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Washington, PA 15301, USA
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Abstract

A number of recent studies on early categorization suggest
that young infants form category representations for stimuli at
both global and basic levels of exclusiveness (i.e., mammal,
cat). A set of computational models designed to analyze the
factors responsible for the emergence of these representations
are presented. The models (1) simulated the formation of
global-level and basic-level representations, (2) yielded a
global-to-basic order of category emergence and (3) revealed
the formation of two distinct global-level representations -- an
initial “"self-organizing” perceptual global level and a
subsequently “trained” arbitrary (i.e., non-perceptual) global
level. Information from the models is used to make a number
of testable predictions concerning category development in
infants.

Introduction

Investigators interested in early cognitive development have
been examining the origins and development of complex
category representations during the first two years of life
(e.g.. Mandler, Bauer, & McDonough, 1991; Mervis, 1987;
Quinn, Eimas, & Rosenkrantz, 1993). Empirical efforts have
been concerned with (1) the age and means by which
individuated representations can be formed for basic-level
categories (e.g., cats, chairs) from the same global-level
structure (e.g., mammal, furniture), and (2) whether these
representations begin to cohere to form global-level
representations or whether global-level representations
precede basic-level representations.

One set of relevant studies has shown that young infants
can form perceptually-based category representations at
both basic and global levels of exclusiveness (reviewed in
Quinn & Eimas, in press-a). At the basic level, 3- to 4-
month-olds familiarized with domestic cats will generalize
familiarization to novel cats, but dishabituate to birds,
horses, dogs. tigers and even female lions. The data provide
evidence that the infants can form a representation for cats
that includes novel cats, but excludes exemplars from a
variety of related basic-level categories. Behl-Chadha (in
press) has extended these findings to human-made artifacts
by showing that 3- to 4-month-olds can form individuated
representations for chairs and couches each of which
excludes instances of the other as well as beds and tables.

At the global level, 3- and 4-month-olds familiarized with
instances from a number of mammal categories (e.g., cats,
dogs, tigers, rabbits, zebras, elephants) generalized
familiarization to novel mammal categories (e.g., deer), but
dishabituated to instances of birds, fish and furniture (Behl-
Chadha, in press), indicating that the infants can form a
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representation of mammals that includes novel mammal
categories, but excludes instances of non-mammalian
animals (i.e., birds and fish) and human-made artifacts (e.g.,
furniture). In the same series of experiments, Behl-Chadha
obtained evidence that 3- to 4-month-olds can also form a
representation for furniture that includes beds, chairs,
couches, dressers, and tables, but excludes the mammals
mentioned above. The evidence thus suggests that young
infants can form global-level representations for at least
some natural (i.e., mammals) and artifactual (i.e., furniture)
categories.

Of interest is the information that enables infants to form
category representations at the basic and global levels in
these studies. The age of the subjects and the nature of the
stimuli (i.e., static pictorial instances of the categories) make
it improbable that the infants are relying on conceptual
knowledge about the "kind of thing" something is to
perform successfully in these tasks (cf. Mandler &
McDonough, 1993). The studies therefore support the
position that both basic and global levels of representation
can have a perceptual basis.

Given this state of affairs, at least two important issues
remain unresolved. First, is there a sequence to the
development of category representations at the two levels in
younger infants (i.e., from basic to global or vice versa)?
Second, what is the basis of such a sequence? To examine
these issues, we have been exploring the emergence of
basic-level and global-level category representations in
connectionist learning systems. Using as input the
dimensions of the stimuli employed in the experiments cited
above, we have found that a variety of two layered (i.e.,
input-output) and three layered (i.e., input-hidden-output)
network architectures produce both basic- and global-level
category representations and reveal that global-level
categories precede basic-level categories in order of
appearance. In this paper, we consider the performance of
two of these models in detail and examine possible reasons
for the observed global-to-basic developmental trajectory.

Simulation 1: Global before Basic

Method

Network Architecture and Training Stimuli. The network
had 13 input nodes, 3 hidden nodes and 10 output nodes.
Each hidden node received input from all 13 input nodes
and in turn sent input to all 10 output nodes. The input
nodes encoded 13 attributes of pictorial instances of cats,
dogs, elephants, rabbits, chairs, tables, beds and dressers --
stimuli used in the studies described earlier (Behl-Chadha,
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in press; Quinn & Eimas, in press-a). These stimuli were
realistic color photographs, each displaying an individual
mammal or furniture item. They were selected to be nearly
the same size as possible so that the infant would use cues
other than size as bases for categorization. Three instances
of each category were randomly selected as training inputs
and an additional instance was randomly selected for
generalization testing. Stimulus attributes that served as
inputs were head length, head width, eye separation, ear
separation, ear length, nose length, nose width, mouth
length, number of legs, leg length, vertical extent of the
stimulus, horizontal extent of the stimulus, and tail length.
The attribute values were measured directly from the stimuli
in centimeters and then linearly scaled so that the highest
value on any given attribute was 1.0. If a stimulus did not
possess an attribute, then the value for that attribute was
encoded on its respective input node as 0.0.

This manner of parsing input patterns into component
attributes, and using the attribute values along with certain
assumptions about processing to make predictions about the
formation of category representations, has been used in
previous infant categorization investigations (e.g., Strauss,
1979; Younger, 1990). The attributes of horizontal and
vertical extent were chosen because of their correspondence
with the width and height of the furniture and mammal
stimuli. The large number and detailed nature of the facial
attributes were selected because of evidence that infants are
highly attracted to facial configuration information (e.g.,
Johnson & Morton, 1991). Young infants also appear to use
information from the face and head region of cats and dogs
to categorically distinguish between them (Quinn & Eimas,
in press-b). For example, infants familiarized with cat
stimuli in which only the face and head region was visible
(the body information had been occluded), preferred novel
dog faces over novel cat faces. However, infants
familiarized with cat stimuli in which only the body
information was visible (the face and head region was
occluded), looked equivalently to novel dog and cat bodies.
Subsequent control experiments revealed that the dog
preference in the "face and head visible" group could not be
attributed to a spontaneous preference for dog faces or to an
inability to discriminate among cat faces. Facial information

would thus seem to provide infants with a necessary and

Training and Testing Procedure. Training consisted of
presentation of the 24 stimuli in a random order with
replacement for 7200 training sweeps (1 sweep = |
presentation of a single stimulus). Generalization testing
consisted of one presentation of a novel exemplar from each
category.

Implementation. The simulation was run on the neural
network simulator tlearm that makes use of a
backpropagation learning algorithm (Plunkett & Elman, in
press). The network was trained with a random seed of 47, a
learning rate of 0.3 and a momentum of 0.7. Comparable
results were obtained with two other random seeds. Thus,
while we present data from one random seed in detail, the
basic results (with only minor variations) are extendable to a
variety of starting seeds (and this is true for each of the
simulations reported in the paper).

Results and Discussion

Performance of the network is shown in Figure 1 where the
Root Mean Square (RMS) Error (reflecting the discrepancy
between actual and correct response for a given input) is
plotted as a function of training sweeps. Category learning
began at 120 sweeps with the global distinction between
mammals and furniture. At 960 sweeps, the elephant
exemplars were learned. By 3600 sweeps, the beds, cats,
dogs, dressers, rabbits and tables were categorized. Learning
was completed at 7200 sweeps when chairs were correctly
classified.
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that excludes dogs. Quinn and Eimas also showed that the
cues for this category representation of cats resided in the
internal facial region (inclusive of the eyes, nose and mouth)
and along the external contour of the head.

Ten output nodes were responsible for indicating the basic
and global category identity of the stimuli: cat, dog,
elephant, rabbit, chair, table, bed, dresser, mammal and
furniture. Each stimulus was associated with two of the ten
output nodes, one for the basic level, the other for the global
level. Given that the range of activation of the units was
from 0.0 to 1.0, the system was considered to have correctly
recognized the category identity(ies) (i.e., global and basic)
for a given stimulus if it activated the output node(s)
associated with that stimulus to a value(s) greater than 0.50
and activated the output nodes corresponding to stimuli
from other categories to values less than 0.50.

mammals elephanis beds th;l(l
Furnirure cals

dogs

dressers

rabbit
tibles

Figure 1. Root mean square error of Simulation 1 as a
function of training sweeps. Category labels along the sweep
axis are positioned to show the categories that have emerged
at 120, 960, 3600 and 7200 sweeps.

It is interesting to consider the representations of the input
patterns that emerged on the hidden units during training.
Figure 2 presents a 3-dimensional plot of the mean
activation values on hidden nodes 1, 2 and 3 (relabeled as X,
Y and Z) generated by the 8 categories of stimuli at three
points in training. Panel A (left) shows that at 8 sweeps, all
8 categories cluster closely together. Panel B (center) shows
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that at 480 sweeps, only mammals and furniture were
segregated. Finally, Panel C (right) reveals that at 7200
sweeps mammals and furniture were segregated along the z-
axis and each basic-level category had its own location
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recognized as distinct basic-level categories in this
simulation. The results show that the global-to-basic
sequence is obtained even without the face and tail
information from the mammal stimuli, indicating that it is
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Figure 2. Mean activation values of hidden nodes 1, 2 and 3 (relabeled as X, Y and Z) for each category at (a) 8 sweeps, (b)
480 sweeps and (c) 7200 sweeps.

within the "mammal” and “furniture” planes. Figure 2 thus
provides an illustrative example of how category structure
emerges over time on the representational units.

The results of the simulation are consistent with the
findings that young infants can form perceptually based
category representations for mammals and furniture at both
global and basic levels (Behl-Chadha, in press; Quinn et al.,
1993). The complete learning sequence is also consistent
with a developmental progression from global- to basic-
level category distinctions, a pattern which corresponds with
the developmental course of category acquisition in older
infants, but with what were presumed to be conceptually
based representations for animals and artifacts (Mandler et
al., 1991; see also McClelland, McNaughton & O'Reilly,
1995).

One question that arises is whether the early appearance
of the global-level representations occurred because the
mammals provided activation on the various input nodes
devoted to the processing of face and tail information,
whereas the furniture stimuli did not. One way of asking this
question is: Will the global-to-basic sequence be observed in
a model operating on input that does not include the face
and tail information? To provide an answer, we repeated the
initial simulation, but in this case with just 4 input nodes
(number of legs, leg length, vertical extent and horizontal
extent).

By 7200 sweeps, the no face-no tail network
differentiated the global-level categories; only the basic-
level category of dressers had appeared at this point (and if
one looks earlier into the training sequence, one finds that
dressers were first responded to as furniture and only
subsequently as dressers). Basic-level categorization of
rabbits and tables (14,400 sweeps), elephants (21,600
sweeps), chairs (28,800 sweeps) and beds (43,200 sweeps)
completed the learning sequence. Dogs and cats were not

not simply a consequence of specialized processing for
mammals and that it may be generalizable beyond the
mammal-furniture distinction. In addition, the inability of
the model to categorically differentiate cats and dogs is
consistent with the finding that young infants rely on head
and face information to distinguish between them (Quinn &
Eimas, in press-b).

A second issue raised by the finding of global-to-basic
category development is whether the global level would
have emerged before the basic level if the network had not
been trained at the global level. To answer this question, we
repeated the initial simulation (with 13 inputs), but in this
case without the two global-level output nodes. There was
thus no teaching signal at the global level. While this
manipulation prevents us from determining whether the
patterns were responded to as mammals and furniture at the
output layer, we can still inspect the representation of the
patterns at the hidden layer at different points during
training.

What is observed in this simulation is that the global level
of representation still emerges before the basic level. At 480
sweeps, the mean activation values for cats, dogs, elephants
and rabbits on hidden node 1 were 0.191, 0.160, 0.084 and
0.212, whereas those for chairs, tables, beds and dressers
were 0.816, 0.795, 0.833 and 0.831. This global-level
separation was maintained throughout the remainder of
training. In contrast, hidden nodes 2 and 3 at 480 sweeps did
not allow for partitioning of inputs into basic-level
categories. Consistent with these observations is the timing
of emergence of the basic-level categories as assessed by
their corresponding output activation values. Elephants were
distinguished at 960 sweeps, followed by dogs, rabbits,
chairs and dressers at 3600 sweeps, beds at 7200 sweeps and
cats and tables at 10,800 sweeps. The results of this
simulation are important because they suggest that the early



appearance of global-level categories occurs even when the
network is not being trained at the global level. The global
level may thus be thought of as a "primary” representation
that occurs in the course of mapping a set of structured (but
uncategorized) inputs onto basic-level categories.

Simulation 2: Arbitrary Global-level Category
Learning

In this section, we examine a possible reason for the global-
to-basic developmental sequence. One idea is that global
occurs before basic because of the nature of global-level
categories. This idea can be tested by orthogonalizing (i.e.,
crossing) the stimulus dimensions relevant for the global
level. That is, one can change the nature of the categories at
the global level and determine if the global-to-basic trend
still emerges. To this end, we examined the performance of
a network taught to assign cats, elephants, chairs and beds to
one arbitrary global-level category called A and to respond
to dogs, rabbits, tables and dressers as members of a second
global-level category called B.

Method

The only change from the first simulation described in the
preceding section was that the output node previously
coding for mammals was reassigned to code for A stimuli
(cats, elephants, chairs and beds) and the output node that
earlier coded for furniture now coded for B stimuli (dogs,
rabbits, tables and dressers).
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Figure 3. Mean activation values of hidden nodes I, 2 and 3 (relabeled as X, Y and Z) for each category at (a) 8 sweeps, (b)
480 sweeps and (c) 7200 sweeps. In (c) the connected points indicate members of one arbitrary global-level category.
Separation between perceptual global-level categories can also be seen.

Results and Discussion

In this simulation, learning occurred at both basic and
arbitrary global levels, without one level clearly preceding
the other. At the basic level, the order of classification of the
training exemplars was: elephants (960 sweeps), rabbits
(1920 sweeps), cats and dressers (2760 sweeps), and dogs,
tables and beds (3600 sweeps). Chairs, even at 7200 sweeps,
failed to elicit a consistent response from the appropriate
output node. Learning at the arbitrary global level also
began at 960 sweeps with elephants activating the A output
node and dogs, rabbits and dressers activating B. Arbitrary
global-level classification continued as cats (1920 sweeps)
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and chairs and beds (3600 sweeps) activated the A output
node, and concluded with tables recognized as members of
the B category (7200 sweeps). Thus, both arbitrary global-
level and basic-level categories were learned, but in no
particular order.

A more complex picture regarding performance of this
simulation emerges when one examines the mean activation
values on the 3 hidden nodes for the various categories.
Figure 3 presents a 3-dimensional plot of these values at 8,
480 and 7200 sweeps. The 8 sweeps plot (Panel A) reveals
no clear partitioning of the categories. However, at 480
sweeps (Panel B), the mammals and furniture have been
segregated, indicating that perceptual global-level category
structure emerged even when the network was being taught
on a different "arbitrary” (i.e., non-perceptual) global-level
distinction. At 7200 sweeps (Panel C), the arbitrary global
differentiation into categories A and B has appeared. There
is also a segregation of mammals and furniture. This figure
reveals that the hidden nodes coded for two distinct global
levels of representation during the course of training: an
initial "perceptually based" global level of mammals and
furniture and a subsequent “conceptually based” global level
of A and B. Such a finding is consistent with the idea that
distinct perceptual and conceptual representations develop
for object categories during early development (Mandler &
McDonough, 1993).

The major result of this simulation is that manipulating
the structure of the global level categories interfered with

7200 Sweaps

(©)

the global-to-basic order of category development at least
for the arbitrary global-level categories. No clear timing
difference was observed in the emergence of representations
at the basic and arbitrary global levels. However, the
perceptual global level (i.e., mammals distinct from
furniture) was the first level of category representation to
appear, even though the network was not explicitly taught to
make this distinction. The overall pattern of performance
thus indicates that the nature of global categories (i.e.,
perceptual vs. arbitrary) is a critical factor in their early
appearance during training.



General Discussion

Connectionist accounts of cognitive development are
growing in influence (Elman, Bates, Karmiloff-Smith,
Johnson, Parisi & Plunkett, in press; McClelland, 1989) and
this paper represents an attempt to apply a connectionist
analysis to the issue of how category representations arise at
basic and global levels during early development. A set of
simple network simulations were found to learn categories
at basic and global levels and in a global-to-basic sequence.

A striking result of the simulation with arbitrary global-
level category training was that both perceptual and
arbitrary global-level categories were formed, despite there
being no explicit training for the former. This is reminiscent
of the views of Mandler & McDonough (1993) who have
argued for distinct perceptual and conceptual levels of
category representation in human infants. A key difference
between our model and the one proposed by Mandler &
McDonough is that in our model a single network forms
both types of representations, whereas in their view
perceptual and conceptual representations are the products
of two complementary processes.

Predictions

Models are often judged by the degree to which they can
generate interesting experimental predictions. We therefore
offer the following:

1. On the assumptions that our results generalize to other
categories and that the early-appearing representations that
have emerged for global-level categories are stronger than
those coding for the later-appearing basic-level categories
(cf. Munakata, McClelland, Johnson, & Siegler, submitted),
it should be possible to manipulate task parameters that will
make categorization more difficult and observe that basic-
level representations are affected to a greater degree than
those at the global level. For example, reducing the amount
of time a stimulus is exposed to an infant decreases its
memorability (Fagan, 1974), so reducing the amount of
familiarization time for each of a group of exemplars should
make categorization more difficult. The reported
simulations suggest that basic-level distinctions would be
the first to be affected by a2 moderate decrease in study time
per exemplar.

2. Both global- and basic-level category representations
have been observed with 3- to 4-month-old infants (e.g.,
Quinn & Eimas, in press-a). The global-to-basic sequence
observed in the simulations would therefore predict that
global-level representations should emerge before basic-
level ones sometime prior to 3 months of age.

3. It should be possible to train models with one or more
deleted input nodes and examine which, if any, category
representations fail to emerge. Such manipulations should
be helpful in determining which aspects of the input are
critical for certain category distinctions. For example, the no
face-no tail model predicts that face and tail information is
not necessary for making the category distinction between
mammals and furniture, a prediction that can be tested on
infants with simple alterations to the mammal stimuli. In
addition, it should be possible to remove one or more inputs
from the face and head region of cats and dogs to predict
which are needed to make this basic-level distinction,
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predictions than can be tested by presenting altered cat and
dog stimuli to infants (cf. Quinn & Eimas, in press-b).

4, The arbitrary global-level category learning simulation
indicates that it may be possible to train subjects, either
infants or toddlers, to assign stimuli to arbitrary global-level
categories. The simulation also predicts that in the context
of such training an initial perceptual global level of category
representation will precede formation of both basic- and
arbitrary global-level categories.

5. It is of interest to examine the representations that
emerge in models with larger numbers of hidden nodes. For
example, we have observed that when the number of hidden
nodes is 8, 9, 10 or 11, the global-to-basic sequence still
emerges. In addition, during the course of training, there is a
gradual decrease in the proportion of the overall
representation that codes for the global level and a gradual
increase in the proportion of the overall representation that
codes for the basic level. These findings predict that if
infants could be repeatedly familiarized with instances of a
given category in successive sessions, then there would be a
steady transition from global- to basic-level representation.
The results also predict that frequently experienced
environmental stimuli may tend to elicit basic-level
responding (albeit subsequent to global-level responding).

Concluding Comments

In our view, a strength of the approach we have presented is
the correspondence between the experimental work on
infant categorization and the network simulations. That is,
the input to the models were the dimensions of stimuli
presented to infants in a series of studies on the development
of perceptual categorization in early infancy (Quinn &
Eimas, in press-a). Data from the experimental studies were
used in decisions about what inputs to present to the models.
There is also evidence that infants use correlated attribute
information to perform successfully in various kinds of
categorization tasks (e.g., Younger, 1990) -- a manner of
information processing that is broadly consistent with the
way in which neural networks learn information,

A limitation of the input scheme used in these simulations
is that the visual representations infants (or adults) use to
recognize objects are still unknown. Moreover, we did not
use the object parsing schemes advocated in some
contemporary models of object recognition (e.g.,
Biederman, 1987). It therefore becomes important to
examine whether implementations of our models with a
range of input descriptions would produce comparable
results. However, we believe that our basic observations on
perceptual category formation will be robust for the reason
that all models of object recognition would encode greater
similarity between different mammals than between a
mammal and an item of furniture, for example. It is this
similarity structure in the input that we believe to be
important for the results obtained, rather than the details of
what elements of the visual array are encoded.

A second possible limitation is that the networks reported
in this paper were trained by a backpropagation learning
algorithm -- a teaching signal that drives the gradual
reduction of error observed in the networks. One can claim
that this manner of learning is questionable in the present



context for at least two reasons. First, there are some who
maintain that backpropagation is a biologically unrealistic
form of learning (e.g., Crick, 1989). Second, there is no
external teacher supervising infants in the perceptual kinds
of categorization tasks we have attempted to simulate.

We make three observations regarding these points. First,
at least one level of category representation, the perceptual
global level, was obtained without an explicit teaching
signal. Second, backpropagation has not been ruled out as a
biologically plausible form of learning. For example,
Plunkett (1996) has speculated that backprojecting neurons
might be one mechanism by which backpropagation in the
nervous system could be accomplished. Third,
backpropagation is thought to be one of an equivalence class
of learning algorithms with similar computational
properties. For example, networks trained with
backpropagation in some instances develop the same
representations as those produced by more biologically
plausible, Hebbian learning algorithms (e.g., Plaut &
Shallice, 1993).

In conclusion, we believe that many of the effects we
have observed in these simulations would be extendable to
other connectionist architectures, input formats, and learning
rules (including unsupervised networks). We also believe
that the findings of the simulations along with the
experimental predictions generated from them represent an
important first step toward a research program which
combines experimental studies of infant categorization with
techniques of connectionist modelling. Such a program may
hold promise for developing a formalized account of
category formation by young infants.
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