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1Department of Neurosciences, University of California, La Jolla, California 92093-0626
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Abstract

A principal objective of spinal cord injury (SCI) research is the restoration of axonal connectivity 

to denervated targets. We tested the hypothesis that chemotropic mechanisms would guide 

regenerating spinal cord axons to appropriate brainstem targets. Rats underwent cervical level 1 

(C1) lesions followed by combinatorial treatments to elicit axonal bridging into and beyond lesion 

sites. Lentiviral vectors expressing neurotrophin-3 (NT-3) were then injected into an appropriate 

brainstem target, the nucleus gracilis, and an inappropriate target, the reticular formation. NT-3 

expression in the correct target led to reinnervation of the nucleus gracilis in a dose-related 

fashion, whereas NT-3 expression in the reticular formation led to mistargeting of regenerating 

axons. Axons regenerating into the nucleus gracilis formed axodendritic synapses containing 

rounded vesicles, reflective of pre-injury synaptic architecture. Thus, we report for the first time 

the reinnervation of brainstem targets after SCI, and an essential role for chemotropic axon 

guidance in target selection.
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INTRODUCTION

Functional deficits after spinal cord injury (SCI) are caused primarily by destruction of 

axonal connections between neurons and failure of spontaneous axonal regeneration. 

Regeneration failure is attributed to factors intrinsic to injured neurons, including the 

inability to activate genetic growth programs 1-4, and to extrinsic factors, including 
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molecular inhibitors 5. By systematically targeting these mechanisms, a number of 

experimental strategies promote either sprouting of spared axons, or regeneration of injured 

axons, within and beyond sites of SCI 6-11.

An unfulfilled goal of spinal cord regeneration research remains the reinnervation of natural 

neuronal targets. Target reinnervation has become a more prescient issue as individual and 

combined strategies for eliciting axonal regeneration succeed in promoting axonal growth 

beyond lesion sites. Once a regenerating axon emerges from a site of injury and encounters 

potential distal neuronal targets for reinnervation, will the axon locate an appropriate target 

among millions of potentially incorrect neuronal partners? Can guidance signals utilized 

during development, such as neurotrophic factors, also guide adult regenerating axons? 

Once axons reach a target, will they form synapses, do so at appropriate sites on 

postsynaptic neurons, and exhibit appropriate excitatory vs. inhibitory synaptic 

morphologies?

Recent progress in promoting bridging growth of dorsal column sensory axons after adult 

SCI provides an opportunity to test the hypothesis that developmentally-regulated guidance 

mechanisms will direct regenerating axons to appropriate targets and support new synapse 

formation in the adult CNS, and more specifically in a natural brainstem target. We recently 

reported that the combination of: 1) a cellular matrix placed in a lesion cavity, 2) a 

conditioning stimulus to the neuronal cell body, and 3) growth factor gradients beyond a 

lesion, succeed in promoting sensory axon regeneration into and beyond a C4 spinal cord 

lesion site 8, 10. Under these circumstances, axons regenerate distances of several 

millimeters, but remain 10 mm short of their natural target in the brainstem, the nucleus 

gracilis. In order to study mechanisms that direct axonal growth into targets, we placed 

spinal cord lesions at C1, an approximate two millimeter distance from the nucleus gracilis, 

establishing a paradigm whereby axons emerging from the graft encounter several gray 

matter neuronal groups as “choices” for growth in the caudal medulla (Fig. 1). These 

neuronal groups include the nucleus gracilis, an appropriate target, and the underlying 

medullary reticular formation, an inappropriate target. We then examined whether NT-3 

would guide regenerating sensory axons into their appropriate target and support synapse 

formation.

We report that regenerating axons in the injured adult CNS utilized chemotropic 

mechanisms to direct growth beyond a lesion site and into an appropriate target. Further, 

axons regenerating into their natural adult target re-established appropriate axo-dendritic 

synapses with the host and adopted pre-injured patterns of asymmetric, excitatory synapses. 

Thus, regeneration into natural targets was experimentally induced after adult SCI.

RESULTS

Previous ELISA measurements established that injections of lentiviral vectors expressing 

NT-3 constitute a gradient of NT-3 protein that peaks at the site of vector injection, and 

progressively diminishes to undetectable levels 4 mm from the injection site 10. We 

therefore used lentiviral vectors to topographically express NT-3 in the brainstem to 

determine whether NT-3 could guide regenerating axons into specific targets beyond the 
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lesion. Animals underwent dorsal column lesions at C1 followed by grafting of autologous 

bone marrow stromal cells into the lesion site to provide a cellular “bridge” for regenerating 

axons 8, 10, 12 (Fig. 1). The retrogradely-transported tracer Fluorogold (FG) was injected 

into the thalamic ventroposterolateral nucleus, where axons projecting from the nucleus 

gracilis terminate, allowing identification of individual neuronal targets in the nucleus 

gracilis. After lesions and cell grafting, animals received injections of lentiviral vectors 

expressing either NT-3 or Green Fluorescent Protein (GFP, control) into the nucleus gracilis 

and the medullary reticular formation, providing two potential target sites for regenerating 

axons beyond the lesion. We employed sciatic nerve preconditioning lesions, which have 

been shown to promote axonal regeneration of ascending sensory axons,8, 13-16 in 

combination with NT-3 delivery to elicit axon growth beyond the C1 lesion toward sites of 

NT-3 expression. Axonal regeneration was assessed based on cholera toxin B subunit (CTB) 

transganglionic labeling of injured dorsal column sensory axons 1 month after lesion/

treatment.

The following groups were examined: 7 animals received conditioning lesions and injections 

of NT-3 lentiviral vectors (titer 100 μg/ml p24) into the nucleus gracilis and the medullary 

reticular formation (“Lenti-NT-3+CL”). 6 subjects received the same lenti-NT-3 injections, 

but no conditioning lesion (“Lenti-NT-3+NoCL”). 8 subjects received conditioning lesions 

and injections of GFP lentiviral vectors into the gracile and reticular nuclei (“Lenti-GFP

+CL”); NT-3 was not provided. Finally, 9 animals received no conditioning lesion and lenti-

GFP injections into both brainstem nuclei (“Lenti-GFP+NoCL”).

After obtaining preliminary results from the groups above, we added an additional group of 

“full treatment” subjects (conditioning lesions and lenti-NT-3 injection) (“Lenti-NT-3 high

+CL”, 7 animals). In these animals, lenti-NT-3 vector was injected solely into the nucleus 

gracilis at a two-fold higher vector titer (200 μg/ml p24) to determine whether increased 

NT-3 expression in the nucleus gracilis would correspondingly increase sensory axonal 

regeneration into the appropriate target. Before analysis of axon regeneration, lesion 

completeness in all groups was assessed using conservative criteria (see Methods). To allow 

comparison between the intact nucleus gracilis and the nucleus gracilis after injury, 5 

animals received CTB tracer injections, but no C1 lesion.

Combined Treatment Promotes Nucleus Gracilis Reinnervation

Immunohistochemistry for NT-3 indicated NT-3 expression in the nucleus gracilis only in 

animals that received lenti-NT-3 vectors (Supplementary Fig. 1). Animals that received 

NT-3 delivery to the brainstem exhibited sensory axon regeneration beyond the lesion site, 

whereas those that received GFP delivery did not (Figs. 2 and 3). Moreover, in the presence 

of lenti-NT-3 targeting to the nucleus gracilis, axons regenerated into this appropriate target 

(Fig. 2). Comparing the number of axon profiles in the nucleus gracilis between groups that 

received equivalent titers of lentiviral vectors, only full combinatorial treatment (Lenti 

NT-3+CL) promoted significantly greater axon growth into the target compared to controls 

(Figs. 3 and 4). Subjects receiving cell grafts and lenti-NT-3 injections into the nucleus 

gracilis without conditioning lesions (Lenti-NT-3+NoCL), had 2-fold fewer axonal profiles 

in the nucleus gracilis than combinatorially treated animals, and did not significantly differ 
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from controls (Figs. 3 and 4). Further, only half of all animals in the Lenti-NT-3+NoCL 

group exhibited bridging axons, whereas all subjects in the Lenti-NT-3+CL group exhibited 

bridging axons. Among control groups treated only with cell grafts and lenti-GFP injections 

(Lenti-GFP+noCL), axons did not extend beyond the lesion site or into the nucleus gracilis. 

In control subjects receiving lenti-GFP injections, cell grafts and conditioning lesions 

(Lenti-GFP+CL), only rare axons extended to the rostral host-graft interface, but none 

entered the nucleus gracilis (Figs. 3 and 4).

After establishing that full combinatorial treatment achieved significant regenerative axon 

growth into the target nucleus, we examined whether increasing NT-3 expression 

exclusively in the nucleus gracilis could further augment axon growth in combinatorially 

treated animals. In fact, animals that received full combinatorial treatment with high titer 

lenti-NT-3 vectors targeted solely to the nucleus gracilis (Lenti-NT-3 high+CL) exhibited 

significantly higher axon number in the target compared to animals that received 

combinatorial treatment with lower titer NT-3 vectors (Lenti-NT-3+CL, Figs. 3 and 4). 

Examination of reporter gene expression (lenti-NT-3 constructs express GFP via an internal 

ribosome entry site) confirmed that vector spread within the target significantly increased 

upon administration of the higher vector dose (Fig. 4). Thus, axons exhibited a dose-

dependency to growth within the target.

To estimate the extent of axonal regrowth in lesioned/treated groups, the number of axon 

profiles in the nucleus gracilis was compared to intact animals (Figs. 3 and 4). Lenti-NT-3 

high+CL treatment restored the number of axon profiles to 27% of values observed in the 

intact nucleus gracilis. Lenti-NT-3+CL restored 6.8% of axonal profiles, and Lenti-

NT-3+NoCL restored only 3%. Thus, conditioning lesions plus chemotropic guidance 

achieved a relatively high degree of target re-penetration by regenerating axons.

NT-3 Guides Axons to Appropriate Brainstem Targets

Animals with NT-3 expression in the correct target, the nucleus gracilis, exhibited axonal 

growth throughout the nucleus. Regions of axonal growth precisely correlated with the 

topography of lenti-NT-3-GFP reporter gene expression in the target (Fig. 2). Animals that 

were subjected to NT-3 expression in the incorrect target, the medullary reticular formation, 

demonstrated axon growth in these ectopic regions of NT-3 expression (Fig. 5). In one case, 

lenti-NT-3 was mis-targeted 900 μm rostral to the nucleus gracilis in the brainstem; in this 

subject, axons grew beyond the nucleus gracilis along the mis-targeted zone of lenti-NT-3 

expression. In contrast, we did not observe ectopic axons in intact animals or among 

subjects in which lenti-NT-3 was expressed only in the nucleus gracilis. Thus, NT-3 

specifically guided regenerating adult axons toward targets. These results demonstrate that 

axons regenerating after adult CNS injury exhibit classic directional and dose 

responsiveness to chemotropic gradients of growth factors.

Regenerating Sensory Axons Form Synapses in the Target

Confocal analysis demonstrated that regenerated CTB-labeled axons in the nucleus gracilis 

intimately associated with FG-labeled target neurons (Fig. 6a,b). To determine whether 

adult, injured axons re-formed synapses upon reaching their gracilar target, we analyzed the 
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nucleus gracilis by immuno-electron microscopy in two subjects receiving combinatorial 

treatment and high titer lenti-NT-3 delivery specifically to the nucleus gracilis (Lenti-NT-3 

high+CL), and in three intact animals. 2-5 ultrathin sections per subject from the nucleus 

gracilis were screened for evidence of CTB-labeled axon terminals at 4800x magnification. 

Regenerating axon terminals were identified ultrastructurally by their electron-dense 

appearance, after immunohistochemical labeling for CTB and processing for streptavidin-

HRP reaction product (Fig. 6c-e).

We identified a total of six CTB-labeled axon terminals ultrastructurally in two lesioned/

combinatorially treated animals (2 in one subject, 4 in another), and 10 terminals in three 

intact animals. Each CTB-labeled axon terminal in lesioned/combinatorially treated animals 

contained specializations with ultrastructural features of synapses (Fig. 6c,d). Regenerated 

terminals exhibited formation of asymmetric synaptic specializations with a prominent 

postsynaptic element, typical of excitatory synapses 17, 18. Dense clusters of synaptic 

vesicles were evident in these terminal regions, indicating formation of functional structures 

required for neurotransmitter storage and release. Boutons in regenerated CTB-labeled axon 

terminals contained round rather than flattened synaptic vesicles, further suggesting an 

excitatory neurotransmitter phenotype 19. Four of the six regenerating axon terminals 

studied made synaptic contacts with multiple dendritic targets, a common feature for 

primary afferent projections to the gracile nucleus in intact rats 20, 21 (see below); the 

remaining two terminals made synaptic contact with single dendritic targets. Finally, CTB-

containing regenerating axon terminals made synaptic contacts with dendritic rather than 

somal elements, a feature typical of the pre-injury ultrastructural phenotype20-22. Like 

terminals in lesioned/combinatorially-treated animals, synaptic boutons in intact subjects 

contained many round synaptic vesicles, made synaptic contacts with single or multiple 

dendritic targets, and exhibited asymmetric synaptic specializations (Fig. 6e).

In the current study, we did not formally quantify CTB-labeled boutons. However, in equal 

proportions of tissues scanned ultrastructurally, detection of labeled synapses occurred 

approximately 30% as frequently in lesioned/combinatorially-treated animals as in intact 

animals. That is, we identified 6 synapses in approximately 80 fields examined in lesioned/

combinatorially-treated subjects, and 10 synapses in approximately 40 fields in intact 

subjects. Thus, synapse formation in regenerated subjects occurred regularly and was not a 

rare event.

Electrophysiological Studies

To assess whether synaptic activity could be observed in association with regenerated axons, 

we recorded extracellularly from the nucleus gracilis in lesioned/combinatorially-treated 

animals 6 weeks after treatment. To establish a paradigm for recording postsynaptic 

potentials from the nucleus gracilis, we sampled 20-50 sites throughout the nucleus gracilis 

in intact subjects for detection of activity following electrical stimulation of the sciatic nerve 

(Fig. 7a,b). Evoked responses were readily detected in three intact animals, and in three 

animals without C1 lesions that received conditioning lesions six weeks prior to recording. 

The number of sites wherein responses could be evoked, and the overall magnitude of the 

evoked responses comparing intact and sciatic nerve-conditioned animals (Fig. 7c), 
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indicated that conditioning lesions did not affect the ability to elicit an evoked response. 

Local application of the glutamate antagonist kynurenic acid nearly abolished evoked 

responses, and responses returned to near baseline levels after washout of kynurenic acid, 

indicating that responses were synaptically mediated. (Fig. 7a,b). In addition, in intact 

animals, subsequent transection of the dorsal columns at thoracic level 3 (T3) completely 

abolished evoked responses within the nucleus gracilis, indicating that recorded potentials 

were transmitted through the dorsal columns (Fig. 7a,b). In C1-injured animals, detection of 

afferent volleys just caudal to the C1 lesion indicated that the intact portions of ascending 

sensory axons transmitted responses to sciatic nerve stimulation up to the level of the lesion.

Next, we compared responses in intact animals to responses in C1-injured animals that 

underwent treatment with cell grafts, conditioning lesions and high titer NT-3 (Lenti-NT-3 

high+CL; n=5) or GFP vector injections (Lenti-GFP high+CL; n=3) into the nucleus gracilis 

(Fig. 7c). Because histological analysis showed that GFP vector delivery did not support 

axonal growth into the nucleus gracilis, we used the maximum root mean square (RMS) 

response recorded in the lenti-GFP control group as a threshold for analyzing responses in 

intact and NT-3-treated animals to determine whether responses at individual recording sites 

exceeded the background response. Postsynaptic potentials in intact animals exceeded the 

threshold response at 67% of recording sites sampled. In contrast, among animals treated 

with Lenti-NT-3 high+CL, only two responses, representing 1.4% of recording sites, 

exceeded those of GFP control animals. Response curves associated with these two sites did 

not qualitatively differ from those of GFP control animals, nor did they resemble 

postsynaptic potentials observed in intact animals (Fig. 7d). Thus, combinatorial 

interventions did not result in detectable post-synaptic potentials within the target in the 

regions sampled.

Given the fact that combinatorial treatment restored the number of axonal profiles in the 

nucleus gracilis to 27% of intact values, and that ultrastructural analysis readily revealed 

synapses in the target tissue, we explored whether factors besides limited sampling of the 

nucleus gracilis might account for the absence of detectable synaptic activity. In particular, 

previous studies indicate that demyelinated dorsal column axons fail to sustain efficient 

conductivity 23, 24. Using double labeling for myelin associated glycoprotein (MAG) and 

the dorsal column tracer CTB, we confirmed that ascending dorsal column sensory axons 

projecting toward the lesion site retain myelin sheaths (Fig. 7e). However, CTB-labeled 

axons regenerating into and beyond the lesion site remained unmyelinated or sparsely 

myelinated (Fig. 7f,g). These findings provide a potential mechanism to account for the lack 

of detectable synaptic activity in combinatorially-treated subjects, despite extensive axonal 

regeneration into the nucleus gracilis and the presence of readily-detectable synapses.

Lesion Completeness

Criteria to assess lesion completeness included: 1) disruption of GFAP labeling at all dorso-

ventral levels through the graft/lesion site, 2) distinct tissue architecture indicative of cell 

graft throughout the graft/lesion site under phase contrast optics, and 3) lack of bridges of 

spared tissue within the lesion in all serial sagittal sections examined by GFAP and phase 

contrast analysis. Using these criteria, we excluded three animals from the Lenti-
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NT-3+NoCL group and one animal from the Lenti-NT-3+CL group; these subjects were not 

included in the stated numbers per group above. Although we did not observe clearly spared 

axons in these animals, we could not confirm a complete absence of bridging GFAP 

immunoreactive tissue in these subjects, and to employ the most conservative criteria, 

eliminated the subjects from further consideration.

DISCUSSION

Mechanisms that underlie axon growth and directional guidance during neural development 

have been extensively studied, yielding evidence that chemotropic gradients of growth 

factors exert an important role in axonal target finding, dendritic growth, and terminal 

synapse formation 25-29. Studies that examine mechanisms underlying axon growth and 

potential target-finding after injury in the adult spinal cord have by necessity been far more 

limited, because until recently there was only limited success in promoting axonal 

regeneration beyond lesion sites. Taking advantage of combinatorial strategies for 

promoting bridging regeneration beyond lesion sites 8, 9, 30 together with the capability to 

control local concentrations and topographies of administered growth factors in vivo in adult 

animals, we have identified distinct chemotropic mechanisms underlying axonal 

regeneration in the injured adult spinal cord. Using methods that achieve chemotropic 

gradients of growth factors in appropriate and inappropriate targets in vivo, we report for the 

first time the reinnervation of a normal target, the nucleus gracilis, by lesioned, regenerating 

spinal cord axons, and the chemotropic dependence of this regeneration.

During neural development, regional patterns of neurotrophin expression exert control over 

axonal guidance and termination in various regions of the nervous system 31-33, including 

visual cortex 26, 27, 34, the peripheral nervous system 35, 36, central projections of sensory 

systems 29, and the vestibular system 37. In the present experiment, we expressed NT-3 in 

both an appropriate target for regenerating axons, and an inappropriate target, and found that 

axons extended in a topographical distribution that precisely matched regions of NT-3 

expression. Indeed, axons could be drawn to inappropriate regions based upon ectopic NT-3 

expression, even bypassing a correct target to grow into an NT-3 source. In the absence of 

NT-3 expression, axons did not reinnervate the target nucleus. In contrast, increasing NT-3 

expression in the target (by increasing NT-3 vector dose) significantly increased 

regeneration into the appropriate region. Collectively, these findings indicate that NT-3 

guided regenerating axons to specific topographies, and that an absence of NT-3 resulted in 

elimination of regenerating axons. Thus, chemotropic guidance mechanisms observed 

during neural development may be critical in supporting target reinnervation by regenerating 

axons in adulthood.

This study is the first to demonstrate reinnervation of a natural brainstem target by 

regenerating spinal cord axons. While previous studies in models of axonal injury in the 

brain demonstrated target reinnervation in the visual system 38, hippocampus 39 and 

nigrostriatal projection 40, mechanisms guiding target reinnervation, including chemotropic 

gradients established by growth factors, have not previously been addressed. In previous 

studies, lesions were placed either within the appropriate target (e.g., striatum), or bridges 

for regenerating axons ended within an appropriate target (e.g., direct placement of a sciatic 
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nerve bridge in the lateral geniculate 41), thereby providing unitary targets rather than a 

choice between appropriate or inappropriate targets for regenerating axons. In some disease 

models, and spinal cord injury in particular, innumerable incorrect targets become available 

to regenerating axons, thus guidance of regenerating axons is of paramount importance. We 

have demonstrated in the present study that axons can be guided to appropriate targets 

utilizing chemotropic gradients of growth factors expressed in correct regions.

Further, we have demonstrated that axons regenerating into the target form synapses. These 

synapses exhibited appropriate excitatory features of the pre-injured projection, including 

asymmetric synaptic specializations and clear rounded vesicles. Axo-dendritic rather than 

axo-somatic synapses and the presence of multiple synaptic targets arising from single 

axonal terminal shafts are features consistent with the pre-injured ultrastructural phenotype 

of the dorsal column nuclei 20. Thus, using ultrastructural criteria, the regenerating axon 

terminals closely resembled the corresponding synaptic boutons in intact animals.

While axons formed synapses when regenerating into the nucleus gracilis, we did not 

determine whether axons regenerating into an ectopic target, the reticular formation, also 

formed synapses. Studies in other systems indicate that axons sprouting into ectopic 

locations modify functional outcomes, suggesting that they likely form synapses in these 

regions (e.g.42, 43, 44). For example, chronic constrictive lesions of the sciatic nerve cause 

spontaneous and ectopic growth of sympathetic axons into dorsal root ganglia, associated 

with dysesthetic pain that can be prevented by blockade of ectopic axon growth 42. Thus, 

axons growing into either appropriate (present study) or ectopic 42 targets are likely capable 

of forming synapses.

An important consideration in any study reporting axonal regeneration is the possibility that 

spared axons may be mistaken for regenerating axons 45. Several observations suggest that 

regenerating axons observed in our lesioned animals were not spared. First, we employed 

conservative criteria to eliminate subjects wherein lesion extent was uncertain, based on 

observations of two experienced, blinded observers. Further, we observed axons emerging 

from all levels of the rostral host/graft interface, rather than simply at the most dorsal or 

ventral parts where spared axons might be expected. In addition, we observed axons in 

ectopic locations beyond the lesion site, where axons are not found in intact animals. In all 

cases, axons beyond the lesion grew only within regions of NT-3 expression, a finding that 

would not be expected had axons been spared. Finally, we did not observe axons within the 

target region in any animals that received control (GFP) lentiviral vector injections. 

Together, these observations support the presence of regenerated rather than spared axons in 

the nucleus gracilis.

While lesioned axons in combinatorially-treated animals could be directed into the target 

and formed synapses, we did not detect electrophysiological responses in the nucleus 

gracilis following sciatic nerve stimulation. Since we sampled a relatively small volume of 

the total structure, the absence of target responsiveness may have resulted from limited 

sampling. However, intact animals exhibited electrophysiological responses in 67% of 

sampled sites, and NT-3 high+CL treatment restored the number of axonal profiles in 

lesioned animals to 27% of those in intact subjects. Thus, if reinnervating axons formed 
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fully functional synapses, one would predict detection of electrophysiological responses in 

approximately 18% of sampled sites (67% of 27%) in combinatorially-treated animals.

Alternatively, lack of detectable activity might occur if the majority of regenerating axons 

failed to form synapses; however, synapses associated with CTB-labeled boutons were 

readily identifiable at the ultrastructural level in both intact and lesioned/combinatorially-

treated animals. Further, synapses in regenerating animals exhibited ultrastructural features 

of normal synapses, including abundant rounded synaptic vesicles and synaptic 

specializations, suggesting the synapses could be functional. Importantly, however, we 

found that CTB-labeled regenerating dorsal column sensory axons emerging from the lesion 

site were either unmyelinated or poorly myelinated, in contrast to the intact state of these 

projections 46. Demyelination of dorsal column sensory projections leads to conduction 

failure 23. While it is possible that remyelination might have occurred after the six week 

time point at which we assessed electrophysiological activity, a recent report indicated a 

persistent loss of dorsal column sensory axon myelination in the thoracic spinal cord even 

six months after regeneration induced by anti-NG2 and conditioning lesions 24. Further, 

spontaneous remyelination of injured host axons after spinal cord injury is reportedly 

unstable, falling over extended time periods post-lesion 47. Persistent demyelination is 

therefore a candidate mechanism for the lack of synaptic activity observed in the present 

study. Thus, despite the demonstration that conditioning of the injured neuron together with 

chemotropic guidance can direct regenerating central axons to form synaptic contacts with 

appropriate gracilar targets, synaptic activity was not restored.

To our knowledge this is the first direct observation of a concept that has been previously 

advanced but not proven: that comprehensive attempts to restore functional neural circuitry 

after spinal cord injury must address not only axonal growth and target location, but 

remyelination. It is not likely that regenerated axons will be functional unless action 

potentials can be efficiently transmitted through regenerated segments. Our studies highlight 

the complexities of restoring function, and provide a model system in which these 

complexities can be further explored.

In summary, we demonstrate a tropic dependency for target reinnervation, and evidence for 

supraspinal target reinnervation after combinatorial application of therapies to the injured 

adult CNS. Progress in understanding mechanisms of appropriate axon guidance and 

termination is of critical importance in the field of CNS regeneration, as experimental 

strategies that enhance axonal growth after injury in the adult CNS continue to be identified. 

Axons face far more inappropriate than appropriate targets when extending beyond lesion 

sites after spinal cord injury, and the elucidation of mechanisms that guide directional 

growth into appropriate targets is essential. The present study identifies chemotropic 

guidance as an important mechanism that can guide regenerating axons into appropriate 

targets and lead to synapse formation.
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METHODS

Production of lentiviral vectors and isolation of marrow stromal cells (MSCs)

NT-3 and control (GFP-expressing) lentiviral plasmids were constructed as previously 

described 10. The NT-3 virus construct contains a GFP expression cassette 48. Vector titers 

were assayed by infection of 293 cells and quantification of p24 levels as previously 

described 10. NT-3 vector preparations were diluted to 100 or 200 μg/ml p24 (8.3 × 107 or 

1.7 × 108 IU/ml) before injection. Rat primary marrow stromal cells were isolated from 

tibias and femurs, as previously described 49. Briefly, tibias and femurs were dissected and 

bone marrow extruded. Cells were cultured in alpha-MEM medium (Invitrogen, Carlsbad, 

CA) supplemented with 20% fetal bovine serum (FBS) and antibiotics.

Surgical procedures

Adult female Fischer 344 rats weighing 150-200 gm were used. Institutional, NIH, and 

Society for Neuroscience guidelines on animal care were followed. Animals were 

anesthetized with a combination (2 ml/kg) of ketamine (25 mg/ml), xylazine (1.3 mg/ml) 

and acepromazine (0.25 mg/ml), One week before spinal cord lesion surgery, gracilar 

neurons were retrogradely labeled by injections of Fluorogold into the ventroposterolateral 

(VPL) nucleus of the thalamus (Fig. 1). A solution of 4% fluorogold in 0.9% sterile saline 

was delivered stereotaxically to 12 sites (6 per hemisphere, approximately 80 nl/site) using 

20 μm diameter pulled glass pipettes and pressure injection. Measurements relative to 

Bregma: coordinates #1-3: -0.23 rostro-caudal (R/C), 0.30 mediolateral (M/L), and 0.49, 

0.56, 0.62 dorso-ventral (D/V); coordinate #4: -0.30 (R/C), 0.30 (M/L), 0.61 (D/V); 

coordinate #5: -0.30 (R/C), 0.34 (M/L), 0.53 (D/V); coordinate #6: -0.36 (R/C), 0.34 (M/L), 

0.58 (D/V). Immediately following retrograde labeling, some animals received bilateral 

conditioning lesions, in which the sciatic nerve was crushed at mid-thigh level with a 

jeweler's forceps for 15 seconds. For C1 lesion and vector injections, animals were fixed in a 

spinal stereotaxic unit and a partial laminectomy was performed to remove the rostral half of 

the C1 vertebrae. Dorsal column lesions were made 1.5 mm caudal to the obex using a Kopf 

microwire device (Kopf Instruments, Tujunga, CA). The wire knife was lowered 0.5 mm 

into the spinal cord at a position 1.25 mm to the left of the midline. Extrusion of the 

wireknife formed a 2.5 mm-wide arc that was raised to the dorsal surface of the cord, 

transecting the ascending (sensory) axon tracts..

Immediately following the lesion, 2 μl (75,000 cells/μl) of marrow stromal cells (MSC) were 

pressure injected (Picospritzer II, General Valve, Fairfield, NJ) through a small hole in the 

dura mater into the lesion space. Next, lentiviral vectors were pressure injected through 

pulled glass capillaries 1.75 mm rostral to the C1 lesion site into the rostral portion of the 

nucleus gracilis and reticular nucleus bilaterally (1.25 μl/side) or into the nucleus gracilis 

alone. Injections targeting the nucleus gracilis and reticular nucleus distributed vector 

primarily at depths spanning 0.25-0.5 mm and 1.0 mm below the dorsal brainstem surface, 

respectively. 4 weeks after injury/treatment surgery, animals received injections of cholera 

toxin B subunit (CTB, 1%; 2 μl, List Biologicals; Campbell, CA) into the right and left 

sciatic nerves to label ascending sensory projections transganglionically. Three days later, 
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animals were perfused with either 4% paraformaldehyde (histology/immunocytochemistry) 

or 4% paraformaldehyde plus 2.5% glutaraldehyde (electron microscopy).

Immunohistochemical analysis of brainstem sections

For immunohistochemical analysis, every 6th 35 μm-thick section was labeled for CTB 

using streptavidin-HRP light level immunohistochemistry followed by GFP and GFAP 

fluorescent immunolabeling as previously described 10. Antibodies to CTB (goat anti-CTB 

1:80,000; List, Campbell, CA) were used to detect ascending sensory axons, to glial 

fibrillary acidic protein (GFAP, monoclonal 1:1000; Chemicon, Temecula, CA) to label 

astrocytes and to green fluorescent protein (rabbit anti-GFP 1:750; Molecular Probes, 

Eugene, OR) to label vector-transduced cells as previously described 10. For confocal 

analysis, double immunofluorescent labeling of CTB and fluorogold was performed using a 

3-day incubation at 4°C in primary antibodies (rabbit anti-fluorogold 1:2000; Chemicon, 

goat anti-CTB 1:20,000) followed by fluorescent-conjugated secondary antibody incubation. 

For double immunofluorescent labeling of CTB and myelin associated glycoprotein (MAG), 

sections were incubated for 3 days at 4°C in primary antibodies (goat anti-CTB 1:10,000 

and mouse anti-MAG 1:250; Millipore, Billerica, MA) followed by incubation with 

fluorescent conjugated secondary antibodies. Brainstem sections were labeled for NT-3 

using streptavidin-HRP light level immunohistochemistry, as previously described 10 with a 

2-day primary antibody incubation at 4°C (goat anti-NT-3, Neuromics, GT15000, 1:1000).

Animal exclusion criteria

Lesions were considered potentially incomplete based on highly conservative criteria: an 

animal was excluded if examination of every 6th 35 μm-thick section immunolabeled for 

GFAP indicated an incomplete interruption of GFAP-labeled astrocytes at the lesion site, in 

particular at the most dorsal aspect, or if tissue architecture anywhere within the lesion site 

resembled host tissue rather than grafted cells. Based on these criteria, animals in the 

following groups were excluded: n=3, Lenti-NT-3 + noCL; n=1, Lenti-NT-3 + CL. Animal 

numbers stated in Results are the final number of animals included per group.

Quantification of axon profiles in the nucleus gracilis

Axon profiles in the nucleus gracilis were quantified using StereoInvestigator software 

(Microbrightfield, Williston, VT). In a series of every 6th 35 μm thick section, the three most 

medial sections were selected for analysis by an observer blinded to group identity. For each 

section, the nucleus gracilis was outlined and overlayed with a point grid consisting of 

crosses (+) spaced 25 μm apart and placed at a randomized angle. Each grid point that was 

intersected by a CTB-labeled axon was counted. The number of grid points with 

intersections were then divided by the total number of grid points in the nucleus gracilis to 

determine percent axon intersections (grid points with axon intersections/total grid points). 

Percent axon intersections in three quantified sections per animal were compared between 

groups.
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Electron microscopic analysis of brainstem sections

Two animals that received combined treatment with conditioning lesions and high titer lenti-

NT-3 vector injection into the nucleus gracilis, and three intact animals, were used for 

electron microscopy, as previously described 50. Briefly, after CTB/GFAP 

immunohistochemical labeling of one series of 1-in-6 sections to verify lesion completeness, 

adjacent sections were immunolabeled for CTB. 2-3 of these sections per animal were 

prepared for EM analysis by osmication in 1% osmium tetroxide, dehydration, embedding in 

Durcopan® ACM (Electron Microscopy Sciences, Fort Washington, PA), and sandwiching 

between Aclar embedding films. Ultrathin sections (60-70 nm) were serially collected on 

formvar-coated copper one-hole grids, counterstained with uranyl acetate and lead citrate, 

and fields were examined at a screening magnification of 4800x in a JEOL 100 CX electron 

microscope. 2-5 ultrathin sections were examined per animal for evidence of CTB-labeled 

synaptic structures. Approximately 80 fields were examined in lesioned subjects, and 40 

fields in intact subjects.

Electrophysiology

Electrophysiological recordings were collected from the nucleus gracilis after sciatic nerve 

stimulation. Measurements were made in: 1) intact animals (n=3), 2) animals with intact 

spinal cords but crushed (conditioned) sciatic nerves (n=3), 3) animals with C1 dorsal 

column lesions, conditioning lesions, cell grafts, and high titer lenti-NT-3 injections to the 

nucleus gracilis (Lenti-NT-3 high + CL, n=5); and 4) animals with C1 dorsal column 

lesions, conditioning lesions, cell grafts, and high titer lenti-GFP injections into the target 

(Lenti-GFP high + CL, n=3). Data were obtained 6 weeks after lesion/treatment from 

urethane-anesthetized rats (1.2-1.6 g/kg, i.p.). Wire electrodes for stimulation were hooked 

around sciatic nerves bilaterally. Animals were then secured in a precision stereotax and 

glass microelectrodes (1-3 M ohm impedance) filled with 3M NaCl were used to obtain 

extracellular recordings from the ipsilateral nucleus gracilis. Recordings were made at 

regular intervals beginning 200 μm rostral through 1400 μm caudal to the obex; 500 μm 

mediolateral of the midline; and through a range of 100-500 μm below the dorsal surface of 

the brainstem. The sciatic nerve was stimulated at 20 second intervals using a current of 1.0 

mA. The magnitude of nucleus gracilis unit responses were quantified over a 10 msec 

window, beginning 6.0 msec after the stimulus onset, by calculating the root mean square of 

the waveform. Each post stimulus value was normalized by subtracting the RMS values 

calculated from a 10 msec window ending 6 msec before the stimulus onset. This method of 

analysis yielded a single numerical value for the response that was normalized to the pre-

stimulus baseline gracilis activity at each recording site. For each recording site, several 

responses were recorded and the average RMS response was determined. The maximum 

RMS response observed in lesioned animals lacking regenerated axons (Lenti-GFP high + 

CL group) was used as a minimum threshold to categorize responses. Responses below the 

control max response were considered negative and those above it were considered positive. 

To verify that evoked responses were due to synaptic activation, the response to 

pharmacological blockade of glutamatergic transmission using kynurenic acid was 

determined. Additional verification that evoked responses were mediated by axons in the 

dorsal columns was obtained by comparing responses before and after a transection of the 

dorsal columns at spinal cord level T2.
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Statistics

Comparisons of axon density in groups treated with identical doses of lentiviral vectors were 

assessed by Kruskall-Wallis with posthoc Dunn's; non-parametric tests were used because 

some groups lacked bridging axons and data were non-normally distributed. Subsequent 

comparisons of axon density between high and low dose viral vector groups (Lenti-NT-3 

high + CL and Lenti-NT-3 + CL) were made using a two-tailed t-test because data were 

normally distributed. Comparison of vector spread in the target was made by ANOVA with 

post-hoc Fisher's. To compare reinnervation after NT-3 treatment to normal innervation, 

ANOVA followed by Dunnet's posthoc tests was used. Electrophysiological responses in 

spinally intact animals were compared using repeated measures ANOVA with posthoc 

Fisher's. A significance criterion of p<0.05 was used in all statistical tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental paradigm
1) Nucleus gracilis neurons were retrogradely labeled using bilateral injection of fluorogold 

(FG, orange) into the ventro-postero-lateral (VPL) thalamus one week prior to dorsal 

column lesions. 2) Some animals received bilateral sciatic nerve conditioning lesions, while 

controls received no sciatic nerve lesions. 3) 7 days later a wire knife was used to transect 

the dorsal columns approximately 1.5 mm caudal to the obex, and marrow stromal cells 

(MSCs) were grafted into the lesion site. 4) Immediately after grafting, lentiviral vectors 

expressing both NT-3 and GFP (“Lenti-NT-3”, GFP is expressed from an internal ribosome 

entry site [IRES] in the same construct) or GFP alone (“Lenti-GFP”) were injected into the 

nucleus gracilis and median reticular nucleus bilaterally, slightly rostral and lateral to the 

obex, or to the nucleus gracilis alone. 5) 4 weeks later, ascending sensory tracts were 

bilaterally labeled using cholera toxin B subunit (CTB) injections into the sciatic nerve; 3 

days after CTB injections, animals were perfused.
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Figure 2. Transected ascending sensory axons extend toward Lenti-NT-3-transduced cells in the 
denervated nucleus gracilis
Multiple labeling for (a) CTB to identify ascending sensory axons, (b) GFAP to indicate the 

lesion/graft borders (arrows), (c) GFP to identify NT-3-GFP vector-transduced cells, and (d) 

fluorogold (FG) fluorescence to identify nucleus gracilis neurons, in a sagittal lower 

medulla/spinal cord section 4 weeks after dorsal column lesion, cell grafting and lenti-NT-3 

gene delivery (200 μg/ml) to the nucleus gracilis (Lenti-NT-3 high+CL group). Dashed lines 

encircle the nucleus gracilis. Boxes 1 and 2 are shown at higher magnification in e-g and h-
j, respectively. (e) In a region containing NT-3-GFP expression at the rostral graft/host 

border, (f) CTB-labeled axons cross the lesion border (dashed lines) into rostral host tissue. 

(g) Merge of e and f with CTB-labeled axons pseudo-colored in red. (h) Regions of NT-3-

GFP expression overlap with regions containing FG-labeled nucleus gracilis neurons, and (i) 
CTB-labeled axons are present in these regions. (j) Merge of h and i with axons pseudo-

colored in red. Scale bars: d, 250 μm; e, 100 μm; f, 50 μm.
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Figure 3. Comparison of axon growth into the nucleus gracilis after viral GFP or NT-3 delivery 
with or without conditioning lesions
(a-f) Axons were observed regenerating beyond the rostral lesion border (arrows) and into 

the nucleus gracilis (dashed lines) in animals that received (a,b) high titer NT-3 virus 

delivered to the nucleus gracilis plus conditioning lesions (Lenti-NT-3 high+CL group); 

(c,d) standard titer NT-3 virus delivered to the gracile and reticular nuclei plus conditioning 

lesions (Lenti-NT-3+CL group); and (e,f) standard titer NT-3 virus delivered to the gracile 

and reticular nuclei without conditioning lesions (Lenti-NT-3+NoCl group). The greatest 

number of axons was observed in animals with combinatorial treatment (a-d), and among 

these 2 groups, more axons were observed when (a,b) high titer NT-3 virus was delivered to 

the nucleus gracilis (See Fig. 4). In contrast, no axons were observed within the nucleus 

gracilis in animals that received (g,h) GFP lentivirus delivery plus conditioning lesions 

(Lenti-GFP+CL group), or GFP lentivirus alone (Lenti-GFP+NoCL, not shown). (i,j) 
Innervation in the intact nucleus gracilis is shown for comparison. Panels b,d,f and h and j 
are high magnification of boxes in panels a,c,e,g and i, respectively. Axons are indicated by 

arrowheads. Nucleus gracilis outlines (dashed lines) were established using Fluorogold 

fluorescence. Scale bars: g, 250 μm; h, 100 μm.
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Figure 4. Quantification of CTB-labeled axons and reporter gene expression in the nucleus 
gracilis
(a) CTB-labeled axonal profiles within the nucleus gracilis were observed only in subjects 

that received lenti-NT-3 injections. The combination of lenti-NT-3 injections and 

conditioning lesions (NT-3+CL) elicited significantly greater axon growth into the target 

nucleus than control groups that received GFP-expressing vectors (GFP+CL and GFP

+NoCL, Kruskall-Wallis p=0.0003, posthoc Dunn's, **p<0.01). Axon density among 

subjects that received lenti-NT-3 alone, without conditioning lesions (NT-3+No CL), did not 

differ significantly from GFP controls (NS). (b) Animals that received higher dose NT-3 

vector (NT-3 high+CL) had significantly more regenerating axons in the nucleus gracilis 

than subjects treated with the lower “standard” vector dose (NT-3+CL, two-tailed t test, 

*p<0.05). (c) The proportion of the nucleus gracilis exhibiting reporter gene (GFP) 

expression was significantly higher in animals that received high titer lenti-NT-3 virus 

compared to animals that received a standard titer NT-3 vector dose (ANOVA, p=0.03, 

Fisher's PLSD, *p<0.05). (d) Axon density after NT-3 treatment was significantly lower 

than normal innervation of the nucleus gracilis (ANOVA, p<0.0001, Dunnett's posthoc test 

comparing all injured/treated groups to intact animals, ***p<0.001), but NT-3 high+CL 

treatment restored 27% of pre-injury axon density. Values are mean ± s.e.m. CL, 

conditioning lesion; NT-3 high, 200 μg/ml lenti-NT-3 vector.

Alto et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Lesioned axons regenerate to ectopic regions when NT-3 is ectopically expressed
(a) CTB-labeled axons regenerate into the medullary reticular nucleus (boxes) when (b) 

lenti-NT-3 virus is injected into this ectopic location. Dashed lines encircle the nucleus 

gracilis (Grac). Boxes 1 and 2 are shown at high magnification in c,d and e,f, respectively. 

(c,e) Ectopic axons extend into regions of (d,f) NT-3 expression, indicated by the reporter 

gene GFP. CTB labeled axons are pseudo-colored in red in d and f. Scale bars: b, 250 μm; 

c,d, 100 μm.
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Figure 6. Regenerating axons form new synapses in the denervated nucleus gracilis
(a) A confocal stack shows many CTB-labeled axons (red) in close proximity to FG-labeled 

target neurons (green) in nucleus gracilis in an animal that received NT-3 high+CL 

treatment. (b) A single plane confocal image indicates close apposition of a CTB-labeled 

axon (arrowheads) to a FG-labeled dendrite (green); arrow indicates a bouton-like structure. 

Inset in single confocal plane shows intimate association between a CTB-labeled axon and 

FG-labeled target dendrite. (c) A CTB-labeled bouton in the nucleus gracilis of an animal 

that also received NT-3 high+CL treatment is identified under the electron microscope by 

the electron-dense reaction product produced by CTB immunohistochemistry. Multiple 

synaptic specializations are present (arrows), and dendritic processes (d) protrude through 

the axoplasm. (d) High magnification of boxed area in c, highlighting a synaptic contact. 

The synaptic specialization is asymmetric (top inset); electron dense labeling indicates 

synaptic vesicles surrounded by the CTB reaction product (bottom inset). (e) The 

regenerated synapse resembles a CTB-labeled synapse from an intact animal (shown), which 

is also characterized by multiple synaptic specializations (arrows) and dark background 

labeling identifying CTB. Scale bars: a, 5 μm; b, 2.5 μm (inset 3-fold magnification); c, 1 

μm; d, 0.4 μm (insets 5-fold magnification); e, 0.75 μm.
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Figure 7. Electrophysiological responses in the nucleus gracilis evoked by sciatic nerve 
stimulation in intact and C1 injured animals
(a) Representative traces from a single recording site (intact animal). Baseline recordings 

(Pre KA), after addition of kynurenic acid [50 μM] (Post KA), following washout of 

kynurenic acid with artificial cerebrospinal fluid (Post wash) and after dorsal column 

transection at T3 (Post DC cut). Arrowheads indicate pre- and post-stimulus windows for 

calculating root mean square (RMS) power spectrum responses. (b) Average responses (n=6 

animals). Repeated measures ANOVA p=0.006, Fisher's PLSD, *p<0.05, mean ± s.e.m. (c) 

Responses to sciatic nerve stimulation recorded in the nucleus gracilis in: i) intact animals, 

ii) intact animals with conditioning lesions (CL), iii) C1 lesioned animals with GFP high

+CL treatment, and iv) C1 lesioned animals with NT-3 high+CL treatment. Vertical lines 

indicate the maximum, minimum and mean RMS response values obtained from all 

recording sites for individual animals. Green dotted line indicates the maximum RMS 

response recorded in GFP+CL animals. Responses exceeded the maximum control response 

at two sites in one NT-3+CL animal (red arrow). (d) However, these recordings did not 

resemble evoked activity (top 2 traces); responses were comparable to those in GFP-treated 

control animals (bottom trace). (e) Axons in the intact dorsal columns and axons ascending 

toward the cervical lesion site (shown) were myelinated, while axons regenerating (f) within 

and (g) beyond the lesion/graft site in combinatorially treated subjects were not myelinated, 

as revealed by double labeling for CTB and myelin-associated glycoprotein (MAG).
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