation. First row: correlations between each site and the Cu site in the
bottom left unit cell. Second row: correlations between each site and the B/C
sublattice (‘Oxygen sites’) in the bottom left unit cell.
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Figure 5.9. Same as Fig. 5.8 except starting in the ρ = 2/3 minimum.
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that the order parameter depends on β so that the increasing width of the ρ curves reflects

the growth of the CDW order parameter below βc.

It is important to emphasize a subtlety of the physics. Although the simulations of

Fig. 5.10 were done at the chemical potential µ = −λ2/ω2
0 which should give ρ = 1 by

particle-hole symmetry, the symmetry is broken and there are two low temperature phases

with ρ = 1/3 and ρ = 2/3. This is precisely analogous to a simulation of a magnetic

(e.g. Ising) model at zero external field. Although symmetry demands magnetizationM = 0,

below Tc there are two phases with M = ±M∗.

Figure 5.10. Density ρ as a function of β at the λD =
√
2/2. Data for four

different random seeds are shown. A spontaneous symmetry breaking begins
to occur at β ∼ 5. See text for details. The vertical dashed line is the value
of βc detemined from FSS of Scdw.
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Plots of the density ρ versus chemical potential µ (Fig. 5.11) also reveal the CDW phase.

At high temperatures ρ evolves smoothly between the empty and a fully-packed limits,

transiting half-filling at the particle-hole symmetry point µ = −λ2/ω2
0. At temperatures

below the CDW transition, a plateau develops in which the compressibility κ = dρ/dµ

vanishes. However, unlike the situation on a bipartite lattice in which each sublattice has

equal numbers of particles, the plateau is bifurcated by an abrupt jump as the system

transitions from occupation of the minority to majority sublattice.

Figure 5.11. Density ρ vs. chemical potential µ for several different β ob-
tained in DQMC simulations. Here λ = 2, (λD =

√
2/2).

Figure 5.12 is similar to Fig. 5.10 except showing the double occupancy D. At low β

(high T ), D = ⟨ni↑ni↓⟩ ∼ ⟨ni↑⟩⟨ni↓⟩ ∼ 1/4. As T decreases below the pair binding scale
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Ueff = λ2/ω2
0 ∼ 4, pairs begin to form on half the sites (D ∼ 0.5). At larger β a CDW

pattern emerges in which D = 0 or D = 1 depending on which sublattice is occupied.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Figure 5.12. Double occupancy D vs β at λ = 2(λD =
√
2/2) for a 3×(4×4)

lattice and µ = −λ2/ω2
0. Data for four different random seeds are shown. The

vertical dashed line is the value of βc detemined from FSS of Scdw.

Figure 5.13 is the phase diagram of the Holstein model on a Lieb lattice in the plane of

temperature-dimensionless coupling constant. We also compare to several other geometries.

A striking feature of the plot is that the honeycomb and Lieb lattice values are so close.

Naively, one might have argued that the delta-function divergence of the Lieb lattice flat

band density of states would lead to a large Tc, especially when compared to the semi-

metallic case of the honeycomb lattice. However, the explanation is clear- The Lieb lattice

CDW order really occurs for ρ = 1/3 and ρ = 2/3, where it has Dirac cones much like
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the honeycomb lattice. Thus the only difference is that the honeycomb lattice coordination

number z = 3, whereas for the Lieb geometry the average coordination number is slightly

smaller z̄ = 2/3(2) + 1/3(4) = 8/3.

Figure 5.13. Critical temperatures for the Lieb lattice (this work) and the
honeycomb [1] and square lattices.
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CHAPTER 6

Phase Diagram of the Su-Schrieffer-Heeger-Hubbard model on a

square lattice

6.1. Introduction

Electron-electron and electron-phonon interactions play important roles in determining

the ground state properties of many-body systems. Over the past decades, much computa-

tional effort has been put into studying systems that feature one or the other of these interac-

tions. One of the most widely used models to study the effect of electron-electron interaction

with on-site repulsion U is the Hubbard model [3] which exhibits metallic, ferromagnetic,

antiferromagnetic (AF) and superconducting (SC) orders, as well as intricate inhomogeneous

spin and charge patterns, depending on U and the doping [4,5]. The physics of the square

lattice Hubbard model bears remarkable resemblance to that of the cuprate superconductors.

Two of the most commonly studied electron-phonon Hamiltonians are the Holstein [75] and

the Su-Schrieffer-Heeger (SSH) [76] models. Their fundamental difference is that in the for-

mer, electrons and phonons interact on a single site, while in the latter, the electron-phonon

interactions occur on the bonds, i.e. in the tunneling term. The Holstein interaction is widely

used to explore polaron and charge-density wave (CDW) physics [1,2,8–16,77], and conven-

tional s-wave SC transitions [6,7], while the SSH interaction occurs in systems like conjugate

polymers [17], organic charge transfer salts [18], metal salts [19] and CuGeO3 [20].

In the two-dimensional square lattice, the half-filled Holstein model predicts the emer-

gence of a CDW phase at any value of the electron-phonon interaction λ [39]. In the presence

of an additional on-site electron-electron repulsion U , the system can exhibit dominant AF
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or CDW correlations depending on the relative magnitude of U and λ [40, 41]. Interest-

ingly, there are indications of an intermediate metallic phase between the AF and CDW

phases [42–45], as well as other exotic regimes [46].

For the 2D square lattice SSH model at half-filling, it was shown [47] that a finite critical

electron-phonon interaction, λc, is needed to establish the bond-order-wave (BOW) phase,

and weak antiferromagnetism was detected [48, 49] for λ < λc despite the absence of U .

In the dilute limit, where bipolarons are expected to condense into a superfluid at very

high temperatures, AF is revealed as well in the effective Hamiltonian [162]. The cause of

this antiferromagnetism is that, on a given bond, only electrons of different spin can tunnel

simultaneously, resulting in a lowering of the energy via the electron-phonon coupling on the

bonds and an increase in the magnitude of the kinetic energy. In contrast, in the Hubbard

model at half-filling, AF order emerges in a two-step process in which U first suppresses

doubly occupied sites, and then AF order occurs due to a small remnant exchange process

J ∼ 4t2/U . The AF phase in the Hubbard limit is thereby accompanied by low kinetic

energy. This distinction will play a role in a cross-over behavior we observe in the Su-

Schrieffer-Heeger-Hubbard (SSHH) phase diagram.

We study here the rich interplay of BOW and AF regimes in the SSHH model. Crucially,

since the phonons couple to the electrons via the kinetic term, particle-hole symmetry is

preserved and there is no sign problem (SP) at half-filling. This allows us to use determinant

quantum Monte Carlo (DQMC) to study systems up to 12 × 12 in size and at very low

temperature. This contrasts with the Hubbard-Holstein model, where the SP precludes

crossing the CDW-AF phase boundary [45]. Our resulting phase diagram (Fig. 6.1) exposes

phases of long range AF and BOW order. Prior to our work, only the quantum critical

point along the U = 0 axis (the SSH Hamiltonian) had been determined [47]. A central

observation of this work is that there are, within the AF phase, distinct regimes at small and

intermediate electron-phonon coupling λ. The AF structure factor, double occupancy and
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kinetic energy remain almost constant for small λ. However, for larger λ these quantities

show a marked dependence on λ. As a consequence, we will argue that the competition

between λ and U results not only in the expected AF-BOW transition, but also in a novel

crossover within the AF phase. This crossover is clearly signaled in the AF correlations

themselves, and also in the double occupancy, kinetic energy and pairing structure factors.

These changes result from competition of the localizing effect of the Hubbard term and the

quantum fluctuations favored by the SSH term, although they both can lead to AF.

6.2. Model and Method

We study the square lattice optical SSHH model, where the electronic hopping is mod-

ulated by an electron-phonon interaction and an on-site Coulomb repulsion is present. The

Hamiltonian is

H =− t
∑
⟨i,j⟩,σ

(
1− λX̂ij

)(
ĉ†iσ ĉjσ + h.c.

)
− µ

∑
i,σ

n̂iσ

+
∑
⟨i,j⟩

(
1

2M
P̂ 2
ij +

M

2
ω2
0X̂

2
ij

)

+ U
∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
, (6.1)

where ĉiσ (ĉ†iσ) destroys (creates) an electron of spin σ =↑, ↓ on site i, µ is the electron

chemical potential, M is the phonon mass and ω0 the oscillation frequency. The bond

phonon displacement operator X̂ij connects nearest neighbor sites ⟨i, j⟩; its conjugate bond

momentum is P̂ij. In the following, the magnitude of electron phonon coupling is given by the

dimensionless parameter g = λ/
√

2Mω0/ℏ, so that the coupling term is tg(b̂ij + b̂
†
ij)(ĉ

†
iσ ĉjσ +

h.c.). The on-site Coulomb repulsion is U/t, and n̂iσ = ĉ†iσ ĉiσ is the number operator on site

i. We work in units for which ℏ = t =M = 1 and fix ω0 = 1.

The Hubbard-Stratonovich (HS) transformation is used in DQMC [8,39,101,156], to

express the quartic Coulomb interaction in quadratic form [163, 164]. The fermions are
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integrated out, yielding a determinant of a matrix that has dimension of the number of

spatial sites N . The entries of the matrix depend on the HS and phonon fields. We focus

on half-filling (µ = 0), which does not present a SP, and work with β = Lτ∆τ = 16, where

Lτ ∼ 320 is the number of imaginary slices, and ∆τ is the imaginary time step. This β

is sufficiently large to access the ground state of the SSH model on the lattice sizes under

investigation here [47].

Figure 6.1. Phase diagram of the SSHH model at half-filling. g is the dimen-
sionless electron-phonon coupling constant, and U/t is the Coulomb repulsion
strength. A dotted (green) line shows the location of a crossover in the nature
of the AF. β = 16 ensures the system is close to the ground state for all three
lattice sizes. The AF-BOW transitions for L = 10, 12 coincide, indicating
negligible finite size effects. The insets show schematically the AF and BOW
phases.
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To characterize the emerging phases, we calculate the average kinetic energy in the x and

y directions, ⟨Kx(y)⟩ = ⟨ĉ†i,σ ĉi+x̂(ŷ),σ+h.c.⟩, and the average phonon displacement in the x and

y directions, ⟨Xx(y)⟩. These give insight into the broken x-y symmetry in the BOW phase.

We also study the antiferromagnetic, ⟨Sx
i S

x
i+r⟩, and the bond order correlation functions,

⟨Kx(y) (i)Kx(y) (i+ r)⟩. Their Fourier transforms, SAF and SKx(y)
, are respectively the AF

and BOW structure factors. In addition, we examine the double occupancy, D = ⟨n̂i↑n̂i↓⟩
and the total kinetic energy ⟨K⟩ = ⟨Kx⟩+ ⟨Ky⟩ which provide additional important insight.

6.3. Results

6.3.1. Main Results

It is well known [165,166] that, at half filling, the square lattice Hubbard model, Eq.(6.1)

with λ = 0, exhibits an AF phase for any U > 0. Similarly, it was recently established [48,49]

that the two-dimensional SSH model, Eq.(6.1) with U = 0, exhibits, at low temperature, an

AF phase for small λ and a BOW [47] when λ exceeds a critical value. Here we address the

unknown structure of the phase diagram in the (g, U/t) plane.

To this end, we determine the phase boundaries with vertical and horizontal cuts, i.e. by

fixing g (U/t) and studying the behavior of the system as U/t (g) is changed. The AF and

BOW phases are revealed by their respective structure factors, SAF and SKx (π, π). For low

temperature and large systems, we start simulations with a phonon configuration that favors

the BOW phase in the x direction (bottom right inset Fig. 6.1) because this structure is found

to melt rapidly in the AF phase, but takes a long equilibration time to form. We measure

SKx(y)
(kx, ky) for all momenta and observe a peak only at SKx (π, π) when the system is in

the BOW phase. Comparison of data for L = 10, 12 indicate negligible finite size effects.

Figure 6.2(a,c) shows the structure factors versus the dimensionless g for several fixed

values of U/t. For U/t = 4, 6, 8 the system is a Hubbard AF for g = 0, and remains AF as g

increases up to a critical value, gc(U/t). For g < gc, SKx is small, indicating the absence of

BOW. SKx then rises rapidly upon entry into the BOW phase at g > gc.
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Figure 6.2. DQMC results of the AF (BOW) structure factor SAF

(SKx (π, π)) for horizontal (left) and vertical (right) cuts in the phase dia-
gram. In the AF phase, SAF is finite and SKx (π, π) is negligible. In the BOW
phase, SAF is negligible and SKx (π, π) is finite.

The behavior of the AF structure factor SAF is more subtle. It is nonzero for g < gc,

but there is an appreciable change in behavior well before its value drops precipitously: SAF

is initially constant for small g, Fig. 6.2(a), but starts decreasing at g∗ ≈ 0.2. A finite size

scaling analysis shows that AF regions exhibiting true long range order on both sides of g∗.

The difference between these two AF regions, inferred from the kinetic energy and double

occupancy will be discussed below. Indeed, since data for structure factors are more noisy

than local correlation functions, these complementary observables will present additional

compelling evidence for the crossover behavior at g∗.
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Returning to the AF-BOW transition with increasing g, we see, Fig. 6.2(a), that when

SAF drops, SKx becomes nonzero. This occurs at gc ∼ 1 for L = 12. In Fig. 6.2(b,d) we

show the same quantities as panels (a,c) but now g is fixed and U/t varies. For g = 0.6,

SKx is small for all U/t while SAF increases smoothly as U/t increases. For this value of

g the system is always AF. For g ≥ 0.8, SAF is very small (essentially zero) while SKx is

large up to a g-dependent critical value, Uc(g), indicating that the system is in the BOW

phase [47]. At Uc(g), there is a first order transition from the BOW to the AF phase, with

clear discontinuous jumps in the order parameters. This first order character is also observed

for the larger U values in the horizontal cuts (sweeping g at fixed U) in Fig. 6.2(a,c).

As shown in Ref. [47], the BOW has (π, π) ordering vector either in x or in y with

two sublattice possibilities in each direction, resulting in the Z4 symmetry breaking (in the

thermodynamic limit). We now focus on this symmetry breaking as the system leaves the

AF phase and enters the BOW phase. In the AF phase, the average kinetic energy and

phonon displacement in the x and y directions are equal. In the BOW phase, the average

kinetic energy and phonon displacement which align with the BOW direction increase in

magnitude. We show in Fig. 6.3 the behavior of these quantities for the same parameters

as in Fig. 6.2. In panels (a,c), the x-y symmetry is preserved in the AF phase, g < gc(U),

and broken immediately when the system enters the BOW phase. This is clearly seen in

the bifurcation in Kx(y) and Xx(y) at gc. As the on-site interaction becomes stronger, the

electron-phonon coupling strength required to establish the BOW phase becomes larger.

In Fig. 6.3(b,d), for constant g, the x-y symmetry is broken for U < Uc(g), g ≥ 0.8 and

restored immediately when the system exits the BOW and enters the AF phase at Uc(g).

For g = 0.6, the system is never in the BOW phase for all U and therefore the x-y symmetry

is always preserved. The values of gc(U) and Uc(g) obtained in Fig. 6.2 and Fig. 6.3 are in

close agreement. We remark that, as observed in both figures, a small increase in g (i.e. from
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Figure 6.3. DQMC results of average kinetic energy, ⟨Kx(y)⟩, and average
phonon displacement, ⟨Xx(y)⟩, in x and y directions for horizontal (left) and
vertical (right) cuts in the phase diagram.

1.0 to 1.2) leads to significant changes of Uc (i.e. 12 to 26). Putting these cuts at constant

g and U together yields the phase diagram shown in Fig. 6.1.

We now focus on the two AF regions (separated by the vertical dotted line in Fig. 6.1) for

which SAF provided initial evidence. We recall that for g = 0, the system is in the Hubbard

AF phase for any U > 0, while for U = 0, the system is in the SSH AF phase [48,49] for

small g. The SSH AF at U = 0 clearly has a different mechanism from the traditional two

step Hubbard model process of moment formation at energy scale U followed by moment

ordering at energy scale J ∼ 4t2/U . A close analysis of Fig. 6.3(a,c) shows that both ⟨Kx(y)⟩
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Figure 6.4. (a) Average kinetic energy. (b) double occupancy for different U
and fixed lattice size L = 12; (c) derivative of the kinetic energy with respect
to g. The legends in panels (a,b) explain the symbols in panels (a,b,c). (d)
pairing structure factors at fixed U = 4 and L = 10.

and ⟨Xx(y)⟩ remain almost constant for g ≲ 0.2 and then increase in magnitude for g > 0.2.

Similarly, the AF structure factor in Fig. 6.2(a) is approximately constant for g ≲ 0, 2 and

decreases for larger values of g.

In Fig. 6.4(a), we show the average kinetic energy as a function of g for several values of

U . ⟨K⟩ clearly exhibits a change of behavior at g∗ ≈ 0.2, supporting what is seen in Fig. 6.2

for SAF. This is captured even more effectively in Fig. 6.4(c), which shows a sharp peak at

g ∼ 0.275 in ∂⟨K⟩/∂g vs g. A comparison between ⟨K⟩ given in this SSHH Hamiltonian

and in an (approximate) ‘effective’ Hubbard model gives more insight on this crossover.
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Figure 6.4(b) shows the double occupancy, D, which increases in value for g ≳ 0.2. This

behavior (larger kinetic energy and double occupancy) indicate that the system has left the

“large U” Hubbard AF, where both quantities are suppressed, and entered an AF region

strongly influenced by the SSH electron-phonon coupling, where quantum fluctuations are

large. Going from one of these AF regions to the other is a crossover, not a phase transition.

Nevertheless, there is a clear signature in the increased quantum fluctuations.

Since the pure SSH Hamiltonian preserves O(4) symmetry, and an AF/CDW/SC degen-

erate ground state is expected in the anti-adiabatic limit [48, 49], it is useful to examine

the superconducting structure factor Spairing, the spatial sums of the real space correlations

⟨∆α(i + r)∆†
α(i)⟩ with standard conventions ∆†

s(i) = c†i↑c
†
i↓, ∆

†
d(i) = c†i↑

1
2
( c†i+x↓ − c†i+y↓ +

c†i−x↓ − c†i−y↓ ), etc. [167]. These are shown in Fig. 6.4(d). Similar changes are observed at

the crossover. A bifurcation in pairing with px and py symmetry, as well as the sharp change

in d, and sxx pair form factors, at gc ∼ 0.9 also signal the AF-BOW phase transition. An

interesting, and intuitively reasonable, observation is that a BOW pattern formed along the

x or y-direction of the square lattice, increases pairing along plaquette diagonals (pxy, pyx,

and sxx), but competes with pairing channels which are also aligned directly along the bonds

(d, px, py).

6.3.2. An approximate treatment of the SSHH model in terms of a pure

Hubbard Hamiltonian with a renormalized Ueff

In the Holstein model, where the phonons couple to the local charge density Hel−ph =

λ
∑

i X̂ini, one can do Lang-Firsov transformations [78] and get an on-site attraction Ueff =

−λ2/ω2
0 in the anti-adiabatic limit. As a consequence, the physics of the Hubbard-Holstein

model at weak λ can be qualitatively interpreted in terms of a reduced on-site repulsion

U − λ2/ω2
0.
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If one integrates out the SSH (bond) phonons on a two site dimer, the resulting effec-

tive electron-only Hamiltonian has a renormalized U , but also additional inter-site terms.

Nevertheless, one can still ask the extent to which the SSHH model considered here can be

quantitatively modeled simply by a renormalized U . We analyze this issue as follows: We

first take data for the double occupancy D = ⟨ni↑ni↓⟩ both for the SSHH model at fixed

U = 4 and varying g and for the pure Hubbard model at varying U . For each g, We define

Ueff(g) to be the value of U in the pure Hubbard case which gives the same D for the SSHH

model. The result is given in the inset of panel (a) in Fig. 6.5.

Next we compare the values of other observables between SSHH at U = 4 and varying g

with pure Hubbard at Ueff . By construction, the values for D match perfectly. Fig. 6.5(a,b)

gives the results for the antiferromagnetic structure factor SAF and kinetic energy ⟨K⟩ re-

spectively. For SAF the agreement between the actual SSHH data and the effective model

is remarkable- the results match to within a few error bars across the complete range of g.

Perhaps not surprisingly, the SSHH model captures the more abrupt change in SAF at the

AF-BOW phase transition than the effective model, which has no such transition.

The kinetic energy agreement is less good quantitatively, but still quite accurate qual-

itatively for small g. The effective model of course cannot capture the reduction in the

magnitude of the kinetic energy at large g which occurs upon entry into the BOW phase.

It is also observed in Fig. 6.5(b) that the kinetic energy of the SSHH model remains more

constant for small g than does the kinetic energy of the effective model, an effect reminiscent

of the appearance of weak g AF regime discussed in the main text. The effective model gives

a rough context in which to understand the suppression of magnetism by g. The resulting

accuracy of panel (a) of Figure S1 is of additional interest: it is not obvious that adjusting

U to get a match for a local observable like double occupancy would also give a good match

for intersite magnetic correlations.
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Figure 6.5. Inset in panel (a): In SSHH model, when U = 4, β = 16 on a
L×L = 10×10 square lattice, for each g, we define Ueff as the onsite electron
repulsion in the pure Hubbard model which gives the same double occupancy
D. (a) AF structure factor (b) Electron Kinetic energy given in SSHH model
(red curve), for U = 4, varying g, β = 16 on a L× L = 10× 10 square lattice
and in pure Hubbard model(blue dot) when β = 16 on a L×L = 10× 10 with
Ueff defined in Fig. 6.5 (a) inset. Two curves are in reasonable agreement at
relatively small g, while the discrepancy at large g is because BOW phase can
not be captured by the pure Hubbard model.

6.3.3. Bond ordered wave structure factor

For all simulations, we start with a phonon configuration that favors the development of

XX bond ordered wave (BOW) pattern, i.e. (π, π) order of the x bonds. As noted in the main

text, we have verified that for small lattices and high temperatures, correlation functions are
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Figure 6.6. Bond ordered wave structure factor, SKx (kx, ky) as a function
of momentum kx, ky for U = 4, g = 1.5, β = 16, L = 12.

independent of initial configuration, and evolve to a consistent long time state. In addition,

for all lattice sizes and temperatures, BOW melts rapidly when it is not supported by

the parameters of the simulation. Thus our choice of starting configuration serves only to

minimize long equilibration times in the BOW phase, and does not affect our determination

of the phase diagram. Fig. 6.6 shows the BOW structure factor SKx(kx, ky), the Fourier

transform of bond-bond kinetic energy correlations in real space, as a function of momenta

kx and ky. Besides a large value at (kx, ky) = (0, 0), which is actually the sum of all spatial
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correlations, a clear peak is observed at (kx, ky) = (π, π) for U = 4, g = 1.5, L = 12, β = 16

system (in BOW phase).

Figure 6.7. Finite size scaling of the antiferromagnetic structure factor,
SAF/L

2, for g = 0, 0.2, 0.4, 0.6, 0.8. The dotted lines are extrapolated
from the simulations data. For all results shown in this panel, U = 4, β = 16.

6.3.4. Antiferromagnetic structure factor

In Fig 6.7, we perform finite size scaling (FSS) of the antiferromagnetic structure factor,

SAF/L
2 and show that the antiferromagnetic (AF) structure is present in the thermodynamic

limit for both AF regions. At U = 4, g = 0, the system is in the AF phase. As g

increases, SAF/L
2 decreases in the thermodynamic limit. However, it is still finite and
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Figure 6.8. Spin-spin correlation, ⟨Sx
i S

x
j ⟩ versus spatial distance |i− j| for

various g.

therefore indicative of the AF phase. At g = 0.8, we notice that FSS of SAF/L
2 becomes less

than zero. At the same time, the BOW structure factor, SKx (π, π), rises sharply to a finite

value, indicating the direct transition from the AF phase to the BOW phase.

In Fig. 6.8, the AF correlation function in real space gives similar conclusions. The

oscillation of the AF correlation function, which does not decay with the spatial distance,

gives evidence to the presence of the AF phase. As g increases, the magnitude of this

oscillation decreases. The strong oscillation of the AF correlation function for g < 0.8, and

the absence of BOW correlation, show that in this parameter region the system is AF.
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Figure 6.9. Spin-spin correlation, ⟨Sx
i S

x
j ⟩ versus spatial distance |i− j| for

several phonon frequencies, ω0, for the pure SSH model on an 8 × 8 square
lattice. Increasing ω0 at fixed g2/ω0 enhances AF order.

We also verify that for the pure SSH model(U = 0), when g ≲ gc, long range AF order

exists at low temperature (β = 16). The spin-spin correlation as a function of lattice site

separation is shown in Fig. 6.9. As ω0 increases with g
2/ω0 (which is proportional to the spin

exchange strength in the anti-adiabatic limit) fixed, the AF order is strengthened, which is

consistent with the conclusion in [48,49]
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Figure 6.10. Left panels: AF and BOW structure factors vs. electron-
phonon coupling g for a fixed U = 4, at several different temperatures
β = 4, 8, 12, 16, 20. Right panels: AF and BOW structure factors vs. on-
site Coulomb interaction U for a fixed g = 1.0, β = 16, 20 on 8×8 and 12×12
lattices. Both panels indicate β = 16 is low enough to capture the ground
state physics for the SSHH model.

6.3.5. Structure factors at several different temperatures

In the left panels of Fig. 6.10, the AF and BOW structure factors are plotted as functions

of electron-phonon coupling strength g for a fixed U = 4 on a 8×8 square lattice. The curves

almost overlap when β ≳ 8, indicating the temperature we use (β = 16) in the main text

is low enough to capture the ground state physics. Similarly, the right panels are structure
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factors SAF and SKx(π, π) vs. U . Although their magnitudes at β = 20 in the ordered phase

are slightly larger than those given by β = 16, the transition point given by them coincide

for both L = 8 and L = 12 lattices respectively. There is some finite size effect going from

L = 8 to L = 12 in both Fig. 6.10 and Fig. 6.1 but there is no such effect between L = 10

and L = 12.
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CHAPTER 7

Charge Singlets and Orbital Selective Charge Density Wave

Transitions

7.1. Introduction

Over the last several decades, much attention has been focused in the condensed matter

community on layered materials. One prominent example is that of the cuprate supercon-

ductors (SC) [50–54]. Bilayer graphene [55–60] is another, more recent, realization. From

a theoretical perspective, bilayer materials offer an opportunity to explore the competition

between the formation of long range order at weak interlayer coupling and collections of in-

dependent local degrees of freedom in the limit of strong interlayer coupling. Computational

studies have lent considerable insight into these phenomena, including quantitative values

for the quantum critical points [168–172] separating antiferromagnetic and singlet phases

at zero temperature.

This competition is central to that which occurs in multiorbital systems, notably the

interplay of Ruderman-Kittel-Kasuya-Yosida order and singlet formation in the Kondo lattice

and periodic Anderson models [173–175]. This close analogy originates in the observation

that, in calculations on a model Hamiltonian, there is no difference between multi-layer

and multi-orbital descriptions, apart from the interpretation of the additional label of the

fermionic species. For this reason we will use the two terminologies interchangeably here. In

multi-orbital language, one of the key conceptual interests is the possibility that the distinct

values of the ratio of interaction strength to kinetic energy in the different bands might result

in separate insulator transitions, i.e. the possibility of an ‘orbital-selective’ Mott transition

(OSMT) [61–72].
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Here we study analogous questions concerning bilayer (bi-orbital) systems in which the

fermions interact with phonon degrees of freedom rather than via direct electron-electron

correlations. A precise mathematical description of the mapping between the two situations

is discussed. Quantum Monte Carlo (QMC) simulations have already been applied to the

analysis of charge-density wave (CDW) and superconducting (SC) transitions in the single

band Holstein model [75]. However, thus far, work has focused mostly on two-dimensional

or three-dimensional models with a single kinetic energy scale [1, 2, 11–13, 15, 16, 39, 77,

152,176–179].

Using QMC simulations of the two-band Holstein model at half-filling, we will address

the following questions concerning the effects of interband hybridization t3: (i) Is there a

transition in which CDW order is destroyed as t3 is increased? What is the value of the

critical coupling associated with the quantum critical point (QCP) in the ground state and

the critical temperature for the thermal transitions at finite T? (ii) In a situation where

the electron-phonon energy scales in the two bands are very different, can CDW order in

one band coexist with metallic behavior in the other? These issues are in direct analogy

with those addressed in multiband Hubbard Hamiltonians; we will discuss similarities and

differences between the resulting phenomena.

7.2. Layered Holstein Hamiltonian

We focus on the bilayer Holstein model

Ĥ =−
∑

⟨ij⟩,l,σ

(
tl ĉ

†
ilσ ĉjlσ + h.c.

)
−
∑
i,l,σ

µln̂ilσ

+
1

2M

∑
il

P̂ 2
il +

1

2

∑
i,l

ω2
l X̂

2
il +

∑
i,l,σ

λl n̂ilσX̂il

−
∑

i,⟨ll′⟩,σ

(
tll′ ĉ

†
ilσ ĉil′σ + h.c.

)
. (7.1)
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ĉilσ(ĉ
†
ilσ) are annihilation (creation) operators for an electron on layer l(= ±1), site i with

spin σ, and n̂ilσ = ĉ†ilσ ĉilσ is the number operator. tl and tll′ = t3 denote the intra- and

inter-layer hopping respectively. Phonons are represented by local (dispersionless) quantum

harmonic oscillators with frequency ωl, and on-site electron-phonon interaction on layer l is

introduced via λl. We choose intralayer hopping tl = t = 1 throughout this work to set the

energy scale, and all simulations are done at half-filling ⟨n̂il⟩ = 1, which can be achieved by

setting the chemical potential µl = −λ2l /ω2
l ; phonon mass is set as M = 1. Each layer is an

L × L site square lattice, as sketched in Fig. 7.1(a), with N = 2 × L × L being the total

number of sites. We focus on two cases in this work: a uniform bilayer Holstein model where

t1 = t−1 = t, µ1 = µ−1 = µ, ω1 = ω−1 = ω and λ+1 = λ−1 = λ; and an interface between

Holstein layer and “metal” layer, where only layer l = +1 has a non-zero electron-phonon

coupling λ+1 ̸= 0 and layer l = −1 has λ−1 = 0. We employ a recently developed Langevin

quantum Monte Carlo (QMC) method [180] discussed in the next section.

We first define the local observables including the (layer-dependent) double occupancy,

Dl ≡ ⟨n̂il↑n̂il↓⟩ (7.2)

the near-neighbor intra-layer Green’s function,

G⟨ij⟩l ≡ −⟨ĉ†ilσ ĉjlσ + ĉ†jlσ ĉilσ⟩ , (7.3)

and the near-neighbor inter-layer Green’s function,

G⟨ll′⟩ ≡ −⟨ĉ†ilσ ĉil′σ + ĉ†il′σ ĉilσ⟩ . (7.4)

When multiplied by their associated hopping integrals, tG⟨ij⟩l and t3 G⟨ll′⟩ give the intra- and

inter-layer kinetic energies per site.

92



Two further observables, the density-density and pair-pair correlators, aid in character-

izing the excitations between the planes.

d−1,1 ≡
1

4
⟨n̂i,1n̂i,−1 − 1⟩

p−1,1 ≡ −1

4
⟨∆̂i,1∆̂

†
i,−1 + ∆̂†

i,1∆̂i,−1⟩

∆̂†
il ≡ ĉ†il↑ĉ

†
il↓. (7.5)

d−1,1 and p−1,1 are the analogs of the zz and xy spin correlations which enter into the

characterization of interlayer singlet formation in the Hubbard and Heisenberg bilayers, see

Sec. 7.5.3. Because of rotational symmetry of those models, their magnetic analogs, obtained

by the transformation ĉil↓ → ĉ†il↓ are identical in value. d−1,1 = p−1,1 would also hold in the

attractive Hubbard Hamiltonian. Here, in the Holstein model, rotational symmetry is broken

and we have d−1,1 ̸= p−1,1. We will discuss the implications further in the sections to follow.

Characterization of the CDW formation in the thermodynamic limit can be made by the

analysis of the (layer-resolved) structure factor,

Scdw
l =

2

N

∑
ij

(−1)i+j⟨n̂iln̂jl⟩, (7.6)

with n̂il =
∑

σ n̂ilσ. S
cdw
l samples correlations across the entire lattice, and hence is a primary

tool in the determination of long range order.

In the case of the uniform bilayer, the quantities defined in Eqs. 7.2-7.4 and 7.6 are

independent of the layer index l, and in this case we suppress this index. But for the

‘interface’ geometry, which includes one layer with λ1 ̸= 0 and another with λ−1 = 0,

measurements performed on the two layers are inequivalent.

The layer-resolved single-particle spectral function Al(ω) is obtained by using the maxi-

mum entropy method to invert the integral equation relating the imaginary time dependent
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Green’s function Gi=0(τ) and A(ω):

Gi=0(τ) =

∫
dω

e−τω

1 + eβω
A(ω)

Gi(τ) = ⟨ci (τ)c†0(0)⟩ = ⟨eτHci (0)e−τHc†0(0)⟩ . (7.7)

τ represents imaginary time; layer and spin indices are omitted here for simplicity. The

appropriate local G is used to get Al(ω) for the each layer l in the interface geometry.

We advance our key results in Figures 7.1(b) and 7.1(c): (i) At weak t3 there is a phase

transition at finite temperature Tc to a state with long range charge order. In the bilayer

case, Tc initially increases with t3 as the charge order is enhanced by increased coordination

number. (ii) At T = 0, in both the Holstein bilayer and the Holstein-metal interface, CDW

order is destroyed for t3 exceeding a quantum critical value. (iii) The phase diagram of

the interface geometry exhibits an ‘orbitally selective CDW phase’ (OSCDW) at low T and

weak t3. The specific description of how these phase diagrams are obtained is given in the

corresponding section containing the main results of each model.

7.3. Langevin QMC Algorithm

We employ a recently developed Fourier accelerated Langevin quantum Monte Carlo

(QMC) method [180]. The partition function of the Holstein Hamiltonian is written as a path

integral Z = Tre−βĤ = Tre−∆τĤe−∆τĤ · · · e−∆τĤ where the inverse temperature β = Lτ∆τ

is discretized along the “imaginary time” axis. Complete sets of phonon eigenstates |{xi,τ}⟩
are inserted at each time slice, allowing the action of the phonon operators to be evaluated. In

so doing, we convert the quantum problem into a classical problem in one higher dimension.

Since the fermion operators appear only as quadratic forms, we can trace over the associated
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Figure 7.1. (a) Sketch of a bilayer with relevant terms in Eq. (7.1) marked.
(b) Phase diagram of the Holstein bilayer giving the CDW transition temper-
ature Tc as a function of inter-layer hopping t3. Two values of electron-phonon
coupling, λ = 0.2 and λ = 0.16, are shown. Dashed lines are guides to the
eye. Inset shows crossing plot of Scdw/L7/4 versus t3 at λ = 0.2 and low tem-
perature β = 20. (c) Analog of (b), but for the Holstein-metal interface. Two
crossings at t3 ∼ 1.3 and t3 ∼ 3.2 are revealed in the inset for layer l = −1.
The CDW phase in this layer is present only in the region between the two
crossings. QCPs are marked by stars on x-axis in both panel (b) and (c).
Phonon frequency is set at ω = 0.1 for all data.
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degrees of freedom, leaving the partition function dependent only on the phonon field {xi,τ},

Z =

∫
Dxi,τe−Sph [detM({xi,τ})]2 =

∫
Dxi,τe−S , (7.8)

where the “phonon action”

Sph =
∆τ

2

[
ω2

∑
i

x2i,τ +
∑
i

(
xi,τ+1 − xi,τ

∆τ

)2
]

(7.9)

and

S = Sph − ln(detM)2 . (7.10)

HereM is a sparse matrix of dimension NLτ whose detailed form is given in Ref. [180]. The

square of the determinant appears because up and down fermionic species have the same

coupling to the phonons. As a consequence, there is no sign problem. In order to sample

the phonon coordinates, instead of using the usual Metropolis algorithm, we evolve {xi,τ}
using the discretized Langevin equation, whose simplest form is given by the first order Euler

discretization,

xi,τ,t+dt = xi,τ,t − dt
∂S

∂xi,τ,t
+
√
2 dt ηi,τ,t , (7.11)

where t is the Langevin time, and η is a Gaussian distributed stochastic variable. In practice,

in our simulations we make use of a higher order Runge-Kutta discretization [180] which

reduces the discretization error to O(dt2). Throughout this work, the Langevin time step

dt is chosen as 0.002, which has been shown to be sufficiently small so that the Langevin

time discretization error is the same order, or smaller than, statistical errors in typical

simulations [180]. It can be demonstrated that, in the stationary limit, this Markov process

generates configurations which are drawn from the exponential of the action of Eq. 7.10.
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The computational kernel is the calculation of the partial derivatives of the action via

∂S

∂xi,τ,t
=

∂Sph

∂xi,τ,t
− 2Tr

∂M

∂xi,τ,t
M−1, (7.12)

where the trace is evaluated using a stochastic estimator [180]. Comparing to the conven-

tional determinant quantum Monte Carlo (DQMC) method, which is an O(N3Lτ ) approach,

the Langevin method scales as O(NLτ ) (although with a larger prefactor, so that there is a

cross-over N at which the Langevin approach becomes the more efficient method). This en-

ables simulations to reach considerably larger lattice sizes. In this work, we analyze systems

up to N = 800 sites. The efficiency of the Langevin approach results from the sparsity of the

matrixM and the fact that computing the action ofM−1 on a vector can be done iteratively

in a number of steps which does not grow with N [180], with appropriate pre-conditioning.

The Langevin dynamics we employ is particularly effective in the adiabatic limit of small

phonon-frequencies, where the density of zeros of individual fermion determinants is neg-

ligible [181]. In what follows we fix ω = 0.1, thus simulations are stable, and statistical

convergence is quickly obtained over the course of Markov generation.

7.4. Holstein bilayer

We initially consider two identical layers with λ = 0.2, ω = 0.1 and the question of the

destruction of CDW order via the formation of charge singlets at large interlayer hopping t3

before tackling the more complex issue of selective CDW transitions.

Figure 7.2(a) gives the CDW structure factor Scdw as a function of t3 at low temperature

for two lattice sizes. Below t3,c ≈ 4.8, Scdw is large, and grows with lattice size, suggesting

long range charge order. Figure 7.2(b) focuses on the interlayer density-density d−1,1 and

pair-pair p−1,1 correlations. For small t3, only d−1,1 is large in magnitude, indicating coher-

ence in the charge order between the two layers. As t3 increases, intersheet pair correlations

p−1,1 develop. d−1,1 and p−1,1 then become nearly degenerate at t3,c, signalling the loss of
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Figure 7.2. (a) Charge structure factor Scdw; and (b) p−1,1 and d−1,1 as a
function of interlayer hopping t3 for the Holstein bilayer at low temperature
β = 16 and λ+1 = λ−1 = 0.2. Scdw shows significant finite size effects in
the ordered phase t3 ≲ 4.8. Note that d−1,1 vanishes at t3 = 0, but jumps
discontinuously to a non-zero value for infinitesmal t3. Panels (c,d) are analog
of (a,b) for the Holstein-metal interface. The two curves in (c) correspond
to layers l = +1 and l = −1, with λ+1 = 0.2 and λ−1 = 0 respectively and
temperature β = 20. In all plots the phonon frequency is set at ω = 0.1.

CDW order and entry into the ‘charge singlet’ phase. Together, Figs. 7.2(a) and 7.2(b)

motivate the bilayer phase diagram of Fig. 7.1(b).

Although the QCP in this Holstein bilayer is closely analogous to that occurring in

Hubbard and Heisenberg bilayers as well as the periodic Anderson model, in those cases the

electron-electron interaction gives rise to magnetic phases which form due to the breaking
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of a continuous spin symmetry. Thus in 2D and quasi-2D geometries, no long range order is

possible at finite T . In contrast, here for the Holstein model, charge and pairing order are not

degenerate, as emphasized by the data of Fig. 7.2(b). CDW correlations dominate at half-

filling and a finite temperature phase transition can occur, terminating at a QCP as shown

in Figs. 7.1(b) and 7.1(c). This distinction means that, in principle, our characterization of

the unordered phase as a ‘charge singlet’ is somewhat loose: in the usual spin singlet the

x, y, z components of the spin-spin correlations on the two layers (or in the two orbitals) are

equal. With that said, the equivalence of p−1,1 and d−1,1 in the large t3 regime points to an

emergent restoration of the symmetry (see Sec. 7.5.3). It is worth noting that in the absence

of t3, e.g. in the 2D Holstein model, this restoration does not occur until the anti-adiabatic

limit is reached, which requires very large values of ω [10].

Figure 7.3 provides details of the behavior of the CDW structure factor. The top panel

(a) gives raw values for Scdw as a function of β at t3 = 2 for different lattice sizes. At low

β (high temperature), the correlation length ξ is short and Scdw is independent of L. As β

increases, so does ξ and when ξ ∼ L, Scdw becomes sensitive to L. This separation of the

curves provides a crude estimate for βc, which may then be determined precisely by finite

size scaling (FSS).

In particular, in the vicinity of the critical temperature Tc, the CDW structure factor

measured on finite lattices of linear dimension L should obey,

Scdw ∼ Lγ/νf

(
T − Tc
Tc

L1/ν

)
. (7.13)

As a consequence, when plotting Scdw/Lγ/ν as a function of the inverse temperature β,

different sizes L cross at β = βc [Fig. 7.3 (b)]. Following the scaling form given in Eq.(7.13)

we note that when plotted against (β − βc)L
1/ν all data collapse on a single curve – see

Figs. 7.3(c) (and later for the Holstein-metal interface in Fig. 7.5). In this analysis we have

used the critical exponents of the 2D Ising universality class (γ = 7/4 and ν = 1), since
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Figure 7.3. (a) CDW structure factor Scdw dependence on the inverse tem-
perature β and finite size scaling of the Holstein bilayer at t3 = 2. Both the
crossing plot (b), and the full data collapse (c) using 2D Ising critical expo-
nents and βc ≃ 3.0.

the CDW phase breaks a Z2 symmetry. A discussion of the degree to which the collapse

worsens, and hence the accuracy with which the exponents can be determined, is given in

the Sec. 7.5.4.
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Using such scaling procedure for various values of the interplane hybridization, allows

us to extract the location of the thermal transition, as compiled in Fig. 7.1(b), using two

values of the electron-phonon interaction. In this geometry, the critical temperature Tc

initially increases as a consequence of the larger coordination number when the planes are

coupled - the 2D to 3D crossover. However, at large t3 the critical temperature decreases

and ultimately vanishes at a quantum critical point.

7.5. Results

7.5.1. Holstein-Metal interface

We next consider the ‘Holstein-metal interface’ in which layer l = +1 has nonzero λ+1 but

λ−1 = 0. The two layers are in contact via hybridization. Here, in addition to the question of

charge singlet formation at large t3, quenching CDW order, a different fundamental question

arises: to what extent do CDW correlations in layer l = +1 ‘penetrate’ into layer l = −1,

and, conversely, is the CDW in layer l = +1 disrupted by contact with the ‘metallic’ layer?

We choose λ = 0.2 and ω = 0.1 as in the previous section.

Figure 7.2(c) shows the CDW structure factor Scdw in the two layers. Scdw
+1 decreases

steadily with t3: additional quantum fluctuations associated with contact with the metal

reduce charge order. In contrast, Scdw
−1 is non-monotonic: charge order is initially induced

in the metal via contact with the Holstein layer, but ultimately large t3 is inimical to it.

The behavior of Scdw
−1 provides a first clue that order in layer l = −1 might occur only for

intermediate t3. Figure 7.2(d) gives the interlayer density-density d−1,1 and pair-pair p−1,1

correlations for this interface geometry. The primary difference from the original bilayer case

is the gradual development of d−1,1 with t3. This is a consequence of the absence of CDW

in the metal layer when t3 vanishes. The interlayer hopping thus must not only couple the

charge correlations, but also induce them in layer l = −1. Similar to the bilayer case, d−1,1

and p−1,1 become degenerate for large t3. This is again a signature of entering into the charge

singlet phase.
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Figure 7.4. (a) CDW structure factor, Scdw, dependence on the inverse tem-
perature, β, for layer l = 1 of the Holstein interface at t3 = 1; (b) using 2D
Ising critical exponents for finite size scaling (FSS). Panels (c) and (d) dis-
play the same but for the metallic layer l = −1. Panels (e–h) display the
corresponding data for t3 = 2. FSS in (f) and (h) show the same critical tem-
perature for both layers at t3 = 2, in contrast to t3 = 1, where layer l = +1
(b) exhibits a clear CDW transition whereas data for layer l = −1 (d) does
not exhibit crossing when using Ising critical exponents.

We now turn to a more careful FSS study of the layer-resolved Scdw
l . Our main interest

is in determining how long range order in the two layers evolves with t3. Figure 7.4 displays

a detailed analysis of two representative values, t3 = 1 and t3 = 2. The former is a case

when Scdw
−1 is just beginning to develop, and the latter is when Scdw

−1 has reached its maximal

induced value [see Fig. 7.2(c)]. There is a superficial resemblance in the unscaled data for

both values of t3, which rise as the temperature is lowered (β increases) and also increase

with system size. A proper scaling analysis, however, reveals a profound distinction. As

seen in Figs. 7.4(b) and 7.4(f), for both values of t3, the layer l = +1 with non-zero electron-

phonon coupling λ+1 = 0.2, has a scaled structure factor L−7/4Scdw
+1 which exhibits a sharp

crossing, indicating a finite temperature transition to long range CDW order. When t3 = 2,
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Figure 7.5. Full data collapse of the scaled CDW order parameter versus
scaled reduced temperature in the ‘Holstein interface’ system. Only the Hol-
stein layer (layer 1) shows a single universal curve for t3 = 1 (a), while both
collapse for t3 = 2t (panels b,d).

this crossing occurs for the metallic layer with λ−1 = 0 as well [Fig. 7.4(h)]. However, when

t3 = 1 the data for the metallic layer do not cross for the studied system sizes [Fig. 7.4(d)],

namely L = 8 -20 for both t3 values: The L = 12,16 and 20 curves converge at β > 5.4

instead of crossing. The L = 8 data do not scale with the other lattice sizes at all. This

distinction becomes even more apparent in Fig. 7.5, where a simultaneous data collapse for

the scaled structure factor can be made possible at the same temperature for t3 = 2, while

it is unattainable for t3 = 1.

We conclude that for t3 = 2, the interface geometry has CDW order in both layers, with

long range correlations in the metallic layer induced by proximity to the Holstein layer. For

t3 = t, the interface geometry exhibits orbital selective CDW order- the metal remains with

only short range correlation despite its hybridization to the long range CDW layer. We

emphasize that this conclusion is reinforced by the data in the inset to Fig. 7.1(b), where a

low temperature (β = 20) sweep of the scaled Scdw with t3 has a pair of crossings t3 ∼ 1.3

and t3 ∼ 3.2. Long range CDW order exists in layer l = −1 only between these values.

7.5.2. Spectral Functions and Double Occupancies

Having examined structure factors and inter-layer correlators, we now turn to the spectral

functions and the double occupancies, both of which provide additional insight into the

103



ground state properties. The layer-resolved spectral functions Al(ω), shown in Fig. 7.6, the

many-body analog of the single particle density of states, provide confirming evidence for

the Holstein interface phase diagram of Fig. 7.1(c). In the top row, for small t3, the Holstein

layer l = +1 exhibits a CDW gap. The gap at t3 = 0 is large; Hybridization with the metal

produces peaks closer to ω = 0, but a smaller gap remains. On the other hand the metal

layer l = −1 has finite Fermi surface spectral weight A−1(ω = 0) ̸= 0, thus showing the

OSCDW. In the middle row, for intermediate t3, both layers have a gap, consistent with the

measurement of simultaneous long range CDW order. Finally, in the bottom row, for large

t3, both layers have finite Fermi surface spectral weight Al(ω = 0) ̸= 0 for l = +1,−1. The

system is in the charge singlet (charge liquid) phase.

We note that although the bilayer and interface geometries have many properties in

common at large t3, their spectral functions are different. There is a gap in the bilayer case,

but not for the interface. We have verified, with separate exact diagonalization calculations,

that for dimers (i.e. t3 ≫ t) with λ+1 = λ−1 one finds A(ω) is gapped, while when λ+1 is

nonzero λ−1 = 0 one reproduces the behavior shown in Fig. 7.6(c,f).

In a perfect CDW phase, half of the sites are doubly occupied and half are empty,

and D = 0.5. In the absence of interactions, λ = 0, all four site occupation possibilities

|0⟩, | ↑⟩, | ↓⟩, and | ↑↓⟩, are equally likely and D = 0.25. This is also the case in the charge

singlet phase. Figure 7.7 shows D as a function of t3. Panel (a) is for the bilayer, where

D+1 = D−1, and panel (b) for the interface geometry where the two are inequivalent. In

both cases, D+1 is seen to evolve between the CDW and singlet limits, although it never

attains the value D = 0.5 owing to the presence of quantum fluctuations. For the interface,

D−1 begins at the uncorrelated value, D−1 = 0.25 at t3 = 0 since λ−1 = 0. The double

occupancy evolution is quite similar to that of the structure factor, Fig. 7.2(a,c). However,

since D is a local observable, it exhibits less sharp features than Scdw in the vicinity of the

QCP and thus only provides qualitative evidence for a cross-over between those two phases.
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Figure 7.6. Spectral function A(ω) at β = 12 for several t3 values cutting
across the Holstein-metal interface phase diagram of Fig. 7.1. Top: Small t3.
Middle: Intermediate t3. Bottom: Large t3. Left and right columns correspond
to Holstein and metallic layers l = +1 and l = −1 respectively.

Besides that, a simple model which exhibits a layer-dependent trivial CDW formation with

only electronic degrees of freedom, a bilayer ionic model, already displays this characteristic

non-monotonicity with growing hybridization (see Sec. 7.5.5).
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7.5.3. Connection to Magnetic Language

In the repulsive 2D Hubbard model the dominant physics at half-filling on a bipartite

lattice is anti-ferromagnetic order, characterized by the operators,

Ŝj
x =

1

2

(
Ŝj
+ + Ŝj

−
)
=

1

2

(
ĉ†j↑ĉj↓ + ĉ†j↓ĉj↑

)
Ŝj
y =

1

2i

(
Ŝj
+ − Ŝj

−
)
=

1

2i

(
ĉ†j↑ĉj↓ − ĉ†j↓ĉj↑

)
Ŝj
z =

1

2

(
n̂j↑ − n̂j↓

)
=

1

2

(
ĉ†j↑ĉj↑ − ĉ†j↓ĉj↓

)
(7.14)

106



From these relations, and as a consequence of the spin SU(2) symmetry of the Hubbard

model,

⟨Ŝj
+Ŝ

i
− + Ŝj

−Ŝ
i
+⟩ = 4 ⟨Ŝj

z Ŝ
i
z⟩

⟨ ĉ†j↑ĉj↓ĉ†i↓ĉi↑ + ĉ†j↓ĉj↑ĉ
†
i↑ĉi↓ ⟩ =

⟨
(
ĉ†j↑ĉj↑ − ĉ†j↓ĉj↓

)(
ĉ†i↑ĉi↑ − ĉ†i↓ĉi↓

)
⟩ (7.15)

If we perform a particle-hole transformation to the down spin fermions,

ĉ†j↓ → (−1)j ĉj↓

n̂j↓ →
(
1− n̂j↓

)
Ŝj
+ = ĉ†j↑ĉj↓ → (−1)j ĉ†j↑ĉ

†
j↓ ≡ (−1)j∆̂†

j

Ŝj
z =

1

2

(
n̂j↑ − n̂j↓

)
→ 1

2

(
n̂j↑ + n̂j↓

)
≡ n̂j (7.16)

we conclude that,

−⟨∆̂†
j∆̂i + ∆̂i∆̂

†
j⟩ = ⟨

(
n̂j − 1)

)(
n̂i − 1)

)
⟩ (7.17)

assuming that sites i and j are on opposite sublattices.

If, finally, assuming we are at half-filling, so that ⟨n̂j⟩ = 1,

−⟨∆̂†
j∆̂i + ∆̂i∆̂

†
j⟩ = ⟨n̂jn̂i − 1⟩ (7.18)

This shows that the two correlation functions of Eq. 7.5 are equal: p1,−1 = d1,−1. The

merging of the two curves of Fig. 7.2(c,d) at a common value reflects a restoration of an

SU(2) symmetry of the Hubbard model. It is interesting that this occurs even though the

correlators are not in the singlet limit of −1/4 (due to the fact that we are not in Holstein

analog of the large U limit).
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7.5.4. Extracting the critical exponents
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Figure 7.8. Contour plot of the sum of squared residuals of the least-squares
fit S(ν, γ) of the scaled data for the CDW structure factor Scdw of the Holstein
bilayer at t3 = 2 (see Fig. 7.3 for the original data). A 16-th order polynomial
is used to fit the dataset, and the critical inverse temperature used is βc = 3.02.
The white marker denotes the minimum S(ν, γ) in the displayed range of ν
and γ.

We argue that owing to the symmetry of the order parameter of the CDW phase, we make

use of the critical exponents pertaining to the 2D Ising universality class in order to simplify

the FSS of the CDW structure factor Scdw. Here, we justify this choice by quantitatively

extracting the best set of exponents ν and γ that scales the curves according to the functional

form in Eq. 7.13. We start by using the scaled data in a large range of critical exponents;
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subsequently, for each pair of (ν, γ), we proceed with a high-order polynomial fitting of the

scaled data, storing the residual S(ν, γ) of the fitting procedure. The set of exponents that

minimizes S(ν, γ) is taken as those that characterize the transition. The rationale is that if

the dataset is well collapsed for a given (ν, γ), a high-order polynomial fit (with the number

of degrees of freedom much smaller than the number of data points) will turn out to have a

fairly small error.

Using this procedure, we show in Fig. 7.8 the contour plot S(ν, γ) for the data corre-

sponding to the Holstein bilayer at t3 = 2 See Fig. 7.4(f,h) and Fig. 7.5(c,d). The minimum

residual is annotated by the white marker. By observing its variation with slightly different

critical inverse temperature βc, and different polynomial orders used in the fits, we estimate

ν = 0.95± 0.07 and γ = 1.7± 0.1, remarkably close to the 2D Ising exponents ν2D Ising = 1

and γ2D Ising = 7/4.

7.5.5. Induced CDW in Ionic Hubbard Model

We can get additional insight into the Holstein interface by considering the following

noninteracting, spinless, tight binding Hamiltonian,

ĤBI−M =− t
∑
⟨ij⟩,l

(
ĉ†i,lĉj,l + h.c.

)
+ δ

∑
i

(−1)in̂i,1

− t3
∑
j

(
ĉ†j,1ĉj,−1 + h.c.

)
. (7.19)

Equation 7.19 describes two bands, labeled by l = ±1, each with hopping t on a 2D square

lattice, which are hybridized with each other by t3. Band l = −1 is metallic. At t3 = 0 it

has the usual 2D dispersion relation ϵ(k) = −2t
(
cos kx + cos ky

)
. Band l = +1 is made

insulating by the staggered potential δ, so that at t3 = 0 its dispersion relation has two

branches, E±(k) = ±
√
ϵ(k)2 + δ2. Both bands of Eq. 7.19 are half-filled (the chemical

potential µ = 0).
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Figure 7.9. Solution of the tight binding Hamiltonian, Eq. 7.19. (a)
Solid curves Occupations ρ on the +δ sites of the insulating band as functions
of the magnitude of the staggered potential δ; dashed curves: Occupations on
the partner sites in the metallic band to which those +δ sites are hybridized
by t3. (b) Solid Curve: Occupations on the +δ sites of the insulating band as
a function of interlayer hybridization t3. Dashed curves: Occupations on the
partner sites in the metallic band to which those +δ sites are hybridized by
t3. The staggered potential in this case is δ = 1.25. In both panels the linear
lattice size and the inverse temperature are L = 12 and β = 4, respectively.

In addition to inducing a band gap 2δ in layer l = +1, the staggered potential also creates

a CDW phase, with low occupancy +δ and high occupancy −δ sites. Here, the CDW order is

trivial, in the sense of being induced by an external field, as opposed to arising spontaneously

in a symmetric Hamiltonian like the Holstein model. Nevertheless we can still examine how

this ‘artificial’ CDW in layer l = +1 affects the site occupations in the metallic band l = −1.

Figure 7.9(a) gives the occupations on the +δ sites of band l = +1 as functions of δ for

different t3. As δ grows, the occupation of the high energy sites in layer l = +1, which are
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directly coupled to the staggered field, get increasingly small (solid curves). In turn, the

occupations of the partner sites on layer l = −1 which are not coupled to δ are also shifted

from ρ = 1
2
. These occupations increase in order to take advantage of the decrease in the

Pauli blocking. What is interesting in the context of the simulations of the Holstein bilayers

in the main part of this chapter is that, while the layer l = +1 occupations steadily return

to half-filling with increasing t3, the evolution of the layer l = −1 occupations is instead

non-monotonic. The deviations of the occupations from half-filling first grow with t3, but

then shrink.

This non-monotonicity is seen more clearly in Fig. 7.9(b) which plots similar occupations

as a function of t3 for a fixed δ. The maximum at intermediate t3 ∼ 2.28 is reminiscent of

the behavior of Fig. 7.2(c), which similarly shows a maximum in the induced CDW order at

intermediate t3 in the metallic layer of the Holstein interface model. Indeed, the agreement

between the values of t3 at which the induced order is maximal is remarkably quantitative.

To within error bars, the positions of the maxima are the same, although the fall-off at large

t3 is more gradual in the BI-Metal interface case.
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CHAPTER 8

Conclusions

In this thesis, we presented our Mean Field Theory (MFT) and Quantum Monte Carlo

(QMC) results on several different geometries which explore the effect of non-uniform hop-

ping, and flat electronic band on Holstein phonons and the competition between electron-

electron and electron-phonon interactions on a square lattice. Chapter 1 gives an introduc-

tion to the physics of electron-electron and electron-phonon interactions. Next, we discussed

the iconic models, the Hubbard, Holstein and SSH, people widely use to explore these two

interactions. The methods we used, MFT, Determinant and Langevin QMC are discussed in

Chapter 3. A basic unifying theme of this thesis is the extension of studies of electron-electron

interactions in various contexts to the less studied realm of electron-phonon interactions.

In Chapter 4 we have presented Determinant Quantum Monte Carlo results for the Hol-

stein model with modulated hopping on a ‘decorated honeycomb lattice’ which consists of

a collection of weakly coupled hexagons, or, in the opposite limit of the relative hybridiza-

tions, weakly coupled dimers. Our key result was the determination of the evolution of the

charge density wave order as one moves away from uniform hopping towards either of these

extremes. This work represents an extension of investigations of the competition between

magnetically ordered and spin liquid phases in decorated Hubbard Hamiltonians, to CDW

to charge singlet transitions in electron-phonon models. The effect of tx,y = (1±∆) on Scdw

has also been recently studied in the anisotropic square lattice Holstein Hamiltonian [11].

However, in this case the modulation endpoints ∆ = −1,+1 are decoupled, but still infinite,

linear chains. In the present work the endpoints ∆ = −1,+0.5 result in small independent

112



clusters. As a result of infinite clusters still being present, long range order is somewhat

more robust to modulation in the square lattice case.

The geometry we investigated has been proposed as a possible realization of a Z2 topological

state associated with the ‘artificial orbitals’ of the independent hexagons. As discussed

in [80], it might be possible to implement this geometry via the placement of a triangular

lattice of CO molecules on a Cu(111) surface. Our work has shown that in addition to

topological properties, electron-phonon interactions can show a diverse set of charge ordering

behavior on such lattices.

The strong breaking of the pairing-charge degeneracy distinguishes the present work from

previous magnetic analogs. Specifically, what we demonstrate here is that despite the lack

of ‘rotational’ symmetry, local objects which have (imperfect) singlet character nevertheless

still form on the strong bonds, and these ultimately lead to a loss of CDW order. This

non-trivial result could not be anticipated by magnetic analogs where rotational symmetry

is always exact.

In Chapter 5, We have studied the charge density wave transition for the Holstein model

on a Lieb lattice. Our interest was in establishing results for the effect of compact localized

states (flat bands) on ordered phases driven by the electron-phonon interaction, in analogy

with the body of work which exists for electron-electron interactions (primarily the Hubbard

model). The behavior of the occupation, double occupation, spectral function, and charge

structure factor have been obtained quantitatively, and used to infer a phase diagram of

critical temperature versus coupling constant.

In Chapter 6, we used DQMC simulations to map out the phase diagram of the single orbital

square lattice optical SSHH model. Our work fills in the full two dimensional phase diagram

in the plane of positive U and g, hitherto only investigated along the U = 0 and g = 0 axes.

The phase diagram is characterized by BOW and AF phases. At larger electron-phonon
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coupling strength, the x-y symmetry is spontaneously broken and the system develops a

BOW with a (π, π) order. Given the different broken symmetries in the BOW and AF phases,

and the sharp increase of BOW structure factor, the results indicate a first-order transition

between these two phases. The most salient feature is that the ground state phase transition

is much more sensitive to changes in electron-phonon coupling compared to variations in the

Coulomb repulsion. We interpret this as the result of the lack of a direct competition between

the two ordered phases. In the Hubbard-Holstein model, U suppresses double occupancy

while the Holstein g enhances it. Thus the two interactions always conflict: they want the

most fundamental structure, the site occupations, to behave completely differently yielding

Uc ∼ g2 (at ω0 = 1). No such competition appears in the SSHH model. Indeed, both

interactions individually give rise to AF order leading to somewhat cooperative tendencies.

We thus argue that this is why adding U does not significantly inhibit the formation of the

BOW phase by the SSH phonons, leading to a near vertical phase boundary.

In the AF region, for small electron-phonon coupling g, all the quantities that we analyzed,

e.g. the AF structure factor, kinetic energy, phonon displacement and double occupancy,

remain approximately constant. For g ≳ 0.2, the double occupancy and the magnitude of

the kinetic energy start increasing, while the AF structure factor decreases. This occurs

even though the system still possesses true long range AF order as demonstrated by a finite

size scaling analysis [182]. This is due to the fact that the Hubbard AF and the SSH AF

mechanisms are different [48, 49]. This new insight into the physics of the SSH-Hubbard

Hamiltonian can be thought of as analogous to the well-established crossover from Slater

insulator to Mott-Hubbard insulator and from itinerant AF to Heisenberg AF with increasing

U in the Hubbard model (g = 0) [166,183,184]. We focused here on intermediate to strong

coupling,, i.e. U exceeding half the bandwidth W = 8t and ω0 = t. Further investigation of

the effect of ω0 on the cross-over is of interest.
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In Chapter 7, we have generalized our existing understanding of the effect of interlayer/interorbital

hybridization t3 onmagnetic order driven by an on-site electron-electron repulsion in the Hub-

bard model to charge order originating in electron-phonon interactions in the Holstein model.

The two scenarios, although qualitatively related, are quite distinct in detail owing to the

lower symmetry of the CDW order parameter relative to the magnetic case. Despite this

difference, and its consequences such as the appearance of charge order at finite temperature,

the basic feature of the destruction of long range order in the limit of large hybridization

is shown still to occur. Indeed, one remarkable conclusion of our work is that t3 seems to

restore the degeneracy of pairing and charge correlations at the QCP.

Our most interesting observation is that the coexistence of CDW order on a layer with non-

zero electron-phonon coupling λ with a metallic phase on the λ = 0 layer, which is trivially

true at t3 = 0, likely extends out to finite t3. This conclusion is based on the inability to

scale the charge correlations in the λ = 0 layer unless t3 ≳ 1.4 (for λ+1 = 0.2).

The possibility that charge order takes place selectively parallels the known occurrence of

distinct Mott transitions in multi-orbital Hubbard models and the coexistence of metallic

and insulating behavior. The connection is, however, not exact, since in principle a Mott

transition might occur in the absence of spontaneous symmetry breaking, whereas the in-

sulating CDW phase here breaks Z2 symmetry. With that said, the Mott transition in its

most common incarnation, the square lattice Hubbard model, is always accompanied by

long range antiferromagnetic order. Thus our work does provide a close analog of the case

of orbital selective transitions in bands with differing electron-electron interaction strengths.

Finally, we emphasize that our results for electron-phonon interactions on different geome-

tries differ from those for electron-electron interactions (attractive Hubbard) [123] in a fun-

damental way. The degeneracy of the superconducting and CDW orders at half-filling in

the half-filled attractive Hubbard model implies the absence of long range order except in
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the ground state (Mermin-Wagner). This symmetry is broken in the Holstein model. As a

consequence there is a finite CDW Tc even on two dimensional geometries.

Indeed, we have provided, for the first time to our knowledge, a precise quantification of the

Holstein to Hubbard mapping in the anti-adiabatic limit. The data of Fig. 2.1 emphasize

that the spin symmetry characterizing the Hubbard model is violated by more than a factor

of five for the Holstein model at ω0/t = 1, by almost a factor of two at ω0/t = 10, and even

at ω0/t = 102 a difference of 5 percent remains.

Individually, the Hubbard, Holstein and SSH Hamiltonians exhibit a rich panoply of phe-

nomena when doped away from half-filling. The interaction U leads to a complex mixture

of pseudogap physics, strange metal behavior, stripe order and d-wave pairing when doped.

The Holstein and SSH model host polarons in the dilute limit which can bind to bipolarons

and condense into superconducting phases. New phases of matter are thus likely to emerge

from the study of regimes of these electron-electron and electron-phonon interactions away

from half-filling. Work in this direction has already begun as shown in [185]. This thesis

lays the groundwork for the study of the cooperation and competition of different ordered

phases arising from electron-phonon interactions and the role of special features of the non-

interacting dispersion relation.
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