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Microbiome

Targeted viromes and total metagenomes 
capture distinct components of bee gut phage 
communities
Dino Lorenzo Sbardellati1* and Rachel Lee Vannette1 

Abstract 

Background  Despite being among the most abundant biological entities on earth, bacteriophage (phage) 
remain an understudied component of host-associated systems. One limitation to studying host-associated phage 
is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes 
and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated 
with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus 
impatiens.

Results  We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey 
bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, 
viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temper-
ate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. 
Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly 
reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader 
context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially 
when applied to host-associated environments.

Conclusions  Overall, we suggest that studies interested in assessing total communities of host-associated phage 
should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may 
serve to sample phage communities with the understanding that they will preferentially sample dominant and tem-
perate phage.

Keywords  Bacteriophage, Bee microbiome, Host-associated microbiome, Microbial ecology, Viral ecology

Background
Bacteriophage (phage) are the viruses which target bac-
teria. Phage are hypothesized to be among the most 
abundant biological entities on earth [1–3] and to be 
important modulators of microbial communities [2, 4]. In 

marine and soil environments, where these prokaryotic 
viruses are relatively well studied, phage shape the micro-
biomes they infect by lysing dominant bacteria [5–7], 
influencing nutrient turnover and cycling [8, 9], and vec-
toring functional genes between bacterial hosts [10–13]. 
While the basis for much of our understanding of phage 
ecology stems from the study of marine and soil environ-
ments, there is a growing interest in understanding the 
role of phage in host-associated systems [14, 15]. How-
ever, host-associated environments and free-living soil 
and marine environments represent different microbial 
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ecosystems with different selective pressures. As such, 
insights gained from studying free-living phage com-
munities may not always apply to communities of host-
associated phage. Specifically, while the best methods 
for sampling free-living phage communities have been 
empirically compared [16, 17], little work has evaluated 
the best methods for sampling host-associated phage 
[18]. Moreover, given the importance of microbiomes to 
host health, understanding phage community dynamics 
and how phage differ between related animal hosts is a 
key priority.

Like their environmental counterparts, phage infect-
ing host-associated bacteria (hereafter “host-associated” 
phage) can affect the abundance, composition, and func-
tion of host-derived microbial communities. However, 
unlike free-living phage, host-associated phage must also 
adapt to their close association with a host and its micro-
biome. For example, the comparatively high-density bac-
terial communities associated with the human gut [19, 
20], mucosal layer of corals [21], and other host environ-
ments are suggested to favor integrase encoding temper-
ate phage, as opposed to obligately lytic phage [22–24]. 
Phage targeting bacteria adhered to gut mucosa have also 
been shown to evolve the ability to adhere to and persist 
in the animal mucosa where their target bacteria reside 
[25]. Given the fundamental differences in the ecology of 
free-living and host-associated phage communities [22], 
it remains unclear whether sampling methods developed 
for free-living communities are also appropriate for other 
habitat types.

Two methods are frequently used for describing 
dsDNA viral communities: bioinformatic mining of total 
metagenomes and targeted viral enrichments (viromes). 
In bioinformatic mining of total metagenomes, total 
genomic DNA is extracted from a sample, amplified 
when necessary, sequenced using “shotgun” or untar-
geted methods, assembled into metagenomes, and phage 
computationally mined [26, 27]. While this approach is 
easy to perform and offers simultaneous characteriza-
tion of all DNA in a sample (including bacteria), only a 
small minority of the total metagenomic data generated 
will originate from phage, producing a relatively shallow 
sampling of phage communities. An alternative method, 
targeted virome sequencing, leverages the physical char-
acteristics of viruses to select for the phage and virus-like 
particle fraction of a sample prior to nucleic acid extrac-
tion and sequencing [28–30]. With more sequencing 
space devoted to viruses, targeted viromes can recover a 
greater diversity of phage relative to total metagenomes. 
This is illustrated by previous comparisons of viromes 
and total metagenomes in soil and freshwater samples 
[16, 17]. However, whether viromes always outperform 
total metagenomes is not clear. Work applying these two 

methods to host-associated (human gut) and low-bio-
mass (deep-sea marine) samples has produced conflicting 
results [17, 18]. One explanation for these discrepancies 
is the biases associated with total metagenomes and tar-
geted viromes [31, 32]. For example, viromes remove bac-
terial cells prior to sequencing and, as a result, may select 
against integrated, non-replicating, temperate phage [33, 
34]. This is especially relevant in host-associated systems 
where temperate phage are abundant [33]. Total metage-
nomes can also be preferable to viromes logistically. 
Viromes typically demand a relatively large amount of 
biomass to generate enough nucleic acids for sequencing. 
While protocols, such as the NetoVIR protocol [30], have 
successfully been used to circumvent this limitation, it 
is important to note that the random amplification used 
in these approaches can introduce another form of bias. 
Moreover, the pooling of sample material from multi-
ple individuals used in this and other approaches can 
obscure inter-individual variation in viral communities.

Insects have become valuable models for exploring 
host-microbe interactions [35–37]. Social bees in par-
ticular house a simple (5–9 taxa), highly conserved, 
socially transmitted, gut bacterial community [38–41] 
which contributes to host nutrient acquisition and patho-
gen defense [42–44]. These features position social bees 
as an excellent model for studying not only host-microbe 
interactions [45, 46] but tripartite host-microbe-phage 
interactions as well [47]. A series of recent studies using 
targeted virome approaches have shown that honey bees 
host a diversity of novel phage which target core bee 
gut bacteria [48–50]. While this work has advanced our 
understanding of bee phage, no work has evaluated how 
sampling method influences recovered bee phage com-
munities. Given the large biomass required for viromes, 
total metagenomes may be advantageous for surveying 
the phage communities associated with bees and other 
biomass limited systems. Additionally, describing the 
phage associated with other social bees will develop our 
understanding of how phage communities differ between 
related hosts. Lastly, broader work comparing the role 
and diversity of phage among small invertebrate hosts 
will hinge on appropriate sampling methods, so compar-
ing the performance of viromes and total metagenomes 
is particularly important for enabling future comparative 
study.

Here, we evaluate the phage communities inferred 
by applying total metagenomes and targeted viromes 
to managed Apis mellifera and commercially raised 
Bombus impatiens gut material. We hypothesize that 
targeted viromes will enrich for phage sequences and 
capture a greater diversity of phage, relative to bioinfor-
matic mining of total metagenomes, and that phage will 
differ between host bee species. To interrogate these 



Page 3 of 14Sbardellati and Vannette ﻿Microbiome          (2024) 12:155 	

hypotheses, we first examine how host bee species and 
sampling method impact sequencing read data and viral 
enrichment. We then validate our sampling and compu-
tational methodology through rarefaction and by com-
paring our phage sequences to those previously described 
in honey bees. Next, to test how phage community dif-
fers across host bee and sampling methods, we compare 
phage community diversity, structure, and composition. 
We then use gene content, occupancy-abundance plots, 
qPCR, and bacterial community profiling to delve into 
what contributes to the apparent differences in phage 
communities. Overall, we find that honey bees host more 
phage than do bumble bees, but that the method which 
captured the most phage differed by bee species. This 
suggests that viromes and total metagenomes are each 
biased in their own way and appear to sample different 
populations of phage. As a result, we propose these tech-
niques are complementary in describing the full diversity 
of host-associated phage.

Methods
Bee rearing, sampling, and experimental design
A detailed description of our methods (including sam-
ple collection and bench and computational work) is 
provided in the supplemental materials. Briefly, bees 
were harvested from three colonies of managed honey 
bees (Apis mellifera) and three colonies of commercially 

reared bumble bees (Bombus impatiens, Koppert Bio-
logical Systems; Howell, MI, USA). Bumble bee colonies 
were maintained in the laboratory and provided with 
honey bee collected pollen and artificial nectar (Koppert 
Biological Systems) ad libitum, as per manufacturer’s 
recommendation. Honey bees were sampled from colo-
nies maintained at the University of California, Davis, 
apiary and were collected from inside the colony using a 
handheld bee vacuum between January 30 and February 
13, 2023, 8:00 am–10:00 am.

Bees were anesthetized via a 60-s CO2 exposure and 
then euthanized via decapitation. Immediately follow-
ing sacrifice, the mid-hindgut section was dissected from 
100 bees (all collected from the same colony) and pooled 
for same-day virome extraction. Bees destined for total 
metagenomic DNA extraction were collected the same 
day as virome samples and were stored at −20 °C pend-
ing mid-hindgut dissection on the following day. All dis-
sections took place in sterile PBS using ethanol and flame 
sterilized forceps. Each honey and bumble bee colony 
generated one targeted virome and three total metagen-
omes (Fig. 1).

Sample preparation and DNA extraction
Phage enrichments for targeted virome sequencing 
were carried out following a protocol adapted from 
previous publications [28, 29, 51] and is described fully 

Fig. 1  Graphical representation of the sampling scheme and methods used in this research. A total of three bumble bee and three honey bee 
colonies were sampled. From each colony of bee, we generated three total metagenomes and one targeted virome. Total metagenomes were 
sampled from individual bees, while targeted viromes were produced from the pooled guts of 100 bees. This sampling resulted in nine bumble bee 
total metagenomes (light blue), three bumble bee viromes (dark blue), nine honey bee total metagenomes (light orange), and three honey bee 
viromes (dark orange)



Page 4 of 14Sbardellati and Vannette ﻿Microbiome          (2024) 12:155 

in the supplemental methods. Briefly, bee gut pools 
were combined with 10 ml of protein-supplemented 
phosphate-buffered saline (PPBS: 2% BSA, 10% PBS, 1% 
K-citrate, 150-mM MgSO4), homogenized, and submit-
ted to a series of washes aimed at eluting phage parti-
cles. Phage were enriched via centrifugation, 0.22-µm 
filtration, and ultracentrifugation. Lastly, phage pellets 
were resuspended in 200-µL water and DNase treated.

For total metagenomes, mid-hind guts of individual 
bees were dissected and homogenized and used for 
extraction. DNA was extracted from both virome and 
total metagenome samples using a DNeasy PowerSoil 
Pro kit (Qiagen, Hilden, Germany) following the manu-
facturer’s instructions with the optional Qiagen Vortex 
Adapter 15-min bead beating step.

Library construction and DNA sequencing
Extracted DNA from samples and kit blank-negative 
controls was submitted to the University of California 
Davis Genome Center for library prep and paired-end 
150-bp shotgun metagenomic sequencing. Libraries 
were prepared using a KAPA HyperPrep Kit (Kapa Bio-
systems, Roche, Basel, Switzerland) with Illumina 
TruSeq adapters (Illumina, San Diego, CA, USA) and a 
target insert size of 350 bp. Sequencing took place on 
an Illumina NovaSeq. All samples were sequenced on 
the same run.

Read processing, viral prediction, and vOTU table 
construction
Briefly, all demultiplexed .fastq.gz files from the 
Davis Genome Center were trimmed and quality fil-
tered using Trim-Galore [52] and Trimmomatic [53]. 
Reads aligning to negative samples, or the genomes 
of A. mellifera (GCA_000002195.1) and B. impatiens 
(GCF_000188095.3), were removed using Bowtie2 [54]. 
Cleaned reads were k-merized for complexity compari-
sons using Sourmash [55]. The program metaSPADES 
was used to construct assemblies. Assemblies ≥ 5 kb 
were passed to geNomad [56] for phage prediction. Puta-
tive phage sequences predicted to be < 50% complete 
by CheckV [57] were dropped. Remaining sequences ≥ 
95% average nucleotide identity were clustered into viral 
operational taxonomic units (vOTUs) using dRep [58] 
and annotated with Prokka [59] using the PHROGs data-
base [60]. The programs BACPHLIP [61] and geNomad 
were then used to predict the lifestyle and taxonomy of 
identified vOTUs, respectively. Finally, CoverM [62] was 
used to map cleaned reads against vOTUs. The resulting 
coverage table was normalized to coverage per million 
reads.

Bacterial community and density measurements
Bacterial communities were predicted directly from 
cleaned total metagenomic reads with Kraken2 [63] and 
Bracken [64] using default parameters. Bacterial copy 
number was quantified from the DNA extracts used for 
metagenome sequencing via a qPCR protocol adapted 
from Christensen et  al. [65]. Each master mix solution 
contained the following: 5-µl SsoAdvanced Universal 
SYBR Supermix 41 (Bio-Rad, Hercules, CA, USA), 0.3 
µl of primers (10 µM) targeting the 16S region of the 
rRNA gene (799F = 5′-AACMGGA​TTA​GAT​ACC​CKG-
3′; 1115R = 37 5′-AGG​GTT​GCG​CTC​GTTG-3′), 3.4-µl 
molecular grade water, and 1 µl of template DNA (diluted 
1:1000 in molecular grade water). Reactions were per-
formed in triplicate for each sample.

Statistical and ecological analyses
Statistical analyses were conducted in R [66] v4.2.3. 
Briefly, alpha diversity, beta diversity, and PERMANO-
VAs were compared between host and sampling method 
using vegan [67] and phyloseq [68]. Linear mixed effect 
models were built using lme4 [69], and post hoc tests 
were run using emmeans [70]. T-tests were performed 
using base R. Gene-sharing networks were generated 
outside of R using the program vConTACT2 [71, 72]. 
Genome alignment plots were constructed using clinker 
[73].

Phage-host predictions were performed using a cus-
tom CRISPR-spacer analysis. In short, we built bacterial 
metagenome-assembled genomes (MAGs) from our total 
metagenomic dataset using metaSPADES, MetaBat2 [74], 
and dRep. We then combined these MAGs with NCBI 
assemblies of common bee gut bacteria, mined all these 
sequences for CRISPRs using MINCED [75], and then 
aligned those CRISPRs to our vOTUs using Blastn [76] 
following the parameters suggested by Edwards et al. [77] 
Lastly, to improve the number of vOTUs with bacterial 
host and viral taxonomic assignments, we combined our 
CRISPR-based phage-host assignments and geNomad 
taxonomic predictions with the clusters produced by 
vConTACT2 to infer the bacterial hosts and viral taxon-
omies of whole phage clusters, similar to Bonilla-Rosso 
et  al. [48] Bacterial 16S copy number was compared 
between bee species using linear mixed effect models.

Results
Bumble bee viromes produce fewer high‑quality reads 
than honey bee viromes
Our sequencing effort generated a total of 419,884,845 
raw read pairs, 2.47% (10,385,967) of which came from 
extraction negatives. While the number of raw read pairs 
did not differ significantly between samples (Fig. S1; 
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Bee t5.40 = 0.54, p = 0.61, Type t8.47e23 = 1.58, p = 0.11, 
Bee:Type t1.07e23 = −1.38, p > 0.17), there were differ-
ences in the number of high-quality read pairs remain-
ing after quality control (Bee t5.81 = 2.87, p < 0.05, Type 
t2.75e25 = −0.33, p = 0.74, Bee:Type t2.75e25 = 4.69, p < 
0.001) (Fig. 2A). After filtering, honey bee viromes aver-
aged 15.56 million high-quality read pairs per sample, 
while bumble bee viromes averaged only 5.49. Total 
metagenome samples generated more similar numbers 

of high-quality reads per sample, with an average of 8.57 
and 5.85 million read pairs generated from honey and 
bumble bee samples, respectively.

Bumble bee virome reads are less complex than other 
samples
Next, we measured the complexity of read libraries to 
further investigate how bee species and sampling method 
influenced the data we generated. This was done by 

Fig. 2  Figures describing sequencing and assembly quality. Color denotes sample groups. A Boxplots describing sequencing depth. The 
x-axis shows sample groups. The y-axis displays the total number of high-quality reads produced. B Line plots describing sequence complexity 
of the reads shown in A, as measured by the frequency distributions of 31-bp-sized k-mers. The x-axis presents k-mer occurrence (i.e., how abundant 
a particular k-mer was in a given sample’s read), while the y-axis shows the number of k-mers with a certain occurrence. C Boxplots describing 
the number of unique 31-bp-sized k-mers present in the read libraries of each group of samples. The x-axis shows sample groups. The y-axis shows 
the number of unique k-mers. D Jittered dot plots describing the length distributions of contigs assembled from each sample. Only contigs > 
= 1 kbp bp are shown. Individual samples are shown on the y-axis. The x-axis shows contig length (log10 scale). Each point represents a single 
contig. A dotted red line is drawn at 5 Kbp. For each sample, a green square is plotted phage enrichment (the number of phage identified, divided 
by number of contigs assessed for phage, times 100)
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comparing the number and occurrence of 31-bp-sized 
k-mers among each set of high-quality read libraries 
(Fig. 2B). The results of this analysis suggest that across 
the range of k-mer occurrences, bumble bee viromes 
consistently contain fewer k-mers of a given occurrence 
than did other sample types. Moreover, viewing only the 
y-intercept of this plot (Fig. 2C) shows that bumble bee 
viromes contain a lower number of singleton k-mers, 
relative to all other sample types (Bee t5.34 = 2.49, p = 
0.052, Type t16 = −6.47, p < 0.001, Bee:Type t16 = 5.14, p 
< 0.001). This decreased number of singleton k-mers and 
the tendency towards lower k-mer occurrences suggest 
that bumble bee viromes are less complex compared to 
the other sample types in this dataset.

Targeted virome assemblies are enriched in phage
To evaluate the size and number of assemblies produced 
from each read library, and to quantify the extent to 
which viromes enriched for phage sequences, we visual-
ized the distribution of assembly sizes in each sample, 
as well as the percentage of assemblies in a sample pre-
dicted to encode phage sequences (Fig.  2D). A total of 
4278 and 37 contigs ≥ 5 kb were assembled from honey 
and bumble bee viromes, respectively. After passing to 
geNomad, these contigs yielded 2883 honey bee and 32 
bumble bee putative phage sequences. Meanwhile, honey 
and bumble bee total metagenomes produced 16,615 and 
14,335 contigs ≥ 5 kb, respectively, which yielded 662 and 
276 putative phage sequences. This means that 65.74% of 
honey bee and 75.82% of bumble bee virome contigs ≥ 5 
kb were predicted to be viral, while only 4.06% and 3.43% 
of honey and bumble bee total metagenome contigs ≥ 
5 kb were annotated as viral. The enrichment of phage 
sequences in viromes, relative to total metagenomes, 
provides validation that viromes successfully enrich for 
phage when applied to bee guts.

Next, we used rarefaction to assess if the different num-
ber of putative phage sequences recovered by honey and 
bumble bee viromes (Fig. 2D) was a result of differences 
in sampling depth (Fig. 2A). This analysis shows that even 
at equal sampling depths, honey bee viromes consistently 
recover approximately 20× the number of phage recov-
ered from bumble bee viromes (Fig. S2A and B).

Phage target core bee bacteria and resemble previously 
described honey bee phage
After measuring the ability of viromes to enrich for phage 
sequences, we next sought to characterize the phage 
communities we detected in terms of similarity to previ-
ously described bee phage communities, putative bacte-
rial hosts, and predicted viral taxonomy. To do this, we 
first removed phage predicted to be low quality (< 50% 
complete). This reduced the total number of sequences 

recovered from 3853 to 655. Next, we constructed 
vOTUs by collapsing the remaining high-quality phage 
sequences at a 95% average nucleotide identity, further 
reducing the number of putative phage from 655 to 609.

We then built gene-sharing networks comparing our 
vOTUs to those previously described by other bee phage 
studies (Fig.  3A), as well as reference phage taken from 
vConTACT2’s NCBI’s RefSeq database (Fig. S3). In both 
network, many of the vOTUs from the current study 
clustered with those described by other bee phage stud-
ies, suggesting they are related at roughly the genus level 
[71, 72]. For example, viral cluster 149 contains sequences 
recovered by the current study, Bonilla-Rosso et al. [48], 
Deboutte et  al. [49], and Busby et  al. [50] (Fig. S4). We 
interpret these results as further validating our sample 
preparation and computational methodologies.

Next, we assigned bacterial hosts to our vOTUs. To 
focus this and all downstream analyses on only the 
most abundant phage, we filtered vOTUs to retain only 
those with a normalized coverage ≥ 1, resulting in 477 
vOTUs across 24 samples. Overall, we assigned hosts 
to 51.99% (248) of the 477 vOTUs appearing in our 
dataset (Fig.  3B). In terms of relative abundance, phage 
with assigned hosts made up an average of 4.03% and 
18.81% of bumble bee viromes and total metagenomes 
and 60.92% and 65.97% of honey bee viromes and total 
metagenomes, respectively. Notably, the high proportion 
of bumble bee phage with unassigned hosts, especially in 
viromes, is likely confounded by the fact that these sam-
ples had an extraordinarily diminished phage diversity.

Phage predicted to target the core social bee bacterial 
genera Lactobacillus, Bifidobacterium, and Gilliamella 
were among the most abundant of those with identified 
hosts in our dataset (Fig. 3B and Table S1). Phage target-
ing Lactobacillus tended to be most abundant in honey 
bees, especially honey bee total metagenomes, though 
did not differ significantly (Bee t14.16 = −1.38, p = 0.19, 
Type t16 = 1.00, p = 0.33, Bee:Type t16 = −0.01, p = 0.99). 
Meanwhile, Gilliamella phage, which only appeared in 
honey bee, were most abundant in total metagenomes 
(Bee t13.31 = −0.57, p = 0.58, Type t16 = 2.89, p < 0.05, 
Bee:Type t16 = −2.04, p = 0.058). Bifidobacterium tar-
geting phage were more abundant in honey bee viromes 
than they were in any other sample type (Bee t20 = −6.42, 
p < 0.001, Type t20 = −5.83, p < 0.001, Bee:Type t20 = 4.38, 
p < 0.001). Phage targeting the core bumble bee symbiont 
Schmidhempelia were exclusively found in bumble bee 
total metagenomes, though these differences were not 
statistically significant (Bee t20 = 0, p = 1, Type t20 = 0, p 
= 1, Bee:Type t20 = 1.96, p = 0.064). We also found signa-
tures of colony-level variation. For example, Bombilacto-
bacillus phage did not differ significantly across samples 
(Bee t18.29 = −0.036, p = 0.97, Type t16 = −0.046, p = 0.96, 
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Bee:Type t16 = 0.72, p = 0.48) but were only detected in 
total metagenomes sampled from bumble bee colony 1.

In total, we assigned family level taxonomy to 9.64% 
(46) of our 490 vOTUs (Fig. S4). The majority of classi-
fied vOTUs belonged to either Rountreeviridae (24) or 
Herelleviridae (10), with a smaller number being classi-
fied as Inoviridae (4), Autographiviridae (3), and Micro-
viridae (1). Notably, four vOTUs predicted to belong to 
the double-stranded RNA virus family Totiviridae were 
detected only in bumble bee total metagenomes.

Bee species differ in phage diversity and composition
Next, we tested if vOTU diversity and community com-
position differed between bee species and sampling 
method. While the diversity and richness of communities 
followed similar trends (Fig. 4A and B), there were sub-
stantial quantitative differences between these two met-
rics. When we compared Shannon’s diversity, sampling 
method and the interaction of bee species and sampling 
method significantly affected vOTU diversity, while bee 
species alone did not (Fig.  4A; Bee t5.93=2.16 p=0.074; 
Type t16=-2.39 p<0.05; Bee:Type t16=5.09 p<0.001). 
Meanwhile, only the interaction between bee species 
and sampling method significantly impacted commu-
nity richness (Fig. 4B; Bee t20 = 0.75, p = 0.46; Type t20 = 
−0.85, p = 0.41; Bee:Type t20 = 19.15, p < 0.001). Over-
all, these results suggest that sampling method can sig-
nificantly influence the alpha diversity of inferred phage 

communities, but that this can differ in magnitude and 
direction according to bee species.

In honey bees, 21.56% (91/422) of all vOTUs were 
shared between virome and total metagenome samples. 
Similarly, in bumble bees, 23.21% (13/56) of vOTUs were 
detected by both sampling methods. Only one vOTUs 
was detected in both bee species (Fig. 4C). vOTU com-
munity composition was predicted primarily by host bee 
species and secondarily based on sample method (Fig-
ure 4D; Bray-Curtis PERMANOVA Bee R2 = 0.21, F1,20 = 
7.390, p < 0.001; Method R2 = 0.11, F1,20 = 3.93, p < 0.001; 
Bee:Method R2 = 0.11, F1,20 = 3.93, p < 0.001).

Bacterial community variation predicts phage community 
variation
We hypothesized that differences in phage richness and 
community composition between bee species may be 
driven by differences in bacterial abundance and com-
position. First, we used qPCR to compare the number 
of bacteria found in the guts of honey and bumble bees 
(Fig.  5A) and found that the average mid-hindgut 16S 
gene copy number was significantly lower in bumble bees 
than it was in honey bees (t9.13 = −3.54, p < 0.01).

We then used Kraken2 and Bracken to estimate the 
diversity and taxonomic profile of bacterial commu-
nities (Fig. 5B, C, D). At the species level, bumble bee 
bacterial communities hosted lower bacterial richness 
and greater Shannon’s diversity than honey bee bacte-
rial communities (Richness t13.78 = −6.27, p < 0.001, 

Fig. 3  Figures describing gene sharing among the phage identified in our dataset and the overall phage communities found in individual 
samples. A Weighted gene-sharing network of all non-singleton vOTUs identified in our study and by previous bee phage studies. Individual 
nodes are vOTUs. Nodes are connected by edges when vOTUs share genes. Nodes are colored based on the predicted bacterial host of phage. 
Nodes with “previously described” as a predicted host are the vOTUs previously described by other bee phage papers [48–50]. B Stacked bar plot 
describing the community of phage found in each sample based on predicted host. Both A and B use the same color palette
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Shannon t11.70 = −6.27, p< 0.001), suggesting fewer 
bacterial taxa were present in the bumble bees we sam-
pled, but that bumble bee bacterial communities were 
more evenly divided among their constituent bacteria.

Lastly, we used a Mantel test to compare the rela-
tionship between bacterial and phage community 
structure (Fig. S5). We found a high degree of similar-
ity between the bacterial and phage communities (R 
= 0.59, p < 0.001), meaning that individual bees with 
similar bacterial communities also have similar phage 
communities.

Total metagenomes capture prophage but miss rare phage
After identifying factors which explain some of the host-
specific differences in phage communities, we sought to 
evaluate why sampling method (virome vs total metage-
nome) also led to significant differences in inferred 
phage communities. For this, we first compared the gene 
content of vOTUs recovered from viromes and total 
metagenomes. Because total metagenomes are primar-
ily comprised of bacterial DNA, we hypothesized that 
this sampling method would enrich for temperate phage. 
In both honey bees and total metagenomes, temperate 

Fig. 4  Figures describing the alpha and beta diversity of the phage communities identified in our samples. Blue represents samples taken 
from bumble bees. Orange represents samples taken from honey bees. Lighter colors are total metagenomes. Darker colors are viromes. A and B 
Boxplots describing Shannon’s diversity and vOTU richness associated with each of our sample types. The x-axis group samples. The y-axis shows 
diversity and richness scores. C Euler diagram describing phage community overlaps between each of our sample types. Numbers correspond 
to the number of phage present in each section of the graph (i.e., 91 phage were found in both honey bee viromes and total metagenomes). Circle 
size is proportional to number of phage. C Nonmetric multidimensional scaling (NMDS) ordination describing the Bray-Curtis dissimilarity of all 
samples on our dataset. Individual points are samples. Color represents sample type. The closer 2 points are to each other, the more similar they are 
in phage community
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phage comprised a greater proportion of the entire 
vOTU community, relative to bumble bees and viromes 
(Fig. S6; Bee t20 = 3.88, p < 0.001, Type t20 = −2.32 
p<0.05, Bee:Type t20 = 0.31, p = 0.76). In terms of relative 
abundance, integrase encoding phage were more abun-
dant in total metagenomes than they were in viromes 
(Fig. 6A; Bee t17.36 = −1.56, p = 0.14; Type t16 = 3.80, p < 
0.01; Bee:Type Type t16 = −1.53, p = 0.12). Overall, these 
results suggest that, in this system, total metagenomes 
are biased towards sampling temperate phage.

Lastly, to examine how sampling methods differ in 
recovery of rare vs abundant phage, we visualized the 
occupancy-abundance relationships of virome-specific 
vOTUs vs vOTUs recovered by both methods. This 
analysis revealed that while there is little to no differ-
ence between the relative abundance of vOTUs identi-
fied in viromes vs total metagenomes (Fig. 6B), viromes 

are better able to capture vOTUs with low occupancy 
(Fig. 6C and D).

Discussion
Although phage are integral members of complex micro-
biomes, methods for describing phage communities are 
still being developed. Here, we compare how two com-
mon forms of phage community sampling, bioinformatic 
mining of total metagenomes and targeted sequencing 
of viromes, influence the phage communities recovered 
from the guts of two commercially important bee spe-
cies: Apis mellifera and Bombus impatiens. Similar to 
the results of previous studies [16–18], we show that 
sampling method significantly affected alpha diversity, 
beta diversity, composition, and structure of sampled 
phage communities. In particular, we show that viromes 
outperform total metagenomes in terms of the number 

Fig. 5  Honey and bumble bees differ in bacterial community density, diversity, and composition. A Boxplots displaying the 16S rRNA gene copy 
number present in the mid-hindgut region of sampled honey and bumble bees. B Boxplot presenting the number of observed bacterial species 
in honey and bumble bee. C Boxplot showing the species level Shannon’s diversity of honey and bumble bee gut bacterial communities. D Stacked 
bar plot describing honey and bumble bee bacterial communities at the genus level
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of phages recovered, but that this can depend on the 
specific environment being sampled. Overall, viromes 
were better at sampling rare and less prevalent phage 
when bacterial and phage diversity was high, while total 
metagenomes captured a greater diversity of phage in low 
biomass samples. We also show that regardless of sample 
biomass, total metagenomes were enriched for temper-
ate phage, compared to viromes, and were consistently 
able to recover phage not found in viromes. Given these 
results, we suggest that viromes and total metagenomes 
each have limitations, are complementary, and that 
choice of one method over the other likely depends on 
the environment being sampled.

Honey bees host a core phage community
Viewing our results within the broader context of bee 
phage, our analyses show that many features of the phage 
communities identified here resemble those previously 
described in honey bees sampled from North America 
and Europe [48–50]. For example, Herelleviridae (for-
merly Myoviridae [78]) and Rountreeviridae (formerly 
Podoviridae [79]) were among the most abundant viral 
families that we and these previous studies identified. 
Similarly, Lactobacillus, Gilliamella, Bifidobacterium, 
and other core bee gut bacteria, were among the most 
predicted phage hosts in our and previous studies. Inter-
estingly, four of the viruses identified in our study were 

Fig. 6  vOTUs sampled by viromes and total metagenomes differ in integrase content, occupancy, and abundance. A Stacked bar plot showing 
the relative abundance of temperate and lytic vOTUs in virome and total metagenome samples. B Density distributions showing the average 
relative abundance of all vOTUs found in viromes. vOTUs unique to viromes are shown in blue. vOTUs found in both viromes and total 
metagenomes are shown in red. C Dot plot showing the occupancy-abundance relationship of all virome vOTUs. The x-axis describes average 
relative abundance, while the y-axis shows the percent occupancy of each vOTU. As before, vOTUs unique to viromes are shown in blue, and those 
found in both viromes and total metagenomes are shown in red. D Stacked bar plot describing the percent of vOTUs found in one, two, or three 
samples. The x-axis represents the percent of vOTUs. The y-axis the occupancy. Similar to B and C, vOTUs unique to viromes are shown in blue, 
and those found in both viromes and total metagenomes are shown in red
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predicted to belong to Totiviridae, a family of viruses 
known to target yeasts and other eukaryotes [80]. Given 
the importance of yeasts in maintaining bee health [81], 
especially in bumble bees [82], this suggests that yeast 
targeting viruses may be an important member of bee 
gut microbial communities. Notably, while previous bee 
phage studies found a number of phage predicted to 
target Bartonella, none of our phage was predicted to 
target this bacterial genus. This is likely because no avail-
able Bartonella apis assemblies met the strict criteria for 
inclusion in our CRISPR spacer analysis.

Delving deeper, our gene-sharing network and clinker 
analyses show not only that many of our phage share 
large genomic regions with previously described honey 
bee phage but also that gene order in these geographi-
cally disparate viral genomes is also conserved (Fig. S4). 
This conservation between honey bee phage communi-
ties is similar to what was observed by Busby et al. [50]. 
Likewise, Rosso et  al. [48] showed that the genomes 
of honey bee-associated phage sampled from Europe 
are able to recruit reads from Japanese honey bee total 
metagenomic datasets.

Altogether, these findings support the idea that simi-
lar to the highly conserved nature of some bee gut bac-
terial communities [38, 39, 46, 83], some features of bee 
gut phage communities are also conserved between bees 
sampled across geographically disparate populations. 
Future work should focus on identifying what features 
of phage communities, whether individual genes, clus-
ters of genes, or perhaps whole genomes, are conserved 
between different populations of bees.

Host bacterial communities predict phage communities
When compared to free-foraging managed honey bees, 
the commercially produced bumble bees we sampled 
hosted significantly lower diversity phage communi-
ties. Although differences in species biology and colony 
size may play a role, we attribute this low phage diver-
sity primarily to the low density and diversity bacterial 
communities these bumble bees hosted, suggesting that 
phage diversity and abundance may track bacterial diver-
sity and abundance across hosts. However, whether such 
results are generalizable to wild bumble bees is unclear. 
In our study, bacterial 16S rRNA copy number in bumble 
bee guts ranged from 106 to 107, whereas previous work 
in the same species reported 108–109 copies of the 16S 
rRNA gene [38, 84–86]. Given we used standard rearing 
methods and diet, we hypothesize that lower bacterial 
titer may be due to the age of bees we sampled. Previ-
ous work in bumble bees shows that bacterial density 
increases with worker age, saturating approximately 4 
days after worker emergence [84]. Future work could 
examine how phage abundance and composition changes 

through worker development and if this reflects previ-
ous observations of bacterial succession with worker age 
[17]. More generally, these findings suggest that features 
of host bacterial communities (i.e., density, diversity, and 
structure) may be used to predict phage community fea-
tures. This is further supported by our Mantel analysis 
showing a correlation between bacterial and phage com-
munity dissimilarity.

Viromes and total metagenomes reveal complementary 
phage communities
There are several possible reasons as to why the phage 
communities inferred by viromes and total metagenomes 
differ. One explanation is the way we generated viromes 
and how this influenced the specific population of phage 
sampled. Research by Hoyles et  al. [87] has shown that 
passing human fecal samples through a 0.22-µm filter 
reduces the number of phage recovered by nearly half. 
As such, size filtration may have led some phage which 
are present in our bee guts to have been excluded from 
viromes. This size exclusion may explain why we, and 
previous virome vs total metagenome studies [16–18], 
consistently show that some phage are only found in 
total metagenomes. Other potential explanations include 
sheer random chance (two independent sampling events 
each recovering unique elements) or sample process-
ing (total metagenome samples being frozen prior to 
DNA extraction). While random chance cannot be fully 
ruled out, given that total metagenomes did not receive 
a DNase treatment prior to sequencing, disruption of 
phage capsid proteins by freezing likely did not have 
a substantial impact on inferred phage communities. 
Instead, the particular types of phage which are excluded 
by size filtration likely further explain the total metagen-
ome and virome differences we observed. We found that 
putative temperate phage were more abundant and prev-
alent in total metagenomes than they were in viromes. 
This agrees with existing literature which suggests that 
size filtration can specifically remove integrated lysogenic 
phage, large jumbo phage, and phage adhered to bacte-
rial cells and particles [32, 34, 88, 89]. While it is tempt-
ing to expand these results to different environments 
by stating total metagenomes always sample temperate 
phage missed by viromes, work in other systems implies 
a more nuanced reality. In agricultural soils, Medellin 
et al. [16] identified only three phages that were present 
in total metagenomes and absent from viromes. This sug-
gests that the degree to which sample processing skews 
viromes differs by environment. As a result, we suggest 
that the relative utility of viromes and total metagenomes 
likely depends on the environment being sampled. Sam-
ples with a high abundance of temperate phage, such as 
host-associated systems and low-biomass environments, 
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may benefit from total metagenomes. This is similar to 
the conclusions made by Kosmopoulos et al. [17] which 
suggest that the choice of viromes vs total metagenomes 
should be environment specific.

While our results highlight the ability of total metage-
nomes to recover phage missed by viromes, they also 
showcase the capacity of viromes to sample a greater 
diversity of phage. Similar to previous comparisons of 
viromes and total metagenomes in human gut, soil, 
and freshwater environments [17, 18, 29], our honey 
bee viromes recovered a substantially larger number of 
phage than did total metagenomes. Further, the occu-
pancy-abundance relationships examined here and by 
Medellin et  al. [16] show that total metagenomes tend 
to be biased towards sampling the most abundant and 
prevalent phage, while viromes are more successful at 
sampling rare phage. Taken together, these results sup-
port previous work documenting that viromes produce 
a deeper sampling of phage communities compared to 
total metagenomes [32, 90, 91].

Conclusions
By comparing bioinformatic mining of total metage-
nomes and targeted viromes across two bee species, 
we found that sampling method significantly affected 
inferred phage communities, but that the directionality 
of these differences can depend on the host being sam-
pled. In general, total metagenomes tended to be biased 
towards sampling putatively temperate phage. In sam-
ples with a relatively high biomass (e.g., honey bees), 
viromes produced a greater diversity of phage and a bet-
ter sampling of rare phage. In contrast, when applied to 
relatively low biomass samples (e.g., bumble bees), total 
metagenomes captured a greater diversity of phage than 
did viromes. Regardless of sample biomass, there were 
always phage unique to both viromes and total metage-
nomes. In conclusion, we suggest that these methods are 
complementary and recommend that both be used to 
capture the full diversity of phage present in a gut envi-
ronment. However, given that virome sampling is not 
always feasible (i.e., in the case of field collected insects), 
total metagenomes may serve to sample phage commu-
nities with the caveat that they will preferentially sample 
dominant and temperate phage.
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viral sequences share genes. Nodes corresponding to vOTUs recovered 
from the current study are red, vOTUs from previous bee-phage studies 
are blue, and nodes representing reference phage sequences present in 
vConTACT2’s “ProkaryoticViralRefSeq211-Merged” database are colored 
gray. Figure S4. Clinker plot displaying gene sharing amongst all the 
phage in a single gene-sharing network cluster. The cluster shown 
(VC_149) is predicted to target Gilliamella. Each row is an individual phage 
in this cluster. Arrows represent the genes present in those phage. Con-
nections between phage represent homologous genes. Connections are 
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study they were identified in. Virome and total metagenome phage were 
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Figure S5. Bar plots showing the number of vOTUs successfully assigned 
to different viral families. Figure S6. Scatterplot visualizing the mantel test 
performed. Each point represents the pairwise distance between two 
samples in beta diversity space. The x-axis measures bacterial community 
distance. The y-axis measures viral community distance. Points are colored 
based on whether the sample pairs being compared are both bumble 
bees (red), honey bees (green) or two different types of bees (blue). There 
is a positive relationship between phage and bacterial community struc-
ture. Figure S7. Boxplots describing the percent of vOTUs in each sample 
type predicted to be temperate. The x-axis describes sample group, the 
y-axis describes percent temperate vOTUs. Table S1. Table describing the 
distribution of phage predicted to target common bee associated bacte-
ria. Letters represent results of emmeans posthoc test.
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