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Abstract 
Abstraction to a single prototypical representation is a core 
principle of Distributional Semantic Models (DSMs) that 
learn semantic representations for words by applying 
dimension reduction to statistical redundancies in language. 
While the learning mechanisms for semantic abstraction vary 
widely across the many DSMs in the literature, they are 
essentially all prototype models in that they create a single 
abstract representation for a word’s meaning. The prototype 
method stands in stark contrast to work in the field of 
categorization that has converged on the importance of 
instance models. In comparison to the prototype method, 
instance-based models assume only an episodic store and, 
rather than applying abstraction mechanisms at learning, 
argue that meaning emerges in the act of retrieval. We cash 
this idea out by presenting and evaluating an instance theory 
of distributional semantics, and by demonstrating that it can 
explain diverging patterns of homonymous words that classic 
“abstraction-at-learning” models simply cannot as a 
consequence of their architectural assumptions.  

Keywords: Semantic memory; Instance theory; Latent 
Semantic Analysis  

Introduction 
Distributional semantic models (DSMs) such as 

BEAGLE, HAL, LSA, and Word2Vec represent a major 
advance in the field of semantic memory (Jones & 
Mewhort, 2007; Lund & Burgess, 1996; Landauer & 
Dumais, 1997; Mikolov, et al., 2013). DSMs attempt to 
explain how humans transform first-order statistical 
experience with language into deep knowledge 
representations of word meaning. The mechanisms they 
posit for this transformation vary widely, ranging from 
simple co-occurrence counting to reinforcement learning 
(see Jones, Willits, & Dennis, 2015 for a review). But 
virtually all DSMs share one commonality: They are 
prototype models. This shared feature may represent a 
significant architectural flaw in DSMs, leading the field to 
assume that abstraction is a learning rather than  retrieval 
mechanism.  

All current spatial DSMs use the co-occurrence 
regularities of words across contexts in language, and 
attempt to build a single vector representation that best 
represents the word’s aggregate meaning, formalizing the 

classic notion that “you shall know a word by the company 
it keeps” (Firth, 1957). However, the notion of building a 
single prototypical center of tendency is in stark contrast to 
the current state-of-the-art in related fields, such as 
categorization and episodic memory. The categorization 
literature, for example, has long recognized the importance 
of instance-based models for understanding category 
knowledge and the contextual disambiguation of meaning; 
especially given that prototype theories of categorization are 
simply unable to explain human behavior when dealing with 
category structures that have non-linearly separated 
structure, such as in classic XOR.  

Jones (2018) has recently suggested that current 
abstraction-at-learning DSMs suffer from the same issues as 
prototype theories in categorization. All current models 
collapse the many contexts that a word occurs in to a single 
best-fitting representation, but that process discards 
idiosyncratic regularities that are important to word 
meaning. Homonymous words present an ideal evaluation 
case. It has long been known that spatial DSMs collapse the 
multiple senses of a homonym into a single representation, 
often averaging over very distinct context patterns to a 
center of tendency that represents the average meaning. A 
word such as bank will be positioned in space as a 
frequency weighted average of its distinct senses.  

Griffiths, Steyvers, and Tenenbaum (2007) have suggested 
that homonyms and polysemes pose a core challenge to 
spatial DSMs that they cannot adequately explain, arguing 
instead for probabilistic topic models. In addition, 
homonyms and polysemes are  hardly rare in language: 
Over half of all words in English have multiple senses, and 
the frequency distribution of senses for a word tends to be 
positively skewed. DSMs lose the tail when collapsing to a 
prototype, but humans can regularly comprehend the 
multiple (less frequent) meanings that are averaged out in 
DSMs. Hence, DSMs have great difficulty with the non-
dominant sense of homonyms (e.g., the river sense of bank 
is dominated by the financial institution sense in the 
prototype representation). Homonyms may be a key 
falsification criterion for DSMs that posit abstraction at 
learning.  

In this paper we present a different notion of abstraction. 
Building on successful instance-based memory models, we 
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posit that semantic abstraction may be a consequence of 
retrieval from episodic memory rather than a learning 
mechanism. We present an instance-based theory of 
semantics (ITS) that stores word contexts as multiple 
instances in episodic memory. When a word is presented to 
the model, a simple retrieval mechanism is applied that 
generates an ad hoc semantic representation of the word. In 
contrast to abstraction-at-learning DSMs, ITS is able to 
have non-linear activation of encoded instances, which 
allows it to easily access the non-dominant sense of a word 
when provided the appropriate context.  

Instance-Based Theory of Semantics 
ITS is rooted in Hintzman’s (1986) MINERVA 2 

instance-based model of human memory (see Johns & 
Jones, 2015, and Kwantes, 2005, for related approaches). 

In the theory, every letter string (i.e., word or non-word) is 
represented by a unique n dimensional vector, w, where 
each dimension takes a randomly sampled value from a 
normal distribution with mean zero and standard deviation 

 . Vectors constructed in this manner are orthonormal 
in expectation and, thus, the model begins from a state in 
which words have no similarity to one another. 

Memory of a conversation, a document, is encoded as an 
instance di, equal to the sum of the j = 1…h words in the 
document, 

 

 
 

where h is the number of words in document i, wj is word j 
in the document, and di is the sum of the words in document 
i. To illustrate, the document, “the dog bit the mailman” is 
stored as wdog + wbit + wmailman (consistent with standard 
practice, we excluded a list of stop words).  

Memory proper is a collection of document 
representations in which each document i, di, is stored to a 
corresponding row in a memory matrix, M,  

 

 
 
To retrieve a word’s meaning, a word vector is presented 

to memory as a probe and a corresponding semantic vector, 
c, is retrieved that is called the echo. 

Retrieving the echo is a two-step process. In step one, the 
probe, p, composed of h words activates all traces in 
memory, M, in parallel,  
 

 
 

where ai is the activation of trace i, pkj is feature j of word k 
in the probe, Mij is feature j of document i in memory, n is 
the dimensionality of a word representations, and h is the 
number of words in the probe. Cubing the cosine similarity 
between probe and trace forces a more selective retrieval of 
traces that are most similar to the probe. Activation ranges 
between -1 and +1: when the trace and probe are identical a 
= 1, when the trace and probe are orthogonal a = 0, and 
when the trace and probe are opposite a = -1.  

As should be obvious, the product rule in the activation 
function supports a selective activation of traces that include 
all h words in the probe more strongly than traces that 
include a subset of the h words in the probe.  This feature of 
the model will be critical for supporting contextual 
disambiguation of word meaning.  

In step two, an aggregate of the activated traces is 
retrieved that is a vector called the echo. The contribution of 
each trace to the echo is in proportion to its activation, 

 

 
 
where cj is feature j in the echo, m is the number of traces 

in memory, ai is the activation of trace i, and Mij is the value 
of feature j in trace i in memory. The echo is the 
corresponding semantic representation retrieved for the 
probe. 

Finally, the semantic resemblance, r, between two probes 
(e.g., two words), p1 and p2, is computed as the cosine 
similarity between their corresponding echoes, 

 

 
 

where c1 is the echo retrieved by p1 and c2 is the echo 
retrieved by p2. Thus, words that retrieve similar echoes are 
judged similar in meaning. 

In summary, the theory assumes that people remember 
their language experiences and that word meaning is 
constructed during retrieval.  We now turn to a 
demonstration of the theory using a simple artificial 
language. 

Artificial Language Simulations 
Natural language is a complex structure and, therefore, 

is hard to assess cleanly. To finesse the problem, we 
developed a small artificial language.  

Our toy language is presented in Figure 1. It was 
inspired by languages from Lee (1962) and Elman (1990). 

Our toy language included seven different word classes, 
with each word class represented by two words. For 
example, the class NOUN_HUMAN was represented by the 
words man and woman whereas the class VERB_VEHICLE 
was represented by stop and break.  
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The language also included three sentence frames that 
can be re-written as sentences permissible in the language.  

A permissible sentence is generated by selecting a 
sentence frame and then rewriting the word classes with 
words from that class.  For example, the template 
NOUN_HUMAN, VERB_DINNERWARE, 
NOUN_DINNERWARE can produce “man smash plate”, 
“man break plate”, “man smash glass”, “man break glass”, 
“woman smash plate”, “woman break plate”, “woman 
smash glass”, and “woman break glass” by applying the 
following rewrite rules: (a) NOUN_HUMAN ® {man, 
woman}, (b) VERB_DINNERWARE ® {smash, break}, 
and NOUN_DINNERWARE ® {plate, glass}.  The full list 
of 24 sentences (8 per sentence frame) defines the language. 
 

Categories of lexical items: 
 
Categories   Examples   
NOUN_HUMAN   man, woman 
NOUN_VEHICLE   car, truck 
NOUN_DINNERWARE   plate, glass 
NOUN_NEWS    story, news 
VERB_VEHICLE   stop, break 
VERB_DINNERWARE   smash, break 
VERB_NEWS   report, break 
 

Sentence frames: 
 

NOUN_HUMAN; VERB_VEHICLE; NOUN_VEHICLE 
NOUN_HUMAN; VERB_DINNERWARE; NOUN_DINNERWARE 
NOUN_HUMAN; VERB_NEWS; NOUN_NEWS 

 
Figure 1: The toy language. 

 
Critical for our analysis, the word break is included as a 

word in all three verb classes. This makes break a homonym 
with three different senses. In the vehicle sense, it is related 
to stop. In the dinnerware sense, it is related to smash. In the 
news sense, it is related to report. 

Simulations with balanced sentence frequency 
We conducted simulations with ITS for a corpus of 

sentences from our toy language.  In a first set of 
simulations, every sentence was equiprobable in the corpus.  

For each simulation, we generated a corpus of 20,000 
sentences, where each sentence was sampled with equal 
probability. Then, we applied our model to retrieve a 
semantic vector (i.e., the echo) for (a) each individual word 
in the language (i.e., man, woman, car truck, plate, glass, 
news, story, stop, smash, report, break) and (b) each pair of 
words in the language (e.g., man/car, man/truck, and so on). 

The single-word similarities are summarized in the top 
left panel in Figure 2, with the semantic structure of word 
meaning drawn as a two-dimensional MDS plot (Shepard, 
1980).  

As shown, ITS captured the structure of word meaning. 
Firstly, words belonging to the same topic are clustered 
together. Secondly, words belonging to different topics are 
separated. Thirdly, the homonym (i.e., break) is equidistant 
to the vehicle, dinnerware, and news clusters. 

 
 

Figure 2. Toy language simulations with balanced sentence 
frequency. Results with ITS are presented in the top row. 

Results with LSA are presented in the bottom row. 
 
The top right panel of Figure 2 shows ITS’s ability to 

disambiguate the meaning of break depending on the 
context in which it is presented. As shown, presenting ITS 
with break in isolation retrieves an echo that is equally 
similar to all three of its potential meanings (i.e., stop, 
smash, and report).  However, presenting break in 
conjunction with car retrieves an echo that is more similar 
to stop than to either smash or report, presenting break in 
conjunction with story retrieves an echo that is most similar 
to report, and presenting break in conjunction with plate 
retrieves an echo that is most similar to smash. 

For comparison, we conducted corresponding 
simulations with LSA (Landauer & Dumais, 1997). In those 
simulations, we derived the word-by-document matrix from 
the same corpus, weighted the matrix by the standard 
entropy calculation, derived a solution by dimension 
reduction, computed the cosine similarity between words in 
each of the reduced spaces, and computed the similarity 
between the word vectors. Two-word probes were presented 
as the sum of the corresponding vectors. 

The bottom row in Figure 2 presents the corresponding 
results with LSA. As shown, LSA and ITS arrive to very 
similar solutions. 

In summary, when sentence frequency is balanced, both 
ITS and LSA (a) recover the structure of a small artificial 
language, (b) recognize homonymy, and (c) disambiguate 
the intended meaning of a contextually-signaled 
homonymous word (i.e., break).  

Simulations with unbalanced sentence frequency 
Our toy language differs from natural language in 

important ways. For example, the homonymous word break 
has no dominant sense: it is as likely to mean stop, smash, 
or report. In this simulation, we evaluate both ITS and LSA 
against a corpus constructed so that break has a dominant 
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sense.  
To give break a dominant sense, we constructed a new 

corpus composed of more sentences from the vehicle topic 
(p = 4/6) than from the dinnerware (p = 1/6) and news (p = 
1/6) topics. Thus, break appeared more often in the stop 
sense than the smash and report senses. Otherwise, the 
simulation was identical to the one already presented.  

Results are presented in Figure 3. ITS’s behaviour is 
shown in the top row; LSA’s in the bottom row.  

 

 
 

Figure 3. Toy language simulations with unbalanced 
sentence frequency.  Results with ITS are presented in the 

top row. Results with LSA are presented in the bottom row. 
 
As shown, ITS’s behaviour was affected by the 

manipulation, but in sensible ways.  The model recognizes 
that break presented in isolation has a dominant sense; but, 
it also retrieves the contextually appropriate sense of break 
when presented in conjunction with a disambiguating noun 
(e.g., break is more similar to smash when presented in 
conjunction with plate). In contrast, LSA’s behavior was 
strongly and adversely affected by the manipulation. The 
meaning of break presented in isolation contradicts the 
word’s dominant sense (i.e., break is more similar to smash 
and report than it is to stop). More importantly, the model 
fails to disambiguate between the subordinate meanings of 
break when it is presented in combination with a noun 
associated with one of its subordinate meanings. The 
demonstration confirms that a prototype model of semantics 
fails to disambiguate word meaning and, thus, offer a 
compromised descriptive account of semantic knowledge.  
More central to our argument, it also shows that an instance-
based approach to semantics solves the problem. 

Natural Language Simulations 
The simulations presented so far give a good picture of 

our instance-based model of semantics and how it 
disambiguates the meaning of a homonym presented in 

context. However, solving a toy problem does not guarantee 
a solution to the problem at scale. Thus, we applied ITS at 
scale to a record of natural language experience.  

Taxonomic structure 
A benchmark requirement of semantic theories is that 

they can organize words into coherent taxonomic categories. 
For example, a competent theory of semantics should 
recognize that items from the category of animals are more 
similar to one another than they are to items from the 
category of vehicles. 

We evaluated ITS against that criterion by storing a 
record of language experience from the Touchstone Applied 
Science Associates (TASA) corpus and retrieving echoes for 
words from the well-defined taxonomic categories used in 
previous work with BEAGLE (Jones & Mewhort, 2007, 
Figure 3) and HAL (Lund & Burgess, 1996, Figure 2).   

The top row in Figure 4 presents ITS’s organization of 
words from three taxonomic categories (i.e., finance, 
science, and sports) on the left and its organization of words 
from three other taxonomic categories (i.e., animal names, 
body parts, and geographic locations) on the right. 

 

 
 
Figure 4. Taxonomic categories. Results with ITS are 

presented in the top row. Results with LSA are presented in 
the bottom row. 

 
As shown, ITS does an excellent job of grouping words 

in the same category and distinguishing words from 
different categories.  

To confirm the visual impressions given by the MDS 
solutions, we computed the intracategory and intercategory 
similarities between words. For the Jones and Mewhort 
graph, the mean intracategory item-to-item cosine similarity 
(M = .27, SD = .11) was, by a conservative estimate, 1.82 
standard deviations greater than the mean intercategory 
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item-to-item similarity (M = .07, SD = .04). The same is true 
for the Lund and Burgess graph: the mean intracategory 
item-to-item cosine similarity (M = .18, SD = .10) was, by a 
conservative estimate, a still strong 1 standard deviations 
greater than the mean intercategory item-to-item similarity 
(M = .08, SD = .05).   

Results with LSA are presented in the bottom row of 
Figure 4. Although LSA accomplished the discriminations, 
it did not perform as well as ITS. For the Jones and 
Mewhort (2007) set, the mean intracategory item-to-item 
cosine similarity (M = .42, SD = .28) was 1.50 standard 
deviations greater than the mean intercategory item-to-item 
similarity (M = .00, SD = .03). For the Lund and Burgess 
(1996) set, the mean intracategory item-to-item cosine 
similarity (M = .14, SD = .19) was 0.68 standard deviations 
greater than the mean intercategory item-to-item similarity 
(M = .01, SD = .05).   

In summary, the results serve proof of concept that an 
instance model of semantics can perform taxonomic 
classification. The results also show that it can perform the 
discrimination in the same quantitative range as an 
established prototype model of semantics.  

Disambiguation of word meaning 
ITS can group words that have related meanings, but 

that doesn’t mean that it can disambiguate the meaning of a 
homonym conditional on context. To evaluate the problem, 
we applied ITS to the disambiguation of homonyms from a 
lexical decision study by Schvaneveldt, Meyer, and Becker 
(1976).  

On each trial in the experiment, participants were 
presented with three successive letter-strings (e.g., save-
bank-money or save-bank-boat) and required to identify 
each one as a word or nonword. On cued trials, the first two 
strings cued the appropriate meaning of the third string (e.g., 
river/bank cued boat). On miscued trials, the first two 
words miscued the appropriate meaning (e.g., river/bank 
miscued money). The critical result (or at least the one 
relevant here) was that people were faster to identify the 
third word on cued compared to miscued trials. 

To evaluate ITS, we conducted a simulation using 
Schvaneveldt et al.’s (1976) materials (see their Table 2, p. 
248). On each trial, an echo was retrieved for the joint probe 
composed of the first and second words (e.g., river/bank), 
an echo was retrieved for the third word (e.g., money), and 
the two echoes were compared.   

If ITS solves the problem, the similarity between the 
echo retrieved by words one and two and the echo retrieved 
by word three will be greater on cued than miscued trials.  

We conducted a full set of 432 comparisons to match the 
original experiment: all 144 cued trials and 288 miscued 
trials. To summarize performance, we computed a mean and 
variance for the cosines from all 144 of the cued trials and 
from all 244 of the miscued trials. We also computed 
corresponding simulations with LSA. 

 Results are presented in the left column of Figure 5; 
whiskers show the standard error of the mean. 

 
 

Figure 5. Disambiguation of homonyms. Results with ITS 
are presented in the top row. Results with LSA are 

presented in the bottom row. 
 
As shown in Figure 5, both ITS and LSA anticipate the 

cued versus miscued difference, with the mean similarity of 
echoes retrieved by the primes (i.e., words one and two in 
conjunction) and probes (i.e., the third word) greater for 
cued than miscued trials.  

At first blush, the results suggest that both a prototype 
and instance-based model can disambiguate the meaning of 
a homonymous word. But, the analysis does not distinguish 
performance depending on whether a homonym does or 
does not have a dominant meaning. 

To examine that problem, we used empirical norms from 
Armstrong, Tokowicz, and Plaut (2012) to identify items in 
Schvaneveldt et al.’s (1976) stimulus set that do and do not 
have dominant meanings. Then, we re-calculated 
performance as a function of that distinction. 

The centre and right columns in Figure 5 show results 
for the six most and six least dominant homonyms, 
respectively.  Consistent with our earlier analysis using the 
toy language, ITS succeeded at understanding the cued 
meaning of both a dominant and subdominant homonym. 
But, LSA did not. In fact, LSA produced a qualitatively 
different pattern that indicates an outright failure to retrieve 
the subordinate word sense. 

Discussion 
Prototype models of semantics represent a sophisticated 

leap forward for understanding the acquisition and 
representation of word meaning. However, they have 
difficulty understanding the intended meaning of ambiguous 
words, and this may signal an architectural flaw with the 
notion of abstraction at learning.  

To test the notion of abstraction at retrieval, we 
developed an instance-based approach to the retrieval of 
knowledge.  In contrast to prototype theories that encode 
word meaning prospectively, our approach assumes that 
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word meaning is constructed retrospectively, as a 
consequence of retrieval from a decentralized and episodic 
record of language experience. Our simulations join with a 
small body of positive evidence for an instance-based 
approach to semantics (Johns et al., 2015; Kwantes, 2005). 
However, it joins a large body of positive evidence that 
instance theories outperform prototype theories in the 
domain of knowledge and categorization.  

One reason for the predominance of prototype-based 
theories may be due in part to Chomskian presumptions in 
linguistics: that the job of the cognitive mechanism is to 
induct and abstract the rules of a grammar from instances. 
This abstractionist presumption may have implicitly guided 
architectural decisions in preceding prototype accounts, 
even as work in related domains (e.g., artificial grammar 
learning) has accumulated evidence in favour of an 
instance- over prototype-based explanation of behavior 
(e.g., Jamieson & Mewhort, 2009).  

A second reason is cognitive economy. When Rosch and 
Mervis (1975) developed their prototype and hierarchical 
methods for knowledge representation, a guiding principle 
for semantics was cognitive economy. However, our 
instance-based approach coupled with recent work on 
usage-based theories of linguistics force a reconsideration of 
economy as a forcible constraint on theory development 
(e.g., Tomasello, 2003).  

A third reason is that the computational economy of the 
prototype approach fits better with the speed/accuracy 
tradeoff for application development. In the prototype 
method, the vectors are derived and then applied 
consistently thereafter. In the instance method, semantic 
vectors must be retrieved on-the-fly and, thus, requires a 
continuous derivation of semantics. For researchers 
developing search engines, the speed of retrieval matters 
and, so, the benefits of instance-based approach might be 
outweighed by the need to present a record of documents 
quickly to the user. Moving forward, we will consider the 
ITS’s instance-based solution to word-sense disambiguation 
against the solutions developed in extended prototype 
accounts that encode multiple prototypes to encode the 
different senses of a word (e.g., Erk & Pado, 2008; 
Reisinger & Mooney, 2010). 

In some ways, it is tempting to see instance-based DSMs 
as “cheating”. If the model stores all data, then it can 
compute an accurate semantic representation whenever one 
is needed. But the theoretical claim is profound in its 
proposal: we may not have semantic memory in the way 
that theorists have typically conceived of semantic memory.  

In place of the standard view, an instance-based 
approach to semantics proposes that a person’s 
interpretation of the words they are reading is constructed 
during retrieval and on-the-fly such that our phenomenology 
of meaning is continuously constructed by the interaction of 
stimuli and experience (Kintsch & Mangalath, 2011). But 
the instance-based approach should also put us at ease 
because it provides converging evidence that performance 
across multiple cognitive domains (e.g., categorization, 

memory, semantics) might be explicable from the same core 
cognitive principles. 
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