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Two-photon spectroscopy of excitons with entangled photons
Frank Schlawin1,2,a) and Shaul Mukamel1,b)

1Department of Chemistry, University of California, Irvine, California 92697-2025, USA
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The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-
probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes.
Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons in-
teracting with a three-level model of matter reveal how the non-classical time-bandwidth properties
of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved
features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs
are well separated, and are gradually diminished at higher intensities when different photon pairs
overlap. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4848739]

I. INTRODUCTION

In the past 20 years, nonlinear optical spectroscopy
has evolved into an indispensable tool for probing non-
equilibrium dynamics in many-body systems such as pho-
tosynthetic complexes,1–4 semiconductors,5, 6 and strongly
correlated materials.7–9 The various theoretical concepts de-
veloped in these areas call for the design of new experiments
to test the underlying dynamics. One promising new resource
for nonlinear spectroscopy lies in the use of quantum proper-
ties of the light, where quantum effects such as entanglement
can be exploited to manipulate optical signals.

In this paper, we use a diagrammatic superoperator ap-
proach to simulate frequency-dispersed transmission mea-
surements of broadband entangled photon pulses in a three-
level system. The technique can be applied to bulk as well as
single molecules. Most single molecule experiments use flu-
orescence detection, but direct absorption had been reported
as well.10–12 All of these measurements depend on the four-
point field correlation function, which is responsible for the
many photon correlation effects usually attributed to entan-
gled light such as dispersion cancellation13 or sub-wavelength
diffraction.14 Therefore, we can expect to see signatures of the
quantum nature of the light in such signals. The four-point
correlation function scales quadratically in the pump inten-
sity for classical laser pulses, but linearly for entangled pho-
tons. This favorable intensity scaling15–18 has been demon-
strated experimentally in various systems, and allows to
perform measurements at low intensities, avoiding damage
to the sample. Moreover, the non-classical time-bandwidth
properties of entangled photon pairs19–21 provide unconven-
tional observation windows, and can be used to selectively
excite specific two-exciton states21 or specific vibrational
states,22, 23 and control population transport.24 New control
parameters of quantum light can be varied to create novel two-
dimensional correlation plots.25, 26
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Another promising technique involves the detection of
fluorescence signals after excitation by quantum light or using
phase cycling.27–29 It has been shown by Qu and Agarwal30

that entangled beams can also give rise to Ramsey fringes
with twice the frequency resolution of classical light in
two-photon counting experiments. Our formalism generalizes
these results to describe arbitrary pulse shapes rather than
square pulses, and more general matter systems. Similar re-
sults have been obtained for coherent signals with heterodyne
detection.31

II. FREQUENCY-DISPERSED PUMP-PROBE SIGNALS

We consider the setup and the three-level system as
sketched in Figure 1. Two entangled photon beams E1 and E2

created by parametric down-conversion are directed onto the
sample. The change in transmission of field E2 at frequency
ω due to the interaction with matter is recorded. Similar se-
tups have been used in Ref. 18, where count rates on the order
of 107 photons/s have been reported. The frequency-dispersed
detection proposed here is expected to yield comparable but
somewhat lower count rates.

The signal is given by

S(�; ω, δt) = 2

¯
�〈E†

2(ω)P (3)(ω)〉, (1)

where the third-order polarizability

P (3)(ω) =
∫

dteiωtP (3)(t) (2)

is induced by the interaction of the matter system with the
light field. The set of control parameters � includes the pump
pulse frequency ωp and its bandwidth σ p, the central frequen-
cies of the downconverted beams ω1 and ω2, their entangle-
ment time T specifying their bandwidths, and the amplitude
of the pump pulse α as discussed in Ref. 32. δt is a variable
delay. Expanding Eq. (1) to third order in matter-field interac-
tions, we obtain the diagrams of Figure 2. Diagram rules are
given in Ref. 33. Diagrams (a) and (b) in Fig. 2 pass through
the doubly excited state |f 〉, we thus denote them double quan-
tum coherence (DQC) pathways,
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FIG. 1. Left: Setup for the pump-probe experiment with entangled photons. The two beams are generated by parametric down-conversion and interact with the
sample modelled as a three-level system (right). The transmission of beam 2, which delayed by δt, is recorded. Right: Our three three-level system.

Sa(�; ω, δt) = 2

¯

∑
e,e′,f

� i3μf e′μe′g

ω − ωe′g + iγe′

(−i

¯

)3 ∫
dωa

2π

∫
dωb

2π

μge

ωa − ωeg + iγe

μef

ωa + ωb − ωfg + iγf

× [〈E†
2(ω)E†

1(ωa + ωb − ω)E2(ωb)E1(ωa)〉ei(ω+ωa−ωeg−ωe′g+i2γe)δt

+ 〈E†
2(ω)E†

1(ωa + ωb − ω)E1(ωb)E2(ωa)〉ei(ω−ωe′g+iγe)δt ], (3)

Sb(�; ω, δt) = 2

¯

∑
e,e′,f

�i3

(−i

¯

)3 ∫
dωa

2π

∫
dωb

2π

μge

ωa − ωeg + iγe

× μef

ωa + ωb − ωfg + iγf

μf e′μe′g

ωa + ωb − ω − ωe′g − iγe′

×[〈E†
1(ωa + ωb − ω)E†

2(ω)E2(ωb)E1(ωa)〉ei(ω−ωb−ωee′+i2γe)δt

+〈E†
1(ωa + ωb − ω)E†

2(ω)E1(ωb)E2(ωa)〉ei(ω−ωf e′+i(γe+γf ))δt ]. (4)

Diagrams (c) and (d) in Fig. 2 pass through a ground state vibrational resonance |g′〉 after two interactions. We thus denote them
Raman pathways,

Sc(�; ω, δt) = 2

¯

∑
e,e′,g′

� i3μg′e′μe′g

ω − ωe′g + iγe′

(−i

¯

)3 ∫
dωa

2π

∫
dωb

2π

μge

ωa − ωeg + iγe

μeg′

ωa − ωb − ωg′g + iγg

× [〈E†
2(ω)E2(ωa + ωb − ω)E†

1(ωb)E1(ωa)〉ei(ωa−ωb−ωg′g+iγg )δt

+ 〈E†
2(ω)E1(ωa + ωb − ω)E†

1(ωb)E2(ωa)〉ei(ω−ωe′g+iγe)δt ], (5)

Sd (�; ω, δt) = 2

¯

∑
e,e′,g′

�i3

(−i

¯

)3 ∫
dωa

2π

∫
dωb

2π

μge

ωa − ωeg + iγe

× μeg′

ωa − ω − ωg′g − iγg

μg′e′μe′g

ωa + ωb − ω − ωe′g − iγe

×[〈E†
1(ωa + ωb − ω)E1(ωb)E†

2(ω)E2(ωa)〉ei(ω−ωa+ωg′g+iγg )δt

+〈E†
1(ωa + ωb − ω)E2(ωb)E†

2(ω)E1(ωa)〉ei(ω−ωb−ωee′+i2γe)δt ]. (6)
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FIG. 2. Loop diagrams for the various pathways of the pump-probe signal. Unlabelled arrows represent the total field E1 + E2. Diagrams (a) and (b) represent
double quantum coherence (DQC) pathways, and diagrams (c) and (d) are Raman pathways.

Our terminology is based on following the field along the
loop. The DQC contributions contain 〈E†E†EE〉 field correla-
tion functions, whereas the Raman terms have 〈E†EE†E〉. We
are using a frequency-domain representation that yields more
compact expressions for the signals. Equations (3)–(6) will be
used in the following simulations.

III. SIMULATIONS OF DQC-SIGNALS

We use the squeezed light model as described in the
Appendix. This model corresponds to parametric downcon-
version as illustrated in Figure 1. A pump photon with fre-
quency ω′

p is downconverted into two, signal and idler, pho-
tons with frequencies ω′

1 and ω′
2, such that ω′

p = ω′
1 + ω′

2.
The bandwidth of the two beams is characterized by the en-
tanglement time T, and it can greatly exceed the bandwidth of
the pump pulse.25 In this case, the two photons are said to be
frequency-time entangled, since their sum is distributed ac-
cording to the pump bandwidth. The two central frequencies
of the downconverted beams can be varied experimentally by
adjusting the phase matching conditions inside the nonlinear
crystal. We will restrict our discussion to degenerate down-
conversion, i.e., the central frequencies of the two beams co-
incide, ω1 = ω2 = ωp/2.

We first simulate the DQC-pathways. Using Eq. (A4),
we have evaluated the frequency integrations in Eqs. (3) and
(4) numerically by sampling ±10 standard deviations of the
pump around the central frequencies of the two pulses.

We consider the Frenkel exciton model system shown in
Figure 1, consisting of two single-exciton states with ener-
gies e1 = 10 000 cm−1 and e2 = 11 000 cm−1, and two two-
exciton states with f1 = 20 000 cm−1 and f2 = 21 500 cm−1.
The dipole moments connecting the states are taken to be the
identical. All transitions are broadened by a dephasing rate γ

= 100 cm−1. The system shows one harmonic, one weakly
anharmonic one, and two strongly anharmonic two-exciton
transitions.

Nonlinear optical signals are created by anharmonicities
of matter.34, 35 If the two-exciton states are all given by the
sum the single-exciton energies, i.e., εf = εei

+ εej
∀f, the

signals are cancelled by destructive interference. Only inter-
actions between the single excitons give rise to a nonvanish-
ing signal. The diagrams are normalized such that their max-
imal value is ±1. The impact of the anharmonicity can be
read off the signal in the left panel in Figure 3 (top row).
For ωp = ωf2g we observe several peaks along the horizon-
tal ω-axis. At ω = 10 500 cm−1, an absorptive peak ap-
pears corresponding to the e2 ↔ f2-transition, which is weakly

ωp

ω

= ωp

ω

+ ωp

ω

= +ωp

ω

ωp

ω

ωp

ω

(a () b)(a) + (b)

FIG. 3. Top row: The DQC-signal [Eqs. (3) and (4)] is plotted vs the pump frequency ωp and the dispersed frequency ω for entangled photons. The three panels
depict diagrams (a) and (b) of Fig. 2 and their sum as marked. Bottom row: Same as top row, but for excitation by classical laser pulses.
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(c d))

FIG. 4. The DQC-pathways (Eqs. (3) and (4)) are plotted vs the pump frequency ωp and the dispersed frequency ω with different pump amplitudes
(a) α = 0.0001, (b) α = 0.005, (c) α = 0.01, and (d) α = 0.1. As α is increased the light state changes from twin photons to squeezed light.

anharmonic. At ω = 11 500 cm−1, the strongly anharmonic
e1 ↔ f2-transition (only shown partially) creates a dispersive
resonance. In contrast, on resonance with the harmonic two
exciton-state f1 at ωp = 20 000 cm−1, the resonances are
weaker, even though their dipole moments have the same
strength. In the depicted ω-regime, only the resonant transi-
tion e1 ↔ f1 can be observed. As can be seen from the other
two panels corresponding to diagrams (a) and (b) in Fig. 3,
respectively, it is eliminated by destructive interference of the
two diagrams. Diagram (a) shows a negative resonance at this
point, and diagram (b) a positive one, such that their sum only
yields a small residual signal.

For comparison, in the bottom row we depict the DQC-
signal for excitation by a classical laser pulses, where the four-
point correlation function in Eqs. (3) and (4) factorizes into a
product of laser pulse amplitudes,

〈E†(ω′
a)E†(ω′

b)E(ωb)E(ωa)〉 = E∗(ω′
a)E∗(ω′

b)E(ωb)E(ωa),
(7)

and we used the Gaussian field envelope

E(ω) = exp

[
− (ω − ωp/2)

2σ 2

]
. (8)

We chose the bandwidth σ to coincide with the bandwidth σ p

of the pump pulse which creates the entangled pair. This en-
sures the same frequency resolution when varying ωp as in the
case of entangled photons, such that the peak structures can be
readily compared. The signal shows the same destructive in-
terference as in the quantum case. However, it is peaked when
the beam is on resonance with a single-exciton transition, i.e.,
at 20 000 and 22 000 cm−1. Only diagram (b) shows a two-
exciton resonance at 21 500 cm−1 [right panel in the bottom
row], but it is partially masked by the stronger resonance of
diagram (a) at 22 000 cm−1.

Figure 4 illustrates how the non-classical properties of
entangled beams are degraded, as the pump intensity |α|2 is
increased, and different entangled pairs overlap in time. Sig-
nals involving photons belonging to different pairs are clas-
sical. Figure 4(a) shows again the same twin-photon domi-
nated signal, where the anharmonic two-exciton state is much
brighter than the harmonic one. In panel (c), the latter peaks
become stronger due to incoherent contributions on resonance
with the g → e1-transition, and for even stronger pump in-
tensities [panel (d)] the signal is dominated by single pho-

ton resonances g → e1, 2 at ω = 10 000 and 11 000 cm−1,
respectively.

To rationalize this dependence on the pump intensity,
we depict the largest singular value of the downconversion
Hamiltonian (A2) in Figure 5. From the analysis of the field
correlation function,32 we know that the coherent contribu-
tion of pairs of entangled photons scales as sinh (rk) cosh (rk),
and the incoherent autocorrelation contribution of uncorre-
lated photons as sinh 2(rk). At low pump intensities, rk 
 1,
we can neglect the latter contribution, and approximate the
former as sinh (rk) cosh (rk) ≈ rk. This regime is described
by the entangled twin photon state,25 and its contribution is
plotted as a dashed line in Figure 5. The four-point corre-
lation function of twin photons scales linearly in the pump
intensity,15 and the crossover of the intensity scaling is com-
monly regarded as a crossover to a “classical” high intensity
regime.16 However, as pointed out in Ref. 32, this crossover
which occurs for α � 0.002 in Figure 5 does not coincide
with the crossover in the behavior of the four-point correla-
tion function which occurs when the red and blue lines are
of similar strength at α � 0.01. This can clearly be seen in
Figure 4, where panels (a) and (b) look virtually identical,
even though only panel (a) can be described by the twin state.
In panel (c), the lower peaks become notably stronger with re-
spect to the other resonances, and at much higher amplitudes
α [panel (d)], the incoherent contributions finally dominate.

(a) (b) (c) (d)

α

FIG. 5. The largest singular value r1 of the decomposition of the light in-
teraction Hamiltonian (A2) is plotted vs the pump amplitude α. Red: the
coherent contribution cosh (r1) sinh (r1), blue: the incoherent contribution
sinh 2(r1). The linear plot (corresponding to the contribution of the twin pho-
ton state) is shown as a dashed line. The parameters of the various panels of
Figure 4 are marked on the α-axis. This plot illustrates the crossover from
twin photons to squeezed light.
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IV. SIMULATION OF RAMAN SIGNALS

Using the same squeezed light model described in the
Appendix, we have simulated the Raman pathways [diagrams
(c) and (d) of Figure 2] in a model system with a single vi-
brational state with energy g′ = 200 cm−1, and one excited
electronic state at e = 16 000 cm−1. Each single-photon tran-
sition is far off-resonant, which allows us to safely neglect
linear processes. But the Raman contributions are neverthe-
less present in a resonant situation.

Equations (5) and (6) contain contributions with dis-
tinct dependence on the time delay δt: one part which de-
cays rapidly with the electronic lifetime γ e, and a second
one which decays more slowly with the vibrational lifetime
γ g. This second part oscillates with ωb − ωa − ωg′g , and by
properly choosing the entangled beam parameters, it should
be possible to observe the vibrational coherence ωg′g in the
signal (1).

In Figure 6 we demonstrate this behavior for our model
system. We plot Eqs. (5) and (6) vs. the time delay δt for
fixed control parameters of the entangled beams in panel (a)
[Eqs. (3) and (4) decay almost instantaneously on the time
scales shown here]. The signal decays exponentially with the
lifetime γ g, and shows pronounced oscillations. To analyze
these oscillations, we depict the Fourier transform of the time
signal in panel (b), given by

S̃(�; 
) =
∫

dδt ei
δt (Sc(�; δt) + Sd (�; δt)). (9)

The Fourier transform S̃ of the time signal shows a pro-
nounced peak around 
 = 200 cm−1. For an entanglement
time of 10 fs, an additional peak at 
 = 400 cm−1 can be
observed as well. For shorter entanglement times (red plots),

(a)

(b)

δt/ps

S

S̃

Ω/ −1

FIG. 6. (a) The Raman signal, Eqs. (5) and (6), is plotted vs. the time
delay δt. The entangled beams are created by a pump pulse with width
σ p = 20 cm−1, and entanglement times 100 fs (blue) and 50 fs (red). We fur-
ther chose ω1 = ω2 = ω = 11 000 cm−1. The intensity is plotted in arbitrary
units, which are not shown. (b) The absolute value of the Fourier transform
of the signals (a) [Eq. (9)] with respect to the time delay δt.

the oscillations are a lot more pronounced. This can be ex-
plained with the fact that these correspond to larger band-
widths of the individual beams. Hence, each beam is shorter
in time, and we obtain better time resolution, whereas the
oscillations are washed out for shorter bandwidths. Simi-
lar signals can be obtained with ultrafast pulses as well.
However, with entangled photons one can use much lower
pump intensities as pointed out in the introduction. The field
correlation functions [(A13)–(A16)] have contributions f1/2

corresponding to the coherent interaction of entangled pho-
ton pairs, and scale linearly in the pump intensity for weak
pumps.

V. TRANSITION-AMPLITUDE
(KRAMERS-HEISENBERG) FORM
FOR TWO-PHOTON SIGNALS

The nonlinear response functions of matter caused by
the interaction with a classical light field are often given
in terms of susceptibilities. Certain types of optical sig-
nals on the other hand may be expressed in terms of tran-
sition amplitudes. These are easier to calculate and sim-
plify the interpretation. We shall consider the dissipative sig-
nal obtained from Eq. (1) by integrating over the detected
frequency33

Sdissipative(�) =
∫

dω S(�; ω, δt = 0). (10)

To detect the entire dissipated energy, the signal in beam 1
is collected as well. The time delay δt is set to zero to avoid
dissipation to the environment during the free evolution. This
allows us to combine the field correlation functions into terms
〈E†E†EE〉, where E = E1 + E2. We therefore eliminate the
subscripts in the following.

As shown in Ref. 33, the dissipative signal can be written
as the modulus square of transition amplitudes,

Sdissipative(�) =
∑

i

|Tig|2, (11)

where the summation runs over all the final states i
which have a different energy than the initial state g. For
the interaction with classical cw-light, the transition am-
plitudes can be expanded in the number of matter-field
interactions,

Tig(ω) = T
(1)
ig (ω) + T

(2)
ig (ω) + · · · , (12)

where

T
(1)
ig (ω) = μgi, (13)

T
(2)
ig (ω) =

∑
b

μgbμbi

ω − ωbg + iγ
. (14)

Since in the derivation of Eqs. (3)–(6) we expanded the den-
sity matrix to third order, we can expect the signal to be
composed of the following products of transition amplitudes:
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〈|T(2)|2〉, T(3)T(1)∗ + h.c., and T(4)T(0)∗ + h.c. Equation (4)
yields

Sb ∝�
∫

dωa

2π

∫
dωb

2π

∫
dω

2π
〈E†(ω)E†(ωa + ωb − ω)E(ωb)E(ωa)〉

×
∑
e,e′,f

μgeμef

ωa − ωeg + iγe

1

ωa + ωb − ωfg + iγf

μf e′μe′g

ω − ωe′g − iγe

.

(15)

With the definition of the second-order transition amplitude
(14), we obtain

Sb ∝ �
∫

dωa

2π

∫
dωb

2π

∫
dω′

a

2π
〈E†(ω′

a)

×E†(ωa + ωb − ω′
a)E(ωb)E(ωa)〉

×
∑
f

T
(2)
fg (ωa)T (2)∗

fg (ω′
a)

1

ωa + ωb − ωfg + iγf

. (16)

Changing to the variable ωp = ωa + ωb, we can write the
signal more symmetrically,

Sb ∝ �
∫

dωp

2π

∫
dωa

2π

∫
dω′

a

2π
〈E†(ω′

a)E†(ωp − ω′
a)

×E(ωp − ωa)E(ωa)〉

×
∑
f

T
(2)
fg (ωa)T (2)∗

fg (ω′
a)

1

ωp − ωfg + iγf

. (17)

Defining the two-photon transition operator acting on the field
space

T̂
(2)
fg (ωp; �) ≡

∫
dω

2π
Ê(ωp − ω)Ê(ω)T (2)

fg (ω) (18)

(we write Ê to emphasize that the E’s are operators) we can
write

Sb ∝ �
∫

dωp

2π

∑
f

〈|T̂ (2)(ωp; �)|2〉 1

ωp − ωfg + iγf

. (19)

This allows us to take the imaginary value in the limit of small
dephasing,

� 1

ωp − ωfg + iγf

= δ(ωp − ωfg), (20)

and we arrive at

Sb ∝
∫

dωa

2π

∫
dω′

a

2π
〈E†(ω′

a)E†(ωfg−ω′
a)E(ωfg − ωa)E(ωa)〉

×
∑
f

T
(2)
fg (ωa)T (2)∗

fg (ω′
a) (21)

=
∑
f

〈|T̂ (2)(ωfg; �)|2〉. (22)

For classical fields, the field operators in Eq. (22) can be re-
placed by field amplitudes, and the signal factorizes into a
product of transition amplitudes. This is not possible for ar-
bitrary quantum fields, since the field expectation value can
create correlations between interactions on both sides of dia-
gram (b) of Fig. 2.

Assuming that the field is in a two-photon Fock state, its
correlation function factorizes into

〈E†(ω′
a)E†(ω′

b)E(ωb)E(ωa)〉
= 〈E†(ω′

a)E†(ω′
b)〉〈E(ωb)E(ωa)〉. (23)

This allows us to define the combined matter-field transition
amplitude

T̃
(2)
fg (ωfg; �) ≡

∫
dω

2π
〈E(ωfg − ω)E(ω)〉T (2)

fg (ω), (24)

where � denotes the control parameters of the quantum light,
and the signal can be finally recast as

Sb ∝
∑
f

∣∣T̃ (2)
fg (ωfg; �)

∣∣2
. (25)

Diagram (d) of Fig. 2 yields in close analogy

Sd ∝
∑
g′

〈∣∣T̂ (2)
g′g (ωg′g; �)

∣∣2〉
, (26)

with the transition amplitude operator

T̂
(2)
g′g (ω−; �) =

∫
dω

2π

∑
e

μge

E†(ω− − ω)E(ω)

ω − ωeg + iγe

μeg′ . (27)

Equations (3) and (5) describe parametric processes, in
which the system evolves g → g. No energy is exchanged
with the light field, and the diagrams do not contribute to the
dissipative signal (10).

VI. TWO-PHOTON COINCIDENCE: RAMSEY FRINGES

A. Classical Ramsey fringes

Ramsey interferometry has long been used as a time-
domain technique for measuring frequencies of atomic transi-
tions with remarkably high precision.36, 37 The technique does
not use light pulses. Instead, an atomic beam passes through
two cavities with strong fields. These effectively act as pulses
with durations given by the transit time through the cavities.
An interference fringe is created by varying the delay between
the two cavities. The excited state population is measured at
the end. The physics is identical to what can be obtained by
two pulses and variable delay and fluorescence detection. It
can thus be described by transition amplitudes and similar di-
agrams to what we used for the dissipative signals. In this
section we recast the Ramsey signal using our approach and
derive expressions that can be used to study pulse shaping,
and can be easily extended to include more pulses. We con-
sider both single photon and two photon signals.

As described above, in conventional Ramsey experi-
ments, an ensemble of two-level atoms with ground states
{|gi〉} and excited states {|ei〉} is irradiated by two tempo-
rally separated pulses E1 and E2 with a relative time delay δt,
and the fluorescence is recorded [see Figure 7]. This is pro-
portional to the excited state population

Sclassical(t ; �)

= tr

{
T |ei(t)〉〈ei(t)| exp

[
− i

¯

∫ t

t0

dτH−(τ )

]
�(t0)

}
. (28)
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δt

t

+ →
|g g

|ei〉 |ei〉 1/Δ

δt

I

(a)

(b)

E1 E2

FIG. 7. (a) Pulse sequence for a classical Ramsey experiment. (b) The inter-
ference between the excitation of either of the two beams creates the oscilla-
tions when plotted vs. the time delay.

This signal is given by four terms depicted in Figure 8. We
illustrate the evaluation by considering diagram (b) in detail.
It reads

Sclassical(b) =
∫ t

dτ1

∫ t

dτ ′
1 〈g|V (τ ′

1 + δt)|ei(t)〉〈ei(t)|V (τ1)|g〉

× 〈E†
2(τ ′

1 + τ )E(τ1)〉. (29)

We write the frequency decomposition of the field corre-
lation function as

〈E†
2(τ ′

1 + δt)E(τ1)〉

=
∫

dω′
a

2π

∫
dωa

2π
eiω′

a (τ ′
1+δt)−iωaτ1〈E†

2(ω′
a)E1(ωa)〉, (30)

E1 E1

ei||ei

(a)

E1

ei||ei

(b)

E2

E1

ei||ei

E2

(c)

ei||ei

E2

(d)

E2

|g g| |g g|

|g g| |g g|

FIG. 8. Pathways of Eq. (28).

and change to the loop times s1 = t − τ 1 and s2 = t − τ ′
1. We

obtain

Sclassical(b) =
∫

dω′
a

2π

∫
dωa

2π
〈E†

2(ω′
a)E1(ωa)〉ei(ω′

a−ωa )t

× μge

ωa − ωeig + iη

μege
i(ω′

a−ωei g
)δt

ω′
a − ωeig − iη

, (31)

where we introduced the infinitesimal factor η. When the
bandwidth of the two fields is much smaller than the in-
verse time delay, we can approximate the two-point correla-
tion function by

〈E†
2(ω′

a)E1(ωa)〉 ≈ E∗
2E1δ(ω′

a − ω2)δ(ωa − ω1). (32)

The four diagrams can then be combined into the modu-
lus square of a transition amplitude that has two interfering
paths,

S = |Teg(t ; E1) + Teg(t ; E2)|2, (33)

with

Teg(t ; E1) = μgee
−iωeg t

ω1 − ωeg + iη
, (34)

Teg(t ; E2) = μgee
−iωeg t

ω2 − ωeg + iη
ei(ω2−ωeg)δt . (35)

By varying δt the signal oscillates at the frequency � = ω2

− ωeg, which is called the detuning. These are the Ramsey
fringes which measure ωeg with high resolution.

B. Ramsey fringes with squeezed light

In their extension to squeezed light, Qu and Agarwal30

defined the fluorescence coincidence as their observable. The
doubly excited states are excited by the interaction with two
entangled beams. Diagrams (b) and (c) of Figure 8 vanish for
squeezed beams, since 〈E〉 = 0 for a squeezed vacuum state.
However, 〈E2〉 �= 0, and the absorption of pairs of photons
from each beam can give rise to similar interference fringes,
as we will rederive using our superoperator formalism. This
may be advantageous if one were to investigate a dipole-
forbidden transition, which can be accessed through a two-
photon process.

The photon coincidence signal is proportional to the pop-
ulation of doubly excited states

S(t ; �) = tr

{
T |ei(t), ej (t)〉〈ei(t), ej (t)|

× exp

[
− i

¯

∫ t

t0

dτH−(τ )

]
�(t0)

}
. (36)

To leading order, the signal is given by

S(t ; �)=
(

− i

¯

)4 ∫ t

dτ2

∫ τ2

dτ1

∫ t

dτ ′
2

∫ τ ′
2

dτ ′
1

×〈V (τ ′
1)V (τ ′

2)|e1e2(t)〉〈e1e2(t)|V †(τ2)V †(τ1)〉
×〈E†(τ ′

1)E†(τ ′
2)E(τ2)E(τ1)〉, (37)



244110-8 F. Schlawin and S. Mukamel J. Chem. Phys. 139, 244110 (2013)

E1

E1

(a)|g g|

eiej ||eiej

E2

E2 E1

E1

|g g|

eiej ||eiej

E2

E2

(b)

E1

E1

|g g|

eiej ||eiej

|g g|

eiej ||eiej

E2

E2E1

E1

E2

E2

(c d)

E1 E1

|g g|

eiej ||eiej

E2 E2 E1E1

|g g|

eiej ||eiej

E2E2 E1

E1

|g g|

eiej ||eiej

|g g|

eiej ||eiej

E2 E2 E1

E1E2 E2

(e) (f) (g

()

() h)

FIG. 9. Pathways of Eq. (36).

where E(τ ) = E1(τ ) + E2(τ ). Equation (37) generalizes the
results of Ref. 30: it is valid for arbitrary kinds of light—not
limited to square pulses or squeezed photons—and for exci-
ton systems with non-vanishing dipole interactions. The loop
diagrams corresponding to this expression are depicted in
Figure 9. Because of the time delay δt between the two fields
1 and 2, we show each combination of fields separately. Di-
agrams (a) and (b) are responsible for the higher resolution
of the Ramsey fringes compared to classical light, while the
other diagrams reduce the visibility of the fringes. Since we
assume a finite time delay between the two fields, we can ne-
glect diagrams (f)–(h). Furthermore, diagrams (a) and (b) are
complex conjugates, such that we only need to calculate one
of the two.

C. Entangled two-photon state

We illustrate the derivation of the signal with diagram (a).
It reads

S(a)(t ; �)

=
(

− i

¯

)4 ∫ t

dτ2

∫ τ2

dτ1

∫ t

dτ ′
2

∫ τ ′
2

dτ ′
1

× 〈V (τ ′
1 + δt)V (τ ′

2 + δt)|e1e2(t)〉〈e1e2(t)|V †(τ2)V †(τ1)〉

× 〈E†
2(τ ′

1 + δt)E†
2(τ ′

2 + δt)E1(τ2)E1(τ1)〉. (38)

Carrying out the time integration, we obtain

S(a)(t ; �) =
(

− i

¯

)4 ∫
dωa

2π

∫
dωb

2π

∫
dω′

a

2π

∫
dω′

b

2π

(
μge1μge2

ωa − ωe1g + iη
+ μge1μge2

ωa − ωe2g + iη

)

×
(

μge1μge2

ω′
a − ωe1g − iη

+ μge1μge2

ω′
a − ωe2g − iη

)

× ei(ω′
a+ω′

b−ωa−ωb)t

ωa + ωb − ωe1g − ωe2g + iη

ei(ω′
a+ω′

b−ωe1g−ωe2g)δt

ω′
a + ω′

b − ωe1g − ωe2g − iη

× 〈E†
2(ω′

a)E†
2(ω′

b)〉〈E1(ωb)E1(ωa)〉. (39)

In the following, we consider entangled twin photons created by degenerate type-II downconversion. They are a good low-
intensity approximation of the squeezed light model of Sec. VI B, and allow for a analytical evaluation of the integrals. The field
correlation function then reads38

〈Ei(ωb)Ei(ωa)〉 = C(Ti)sinc

(
(ωpi

/2 − ωa)Ti

2

)
ei(ωpi

/2−ωa )Ti/2 2πδ(ωa + ωb − ωpi
), (40)
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where ωpi
denotes the pump frequency of field i, Ti its entanglement time, and C(Ti) a normalization constant. In time domain,

this correlation function corresponds to square pulses. This yields

S(a)(t ; �) =
(

− i

¯

)4 ∫
dωa

2π

∫
dω′

a

2π

(
μge1μge2

ωa − ωe1g + iη
+ μge1μge2

ωa − ωe2g + iη

)

×
(

μge1μge2

ω′
a − ωe1g − iη

+ μge1μge2

ω′
a − ωe2g − iη

)

× ei(ωp2 −ωp1 )t

ωp1 − ωe1g − ωe2g + iη

1

ωp2 − ωe1g − ωe2g − iη
ei(ωp2 −ωe1g−ωe2g )δt

× C(T1)C(T2)sinc

(
(ωp1/2 − ωa)T1

2

)
ei(ωp1 /2−ωa )T1/2

× sinc

(
(ωp2/2 − ω′

a)T2

2

)
e−i(ωp2 /2−ω′

a )T2/2. (41)

The ωa-integration can be closed at −i∞, and the ω′
a-integration at +i∞, resulting in

S(a)(t ; �) =
(

− i

¯

)4

C(T1)C(T2)
μge1μge2

ωp1 − ωe1g − ωe2g + iη

μge1μge2

ωp2 − ωe1g − ωe2g − iη
ei(ωp2 −ωe1g−ωe2g)δt

×
(

sinc

(
(ωp1/2 − ωe1g)T1

2

)
ei(ωp1 /2−ωe1g)T1/2 + sinc

(
(ωp1/2 − ωe2g)T1

2

)
ei(ωp1 /2−ωe2g)T1/2

)

×
(

sinc

(
(ωe1g − ωp2/2)T2

2

)
ei(ωe1g−ωp2 /2)T2/2 + sinc

(
(ωe2g − ωp2/2)T2

2

)
ei(ωe2g−ωp2 /2)T2/2

)
, (42)

where we neglected the infinitesimal imaginary factor ±iη in the last two lines.
For identical atoms in Eq. (42), we observe that it oscillates with 2�δt as shown in Ref. 30. This is however only

true for cw-pumped entangled photons. In the general result in Eq. (39), we can see that pulse envelopes affect the oscil-
lations. Furthermore, the signal depends on two different transition frequencies ωe1g and ωe2g , which need not be identical.

Similarly, we obtain

S(c)(t ; �) =
(

− i

¯

)4

C2(T1)
μ2

ge1
μ2

ge2

(ωp1 − ωe1g − ωe2g)2 + η2

×
∣∣∣∣sinc

(
(ωp1/2 − ωe1g)T1

2

)
ei(ωp1 /2−ωe1g )T1/2 + sinc

(
(ωp1/2 − ωe2g)T1

2

)
ei(ωp1 /2−ωe2g)T1/2

∣∣∣∣
2

, (43)

S(d)(t ; �) =
(

− i

¯

)4

C2(T2)
μ2

ge1
μ2

ge2

(ωp2 − ωe1g − ωe2g)2 + η2

×
∣∣∣∣sinc

(
(ωp2/2 − ωe1g)T2

2

)
ei(ωp2 /2−ωe1g )T2/2 + sinc

(
(ωp2/2 − ωe2g)T2

2

)
ei(ωp2 /2−ωe2g)T2/2

∣∣∣∣
2

, (44)

which simply consist of the transition amplitude squares for the absorption of the two photons. This allows us to combine
Eqs. (42)–(44) into a single transition amplitude squared,

S(a)−(d)(t ; �) = |T1(t ; �) + T2(t ; �)|2 , (45)

with

T1(t ; �) =
(

− i

¯

)2

C(T1)
μge1μge2e

−iωp1 t

ωp1 − ωe1g − ωe2g + iη

×
(

sinc

(
(ωp1/2 − ωe1g)T1

2

)
ei(ωp1 /2−ωe1g)T1/2 + sinc

(
(ωp1/2 − ωe2g)T1

2

)
ei(ωp1 /2−ωe2g)T1/2

)
, (46)

T2(t ; �) =
(

− i

¯

)2

C(T2)
μge1μge2e

−iωp2 t

ωp2 − ωe1g − ωe2g + iη
ei(ωp2 −ωe1g−ωe2g)δt

×
(

sinc

(
(ωp2/2 − ωe1g)T2

2

)
ei(ωp2 /2−ωe1g)T2/2 + sinc

(
(ωp2/2 − ωe2g)T2

2

)
ei(ωp2 /2−ωe2g)T2/2

)
. (47)
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Besides, diagram (e) yields

S(e)(t ; �) =
(

− i

¯

)4 ∫
dωa

2π

∫
dωb

2π

∫
dω′

a

2π

∫
dω′

b

2π

ei(ω′
a+ω′

b−ωa−ωb)t

ωa + ωb − ωe1g − ωe2g + iη

μ2
ge1

μ2
ge2

ω′
a + ω′

b − ωe1g − ωe2g − iη

×
(

e−iωe1gδt

ωa − ωe1g + iη
+ e−iωe2gδt

ωa − ωe2g + iη

) (
eiωe1gδt

ω′
a − ωe1g − iη

+ eiωe2gδt

ω′
a − ωe2g − iη

)

× 〈E†
2(ω′

b)E2(ωb)〉〈E†
1(ω′

a)E1(ωa)〉ei(ωb−ω′
b)δt , (48)

with the two-point field correlation function

〈E†
i (ω′

a)Ei(ωa)〉 = C2(Ti)sinc2

(
(ωa − ωpi

/2)Ti

2

)
2πδ(ωa − ω′

a). (49)

Finally we obtain

S(e)(t ; �) =
∫

dωa

2π

∫
dωb

2π
|T3(ωa, ωb, t ; �)|2 , (50)

with

T3(ωa, ωb, t ; �) =
(

− i

¯

)2 C(T1)C(T2)sinc
(

(ωa−ωp1 /2)T1

2

)
sinc

(
(ωb−ωp2 /2)T2

2

)
ωa + ωb − ωe1g − ωe2g + iη

×
(

e−iωe1gδt

ωa − ωe1g + iη
+ e−iωe2gδt

ωa − ωe2g + iη

)
. (51)

In contrast to Eq. (42), Eq. (50) does not depend on the de-
tuning of the pump pulse with respect to the doubly excited
state energy, but instead on the energy difference between the
two transition energies ωe1g and ωe2g . If the two energies are
identical as was assumed in Ref. 30, it only creates a constant
background, which reduces the visibility of the fringes.

To conclude, the second-order diagrams of Figure 8
which give rise to oscillations with the frequency � = ω2

− ωeg vanish for the squeezed vacuum state as well as for the
twin photon state. But the fourth order diagrams of Figure 9
give rise to a different kind of Ramsey oscillations with the
frequency 2� (provided e1 = e2).

VII. CONCLUSIONS

We have studied the frequency-resolved transmission sig-
nal of entangled beams interacting with a three-level model
system. The nonclassical bandwidth features of the beams can
be used to enhance otherwise weak or hidden signals, as was
demonstrated by comparing the signal to a transmission sig-
nal of a classical laser pulse. As the intensity of the entangled
beams is increased, entangled pairs start to overlap, and the
nonclassical features of the signal are degraded. For very high
intensities, the signal looks similar to its classical counterpart.

The introduction of a delay stage in one of the beams
can be used to monitor vibrational resonances. This effect is
not caused by nonclassical bandwidth properties, and can be
seen with classical light as well. However, the linear scaling
at low intensities allows for the use of very low intensities,
thus minimizing damage to the sample.

We further expressed the frequency-integrated signal in
terms of transition amplitudes, extending known results for

the interaction with classical light. Finally, we have derived
the superoperator expressions for the photon counting signal.
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APPENDIX: THE FIELD CORRELATION FUNCTION
FOR SQUEEZED LIGHT

The squeezed state of the field is given by interaction of
the downconversion Hamiltonian acting on the vacuum,39, 40

|ψf 〉 = UPDC |0〉, (A1)

where

UPDC = ⊗k exp[rkA
†
kB

†
k − h.c.] (A2)

is given by the tensor product of two-mode squeezers in each
Schmidt mode k, which are defined by the phase-matching
conditions during the down-conversion process. The action of
the unitary operator (A2) on the creation and annihilation op-
erators is given by input-output relations. We need to evaluate
the four-point correlation functions of Eqs. (3)–(6); the first
line of Eq. (3) is given by

〈E†
2(ω′

a)E†
1(ω′

b)E2(ωb)E1(ωa)〉
= 〈ψf |E†

2(ω′
a)E†

1(ω′
b)E2(ωb)E1(ωa)|ψf 〉, (A3)
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which results in Ref. 32,

〈E†
2(ω′

a)E†
1(ω′

b)E2(ωb)E1(ωa)〉
= f ∗

2 (ω′
a, ω

′
b)f1(ωa, ωb)

+ g2(ωa, ω
′
b)g1(ωb, ω

′
a), (A4)

where

f ∗
1 (ω,ω′) =

∑
k

sinh(rk) cosh(rk)ψk(ω)φk(ω′), (A5)

f ∗
2 (ω,ω′) =

∑
k

sinh(rk) cosh(rk)φk(ω)ψk(ω′), (A6)

g1(ω,ω′) =
∑

k

sinh2(rk)ψk(ω)ψ∗
k (ω′), (A7)

g2(ω,ω′) =
∑

k

sinh2(rk)φk(ω)φ∗
k (ω′). (A8)

Here, {ψk} and {φk} are the frequency envelopes of the
Schmidt modes; they are connected to the operators given
above by

Ak =
∫

dωaψk(ωa)a(ωa) and Bk =
∫

dωbφk(ωb)b(ωb).

(A9)

It can be further shown that these envelopes can be approxi-
mated by Hermite functions, enabling us to evaluate (A4) an-
alytically. There are no more differences between g1 and g2

(or between f1 and f2) in this approximation.
Similarly, we obtain

〈E†
2(ω′

a)E†
1(ω′

b)E1(ωb)E2(ωa)〉
= f ∗

2 (ω′
a.ω

′
b)f2(ωa, ωb) + g2(ωa, ω

′
a)g1(ωb, ω

′
b), (A10)

〈E†
1(ω′

a)E†
2(ω′

b)E2(ωb)E1(ωa)〉
= f ∗

1 (ω′
a.ω

′
b)f1(ωa, ωb) + g1(ωa, ω

′
a)g2(ωb, ω

′
b), (A11)

〈E†
1(ω′

a)E†
2(ω′

b)E1(ωb)E2(ωa)〉
= f ∗

1 (ω′
a.ω

′
b)f2(ωa, ωb) + g1(ωb, ω

′
a)g2(ωa, ω

′
b), (A12)

〈E†
2(ω′

a)E2(ω′
b)E†

1(ωb)E1(ωa)〉
= f ∗

2 (ω′
a, ωb)f1(ωa, ω

′
b) + g1(ωa, ωb)g2(ω′

a, ω
′
b), (A13)

〈E†
2(ω′

a)E1(ω′
b)E†

1(ωb)E2(ωa)〉
= f ∗

2 (ω′
a, ωb)f2(ωa, ω

′
b) + g2(ωa, ω

′
a)g1(ωb, ω

′
b), (A14)

〈E†
1(ω′

a)E1(ω′
b)E†

2(ωb)E2(ωa)〉
= f ∗

1 (ω′
a, ωb)f2(ωa, ω

′
b) + g2(ωa, ωb)g1(ω′

a, ω
′
b), (A15)

〈E†
1(ω′

a)E2(ω′
b)E†

2(ωb)E1(ωa)〉
= f ∗

1 (ω′
a.ωb)f1(ωa, ω

′
b) + g1(ωa, ω

′
a)g2(ωb, ω

′
b). (A16)
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