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JOURNAL OF MATHEMATICAL PSYCHOLOGY 22,48-69 (1980) 

Generalized Thurstone Models for Ranking: 

Equivalence and Reversibility1 

JOHN I. YELLOTT, JR. 

Cognitive Science Program, School of Social Sciences, 

University of California, Irvine, California 92717 

Previous work has determined the conditions under which generalized versions of 
Thurstone’s theory of comparative judgment are formally equivalent (i.e., empirically 

indistinguishable) for choice experiments. This note solves the analogous problem for 
ranking experiments: It is shown that if two “Generalized Thurstone Models” are equival- 

ent for choice experiments with n alternatives they are also equivalent for ranking ex- 

periments with n alternatives, despite the fact that ranking generates many more prefer- 
ence probabilities. This result in turn allows one to determine which Generalized Thurstone 

Models are “reversible,” i.e., satisfy the requirement that regardless of whether the 

subject ranks from best to worst or from worst to best, rankings that express the same 

preference order will occur with the same probability. 

1. INTRODUCTION 

1.1. Equivalence 

Several recent articles in this journal have dealt with the equivalence properties of a 
family of random utility models for choice experiments that can be regarded as generaliza- 

tions of Thurstone’s (1927) Theory of Comparative Judgment-generalized in the sense 
that the utility random variables (Thurstone’s “discriminal processes”) are no longer 

required to have normal distributions. (“Equivalence” here means experimental indis- 

tinguishability. Two models-that is, theories-are said to be equivalent for a given class 
of experiments if results that satisfy one always satisfy the other-so that no experimental 
decision can be made between them. Yellott (1977, 1978), Moszner (1978), and Rockwell 
and Yellott (1979), all deal with a generalized version of Thurstone’s Case V in which 
the utility random variables are independent and identically distributed except for shifts: 
Such models were referred to there simply as “Thurstone models”; here they will be called 
“Generalized Case V Thurstone (GT-V) Models.” Strauss (1979), analyzes a broader 
class of “Generalized Thurstone (GT) Models” which includes the GT-V models and 
also nonindependent cases. All this work is reviewed here in Section 2.) This paper deals 
with the equivalence properties of these same models when they are applied to ranking 
experiments-that is, experiments in which the subject does not simply choose a single 
best alternative from some set, but instead rank orders all the alternatives from best to 
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worst (or vice versa). These properties can be quickly determined, and turn out to be 
both simple and somewhat counterintuitive. Because ranking experiments yield many 
more preference probabilities than choice experiments (i.e., n! vs n), intuition suggests 
that they ought to be more efficient at discriminating between models. Specifically, one 
might expect to find at least some cases in which models that are nonidentical but never- 
theless equivalent for certain choice experiments would become nonequivalent when 
applied to ranking versions of those same experiments. This can definitely happen within 
the general class of random utility models: Table 1 in Section 3 shows an example. Sur- 
prisingly, however, it proves to be impossible for GT models: Theorem 1 in Section 3.3 
shows that two such models are equivalent for ranking experiments with 71 alternatives 
if and only if they are equivalent for choice experiments with n alternatives. In other words 
whenever two GT models are indistinguishable by choice experiments they are also 
indistinguishable by ranking experiments, despite the extra preference probabilities 
generated by the latter. 

1.2. Reversibility 

This equivalence theorem turns out to be useful in understanding an old puzzle in 
choice theory: The fact that Lute’s (1959, 1977) Choice Axiom is incompatible with the 
intuitively sensible requirement that ranking probabilities should be essentially the same 
whether the subject ranks from best to worst or vice versa. In designing any ranking 
experiment one has to decide in advance on the direction of ranking, i.e., should the best 
alternative be assigned rank 1, the next-best rank 2, and so on (“best-to-worst” ranking), 
or should the worst alternative get rank 1, the next-worst rank 2, etc. (“worst-to-best” 
ranking) ? In many contexts this decision seems entirely arbitrary because we expect 
that regardless of the direction instructions, rank orderings that mean the same thing 
ought to occur with the same probability. For example, if the alternatives are three tones 
a, 9 a2 > a3 to be ranked on the basis of loudness, it seems reasonable to expect that the 
probability of producing any given rank order, say (ai, uj, a,>, under the instruction 
“rank from loudest to softest” should be the same as the probability of producing the 
reverse ordering (ak , uj , ai> under the instruction “rank from softest to loudest.” 

However, it has been recognized for a long time that this “reversibility” assumption 
is surprisingly difficult to reconcile with other theoretical notions that seem equally 
plausible-and that apparently have nothing to do with the direction of ranking (Lute, 
1959; Block & Marschak, 1960; Lute & Suppes, 1965; Marley, 1968; Thorsen & Stever, 
1974). In particular, it is well known that reversibility cannot easily be combined with 
the ideas that choice and ranking probabilities should satisfy a common random utility 
model and that ranking is accomplished by a series of independent choices-a pair of 
assumptions closely related to the Choice Axiom. 

The difficulties here are neatly captured in a well-known impossibility theorem due 
to Block et al. (1960; Theorem 51 in Lute et al. 1965). The theorem holds for any 
number of alternatives but for convenience at this point we consider the simplest case, 
where there are only three. Suppose the alternatives are a, , a2 , us , and that both choice 
and ranking probabilities are experimentally determined for all subsets under best-to- 
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worst instructions and also under worst-to-best instructions. (For choices this means we 
sometimes ask the subject tochoose the best alternative andsometimes to choosethe worst.) 
Let p(i) denote the probability of choosing a, from {ur , a2 , as} under best-to-worst 
instructions; p(i, j) the probability of choosing ai from {q , uj} under the same instruc- 
tion; r(i, j, K) the probability of producing the rank order (ai , uj , a& in the best-to- 
worst condition when a, , a, , and as are all available; and ~(i, j) the probability of produc- 
ing rank order (ai , q) when only ai and a, are available. And let p*(i), p*(i, j), r*(i, j, k), 
and r*(i, j) denote the probabilities of the same events under worst-to-best instructions, 
i.e., r*(i, j, A) is the probability of saying that ai is worst than a, is worse than uk , etc. 

Now to capture the idea that both choices and rankings are generated by a common 
set of underlying utility random variables, we assume that the probability of choosing ai 
over any set of competitors is the same as the probability that ai is ranked ahead of those 
competitors, i.e., 

p(i) = y(i, j, k) + y(i, k,j), 

0)" 
p(i, j) = r(i, j) = r(i, j, k) + r(i, k,j) + r(k, i, j), 

p*(i) = r*(i,j, k) + r*(i, k,j), 

p*(i, j) = r*(i, j) = r*(i, j, k) + r*(i, k, j) + r*(k, i, j). 

Next, to express the idea that ranking is accomplished by a series of independent choices, 
we assume that the probability of producing the rank order (ai, a,, a*) is the same as 
the probability of first choosing ai from the whole set {a, , a, , ua} and then, in an indepen- 
dent pair-wise choice, choosing aj over ak : 

(ii) 
+,.A k) = p(i>p(j, 4, 

r*(i,j, k) = p*(i)p*( j, k). 

(This assumption is sometimes referred to as “decomposition”, e.g., in Strauss (1979).) 
Finally, to express the notion that rank orderings that mean the same thing should 

have the same probability regardless of the instructed direction of ranking, we assume 
“reversibility” : 

r(i, j) = r*( j, i), 

r(i, j, k) = r*(k, j, i) 

Now taken one at a time each of these assumptions seems plausible, and even innocuous. 
However, Block et al. (1960) extending results obtained originally by Lute (1959), 

2 Assumption (i) is equivalent to the assumption (i’) that there exist random variables UI , U, , 
U, such that for all i, j, k: p(i) = P(Ui = max{U, , U, , W; PC& i) = r(G) = JWJd > UJ; 
and r(i, j, IS) = P(U, > U, > U,). The fact that (i’) --, (i) is obvious; the fact that (i) + (i’) is 
Block and Marschak’s (1960) well-known characterization theorem for random utility models 
(Theorem 49 in Lute et al., 1965). 
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showed that if all three hold the subject must be completely indifferent between the 
alternatives, i.e., (i), ( ii ) , and (iii) together imply that ‘di, j, k, p(i) = p*(i) = g; p(i, j) = 

p*(i,j) = &, and r(i, j, K) = r*(i, j, R) = 6. 
The proof of this remarkable fact requires only two simple steps. First, note that (i) 

and (ii) imply that both the best-to-worst and worst-to-best choice probabilities satisfy 
Lute’s Choice Axiom, which for this three-alternative case is simply 

P(i,i) = P(i) 
P(i) + P(i) ’ 

P*(i) 
P*(id = p*(i) + p*(j) * 

(To show this use (ii) to substitute for r(i, j, k) in the second part of (i)* yielding 

p(i, j) = p(i)p( j, k) + p(i)@, j) + p(kk(i~ j). 

Then (iv) follows immediately. It is also easy to show that (i) and (iv) together imply (ii), 
so in the context of the random utility assumption (i), decomposition and the Choice 
Axiom are equivalent.) The Choice Axiom in turn implies the existence of ratio scale 
values w, , ‘Lo , v3 and VT, vz, vz such that 

P(i,i) = ..Tv. ; p(i) = vi 
t 3 vi + vj + vk ’ 

P*(i,j) = vFwi vir ; p*(i) = ” 
I 3 v’ + vi* + v: . 

The second step is to note that the first part of the reversibility assumption (iii) implies 
vi/vi = VT/V:. Since we can arbitrarily set a, = vr * = 1, it follows that in general z.$ = 
I /ai , and then the second part of (iii) together with (ii) implies 

Simplifying this equation we obtain vivk = vj2, and first setting k = 1 (to yield vavs = 1) 
and then k = 2 (to yield vrva = oa = na2 = vg2, i.e., va3 = 1) it follows that z1i = oa = 
v3=v1* =a,* =vz = 1. 

Now this impossibility theorem is puzzling for two reasons. First, and foremost, it is not 
at all obvious why the Choice Axiom should have anything to do with the direction of 
ranking, and so the fact that it cannot be reconciled with reversibility seems to be nothing 
more than an algebraic accident. Second, the theorem does not give any hint as to the 
degree of incompatibility between reversibility and the Choice Axiom: We know that 
r(i, j, k) and r*(k, j, i) cannot be equal (except in the degenerate case vi = vf z l), 
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but we have no intuitive basis for expecting their difference to be large or small. In fact 
a computer search shows that this difference is never greater than 0.05, and consequently 
would be practically impossible to detect experimentally. However it is not easy to see 
intuitively why this should be so. 

Approached from the standpoint of GT models, however, the impossibility theorem 
becomes more understandable. The starting point is the fact that the Choice Axiom is 
equivalent to the GT-V model based on the double exponential distribution P(X < x) = 
.P-= (Yellott, 1977). C onsequently (i) and (ii) imply the simultaneous existence of real 
constants m, , m2, m3, and rn:, m,*, m$, such that Vi,‘;; k 

PC&j> = P(mi + Xi > mj + Xj), 

p(i) = P(mi + Xi = m={mj + Xi I j = 1,2,3}), 

p*(i, j) = P(m” + Xi > mj* + X,), 

p*(i) = P(mT + Xi = max(mj* + Xj 1 j = 1,2,3}), 

where the Xi are independent identically distributed random variables with common 
distribution function F(x) = eee-” (Fig. 1 shows the corresponding probability density 
function). Moreover (i) implies that the ranking probabilities also satisfy the same double 
exponential GT-V model: 

r(i, j, k) = P(mi + Xi > mi + Xi > mR + X,), 

r*(i, j, k) = P(m’ + Xi > mj* + Xj > rnz + X,) 

(since r(i, j, k) = p( j, k) - p(j) and r*(i, j, k) = p*( j, k) - p*(j).) 
Now from the first part of the reversibility assumption we have 

p(i, j) = P(X, - Xi < mi - mj) = p*(j, i) = P(Xi - Xj < mj* - mf) 

and consequently m, - rni = mj* - mf. Since the m values are only unique up to addition 
of a constant we can set ml = m T = 0, so that m$ = -mi . Then the second part of 
reversibility holds iff 

r(i,j,k)=P(m,-tXi>m,+Xi>m,+X,) 

= r*(k, j, i) = p(-m, + X, > -mi + Xi > -mi + Xi) 

= P(mi - xi > mj - xj > mk - &). 

This last equation is the key to the incompatibility between the Choice Axiom and 
reversibility. For suppose it were true for all possible values of m, , m2 , m,--which is 
what would be required in order for the Choice Axiom to be generally consistent with 
reversibility. Then it would follow that the double exponential GT-V model would be 
equivalent for 3-alternative ranking experiments to the GT-V model based on the distribu- 
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tion function F*(x) = 1 - e-+ , z i.e., the distribution function of -X when X is double 

exponential. However, in view of the result on ranking equivalence described earlier in 
Section 1 .l, this could be true only if these two GT-V models were also equivalent for 
3-alternative choice experiments, and this cannot be so because we already know that the 

double exponential GT-V model is unique for such experiments-i.e., the only GT-V 
models equivalent to the model based on F(x) = e-e-Z are those based on distributions 

of the same type, i.e., distribution functions of the form P--(~‘+‘), where a > 0, b are 
arbitrary constants (Yellott, 1977). Moreover, because the models based on F and F* 
would have to generate the same ranking systems using the same scale values (that is, 

{T + Xi> and {w - xi) would have to generate the same ranking probabilities) the 
constant a here would have to be 1. (Footnote 3 below explains why.) Consequently 

reversibility could hold only if for some constant b 

F*(x) = 1 -F(+) = 1 - e-e5 = $‘(x + b) = p++b’, 

However, this would mean that the double exponential distribution is symmetric, i.e., 
for the centering constant b/2 (which would have to be zero here) the distribution func- 

tions F(x + b/2) (corresponding to X - b/2) and 1 - F(-x + 6/2) (corresponding to 
-(X - b/2)) would be identical. In other words, for the Choice Axiom to satisfy reversi- 
bility the densities corresponding to 1 - e& and d?-” would have to be the same, and 
clearly they are not, as one can see in Fig. 1. However, one can also see from the figure 

that the asymmetry of the double exponential density is not very great (compared, for 
example, to an exponential distribution), and so it becomes understandable that the 
irreversibility implied by the Choice Axiom is numerically not very large. 

Analyzed from the CT standpoint then, Block and Marschak’s impossibility theorem 
appears not as an algebraic fluke, but rather as a natural consequence of the shape of the 
double exponential distribution-in particular, its asymmetry. However, the same analysis 

l.O- 

0.9- 

0.6- 

0.7.: 

0.6- 

0.5- 

0.4- 
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0 2- 

0 I- 

FIG. 1. Probability density functions for the double exponential distribution F(x) = C-* 

(dashed line) and the “reverse” double exponential distribution F*(X) = 1 - e-“’ (solid line). 
The corresponding GT-V models are not equivalent for three alternative ranking experiments, 
and consequently neither is reversible for three (or more) alternatives. 
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also raises a general question. Suppose we retain the assumption that choices and rankings 
satisfy a common random utility model (i.e., (i)), but drop the decomposition assumption 
(ii)-which in this context was equivalent to assuming that both the best-to-worst and 
worst-to-best probabilities satisfy the double exponential GT-V model. Instead, suppose 
we replace (ii) with some other assumption that implies that both sets of probabilities 
satisfy some other GT-V model, i.e., a model based on some distribution other than the 
double exponential-normal, gamma, or whatever. Then the question arises, which of the 
resulting ranking models would satisfy the reversibility assumption (iii) ? 

This general problem is solved here in Section 3.4, using the ranking equivalence 
theorem of Section 3.3 and earlier results on choice equivalence summarized below in 
Section 2. On the basis of the special case of the double exponential model, one might 
expect that the answer would depend only on the symmetry of the utility distributions, 
i.e., one might expect that a GT-V model is reversible iff its utility distribution is sym- 
metrical. However, this hunch turns out to be only half correct: Every symmetrical 
distribution does yield a reversible GT-V model, but so also do some asymmetric distribu- 
tions-though in every case these curious models are only reversible for some finite 
number of alternatives and never for arbitrarily many. (For example, the asymmetric 
density function shown in the lower panel of Fig. 2 yields a GT-V model that is reversible 
for three alternatives but not for four.) The key to reversibility is indeed the shape of the 
utility distribution, but more is involved than symmetry alone: In addition, one needs to 
consider the shape of its Fourier transform. 

1.3. Organization of the Paper 

To put these results in context it seems useful to begin by reviewing the equivalence 
properties of GT models for choice experiments, since results on that problem that we 
need here are presently scattered through a series of papers. This is done in Section 2, 
and then Section 3 deals with ranking: 3.1 provides notation and definitions; 3.2 discusses 
the relationship between choice and ranking for random utility models in general; 3.3 
gives the equivalence theorem for GT models for ranking; and 3.4 contains the results on 
reversibility. 

2. REVIEW: EQUIVALENCE PROPERTIES OF GENERALIZED THURSTONE MODELS FOR CHOICE 

2.1. Notation and Terminology 

A, = {aI , a2 ,..., a,} is a set of n choice alternatives, which we identify with the set of 
indices 1, = {I, 2,..., n>. In a pair comparison experiment alternatives are presented two 
at a time with the instruction “pick one”: Here p(i, i) denotes the probability that ai is 
chosen when {ai , aj} is presented, and an entire collection of the form { p(i, j)] i, j E In} 
is called a pair comparison system for n alternatives. In a complete choice experiment one 
presents not only pairs, but all of the subsets of A, : Here p(;; S), i E S _C 1, , denotes the 
probability that ai is chosen when the subject is presented with the subset {ai 1 j E S> 
(and thus p(i, i) is shorthand for p(i, {i, j})). A complete collection of probability distribu- 
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tions for all of the subsets of A, (i.e., a collection of the form ((p(i; S) 1 i E S} ] S C 1, , 
1 S ( > 2)) is called a com#te system of choice probabilidies for n alternatives. 

Two choice models (i.e., “theories”) are said to be equiv.JaKent for paik comparison 
experiments with n alternatives iff every pair comparison system for A alternatives that 
satisfies (either) one also satisfies the other. Similarly, two models are said to be compbtel’ 
equivakmt for n alternatives iff every complete system of choice probabilities for n alterna- 
tives that satisfies one also satisfies the other. 

2.2. Gemwlized Case V Models 

Thurstone’s basic idea was, of course, to model choice behavior on the assumption 
that the alternatives a, , us ,..., correspond to real valued utility random variables 

: When a subject is required to choose a single alternative from the subset 
E; /j?‘&*he picks the one with the largest utility random variable, so that p(< S) = 
P[v, = max{Uj 1 j E q]. (Actually Thurstone only dealt explicitly with pair comparisons, 
but the extension to complete experiments is immediate.) For concreteness sake Thurstone 
assumed the Ui were normal random variables, and considered five special cases corre- 
sponding to various constraints on their variances and covariances. The simplest and most 
widely applied case, Case V, amounts to assuming that the Ui are independent and 
identically distributed (i.i.d.) except for shifts along the abscissa, i.e., they can be written 
in the form U, = m, + X1, U, = mz + X, ,..., where the mi are real constants (“scale 
values”) and the Xi are i.i.d. normal random variables. 

Yellott (1977) considered a class of Generalized Case V Thurstone (GT-V) Models 
(called simply “Thurstone Models” in that paper) in which the Xi are i.i.d. with common 
distribution function F (i.e., F(x) = PJX, < xl), subject to the condition that the differ- 
ence distribution D, (i.e., the distribution function of Xi - Xj) is everywhere continuous 
and strictly increasing. (This condition guarantees that p(i, j) is a continuous strictly 
increasing function of the scale value difference m, - m, .) The GT-V model yF is then 
identified with the set of all systems of choice probabilities that can be generated by F 
together with arbitrary scale values m, , ma ,...; and the identifiability problem is whether 
yfi and To can be equivalent for some class of experiments even though F and G are 
different distributions. (Equivalence here means explicitly that any system of choice 
probabilities that can be generated by flF by assigning arbitrary values to the scale param- 
eters mr , ma ,..., can also be generated by rG using some set of parameters 4 , 4 ,...; 
and vice versa.) It is quickly apparent that if F and G are distributions of the same type 
(i.e., F(x) = G(ax + b), a > 0) flP and rG are equivalent for all choice experiments-in 
other words, choice experiments cannot identify the “true” mean and variance of F, but 
only (at most) its type: normal, exponential, gamma, or whatever. Consequently the 
interesting question is whether Sr and rG can be equivalent when F and G are distribu- 
tions of different types. The answer turns out to depend on the class of experiments one 
has in mind-in particular, on the number of alternatives. 

2.2.1. Pair comparisons. Yellott (1977) shows that rF and r( are equivalent for pair 
comparison experiments with three or more alternatives (the smallest nontrivial choice 
experiment) iff they are equivalent for exactly three, and the latter is true iff DF(x) = 

480/22/1-s 
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&(ax) for some a > O.s This’condition is not very restrictive: Besides solutions of the 
form F(x) = G(ax + b), and F(x) = 1 - G(--ax + b) (where F is the distribution of X 
and G the distribution of --aX + 6, a > O-so that F and G may or may not be of the 
same type, depending on whether they are symmetrical or asymmetrical), there are usually 
others in which F and G are not related in any probabilistically sensible way, but instead 
only through the Fourier analytic fact that their densities have essentially the same 
amplitude spectrum, i.e., the characteristic functions of F and G (denoted f and g, 
respectively) satisfy the relationship [ g(t)/ = If(a (In this respect pair comparison 
experiments are analogous to X-ray diffraction experiments in crystallography: Both can 
only identify amplitude spectra and necessarily lose the phase spectrum.) For example, 
the double exponential model F(x) = e+-= (which yields Lute’s Choice Axiom) has pail 
comparison equivalents that are not of the same type as eitherF(ax + b) or 1 - F(-ax + b), 
and this is also true of the exponential model F(x) = 1 - e-“. The only exceptional case 
(reported so far) is th e normal model (Thurstone’s original Case V) whose pair compari- 
son prgictions cannot be entirely duplicated by any non-normal model-a special status 
that seems quite fitting, though historically entirely coincidental (Yellott, 1977, p. 131). 

2.2.2. Complete choice experiments. The technical key here is the fact that yF and To 
are equivalent for complete experiments with n alternatives iff the characteristic functions 
of F and G satisfy the relationship 

for some a > 0 and all tl , t, ,..., t,-, .* (Yellott (1977) proves “only if”; Rockwell et al’ 
(1978) supply the proof of “if,” inadvertently omitted earlier.) g(t) = eibtf(at) is always 
a solution to (1); it corresponds to F(x) = G(ax + b). And if (1) holds for all 7t, this is the 
only solution, i.e., yP and flG are completely equivalent for an infinite number of alterna- 
tives iff F and G are distributions of the same type. 

Consequently if F and G are distributions of different types there is always some 
minimal number of alternatives necessary to distinguish between them. If F or G has a 
nonvanishing characteristic function, this number is three, i.e., if f or g is nonvanishing 
then for n = 3 the only solution to (1) isg(t) = eibtf(at) (Yellott, 1977). This condition is 
satisfied by all the well known distributions that are likely to occur to one as natural bases 
for GT-V models, e.g., the normal, gamma, double exponential, etc., since all have non- 

8 The constant a determines the relationship between the scale values of & and so : If 5~ 
generates a given pair comparison system with scale values m, , m, ,..., m, ; then the corresponding 

, 
scale values for 9ro, say m, , ml ,..,, rn: , must satisfy the condition rn: - rn; = a(mi - mr). 

(Since p(i,j) = Dp(mi - m,) = Do(a(mi - m,)) = DG(m: - m:).) Note that if there exists a 
system of pair comparison probabilities that is generated by both DF and DC with the same set 

of scale values (i.e., some set m, ,..., m, yields the same system under both models) and mj # m, 

for at least one pair i, j, i # j, then a must be 1 (since then DF(mi - m,) = D&(mi - m&) = 
Dch - ‘?d). 

* a here has the same interpretation as in Footnote 3. 
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vanishing characteristic functions (it’s worth recalling that this is true of all infinitely 
divisible distributions). Consequently one can say that all of these models are in principle 
identifiable by the smallest possible complete choice experiments. 

However, nothing in their definition forces GT-V models to have nonvanishing 
characteristic functions, and some do not. In those cases (I) can have solutions f and g 
that correspond to distributions of different types-for n = 3 (Yellott, 1978; Moszner, 
1978), and indeed for any n (Rockwell et al., 1979). Consequently for every n one can 
construct pairs of GT-V models that are completely equivalent for experiments with n 
(or fewer) alternatives but that become nonequivalent for n + 1. (Specific examples are 
the models corresponding to the density functions sinca(x)(l -I- cos Zanx) and 
sinc2(x)(l + sin 2rmx), where sine(x) = (sin rrx)/~. Figure 2 illustrates these densities 
for n = 3.) These cases prompted the present analysis of ranking experiments, since it 
seemed possible that the extra information provided by ranking probabilities might 
enable one to distinguished between models on the basis of fewer alternatives. 

20 
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FIG. 2. Top panel shows the probability density function [sin?(x) (1 + cos ~TX)]. Bottom 
panel shows the density [sinP(x) (1 + sin 6ax)]. The corresponding GT-V models are equivalent 
for both choice and ranking experiments with three alternatives, and both models are reversible 

for three alternative ranking experiments despite the asymmetry of the lower density (Corollary 3, 
sect. 3.4). 
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2.3. Generalized Thurstone (GT) ModeLF 

Strauss (1979) deals with this broader class of models, which includes the GT-V 
models as a special case. A GT model sFa corresponds to specific sequence of n random 
variables X, ,..., X, with joint distribution function F,,(xl , x, ,..., x,) = P(X, < x, , 
x; < x2 )...) X, < x,). For the same reason that the difference distribution D, is 
assumed to be continuous and strictly increasing in the case of GT-V models, F,, here is 
&sumed to satisfyjthe condition that for all i and j, i # j, the difference distribution 
P&-X, <x) is everywhere continuous and strictly increasing. Otherwise F, is 
unrestricted-in particular, nothing is assumed about dependencies between the Xi . 
A complete system of choice probabilities for n alternatives is said to satisfy YF, iff 
ih& exist scale values m, , mp ,..., m, such that Vi E S _C 1, , p(i; S) = P(mi + Xi = 
&&{mj + Xi 1 jE S}). (Th e model r, is not defined for experiments with more than 
7i alternatives. Consequently each of the GT-V models of Section 2.2 corresponds in 
this context to an infinite sequence of GT models of the form flF = {YP, 1 n = 2, 3,...}, 
where F,(x, , . . . , x,) = l-$=1 F(xJ. Two CT models .&” and To, are completely equi- 
valence iff every complete system that satisfies one also satisfies the other.) 

Naturally in this broader class of models the equivalence possibilities are greatly 
enriched. Nevertheless Strauss was able to show that identifiability here depends on a 
straightforward generalization of the Fourier analytic criterion for GT-V models expressed 
in Eq. 1: 

LEMMA 1. Suppose f,,(tl ,..., t,J andg,(t, ,..., t,) are the joint characteristic functions of 
F,, and G, , respectively. Then the GT moaWs fl=, and SYG, are completely equivalent isf 

&s4 ,..., h) = fn(atl ,..., at,) (2) 

for SOWE a > 0 and all tl ,..., t, such that C,“p, ti = 0. 

Proof (Strauss, 1979, Theorem 1). Note that (2) reduces to (1) in the case of GT-V 
models. 

This result also proves to be the key to the equivalence properties of GT models for 
ranking, as shown below in Section 3.3. 

3. GENERALIZED THUFSTONE MODELS FOR RANKING 

3.1. Terminology and Notation 

As before, A,, denotes a set of alternatives ((II ,..., a+,>; I, the corresponding set of 
indices (l,..., n}. In a ranking experiment we present subsets of A, and ask the subject to 
rank order the alternatives in each subset from best to worst: The best alternative is 
assigned rank 1, the next best rank 2, and so on. The result for each subset is a probability 
distribution over its possible rank orderings, i.e., over the possible permutations of its 
indices. To denote this, suppose S _C I,, and p is a permutation of the indices in S, i.e., 
p maps S onto the integers 1,2,..., 1 S I: p(j) is th e ordinal position assigned to alternative 
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j, and p-r(i) is the index of the alternative that has rank order i. Then r(p; S) deffotes the 
probability of ranking (ai ] jE S} in the order (a,.+,) , +.1(s) ,..., a,,-l~l)). To indicate 
the ranking explicitly, let i, = p-l(;): Then we sometimes write r(1, , 2, ,... , j S I,) for 
r(p; S). For example, ~(4, I, 2) is the probability of ranking the alternative set {u, , a2 , a3 
in the order <as, a, , a~>. 

An experiment that determines r(p; S) for every rank ordering of every subset of 1, is a 
complete ranking experiment, and the resulting collection of probability distributions is a 
complete system of ranking probabilities for n alternatives. Such a system satisfies the GT 
model TF, iff there exist scale values m, ,.. ., m, such that for every ranking p of mery S, 

SCl, IS/ >,2: 

YU,, 2, ,..., i S !,> = P[mlp + Xl0 > m2, + X2I, > *.. > mlsl, + XI&~. 

In other words a system of ranking probabilities satisfies Y=” iff it can be generated by 
assigning utility random variables m, + X, ,..., m, + X, to a1 ,..., a, (with F, the joint 
distribution function of X, ,..., X,) and applying the decision rule: “For every subset 
{aj 1 jE S) rank the alternatives in the same order as the random variables {mj + Xj / jE S).” 
Then we say that two GT modek; are equivalent for ranking iff every complete system of 
tanking probabilities that satisjes one also satis$es the other, and the identifiability problem 
is to determine when this can happen for two models that correspond to nontrivially 
different distributions (i.e., it’s obvious that YF, and 5c, are equivalent for ranking as 
well as for choice if 

F&, ,..., x,) = G,(ux, + b,..., ax, + b), 

where a > 0, b are arbitrary constants, and so the question is whether there are other 
possibilities.) 

In particular, since it is immediately clear that for GT models ranking equivalence 
implies choice equivalence, it is natural to wonder whether two such models can be 
equivalent for choice but not for ranking. To put this question in perspective it is useful 
to begin by considering relationships between choice and ranking for the broadest class of 
models that still retain Thurstone’s basic idea: These are the “random utility models” 
described in the next section.5 This is important because the assumption that choices and 
rankings are both dictated by order relationships within a common set of random variables 
obviously implies a structural bond between the two systems of preference probabilities, 
and so it is necessary to understand this before considering the additional implications of 
the distributional constraints embodied in GT models. 

3.2. Random utility models for choice and ranking: Constraints on equivalence relationships. 

By a random utility vector U, we mean simply a sequence of jointly distributed random 
variables (U, ,..., UJ, subject to the constraint P(U, = Uj) = 0 for all i ti j. Such a 

5 Lute and Suppes (1965); Corbin and Marley (1974); Falmagne (1978), Cohen (1980). 



60 JOHN I. YELLOTT 

vector generates a complete system of choice probabilities (p( ; S) 1 S 2 1%} via the rule 

p(i; S) = P[U, = Max{Uj 1 j E S)] 

and a complete system of ranking probabilities {r( ; S) / S Z1,) via the rule 

r(p; S) = P[U,,, > uz, > .*. > U,,,J. 

By a random utility (RU) model 4 we mean any collection of random utility vectors: 
A given system of choice or ranking probabilities is said to satisfy 9 iff it is generated by 
some vector in @. Two RU models % and W are equivalent for choice (ranking) experi- 
ments with n alternatives iff every complete system of choice (ranking) probabilities for n 
alternatives that satisfies one also satisfies the other. 

Clearly every GT model is a RU model, and likewise every GT-V model (construed 
as a sequence of GT models, as in Section 2.3). However, a RU model may also consist 
of just one random utility vector. 

Now suppose 4 and @’ are equivalent for ranking experiments with 71 alternatives, 
and that some system of choice probabilities { p( ; S) 1 S C I,,} satisfies 4. Then this 
system is generated by some vector 0, in ‘4Y, and that vector simultaneously generates a 
system of ranking probabilities {r( ; S) 1 S 2 In} which also must satisfy W for some 
vector O:, . This vector in turn must generate the same choice system as 0, , since the 
choice probabiIities generated by a given utility vector are completely determined by its 
ranking probabilities via the relationship 

p(i; S) = 1 yb; 8, 
u:+=i 

i.e., the probability of choosing i from S is the probability of ranking i first in S. Conse- 
quantly 

LEMMA 2. If two RU models are equivak& for ranking experiments with n alternatives 
they are equivalent for choice experiments with n alternatives. 

Next, suppose @ and W are equivalent for choice experiments with three alternatives, 
and (Y( ; S) I S C f3> is a ranking system generated by us E 4Y. Then this vector generates 
a choice system ( p( ; S) 1 S _C Is}, and that system must also be generated by some vector 
in W, say uj . That vector in turn must generate the same ranking system as a, , because 
for three alternatives the ranking probabilities generated by a utility vector are completely 
determined by the corresponding choice probabilities, via the relationships 

r(i, j) = Ppi > Uj] = p(i, j), 

r(i, j, k) = PflJ, > Uj > U,] = P[v, > UJ - P[U, = M@Jl , U2, Us}] 

= p( j, k) - p( j; (1, 2, 3)). 

Combining this argument with Lemma 2, we see that: 
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LEMMA 3. Two RU models are equivalent for choice experiments with three alternatives 

iff they are equivalent for ranking experiments with three alternatives. 

For experiments with four or more alternatives, however, the ranking probabilities 
generated by a random utility vector are no longer determined by its choice probabilities. 
Table 1 illustrates two different probability distributions over the possible rank ordering 
of four alteranatives that yield identical systems of choice probabilities. Each of these 
ranking probability distributions is generated by a random utility vector, namely the 
vector (U, , U, , Us , U4) having the joint distribution 

P[U, = i-l, UB =j-l, Us = k-l, U, = l-l] = P[P(l) = is p(2) =j, p(3) = kS PC41 --7 ‘1) 

TABLE 1 

Random Utility Models That Are Equivalent 
for Choice but Not for Ranking 

Rank order P[ranking] for Model 1 P[ranking] for Model 2 
--__.__-___ -_____ --~- 

1234 a* b 

1243 b” a 

2134 b a 

2143 a b 

1324 a b 
1342 b a 

3124 b 

3142 a i 

1423 b 

1432 ;: a 

4123 b 

4132 a 1 

2314 a b 

2341 b a 

3214 b a 

3241 a b 

2413 a b 

2431 b a 

4213 b 
4231 a ; 

4321 a 6 

4312 b a 

3421 b 

3412 a b” 

* a + b = l/12, a # b. 
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where i, j, R, 1 is any permutation of 1,2,3,4. Since the left and right columns in Table 1 
assign different probabilities to every rank order they obviously correspond to different 
utility vectors, say 0s and &, but these vectors both generate the same system of choice 
probabilities (i.e., p(;; S) = l/l S 1). C onsequently the two systems of rank order proba- 
bilities in Table 1 correspond to two random utility models {us} and {o;} that are not 
equivalent for ranking experiments with four alternatives but are equivalent for choice 
experiments with four alternatives. 

For RU models in general then, ranking equivalence implies choice equivalence, but 
not conversely-except in the special case of experiments with three alternatives. There- 
fore it is reasonable to ask whether there are GT models that are equivalent for complete 
choice experiments with n > 4 alternatives but not for the corresponding ranking experi- 
ments. The next section shows that there are none. 

3.3. Equivalence Properties of GT Models for Ranking 

THEOREM 1. Two Generalized Thurstone Models are equivalent for ranking experiments 
with n alternatives 8 they are equivalent for choice experiments with n alternatives. 

Proof. “Only if” follows immediately from Lemma 2, since every GT model is a 
RU model. 

To show “if,” suppose rrn and Yc, are equivalent for choice experiments and that 
14 ;S)lSCAJ is a complete system of ranking probabilities that satisfies flFa for some 
set of scale values m, , ma ,..., m, . From Strauss’ theorem (Lemma 1) we know that for 
some a > 0 the characteristic functions of F, and G, satisfy 

f&l 9 t, ,***, tn) = g&la, h/a,..., L/4 (3) 

whenever C” trl ti = 0. We will show that YG, generates {r( ; S) 1 S _C I,,} with scale values 
am,, amz ,..., am,, . Note first that we need only show that Yc, can generate the same 
ranking probabilities for the entire set A, (i.e., the same values of r(p; I,)), since these 
completely determine the ranking probabilities for all the proper subsets of A, . Now let 

ml + Xl ,.-, m, + X, be the utility random variables of Yr, and am, + Xi ,..., am, + 
Xk those of Yo, , and suppose that p is any permutation of 1, 2,..., n. Then we need to 
show that 

Ph, + Xl0 > mzp + Xzp > a.. > mn, + X,J 
(4) 

= P[amlr, + Xi0 > am$, + X& > ..* > amuD + X&l. 

Now the left side here is 

Wh, - Xl0 < ml0 - m2,, 

XBp - X2, -c mzp - m3, J..aJ Xal, - XnTl, =c m,+ - mnpl 
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and the right side is 

x;, - x;, < Q(vQ, - %J,.. ., xh, - x-, -=c 4%z-lp - %Jl 

and so (4) is true if the random vectors 

and 

((X;lp - JGp)ia9 @Go - Xp)l%.., W& - X-l,)!4 (6) 

have the same joint distributions. The joint characteristic function of (5) is 

E[exp(ti,(Xzp - X,) + k#& - X2J + ..* + k(Xn, - X-IJI 

= E[exp(--is,Xr,, + i(s, - s.J X.+ + ... + i(s,-, - s,-1) X,-lI, + isn-&,)I 

and if we write t, = -s, , t, = ii - ss ,..., t,-, = s,-a - s,-~ , f, = s,-~ , this last 
expression becomes 

f&,(l) t b,,) >v*., bd), (7) 

where Cy=, t,ti) = 0. Similarly the joint characteristic function of (6) 

becomes 

R&d~, t,(,d%-v fddl4 (8) 

and (7) and (8) must be equal because of (3). Thus the random vectors (5) and (6) have the 
same characteristic function, and consequently are identically distributed. This establishes 
(4) and completes the proof. 1 

In particular we see that two GT-V models are completely equivalent for ranking 
experiments with n alternatives iff they are completely equivalent for choice experiments 
with rz alternatives, and so, for example, the models corresponding to the density functions 
Sinc2(x)(l -I- Cos 27~2~) and Sinc2(x)(l + Sin 27~~) cannot be discriminated by either 
choice or ranking experiments with 71’ < n alternatives. 

3.4. Reversibility 

In the Introduction (Section 1.2) the concept of reversibility was motivated in terms of 
Block and Marschak’s impossibility theorem. It was pointed out that this theorem impli- 
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citly assumes that both the best-to-worst and worst-to-best ranking probabilities satisfy 
the double exponential GT-V model, and consequently reversibility could hold generally 
only if that model were equivalent (for three-alternative ranking experiments) to the GT-V 
model based on the “reverse” double exponential distribution-i.e., the distribution of 
-X when X itself is a double exponential random variable. Because of Theorem 1 in the 
last section we know that this ranking equivalence could only hold if these two models 
were also equivalent for three-alternative choice experiments, and consequently we can 
interpret the impossibility theorem in terms of the general equivalence properties of 
GT-V choice models, as outlined in Section 2.2. In particular, because the double exponen- 
tial distribution has a nonvanishing characteristic function we know that a GT-V model 
YG can be equivalent to the model FF based on the double exponential distribution 
F(x) = ecem2 iff G is another distribution of the same type, i.e., G(x) =F(ax + b) for 
some a > 0. Since the double exponential distribution is asymmetric, the reverse double 
exponential random variable -X with distribution function F*(x) = 1 - eee2 cannot 
be of double exponential type, and so z&* cannot be equivalent to FF for three alternative 
choice experiments. Consequently one can say that the impossibility theorem is ultimately 
due to the shape of the double exponential distribution, i.e., its asymmetry and its 
“smoothness,” as reflected in the fact that its characteristic function is nonvanishing. 

This analysis then suggests the general problem: which GT models are reversible for 
n-alternative ranking experiments ? To answer this question we first need a general 
definition of reversibility. Intuitively, reversibility means that every system of ranking 
probabilities (r(p); S) ( S C 1%) generated by FF is matched by another system 
{r*(p; S) 1 S C I,J, also generated by rF, , which a&ns the same probabilities to the 
reverse rankings, that is, if p is any permutation of the indices in S and p* is the reversed 
permutation (say S = {I, 2,4}, p(1) = 3, p(2) = 2, p(4) = 1; then p*(l) = 1, p*(2) = 2, 
p*(4) = 3), then I* = r(p). T o f ormalize this notion for GT models we will 
say that: 

A GT model YP, is reversible for n alternative ranking experiments iff for every set of 
scale values m, , m2 ,..., m, there is another set rn:, m,* ,..., rnz such that for everypermutation 

p of every SCI, 

Ph, + X,, > m2r, + X2, > ... > mlsl, + XISIJ 

= P[4+& + XISI, > d&, + XISI-~, > 0.. > ml*, + X1,1, 

where XI ,..., X, have the joint distribution function F, , 

Next we relate reversibility and equivalence: 

(9) 

LEMMA 4. If  F, is the joint distribution function of the random variables XI , Xe ,..., X, , 
let F,* denote the joint distribution function of -X, , -X2 ,. .., -X, . Then the GT model 
YF, is reversible for n alternative ranking experiments i f f  YF, is equivalent to YP* . n 

Proof. Suppose FF, and YF* are equivalent. Then for every system of ranking 
probabilities generated by FF, (uiing some set of scale values m, , m2 ,..., m,) there exists 
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a corresponding set rn:, mz,..., rnz by which 9’; generates the same system, i.e., for 
every permutation p of every S C I, 

@h f X1, > ... > mlsl, + Xisl J 

= P[-m&,l, + Xlsl, > ... > -mZ + x1,1 

so YE is reversible. Conversely, suppose Fr, is reversible. Then any system of ranking 
probabilities generated by Fr, using some set of scale values m, ,..., m, is also generated 
by FF; using scale values -m:,..., -m,*, where the rn? are the scale values whose 
existence is guaranteed by the definition of reversibility, and so FF 7% and FF:, are 
equivalent. 1 

Now we can give a general characterization of reversible GT models: 

THEOREM 2. A GT model TF, is reversible iff the characteristic function fn of distribution 
F, satis$es the equation 

f&l , t, ,**-> tn) = fn(-tl 7 -t, ,..., -tn) (10) 

for all ti such that CT!, ti = 0. 

Proof. Suppose (10) holds for all ti such that Cy=, ti = 0. Then since fm(tl ,..., t,) is 
the characteristic function of F, and fn(-tl ,..., -t,J is the characteristic function of 
F,* , it follows from Strauss’ theorem (Lemma 1, Section 2.3) that FF, and &:, are 
equivalent for choice, and consequently (by Theorem I) they are equivalent for ranking. 
Consequently (by Lemma 2) yF, is reversible. 

Conversely, suppose YF is reversible. Then from Lemma 2 we know that .YF is 
equivalent to FF; for rankiig, and consequently (Th eorem 1) for choice. Therefore fr”om 
Lemma 1 we have 

f&l 7 t, ,..., tn) = f,(--et, )...) --at,) (11) 

for some a > 0 and all ti such that C ti = 0. To show that a here must be one (i.e., to 
show that (11) implies (10)) note that f  (-1, 1, 0, O,..., 0) is the characteristic function of 
X, - X, , and f  (at, -at, 0, 0 ,..., 0) is the characteristic function of a(X, - X,). Conse- 
quently (1 I ) implies that these random variables are identically distributed, i.e., 

Q&--x, GYI =PF,-xx, <Y/4 
= 1 -Ppp(,-xx, <-y/u]. 

Let D(y) = Pm, - X, < y], and recall that by the definition of GT models, D is 
strictly increasing. Now set y = a, to obtain D(a) = 1 - D(- I), and then y = - 1, 
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to obtain D( - 1) = 1 - D( 1 /a). Combining these two equations we have D(a) = D( 1 /u), 
and since D is strictly increasing, a must be 1. 1 

Specializing Theorem 2 to the case of GT-V models, where f,,(tr , t, ,. ,., t,) = 

fWf(t2) **-f&J, we have the immediate 

COROLLARY 1. A GT-V model fir is reversible for n alternatives iff the characteristic 
function f  of distribution F satisJes the equution 

f(t,)f(tz) **~f(tn-l)f (- FL) =f(-t,)f(-t2) ..*f(-tn-Af (F1 4). (12) 
i=l i=l 

Proof. Equation (10) reduces to (12) in this case. 
From this we can conclude that GT-V models with nonvanishing characteristic 

functions are only reversible in the obvious way, i.e., when their utility distributions are 
symmetric: 

COROLLARY 2. I f  F has a nonvanishing characteristic function the GT-V model YT is 
reversible for three or more alternatives iff F is a symmetric distribution (i.e., fw some centering 
constunt c, F(x + c) = 1 - F(-x + c)). 

Proof. Suppose F is symmetric; i.e., for some c, X - c and -(X - c) are identically 
distributed. The characteristic function of the former is e-““y(t), and of the latter, 
eictf (-t), and so these two functions are equal for all t, i.e., f(t) = eizctf(-t). Conse- 
quently for every 12 

f(h) .**f(tn-Jf (- g; h) 

=e iz”“y( -tl) . . . ewAf( -t,-l) e-~2a2t‘ 

fk 1 
n-1 ti 
i=l 

= f(-td *..f (-tn-Jf (yg Ii) 

so (12) holds and flP is reversible for any n. 
Conversely if flF is reversible for n = 3 then (12) holds for n = 3 and so the charac- 

teristic functions f  (t) and f  *(t) = f  (-t) satisfy the equation 

f  (t,)f (t2)f (-tl - t2) = f “(tdf *(tz)f *(-t1 - 12). 

As noted earlier in Section 2.2, Yellott (1977) shows that when f is nonvanishing, this 
equation implies f*(t) = eibtf (t), so that here f (- t) = efb”f (t). Consequently -X and 
X + b are identically distributed, and so for the centering constant c = -b/2 we have 
symmetry, i.e., F(x + b/2) = 1 - F(-x + b/2). u 

Corollary 2 shows that for GT-V models with non-vanishing characteristic functions, 
reversibility and symmetry are equivalent conditions. However, if the characteristic 
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function of a distribution F is allowed to have zeros, Y” can be reversible even though F 
is asymmetric. This can happen if FF is equivalent to a symmetric model, as in the follow- 
ing example. 

COROLLARY 3. The GT-V model corresponding to the asymmetric probability density 
function 

p(x) = sinS(x)(l + sin 25~~) 

is reversible for n’ < n alternatives, but not for n’ > n. 

Proof. The characteristic function f (t) of p(x) is 

f(t) = 1 - I t I t E (-1, 1; 

= _f(l -it-nl) tE(n - l,n + 1) 

=;(l-It+nl) tE(--n-l,-n+l) 

zzz 0 elsewhere. 

Rockwell et al. (1979) show that for n’ < n, this characteristic function satisfies the equa- 
tion 

f(tdf(tJ ..*f(td-df(- gi, =&)g(tz) ~~Ydtn&(-~~f,), 

where g is the characteristic function of the symmetric density q(x) = sinca(,)( 1 +cos 23771.4, 
given explicitly by 

g(t) = 
= gl-lt--nl) 

/ 

1 - I t I t E (-1, 1) 
tE(n- l,n+ 1) 

= 8(1 - It+nl) tE(--R-1,-72$1) 
0 elsewhere. 

Now since density Q is symmetric, it follows from the proof of Corollary 2 that for all n’ 

g(h) -~&d-l)~(- ngll) = d-t1) ***~(-tn4g(~~11 fi) 
and so for n’ < n 

T%'-1 

f(-tJ a** f(-tn>-l)f g ti = g(-td . ..g(--td-dg c ti ( ) 
?l'-1 

( 1 i=l 

n'-1 

= g(h) .** &a,-1)g - 1 ti ( 1 i-1 

= f(tJ ***f (&I*-df (- ;g ts). 
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Consequently f  satisfies (12) f or n’ < n, and so the GT-V model based on density p 
is reversible for n’ < n. However, for 11’ > n + 1 (12) fails, as one can see for 
7~’ = n + 1 by setting tI = t, = ... = t,,-, = k, where (n - ,l)/n < k < 1. Then 
f(1) = f (-I), since k falls in the interval (-1, l), but --~~=~’ ti = --nR falls in 
the interval (-n - 1, --n + 1) while x?T’ ti falls in the interval (n - I, n + 1). 
Consequently in this case f(tl) *..f(tnB1) =f(-tl) . ..f(-t.+J > 0, but 

since one side has the sign of -4, the other the sign of +i. A similar argument works for 
any n’ > n + 1 and consequently (12) cannot hold in these cases, so the GT-V model 
based on density p is not reversible for more than n alternatives. 1 

Finally, we note that although GT-V models based on asymmetric distributions 
can sometimes be reversible for a finite number of alternatives (as in the last corollary), 
they can never be reversible for arbitrarily many: There is always some number beyond 
which reversibility fails. Consequently if one wants to insist on reversibility for all 
possible ranking experiments, only symmetric models will do. 

COROLLARY 4. A GT-V model TF is reversible for n alternatives fm every n iff F is a 

symmetric distribution. 

Proof. Corollary 2 shows that if F is symmetric, rF is reversible for every 11. Conver- 
sely if yr is reversible for every n then (12) holds for all n. Yellott (1977, Theorem 3) 
shows that this implies f(t) = eibtf(-t), i.e., F is symmetric with centering constant 

42. I 
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