
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Lightweight Specifications for Parallel Correctness

Permalink
https://escholarship.org/uc/item/9vt9p147

Author
Burnim, Jacob Samuels

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9vt9p147
https://escholarship.org
http://www.cdlib.org/


Lightweight Specifications for Parallel Correctness

by

Jacob Samuels Burnim

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Koushik Sen, Chair
Professor George Necula
Professor David Wessel

Fall 2012



Lightweight Specifications for Parallel Correctness

Copyright 2012
by

Jacob Samuels Burnim



1

Abstract

Lightweight Specifications for Parallel Correctness

by

Jacob Samuels Burnim

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Koushik Sen, Chair

With the spread of multicore processors, it is increasingly necessary for programmers to write
parallel software. Yet writing correct parallel software with explicit multithreading remains
a di�cult undertaking. Though many tools exist to help test, debug, and verify parallel
programs, such tools are often hindered by a lack of any specification from the programmer
of the intended, correct parallel behavior of his or her software.

In this dissertation, we propose three novel lightweight specifications for the parallelism
correctness of multithreaded software: semantic determinism, semantic atomicity, and non-
deterministic sequential specifications for parallelism correctness. Our determinism specifi-
cations enable a programmer to specify that any run of a parallel program on the same input
should deterministically produce the same output, despite the nondeterministic interleaving
of the program’s parallel threads of execution. Key to our determinism specifications are our
proposed bridge predicates — predicates that compare pairs of program states from di↵erent
executions for semantic equivalence. Our atomicity specifications use bridge predicates to
generalize traditional atomicity, enabling a programmer to specify that regions of a parallel
or concurrent program are, at a high-level, free from harmful interference by other threads.
Finally, our nondeterministic sequential (NDSeq) specifications enable a programmer to com-
pletely specify the parallelism correctness of a multithreaded program with a sequential but
nondeterministic version of the program and, further, enable a programmer to test, debug,
and verify functional correctness sequentially, on the nondeterministic sequential program.

We show that our lightweight specifications for parallelism correctness enable us to much
more e↵ectively specify, test, debug, and verify the use of parallelism in multithreaded soft-
ware, independent of complex and fundamentally-sequential functional correctness. We show
that we can easily write determinism, atomicity, and nondeterministic sequential (NDSeq)
specifications for a number of parallel Java benchmarks. We propose novel testing techniques
for checking that a program conforms to its determinism, atomicity, or nondeterministic se-
quential specification, and we apply these techniques to find a number of parallelism errors
in our benchmarks. Further, we propose techniques for automatically inferring a likely de-
terminism or NDSeq specification for a parallel program, given a handful of representative
executions.


	Contents
	Introduction
	Overview of Lightweight Specifications for Parallelism Correctness
	Running Example
	The Challenge of Parallelism Correctness
	Semantic Determinism Specification
	Semantic Atomicity Specifications
	Nondeterministic Sequential Specifications

	Asserting and Checking Determinism for Multithreaded Programs
	Determinism Specification
	Checking Determinism
	Determinism Checking Library
	Experimental Evaluation
	Discussion
	Related Work
	Summary

	Inferring Likely Determinism Specifications for Multithreaded Programs
	Formal Background
	Overview of DETERMIN
	Inferring Determinism Specifications
	DETERMIN Algorithm
	Experimental Evaluation
	Summary

	Specifying and Checking Semantic Atomicity for Multithreaded Programs
	Specifying Semantic Atomicity
	Semantic Atomicity and Linearizability
	Testing Semantic Linearizability
	Experimental Evaluation
	Related Work
	Summary

	Nondeterministic Sequential Specifications for Parallelism Correctness
	Overview of NDSeq Specifications
	Parallelism Correctness with Nondeterministic Sequential Specifications
	Nondeterministic Specification Patterns
	Runtime Checking of Parallel Correctness
	Experimental Evaluation
	Related Work
	Summary

	Inferring Likely Nondeterministic Sequential Specifications
	Overview
	Background: NDSeq Specifications
	Inferring a Suitable NDSeq Specification
	Correctness of Specification Inference Algorithm
	Correctness of Dynamic Slicing Optimization
	Experimental Evaluation
	Related Work

	Conclusion
	Bibliography



