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Abstract of the Dissertation

On the Implementation and Applications of

Discrete-Time Filters for Soil-Structure

Interaction Substructure Analyses

by

Richard James Henry Gash

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2015

Professor Ertugrul Taciroglu, Chair

This work explores the implementation and applications of discrete-time filters as

time-domain approximations of frequency-dependent foundation impedance func-

tions for use in substructure dynamic response history analysis. The project’s

ultimate objective is to offer practicing engineers a robust, reliable option for

accounting for inertial soil-structure interaction in time domain analyses.

The substructure method is a means of accounting for the interaction between

a structure, its foundation, and the surrounding geology when subjected to dy-

namic excitation. The method models the soil-foundation interface using what

are termed the foundation impedance functions. The frequency dependence of

these functions complicates the method’s implementation, especially in the time

domain. Approximating impedance functions using discrete time filters yields re-

cursive, time-dependent relations that may subsequently be incorporated into the

system’s equations of motion for integration using standard time-stepping meth-

ods.

Work along four interconnected lines of inquiry are presented. The first thread

comprises a critical review of existing literature and delineates the motivation for

ii



the present effort. The second provides formulation and implementation details

for both elastic and inelastic structural systems. Also included is a detailed ana-

lytical and numerical analysis of the stability of combined filter-integrator. The

third line of effort includes three practical applications of the filter method, an

investigation into the effects of inertial soil-structure interaction on yielding sys-

tems, a demonstration of the effects of soil profile on constant ductility spectra,

and a case study wherein the filter method is used to predict the response of the

Millikan Library on the campus of the California Institute of Technology to the

2002 Yorba Linda Earthquake. The final line of effort specifically targets practic-

ing engineers by offering further detail on filter design and features a tutorial on

filter design using the MATLAB® programming environment.
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CHAPTER 1

Introduction

1.1 Motivation

Structures constantly experience loading. They must withstand their own weight,

the forces induced by their intended use, and those forces generated by the envi-

ronment within which they exist. It is often this latter category, the environment,

which provides the most extreme loading events. Engineers must design struc-

tures to withstand hurricane-force winds, earthquakes, and even blast and impact

loads. One tool that engineers use to investigate the structural response to such

extreme loads is response history analysis. This typically involves development

of a mathematical model of the structure and its environment, application of the

anticipated loading conditions, and observation of the model’s performance over

time, both during and after loading. From this response history, engineers can

then harvest parameters of interest such as displacements and forces generated

within the structural members.

Consider now, a massive structure such as the containment facility for a nuclear

power plant. Imagine that structure shaking during an earthquake. Due to its

weight and stiffness, it will initially resist seismic motion, but once it begins to

move, its substantial inertia will seek to keep it in motion. It will, in effect, impart

energy back into the ground. The ensuing feedback loop—i.e., “ground shakes the

building, and the shaking building, in turn, shakes the already-shaking ground”—

complicates the response history analysis, and may necessitate a simultaneous and
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fully-coupled analysis of the structure and its surrounding soil media. This effect

is often referred to as inertial soil-structure interaction (SSI). More technically,

inertial SSI is defined as the phenomenon wherein inertia developed within a

vibrating structure generates forces and moments that cause displacements of the

foundation with respect to the free-field. These displacements may be seen as the

difference between the response of the soil in the presence of the foundation and

the expected response of the soil to the same excitation if the structure were not

present.

In most cases, inertial SSI tends to reduce the overall response of a structure.

In fact, initial guidelines for building codes allowed engineers to either ignore SSI

effects, or more liberally, take blanket reductions to the expected response [1].

Quite to the contrary, it is now widely accepted that stiff, short-period structures

(such as the nuclear containment facility from above) may actually experience

increased responses due to the effects of inertial SSI. Worse, when structures

become damaged or otherwise exhibit inelastic behavior during shaking, recent

work suggests that amplified responses should be expected for a much broader

range of structures than merely stiff and massive ones [2].

Current practice for accounting for inertial SSI involves modeling the foundation-

soil interface using complex-valued impedance functions. These functions may

be conceptualized as a set of springs and dampers (dashpots) that transfer mo-

tion between the soil-foundation system and the far-field. Impedance functions

for various simple foundation geometries and soil profiles are readily available in

the relevant literature. Recent advances in computational methods have also al-

lowed for generation of impedance functions for more complicated foundation-soil

systems [3]. One major obstacle hindering the widespread use of these func-

tions in engineering practice is that they vary with frequency. This frequency

dependence complicates their use in use in response history analysis, which is

required when the supported structure exhibits any nonlinearity. The current
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state-of-practice includes several methods of addressing this issue, but all have

various short comings—as will be discussed later—that inhibit their utility, and

hence, widespread adoption.

1.2 Research Objective

The goal of this work is to improve the current state of earthquake engineering

practice by devising, implementing, and applying a viable method to accurately

account for inertial soil-structure interaction in time-domain substructure analy-

ses. The approach that will be developed here leverages signal processing theory

to represent frequency-dependent foundation impedance functions as discrete-time

filters. The end-state is a tool that practicing engineers can use to efficiently gen-

erate site-specific nonlinear response histories that are necessary for performance-

based seismic assessment and design.

1.3 Organization

Figure 1.1 displays the organization of this work. The project as a whole follows

four lines of effort toward achievement of the overall objective. As the figure

shows, each line of effort contains several “milestones” or subordinate objectives.

This manuscript documents progress toward the overall goal by following loosely

from the upper left of the figure to its lower right. The various milestones are

grouped into chapters according to the key at the bottom of the figure.

The first line of effort investigates the background literature and establishes its

motivation. It sets the project’s research objective, examines the current state-of-

practice, demonstrates the necessary signal processing tools, and concludes with

a reproduction of previously published results. The second line effort focuses

on implementation of the filter method for both elastic and inelastic structures
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Figure 1.1: Project organization.

subject to first uncoupled, and subsequently coupled, motions. Included is a

robust analytical and numerical stability analysis.

The third line of effort provides three parametric studies carried out using

the filter method: The first study seeks to answer the question “is soil-structure

interaction beneficial or detrimental?” through the construction of a set of ductil-

ity maps. The second couples the filter method with advances in computational

mechanics that allow efficient computation of impedance functions for arbitrary

soil profiles and foundation geometries to demonstrate the effects that soil profile

can have on constant ductility spectra. The third one is a case study demon-

strating use of the filter method to predict the dynamic responses of the Millikan

Library—a USGS-instrumented building located on the campus of the California

Institute of Technology—during the 2002 Yorba Linda Earthquake.
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The final line of effort is targeted to practicing civil engineers who may not

readily possess the signal processing skills necessary to implement and gainfully

use the filter method. It includes a detailed filter design tutorial that makes use

of the MATLAB programing environment.

This dissertation concludes by identifying the future work needed to develop a

comprehensive soil-structure interaction software package that can be integrated

into state-of-the-art commercial structural analysis software.
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CHAPTER 2

State-of-practice

2.1 Soil Structure Interaction

The field of soil-structure interaction involves examination of how a structure, its

foundation, and the surrounding geologic media respond as a system to dynamic

loading. Such loading may come from vehicles, machinery, wind, and even blasts.

The vast majority of SSI-related research, however, relates to earthquake-induced

vibrations. In his work “Soil Structure Interaction, The Early Stages,” Roesset [4]

credits the likes of Sezawa, Martel, and Housner, whose works from the 1930s

through 1950s launched this field of study as an independent research area. These

early pioneers analyzed newly available recordings of strong seismic events and

the corresponding structural responses they induced. They noted, and sought

to account for, differences between observed responses and those predicted by

contemporary theories, which assumed structures moved in exact compliance with

their supporting media.

The 1970s saw what Kausel [5] referred to as the beginning of the modern era

of seismic soil-structure interaction. During this time, the field enjoyed tremen-

dous research gains enabled by advances in computer-aided numerical methods

and driven by funding from the nuclear power industry. Out of these efforts, two

broad categories of SSI effects emerged. The first, termed kinematic effects, re-

lated to the interaction between incoming seismic waves and a foundation due to

discrepancies among their stiffness. The second, termed inertial effects, addressed
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the phenomenon of a moving structure imparting energy through its foundation

back to its supporting soil. This latter phenomenon leads to foundation displace-

ments, rotations, and energy dissipation through radiation and hysteretic soil

damping that are not accounted for if the systems foundation is modeled as fixed

to the surrounding soil and geological media. It is generally agreed that these

kinematic and inertial effects combine to lengthen a structure’s natural period of

vibration.

Figure 2.1: Generic design spectra for fixed- and flexible-base SDOF structures

with different natural periods.

The consequences of considering or neglecting SSI effects can be seen in Fig-

ure 2.1, which displays a design spectra. On the figure, the abscissa depicts a range

of hypothetical structural periods and the ordinate depicts spectral responses—

i.e., the maximum values of a given response parameter, such as displacement or

acceleration, that a structure can expect to experience when excited by a set of

anticipated ground motions. Note the difference between the structures repre-
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sented by T1 and T2. Structure T2 has a relatively long period, like that of a tall,

slender building or a flexible bridge. Structure T1 has a relatively short period,

akin to that of a short, stiff structure. If T2 elongates to T̃2 due to SSI, then the

structure’s anticipated spectral response decreases. Conversely, when T1 elongates

to T̃1, its spectral response increases. In this case, soil-structure interaction in-

creases the demand on the structure. Zhang and Tang quantified these (among

other) effects using a dimensional analysis approach [6].

While design spectra are useful tools, they only estimate the maximum of

a given response parameter. In many cases, engineers are more interested in a

structure’s response history, or how it will respond to dynamic loading over time.

To this end, two major methods of soil-structure response history analysis have

evolved. Termed the direct method and the substructure method, both address

kinematic and inertial interaction, and offer viable means of determining response

history. Both are currently used in practice.

2.1.1 Direct and Substructure Methods of Analysis of SSI

The first method, commonly referred to as the direct method, involves the dis-

cretization of the combined soil-foundation-structure system, typically with the

finite element method. While this method does offer the potential to account for

both kinematic and inertial SSI effects in one step, its complexity and computa-

tional expense has prohibited its widespread adoption in engineering practice [7].

The alternative is the substructure method, which divides the solution into

three component steps. The first step involves the adjustment of the anticipated

seismic input motion to account for kinematic effects. To accomplish this, a trans-

fer function is typically used to convert free-field motions—or the motion a par-

ticular site would feel in the absence of the structure and foundation—into what

is termed a foundation input motion. This is generally accomplished by carrying
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out analyses with a direct method wherein the the foundation system is modeled

with its inherent stiffness but with no (or negligible) mass. The second step in-

volves accounting for inertial interaction effects through the determination of a set

of foundation impedance functions, which represent the soil-foundation system’s

dynamic stiffness and radiation damping. During the final step, the foundation

input motion is applied to the structure through the foundation impedance func-

tions. It is in this third step of the substructure method is where the significant

contributions of this research lie: the goal being to offer engineers a viable method

of approximating the inherently frequency-dependent foundation impedance func-

tions in the time-domain, in a way that facilitates straight-forward and accurate

response history analyses.

The following two sections take a closer look at steps two and three of the

substructure analysis method.

2.1.2 The Substructure Method: Foundation Impedance Functions

Foundation impedance functions offer a means of mathematically representing a

truncated soil domain’s reactions at the soil-foundation interface. The concept

of a foundation impedance function grew out of early work by researchers such

as Reissner [8], Bycroft [9], and others. To date, analytical and semi-analytical

solutions exist in the literature for many simple foundation geometries and soil

conditions (see, for example, [10–14]). Also, recent advances in computational

mechanics now offer a means of generating impedance functions for more com-

plicated foundation geometries and soil profiles including tunnels, and highway

overpass approach embankments [3, 15]. While specific notation tends to vary,

foundation impedance functions typically take the form

k̄j = kj + iωcj (2.1)
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where kj represents stiffness, cj represents damping, the subscript j represents the

direction of motion, and i represents
√
−1. In addition to the linear frequency

dependence inherent in the imaginary term, both kj and cj may also vary with

frequency.

2.1.3 The Substructure Method: Response History Analysis

Once an engineer has determined the foundation input motion and obtained

the relevant set of foundation impedance functions for a given soil-foundation-

structure system, the final step in the substructure method involves computa-

tion of the structure’s anticipated response. Numerous methods exist to accom-

plish this. Some yield only maximum response parameters; others offer an entire

response history. This work will examine for existing methods from the latter

category—viz., a frequency domain solution, a convolution-based solution, a rep-

resentative frequency solution, and a lumped parameter model—as verification

metrics to gage the performance of the filter method that will be devised here.

The frequency domain solution uses a transfer function to solve a structure’s

equations of motion in the frequency domain. As the transfer function exists in the

frequency domain, it is relatively straightforward to insert a frequency-dependent

foundation impedance function into the solution. Unfortunately, this method is

only valid for linear analyses; it cannot be used to analyze structures that undergo

inelastic deformations.

The second method involves convolution of the impedance functions’ impulse

responses in the time domain. While this method has the potential to address

the major deficiency of the frequency domain solution in that it could account for

inelastic structural deformations, it also has major drawbacks. The first is rela-

tively large computational expense of convolution. The second is the potential for

inaccuracy stemming from a phenomenon know as time-domain leakage. Despite
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these issues, the convolution solution is worth investigating, as its implementation

is similar to that of the filter method.

The third method is the most popular in practice. It removes the frequency

dependence from the impedance functions by evaluating them at some represen-

tative frequency, often the flexible-base first mode natural frequency of the struc-

ture [7], or the frequency of a representative single-degree-of-freedom (SDOF)

oscillator [16]. This method works well for elastic structures with first-mode dom-

inated responses. The method has challenges accommodating inelastic structures

whose natural frequency may change during loading. This issue may be exag-

gerated by a “jagged” impedance function that show significant variation with

frequency.

The final method uses Wolf’s lumped parameter—a.k.a. monkey tail—model

[17] to replace the foundation impedance functions with sets of masses, dashpots,

and springs. Wolf offers lumped parameter models for simple soil-foundation

systems, such as a rigid disk resting on a uniform half space. Others have for-

mulated methods for deriving more complicated lumped parameter models for

arbitrary foundations founded on non-homogeneous soil profiles [18]. The next

chapter demonstrates implementation of each of these four methods as well as a

fixed-base reference solution.

2.2 Implementation of Existing Methods

Consider the soil-foundation-structure system depicted in Figure 2.2(a). The sys-

tem consists of a single degree-of-freedom (SDOF) structure supported by a rigid

disk that rests on a uniform soil half-space. Its key physical properties are listed

in Table 2.1.

The geological values for this system are chosen to reflect those occurring at

California Strong Motion Instrumentation Program (CSMIP) Station 58223 lo-
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(a) Soil-Foundation-Structure

System

(b) Fixed Base Model (c) Substructure Model

Figure 2.2: A simple soil-foundation-structure system with fixed base and sub-

structure models.

cated at the San Francisco International Airport (SFO). The ground motion used

to excite the system will be the east-west surface motion recorded at SFO during

the October 17, 1989 Loma Prieta Earthquake. The acceleration record for this

event is plotted in Figure 2.3. It contains L = 200 data points spaced at ∆t = 0.02

seconds. During this event, the site experienced a peak horizontal acceleration of

0.24g. The record’s Fourier amplitude spectrum is shown in Figure 2.4. The max-

imum value of the smoothed Fourier amplitude spectrum yields the predominant

period Tp = 0.44 second which occurs at 2.29 Hertz.

Figure 2.2(b) displays a fixed-base model of the structure. In this model, the

foundation is assumed to be part of a rigid base. The structure is attached to

this base using a connection that prohibits both translation and rotation. The

system is excited by applying the desired ground motion to the rigid base. In this

case, the ground motion ug represents the free-field motion. The motion of the
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Table 2.1: Soil-Foundation-Structure System Parameters.

Geology

G: Soil Bulk Modulus 2.43 kip/in2

Vs: Shear Wave Velocity 500 ft/sec

ν: Poisson’s Ratio 1/3

Structure

w: Structure Weight 1000 kips

wf : Foundation Weight 100 kips

h: Structure Height 30 ft

T : Structural Period 1 sec

ξ: Damping Ratio 0.03

r: Foundation Radius 10 ft

hf : Foundation Thickness 3 ft

structure can be expressed via the semi-discrete second-order differential equation

mü1,n + cu̇1,n + ku1,n = −müg,n (2.2)

where m, c, and k represent structural mass, damping, and stiffness and ü1,n,

u̇1,n, and u1,n indicate acceleration, velocity, and displacement at time n. On the

right-hand-side of the equation, üg,n represents the free-field ground acceleration

at time n. The system has a natural frequency of

ω0 =

√
k

m
(2.3)

and a damping ratio of

ξ =
c

2
√
mk

. (2.4)
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Figure 2.3: East-West ground acceleration recorded at the San Francisco Inter-

national Airport during the 1989 Loma Prieta Earthquake.

Noting that natural frequency is related to structural period by

ω0 =
2π

T
, (2.5)

k and c may be expressed in terms of the values in Table 2.1 as

k =
4π2w

T 2g
(2.6)

and

c = 2ξ

√
wk

g
(2.7)

with g representing gravitational acceleration.

Figure 2.2(c) displays a substructure model of the system. Here, the rigid

foundation remains, but the surrounding soil is replaced by the horizontal foun-

dation impedance function k̄x, and the rotational foundation impedance function

k̄θ. Thus, the foundation is allowed to both translate and rotate. As the system is

relatively simple, a rigid disk foundation resting on a homogeneous soil half-space,

suitable impedance functions are readily available in the literature. Veletsos and

Verbic [12], define them as

k̄x =
8Gr

2− ν
[kx + ia0cx] (2.8)
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Figure 2.4: Fourier amplitude spectrum of East-West ground acceleration

recorded at the San Francisco International Airport during the 1989 Loma Pri-

eta Earthquake.

where

kx = 1 , cx = 0.65 , a0 =
ωr

Vs
,

and

k̄θ =
8Gr3

3− 3ν
[kθ + ia0cθ] , (2.9)

where

kθ = 1− β1(β2a0)2

1 + β2a0)2
, cθ =

β1β2(β2a0)2

1 + β2a0)2
,

β1 = 0.8 , β2 = 0.5 , a0 = ωr/Vs .

In this model, the system is excited by applying the foundation input motion

(uFIM) to the left-side of the horizontal spring. As shown, the fixed base model

ignores the effects of both inertial and kinematic interaction while the substructure

model has the ability to account for both. That said, as the focus of this work is

on inertial interaction, in what follows, the free-field motion will be used as the

foundation input motion (ug = uFIM) to isolate inertial effects. The equations of
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motion for the soil-foundation-structure system may thus be stated as
m 0 0

0 mf 0

0 0 If



ü1,n

üf,n

θ̈f,n

+


c −c −ch

−c c ch

−ch ch ch2



u̇1,n

u̇f,n

θ̇f,n


+


k −k −kh

−k k kh

−kh kh kh2



u1,n

uf,n

θf,n

+


0

fx,n

fθ,n

 = −


m

mf

0

 üg,n (2.10)

in which If represents the foundation’s moment of inertia, h represents the struc-

ture’s height, and fx,n and fθ,n represent the forces generated by the impedance

springs k̄x and k̄θ respectively. Stated in matrix form these equations become

Mün + Cu̇n + Kun + fn = pn (2.11)

with M , C, and K typically referred to as the system’s mass, damping, and

stiffness matrices. As the foundation impedance functions vary with frequency,

determination of fn in the time domain is not straightforward. It is thus often

convenient to restate the equations of motion in the frequency domain as−ω2
l


m 0 0

0 mf 0

0 0 If

+ iωl


c −c −ch

−c c ch

−ch ch ch2

+


k −k −kh

−k k kh

−kh kh kh2




Ut,l

Uf,l

Θf,l

+


0

Fx,l

Fθ,l

 = −


m

mf

0

 Üg,l (2.12)

in which Ut,l, Uf,l, and Θf,l are the frequency domain representations of the dis-

placements u1,n, uf,n, and θf,n. The forces generated by the impedance springs at

each frequency wl, represented by Fx,l and Fθ,l, are thus calculated according to

Fx,l = k̄x,lUf,l and Fθ,l = k̄θ,lΘf,l . (2.13)
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Note that the subscript l in (2.13) indicates that the original (continuous) impedance

functions k̄x and k̄θ that have been sampled at L frequency points at a spacing

of ∆ω. Throughout this work, this convention is used to differentiate between

continuous impedance functions and sampled sequences of impedance data.

2.2.1 Fixed Base Response

Although fixed-base solutions ignore the effects of inertial soil-structure interac-

tion, they are still of value to this study in that they can serve as a baseline from

which to highlight the SSI effects. In 1959, Newmark [19], proposed a numeri-

cal time-stepping integration scheme for solving differential equations such as the

fixed-base equation of motion given in (2.2). This method remains widely used in

engineering practice. To apply it, begin by restating Eq. (2.2) at time n+ 1 as

mü1,n+1 + cu̇1,n+1 + ku1,n+1 = pn+1 (2.14)

where

pn+1 = −müg,n+1 . (2.15)

Next, use Newmark’s relations to express velocity and displacement at time n+ 1

as

u̇1,n+1 = u̇1,n + (1− γ)∆tü1,n + γ∆tü1,n+1 (2.16)

and

u1,n+1 = u1,n + ∆tu̇1,n + ∆2
t (

1

2
− β)ü1,n + ∆2

tβü1,n+1 (2.17)

where ∆t represents the time step, or difference in time between n and n+ 1, and

β and γ are Newmark’s integration and damping constants. Substituting (2.16)

and (2.17) into (2.14) and solving for acceleration at time n+ 1 yields

ü1,n+1 = m̂−1Pn+1 − c [u̇1,n + (1− γ)∆tü1,n]

− k
[
u1,n + ∆tu̇1,n + (

1

2
− β)∆2

t ü1,n

]
(2.18)
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where

m̂ = m+ γ∆tc+ β∆2
tk . (2.19)

Equations (2.18), (2.16), and (2.17) may then be iterated, beginning with a set of

initial conditions to determine the system’s response.

Figure 2.5 displays the fixed-base time-history response calculated using the

Newmark method with β = 0.25 and γ = 0.5 for the system depicted in Fig-

ure 2.2a, when excited by the horizontal ground acceleration depicted in Fig-

ure 2.3.

Time [sec]
0 5 10 15 20 25 30 35 40

D
is

pl
ac

em
en

t [
in

]

-4

-3

-2

-1

0

1

2

3

4

5

Fixed Base

Figure 2.5: Fixed-base time-history response of SDOF structure subjected to

horizontal ground acceleration.

The response yields a maximum horizontal displacement of u1,max = 4.23

inches. Analysis of this response’s Fourier amplitude spectrum, shown in Fig-

ure 2.6, yields a predominant period of Tp = 0.97 seconds. These fixed base

values will serve as a baseline for the following substructure analyses.

2.2.2 Substructure Frequency Domain Response

To determine the time-history response of the substructure model in the frequency

domain, begin by considering the force generated by the horizontal foundation
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Figure 2.6: Fourier amplitude spectrum of fixed-base response history for SDOF

structure subjected to horizontal ground acceleration.

impedance spring (according to (2.13) and (2.8)):

Fx,l = k̄x,lUf,l =
8Gr

2− ν
[kx,l + ia0,lcx,l] . (2.20)

For convenience, express this as

Fx,l = [k̂x,l + iωĉx,l]Uf,l (2.21)

where

k̂x,l = kx,l
2− ν
8Gr

and ĉx,l = cx,l
a0,l(2− ν)

ω8Gr
.

Substituting (2.21) and a similar representation of the force generated by the

rotational impedance spring into the frequency domain equations of motion found

in (2.10) yields−ω2
l


m 0 0

0 mf 0

0 0 If

+ iωl


c −c −ch

−c c+ ĉx,l ch

−ch ch ch2 + ĉθ,l



+


k −k −kh

−k k + k̂x,l kh

−kh kh kh2 + k̂θ,l




Ut,l

Uf,l

Θf,l

 = −


m

mf

0

 Üg,l (2.22)
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which may be expressed more compactly as

(−ω2M + iωC̃ + K̃)Ul = Pl (2.23)

iwhere vectors Ul and Pl contain the system displacements and external forces at

each frequency point l, and M , C̃, and K̃ are referred to as the system’s mass,

damping and stiffness matrices. The tildes above the damping and stiffness matri-

ces indicating that they include the frequency-dependent foundation impedance

terms. Isolating Ul in (2.23) yields

Ul = HlPl (2.24)

in which the term

Hl = (−ω2M + iωC̃ + K̃)−1 (2.25)

is typically referred to as the system’s transfer function. Thus, determination of

the system’s displacement response requires multiplication of the external force

vector by the system transfer function. The time history response may then be

determined by converting the Ul into the time domain.

In summary, the following four steps are required for execution of the frequency

domain method:

1. Transformation of the forcing function from the time domain into the fre-

quency domain.

2. Generation of the system’s transfer function.

3. Computation of the system’s frequency response.

4. Transformation of the frequency response into the time domain.

As the equations of motion are defined for each frequency point l and both the

ground motion record üg,n and desired time history response are defined at discrete
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time points n, the discrete Fourier transform and its inverse must be used for

conversion between the time and frequency domains. Thus

Üg,l = F [üg,n] and un = F−1 [Ul] (2.26)

where F [x] and F−1[X] represent the discrete Fourier transform and the inverse

discrete Fourier transform respectively.

Figure 2.7 shows the displacement time-history response for the substructure

model depicted in Figure 2.2c, calculated using the frequency domain method

outlined above. The figure highlights the effects of inertial SSI. In this figure,
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Figure 2.7: Frequency domain method time-history response of SDOF structure

subjected to horizontal ground acceleration.

the solid line representing the SSI response reveals a maximum displacement of

ũ1,max = 3.27 inches compared to a maximum displacement of u1,max = 4.23

inches for the fixed base response. The effects of inertial SSI are also visible in the

computed response’s Fourier amplitude spectrum, which is depicted in Figure 2.8.

As expected, the response’s period lengthens, in this case from Tp = 0.97 seconds

to T̃p = 1.17 seconds.
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Figure 2.8: Fourier amplitude spectrum of frequency domain method time-

history response of SDOF structure subjected to horizontal ground acceleration.

2.2.3 Substructure Convolution Response

It is, of course, also possible to solve the equations of motion found in (2.10) by

executing the convolution between the impedance functions and the foundation

displacements in the time domain. To do so (considering the horizontal), begin

by expressing the foundation impedance function at each frequency l as

k̄x,l = kx,l + iωlĉx,l where ĉx,l =
a0,lcx,l
ωl

(2.27)

and ω represents frequency in radians per second. Accordingly, the spring force

generated by the foundation impedance function may be expressed in the fre-

quency domain as

k̄x,luf,l = (kx,l + iωlĉx,l)uf,l . (2.28)

Noting that multiplication in the frequency domain equates to convolution in the

time domain, (2.28) may be expressed in the time domain as

k̄x,n ∗ uf,n = kx,n ∗ uf,n + ĉx,n ∗ u̇f,n (2.29)

where kx,n and ĉx,n represent the inverse discrete Fourier transforms, or impulse

responses, of kl and ĉl respectively. Expanding the convolutions on the right-hand
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side yields

k̄x,n ∗ uf,n = kx,0uf,n +
n−1∑
j=1

kx,juf,n−j + ĉx,0u̇f,n +
n−1∑
j=1

ĉx,ju̇f,n−j . (2.30)

For convenience, the zeroth term of both convolutions are expressed outside

their respective summations as at every time step n. When executing a numer-

ical integration scheme to solve the equations of motion, displacements at all

past time steps are known quantities. Thus, concerning the right-hand of (2.30),

the displacements inside the summations at time steps n − l are known, while

those outside at time step n are unknown. This expression, along with a similar

representation of the force generated by the rotational impedance may then be

substituted into (2.10) to yield the modified equations of motion
m 0 0

0 mf 0

0 0 If



ü1,n

üf,n

θ̈f,n

+


c −c −ch

−c c+ ĉx,0 ch

−ch ch ch2 + ĉθ,0



u̇1,n

u̇f,n

u̇θ,n

+


k −k −kh

−k k + kx,0 kh

−kh kh kh2 + kθ,0



u1,n

uf,n

θf,n

 =


−m

−mf

0

 üg,n −


0

n−1∑
j=1

ĉx,ju̇f,n−j +
n−1∑
j=1

kx,juf,n−j

n−1∑
j=1

ĉθ,j θ̇f,n−j +
n−1∑
l=1

kθ,jθf,n−j


(2.31)

where the unknown displacement terms (time step n) are grouped on the left-

hand side inside the structural stiffness and damping matrices and the known

terms (time steps n − l) are grouped on the left-hand side. In this form, the
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equations of motion may now be solved via Newmark’s numerical integration

technique outlined in §2.2.1.

2.2.3.1 Uncorrected Convolution Response

Figure 2.9 displays the time history response for the soil-foundation-structure sys-

tem depicted in Figure 2.2. Also plotted for reference are the fixed base and rep-
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Figure 2.9: Time history response of SDOF system computed using uncorrected

convolution solution.

resentative frequency responses. Note that although the maximum displacement

of the convolution response (3.33 inches) is closer to that of the frequency domain

response than that of the fixed base response, its general trend deviates signifi-

cantly from the frequency domain solution. These differences are further apparent

in the Fourier amplitude spectra depicted in Figure 2.10. From these spectra, it is

clear that the convolution response contains significant errors as compared to its

frequency domain counterpart. These errors are resulting from inaccuracies dur-

ing the inverse discrete Fourier transform of the foundation impedance functions

due to the phenomenon known as time domain leakage.
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Figure 2.10: Fourier amplitude spectrum of convolution method time-history

response of SDOF structure subjected to horizontal ground acceleration.

2.2.3.2 Time Domain Leakage

The inverse discrete Fourier transform requires knowledge of frequency data over

the interval −∞ ≤ ω ≤ ∞. Unfortunately, impedance data is often band-limited,

or only defined over a finite interval such as 0 ≤ a0 ≤ 8. Application of the IDFT

to band-limited frequency data can lead to a non-causal time domain impedance

realization where current displacement depends on future, as well as past, dis-

placements.

Figure 2.11 demonstrates this phenomenon. Pictured are the corrected and

uncorrected impulse responses of the real component of the rocking foundation

impedance. The uncorrected impulse response is clearly non-causal. It contains

significant non-zero stiffness values at negative time steps. To be viable for use

with a time-stepping numerical integration scheme, such a response must be ad-

justed to be made causal. The most straightforward (and often the most inaccu-

rate) method of doing this involves simply truncating, or setting equal to zero,

the non-causal portion of the time domain impedance realization. Other meth-

ods range from conditioned IDFTs—such as those proposed by Paronesso and
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Figure 2.11: Corrected and uncorrected impulse responses of the real component

of rocking foundation impedance.

Wolf [20] or Hayashi and Katukura [21]—that modify application the IDFT in

such a manner as to yield a causal result, to curve-fitting solutions—such as that

offered by Nakamura [22] that avoid the IDFT altogether.

The present work uses a modified version of an iterative technique that is bor-

rowed from the signal processing community as outlined in the following section.

2.2.3.3 Causality Correction

The causality correction adopted for this work is based on a method developed Luo

and Chen for extraction of causal time domain parameters based on band-limited

frequency domain data [23]. In general terms, the method involves successive

iterations of the IDFT and DFT, over a frequency range extended beyond that

over which the original frequency data is defined. During each iteration, causality

is enforced and adjustments are applied both within and outside the original fre-

quency domain. The iterations terminate when the DFT of the impulse response

of the adjusted data is within a desired tolerance of the original frequency data

over the original range of interest.

The original method by Luo and Chen is modified by here, because the impulse
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responses in (2.29) are generated from real, as opposed to complex, data.

To demonstrate the correction technique, consider the case of a notional band-

limited data sequence Yl. Assume this sequence contains real-valued data at dis-

crete frequencies l from zero to some cutoff frequency ωc, after which it assumes

zero values up to a maximum frequency of ωL. Begin by applying the IDFT to

compute the sequence’s impulse response:

yn = F−1[Yl] . (2.32)

Next, compute a causal approximation of this impulse response by setting all

values occurring at negative time steps to zero according to:

ŷn = ynHn (2.33)

where Hn is a Heaviside function defined as

Hn =

 0 if n < 0 ,

1 if n ≥ 0 .
(2.34)

Then transform this causal approximation back into the frequency domain using

the DFT to yield an approximation of the original sequence Yl,

Ŷl = F [ŷn] . (2.35)

Next compute the difference between the original sequence and approximation:

∆Yl = Yl − Ŷl . (2.36)

Use this difference to determine the maximum absolute error between the original

sequence and the approximation over the original frequency range of interest (0 ≤

l ≤ ωc)

ε = max

[
∆Yl
Yl

]
. (2.37)

If ε is within a desired tolerance, then ŷn is the desired causal time domain impulse

response. If not, then a correction is applied to Ŷl. Note that this correction is
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applied differently for values of Ŷl inside and outside the original frequency band

of interest. Inside the band of interest, the correction is

Ŷl = Ŷl −∆Ŷl (2.38)

where

∆Ŷl = αk∆Yl (2.39)

and α is a weight factor computed during each iteration as

α = α− ε (2.40)

with a seed value of α = 1. Outside the frequency range of interest (ωc < l ≤ ωL),

the correction is

Ŷl = Ŷl − 0.99∆Ŷl−1 (2.41)

with the constant 0.99 selected to both damp Ŷl as l approaches L and to assure

a smooth transition from inside to outside the frequency range of interest. This

procedure is summarized in Figure 2.12.

2.2.3.4 Corrected Convolution Solution

Figures 2.13 and 2.14 depict the time-history response and Fourier amplitude spec-

trum of the convolution solution, computed using the corrected impulse responses

of both the horizontal and rocking impulse responses. The corrected convolution

response yields a maximum displacement of ũ1,max = 3.10 inches and a predom-

inant period of T̃p = 1.18 seconds. This result conforms much better to that of

the frequency domain solution than its uncorrected counterpart.
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1 Let α = 1;

2 Compute impulse response yn = F−1[Yl];

3 while ε is outside desired tolerance do

4 Force causality ŷn = Hnyn;

5 Update frequency response Ŷl = F [ŷn];

6 Compute ε using (2.37) ;

7 Update α using (2.40);

8 Correct Ŷl inside frequency range of interest using (2.38);

9 Correct Ŷl outside frequency range of interest using (2.41);

10 Compute impulse response yn = F−1[Ŷl];

11 end

Figure 2.12: Algorithm to estimate causal impulse response from band-limited

frequency data.
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Figure 2.13: Time history response of SDOF system computed using convolution

of corrected impulse responses.
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Figure 2.14: Fourier amplitude spectrum of convolution solution computed using

corrected impulse responses.

2.2.4 Substructure Representative Frequency Response

Perhaps the most popular method currently used in engineering practice for con-

ducting the third step of the substructure method involves removing frequency

dependence from the foundation impedance functions by evaluating them at some

representative frequency. This is often taken as the structure’s first mode flexible-

base natural frequency [7]. In the case of the structure depicted in Figure 2.2, the

flexible-base period is computed via

T̃ = T

√
1 +

k

k̄x,r
+
kh2

k̄θ,r
(2.42)

in which k̄x,r and k̄θ,r represent the scalar-sampled versions of k̄x and k̄θ. As the

former are frequency-dependent, this calculation requires a brief iterative proce-

dure, such as that outlined in Figure 2.15.

An alternative method, offered by Ghannad et al. [16], uses an eigenvalue

analysis to determine the flexible-base period. This procedure is outlined in Fig-

ure 2.16. For the system in Figure 2.2, both methods result in a flexible-base

period of T̃p = 1.69 seconds. Evaluating the foundation impedance functions
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1 Assume initial value of flexible-base period T̃ ;

2 while T̃ is outside a desired tolerance do

3 evaluate foundation impedance functions k̄x and k̄θ at assumed value of

T̃ ;

4 update T̃ using (2.42);

5 end

Figure 2.15: Standard method for estimation of the flexible-base period.

1 Assume initial value of flexible-base period T̃ ;

2 while T̃ is outside a desired tolerance do

3 evaluate foundation impedance functions k̄x and k̄θ at assumed value of

T̃ ;

4 determine eigenvalues of equations of motion as stated in (2.10) using

sampled impedance values k̄x,r and k̄θ,r;

5 update T̃ using period corresponding to minimum eigenvalue;

6 end

Figure 2.16: Standard method for estimation of the flexible-base period.

at the frequency (in radians) corresponding to this period yields scalar-valued

impedances of k̄x,r = 3.88(10)3 + 1.87(10)2i kips/inch and k̄θ,r = 4.65(10)7 +

2.25(10)6i kip-inches. These values may then be inserted into (2.10), leaving a set

of equations of motions that are solely dependent on time, and may be numerically

integrated to determine the system’s response history.

Figure 2.17 adds the representative frequency response history analysis of the

soil-foundation-structure system depicted in Figure 2.2 to those obtained using the

31



fixed-base and frequency domain methods, along with these computed responses’

Fourier amplitude spectra. Note the general agreement with the frequency domain

response in both figures. The representative frequency method yields a maximum

displacement of ũ1,max = 3.33 inches and a predominant period of T̃p = 1.17

seconds, which closely match the values computed using the frequency domain.
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Figure 2.17: Representative frequency response-history analysis of an SDOF

structure subjected to horizontal ground acceleration (top) and the Fourier ampli-

tude spectra of these responses (bottom).

32



2.2.5 Substructure Lumped Parameter Model

The final state-of-practice method in this investigation is the lumped parameter—

a.k.a., the monkey tail—model. As mentioned in §2.1.3, this method seeks to re-

move frequency dependence from the foundation impedance functions through the

addition of internal degrees of freedom that contain notional springs, dashpots,

and masses. The springs represent the system’s static stiffness for each direction

of foundation movement. The values of the masses and dashpots are determined

through a process that includes approximating the impedance functions using a

ratio of complex polynomials, as outlined in Appendix B of Wolf’s book: Foun-

dation Vibration Analysis Using Simple Physical Models [24]. The most basic, or

fundamental, lumped parameter model for horizontal and rocking motion is show

in Figure 2.18.

Figure 2.18: Fundamental lumped parameter model for rocking and horizontal

motion of rigid disk resting on elastic half-space.

The static stiffness are calculated using

ks,x =
8Gr

2− ν
, (2.43a)

ks,θ =
8Gr3

3− 3ν
. (2.43b)
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These are identical to the leading terms of Equations (2.8) and (2.9) as Wolf used

Veletsos and Verbic’s impedance functions for his rigid disk on uniform half-space

formulations. The masses and dashpots are calculated according to

c0,j =
r

Vs
γ0,jks,j (2.44a)

c1,j =
r

Vs
γ1,jks,j (2.44b)

m0,j =
r2

V 2
s

µ0,jks,j (2.44c)

m1,j =
r2

V 2
s

µ1,jks,j (2.44d)

where j represents the foundation displacement directions x or θ and the coeffi-

cients γ0,j, γ1,j, µ0,j, and µ1,j are calculated according to Table 2.2.

Table 2.2: Fundamental lumped parameter coefficients for rigid disk resting on

uniform half-space.

j γ0,j γ1,j µ0,j µ1,j

x - Horizontal 0.78− .04ν 0 0 0

θ - Rocking 0 0.42− 0.3ν2 0 0.34− 0.2ν2

The equations of motion for the fundamental lumped parameter model asso-
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ciated with the system in Figure 2.2 are
m 0 0 0

0 m0,x 0 0

0 0 m1,θ 0

0 0 0 m0,θ

 ün +


c −c 0 −ch

−c −c+ c0,x 0 ch

0 0 c1,θ −c1,θ

−ch ch −c1,θ c1,θ + ch2

 u̇n


k −k 0 −kh

−k −k + ks,x 0 kh

0 0 0 0

−kh kh 0 ks,θ + kh2

un = −



m

m0,x

m1,θ

m0,θ


üg,n (2.45)

where

un =
{
ut,n uf,m θ1,n θf,n

}T

u̇n =
{
u̇t,n u̇f,m θ̇1,n θ̇f,n

}T

ün =
{
üt,n üf,m θ̈1,n θ̈f,n

}T
.

Applying the system parameters from Table 2.1 and numerically integrating

(2.45) using β = 0.25 and γ = 0.5 yields the response history. The lumped

parameter model’s computed time-domain response is shown together with the

fixed base model and frequency domain solutions Figure 2.19. The same figure

also displays the Fourier spectra of these responses.

The lumped parameter method yields a maximum displacement of u1,max =

3.32 inches and a predominant period of T̃p = 1.17 seconds. As with the rep-

resentative frequency method, these values closely match those obtained in the

frequency domain.
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Figure 2.19: Lumped parameter model response history of SDOF system (top)

and its corresponding Fourier amplitude spectrum (bottom); along with the same

for the fixed base model and frequency domain solutions.

2.2.6 Comparison of Methods

Table 2.3 compares the maximum structural displacement and predominant pe-

riods for all four methods investigated in this chapter. All substructure methods

yield the same period elongation of ∼ 0.2 seconds as compared to the fixed base

predominant period. All methods also offer an ∼ 8% reduction in reduction in

maximum structural displacement.
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Table 2.3: Comparison of time-history response parameters for SDOF system

subjected to horizontal ground motion.

Model
Predominant Period

[sec]

Max. Structural Displacement

[in]

Fixed-Base 0.97 4.23

Frequency Domain 1.17 3.27

Corrected Convolution 1.18 3.10

Representative Frequency 1.17 3.33

Lumped Parameter 1.17 3.32
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CHAPTER 3

The Discrete-Time Filter Method

3.1 Safak’s Idea

In 2006 Erdal Safak, then a researcher for the United States Geological Sur-

vey (USGS), proposed an innovative means of incorporating frequency-dependent

foundation impedance functions into time domain analyses. His idea was to use

signal processing theory to approximate the spring force generated by impedance

functions as discrete-time digital filters [25]. Such filters are essentially mathemat-

ical tools that convert inputs into desired outputs. Safak proposed using present

and past values of foundation displacement, coupled with past values of spring

force as the inputs to predict, as output, the current value of force generated

by the impedance function. Accordingly, in the time domain, the spring force

generated in the impedance function k̄n would take the form

k̄n ∗ uf,n ≈ fn = b0uf,n + b1uf,n−1 + · · ·+ bjuf,n−j − a1fn−1 − · · · − aj fn−j , (3.1)

or more compactly

k̄n ∗ uf,n ≈ fn = b0uf,n +
J∑
j=1

bpuf,n−j −
J∑
j=1

aqfn−j (3.2)

where J represents the filter order. Note the similarity between these relations

and those for the convolution solution given in (2.29) and (2.30). Equation (3.2)

may be inserted in a similar manner into a numerical integration scheme, such

as eqs. (2.16) to (2.18), and used to conduct time-history analyses in the time

domain in a manner similar to that employed for the convolution solution.
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The idea of approximating frequency-dependent impedance functions with re-

cursive relations in the time domain is not new. Indeed, the lumped parameter

models discussed in the previous chapter are derived in a similar manner. In their

1989 publication titled “[r]ecursive evaluation of interaction forces ...,” Wolf and

Motosaka [26] outline a method for determining what they term as rational approx-

imations of frequency dependent impedance functions. These rational approxi-

mations may be applied as recursive relations or algebraically manipulated into

lumped parameter models. Paronesso and Wolf [27] extend this idea by offering

further detail on determination of the rational approximations and by extending

the method to account for coupled (or matrix) impedances.1 For the latter, they

offer two methods: the first being to approximate each element of the impedance

matrix with a separate rational expression; the second being a means of diago-

nalizing the impedance matrices prior to approximation. Ruge et al. [28] offer an

alternative method of deriving rational approximations for impedance matrices

using a multi-variable approach. Du and Zhao [29] add a condition to Wolf’s

process that assures a stable approximation.

The rational approximations yielded by all these aforementioned studies are

derived using continuous frequency. As such, they yield continuous-time filters,

and thus, before they can be used as recursive relations within a numerical inte-

gration scheme, they must be transformed into discrete-time filters. In 2008, Du et

al. [30] offered a means of doing so through application of the bilinear transform.

The major difference between these works and the method proposed by Safak is

that Safak’s method executes the approximation using discrete frequency, thus

directly yielding discrete-time filters and avoiding the need to apply the bilinear

transform.

1For further details on coupled impedances see §4.4
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3.2 Coefficient Estimation

Algorithms for estimation of discrete-time recursive filter coefficients using magni-

tude and phase data are abound in signal processing, control systems, and system

identification literature. Many are based on the least-squares method of complex

curve fitting outlined by Levy in his 1959 work Complex Curve Fitting [31]. What

follows is a discrete-time implementation of Levy’s method demonstrated using a

horizontal impedance function. To begin, note that the Z-transform follows the

rule

X(z) = Z {xn} =
∞∑
n=0

xnz
−n where z = eiΩl and i =

√
−1 (3.3)

and is subject to linearity and time-shift properties as follows

Z {c1x1,n + c2x2,n} = c1X1(z) + c2X2(z) and Z {xn−k} = z−kX(z) . (3.4)

Using (3.3) and (3.4) the Z-transform of both sides of (3.1) is (with the subscript

x dropped for brevity)

k̄lU (z) ≈ F (z) = b0 +b1U(z)z−1 + · · ·+bjU(z)z−j−a1F (z)z−1−· · ·−ajF (z)z−j .

(3.5)

At this point, it is important to differentiate between continuous frequency,

represented in this work by the Greek symbol (ω), and discrete frequency which

will be represented by (Ω). Continuous frequency, over which impedance func-

tions are typically defined, takes values from 0 → ±∞. Sequences of continuous

frequency samples are mapped to sequences of discrete frequency samples over

within the interval 0→ ±π according to

Ωl = 2 arctan
ωl
2fs

(3.6)

where fs denotes sampling frequency, which is equal to twice the maximum fre-

quency, in Hertz, over which the impedance function is defined [32]. Note that the
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selection of a sampling frequency equal to the inverse of time step (∆t) ensures

the domain of the impedance function covers the entirety of the domain of the

response’s frequency content. Rearranging (3.5) to isolate the impedance k̄l on

the left-hand side leads (with the subscript l now dropped for brevity) to

k̄ ≈ F (z)

U(z)
=
b0 + b1z

−1 + · · ·+ bjz
−j

1 + a1z−1 + · · ·+ ajz−j
. (3.7)

Letting N and D represent the complex polynomials in the numerator and de-

nominator of the right-hand side of (3.7), the error between the actual impedance

function and its approximation becomes

ε = k̄ − N

D
. (3.8)

After multiplying both sides by D the square of the absolute value of (3.8) may

be expressed as

|Dε|2 =
∣∣Dk̄ −N ∣∣2 . (3.9)

Summing (3.9) over all discrete frequencies, Ωl yields

E =
L∑
l=1

|Dε|2 =
L∑
l=1

∣∣Dk̄ −N ∣∣2 (3.10)

where L represents the total number of discrete frequencies. The coefficients bj

and aj can now be found by minimizing E. To do so, partial derivatives of E with

respect to bj and aj are evaluated and set equal to zero, as in

∂E
∂a1

=
∑L

l=1 2(Dk̄ −N)(z−1k̄) = 0
...

∂E
∂aj

=
∑L

l=1 2(Dk̄ −N)(z−j k̄) = 0

∂E
∂b0

=
∑L

l=1 2(Dk̄ −N)(z0) = 0

∂E
∂b1

=
∑l

l=1 2(Dk̄ −N)(z−1) = 0
...

∂E
∂bj

=
∑l

l=1 2(Dk̄ −N)(z−j) = 0

(3.11)
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and are arranged in matrix form as

A ·B = C (3.12)

where

A = 2
m∑
j=1



k̄2z−2 · · · k̄2z−(j+1) −k̄z−1 −k̄z−2 · · · −k̄z−(j+1)

...
...

...
...

...

k̄2z−(1+j) · · · k̄2z−2j −k̄z−j −k̄z−(j+1) · · · −k̄z−2j

k̄z−1 · · · k̄z−j −z0 −z−1 · · · −z−j

k̄z−2 · · · k̄z−(1+j) −z−1 −z−2 · · · −z−(1+j)

...
...

...
...

...

k̄z−(1+j) · · · k̄z−2j −z−j −z−(j+1) · · · −z−2j



B =



a1

...

aj

b0

b1

...

bj



C = −2
L∑
l=1



k̄2z−1

...

k̄2z−j

k̄z−1

k̄z−1

...

k̄z−j



.

The filter coefficients (contained in B) are estimated by computing the Moore-Penrose

inverse of A, according to

B =
[
AT A

]−1
AT C . (3.13)

3.3 Safak’s Examples

In his 2006 paper, Safak demonstrated his method for approximating impedance

functions using discrete-time filters through the use of several examples. The

following sections reproduce the results of two, a rigid disk resting on an elastic

half-space and a rigid disk founded on an elastic soil layer overlying bedrock.
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3.3.1 Rigid Disk on Elastic Half-space

Safak’s first example sought to approximate the horizontal foundation impedance

function for a rigid disk resting on a uniform, elastic soil half-space. Several

variations of the impedance function for this foundation/soil geometry exist in

the literature. This work already introduced one in §2.2. Safak chose to use

a similar version, offered by Veletsos and Wei [10]. As in §2.2, the foundation

impedance function takes the form

k̄x = Kx [kx + ia0cx] (3.14)

where Kx, the impedance function’s static stiffness or value at loading frequency

of zero, is calculated according to

Kx =
8Gr

2− ν
. (3.15)

The stiffness function, kx, and the damping function, cx, are depicted in Figure 3.1.

Given the values listed in Table 3.1, the static stiffness is evaluated as Kx = 1399

kip/in. Application of the complex least-squares algorithm outlined in §3.2 yields

the filter coefficients shown in Table 3.2.

Table 3.1: Soil and foundation values for rigid disk resting on uniform elastic

half-space.

G - Soil Bulk Modulus 2.4285 kip/in2

Vs - Shear Wave Velocity 1000 ft/sec

ν - Poisson’s Ratio 1/3

r - Foundation Radius 10 ft

This result was obtained by first sampling the impedance function k̄ is at a total

of L = 100 frequency values beginning at ω0 = 0 and ending with ωL = 800 rad/sec
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Figure 3.1: Stiffness and damping coefficients for rigid disk resting on uniform

elastic half-space.

Table 3.2: Discrete-time recursive filter coefficients approximating foundation

impedance function for rigid disk resting on uniform soil half-space.

j aj bj (×10−4)

0 1.0000 + 0.0000i 0.5939 + 0.0009i

1 −0.4865− 2.2399i −1.2151− 1.3415i

2 −2.4944 + 0.9438i −0.1234 + 2.672i

3 1.1043 + 2.2855i 1.6896− 1.6365i

4 1.4206− 1.1443i −1.2842 + 0.0958i

5 −0.6806− 0.2758i 0.3579 + 0.2249i

6 0.0637 + 0.1317i −0.0291− 0.0583i

(which corresponds to a dimensionless frequency of a0,L = 8) to yield the sequence

of impedance values k̄l. The sampling frequency (twice ωL) of fs = 254.65 Hz was

used to map the sequence of continuous frequencies ωl to the sequence of discrete

frequencies Ωl according to (3.6). As seen in Figure 3.2, the fits between the
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real and imaginary components of both the original impedance function and this

sixth-order filter approximation are quite good across the entire frequency domain.

Note in the figure, the imaginary components are normalized by dimensionless

frequency a0.
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Figure 3.2: Comparison of foundation impedance function and filter approxi-

mation for rigid disk resting on uniform soil half-space.

3.3.2 Rigid Disk on Elastic Soil Layer Above Bedrock

Another of Safak’s examples approximates the horizontal impedance impedance

function for a rigid disk foundation resting on an elastic soil layer that overlies
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bedrock. The impedance function for this foundation-soil system takes the form

k̄x,l = Kx(1 + 2iξ) [kx + ia0,lcx] . (3.16)

In this case, ξ represents damping in the soil layer and h represents the layer’s

thickness. The static stiffness is defined as

Kx =
8Gr

2− ν

(
1 +

r

2h

)
. (3.17)

The values of the relevant parameters are found in Table 3.3. This impedance

function demonstrates considerable variation with respect to frequency as can be

seen by the values of the stiffness and damping functions, shown in Figure 3.3.

Table 3.3: Soil and foundation values for rigid disk resting on uniform elastic

half-space.

G - Soil Bulk Modulus 2.4285 kip/in2

Vs - Shear Wave Velocity 1000 ft/sec

ν - Poisson’s Ratio 1/3

h - Soil Layer Thickness 20 ft

ξ - Soil Layer Damping 0.05

r - Foundation Radius 10 ft

Due to the said variation, a more robust least-squares algorithm is needed

to obtain a suitable fit when determining the filter coefficients. The coefficients

in Table 3.4 were obtained using an iterative procedure derived by Sanathanan

and Koerner [33] that weights the error function (3.10) using the denominator

polynomial at each iteration, according to

E =
L∑
l=1

|Dε|2 1

|D|2
=

L∑
l=1

∣∣Dk̄l −N ∣∣2 1

|D|2
. (3.18)
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Figure 3.3: Foundation impedance function stiffness and damping coefficients

for rigid disk resting on elastic soil layer above bedrock.

The first iteration begins with the assumption that all the coefficients aq = 1.

The iterations continue until subsequent sets of coefficients vary within a desired

tolerance.

Table 3.4: Coefficients of discrete-time filter approximating foundation

impedance function for rigid disk resting on elastic soil layer above bedrock.

j aj bj(10−4)

0 1.0000 + 0.0000i 0.5551− 0.1012i

1 −0.6130− 3.1801i −1.7562− 1.4035i

2 −4.7253 + 0.9583i 0.5262 + 4.0887i

3 0.3419 + 5.0870i 2.5708− 4.0988i

4 4.1273− 0.1530i −3.9145 + 1.2880i

5 −0.3623− 2.0078i 2.1605 + 1.0797i

6 −0.4087 + 0.1878i −0.1967− 0.8064i

7 0.0000 −0.0750 + 0.0952i
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Figure 3.4 depicts a comparison of the impedance function with the filter

approximation as with the previous example, the imaginary components are nor-

malized by dimensionless frequency a0. For this case, a seventh-order filter was

required to obtain an adequate fit. Used were L = 100 frequency samples from

ω0 = 0 to ωL = 600 radians per second which corresponds to a sampling frequency

of fs = 190.99 hertz.
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Figure 3.4: Comparison of foundation impedance function and filter approxi-

mation for rigid disk resting on elastic soil layer above bedrock.

48



CHAPTER 4

Elastic Implementation

Safak’s published work on the filter method concludes with his demonstration of

how to approximate various foundation impedance functions with discrete time

filters. This chapter builds upon that foundation and achieves the method’s imple-

mentation for soil-foundation-structure systems subject to elastic structural defor-

mations. This is done using both single and multiple degree-of-freedom (MDOF)

structures. The time-history responses obtained are verified through comparison

to those generated using the state-of-practice methods outlined in Chapter 2. Also

included are detailed analytical and numerical stability analyses of the combined

filter-numerical integration algorithm.

4.1 Single Degree of Freedom Systems

Recall the soil-foundation-structure system shown in Figure 2.2. The equations

of motion for the substructure model of this system, also given in (2.10), are
m 0 0

0 mf 0

0 0 If



ü1,n

üf,n

θ̈f,n

+


c −c −ch

−c c ch

−ch ch ch2



u̇1,n

u̇f,n

θ̇f,n


+


k −k −kh

−k k kh

−kh kh kh2



u1,n

uf,n

θf,n

+


0

fx,n

fθ,n

 = −


m

mf

0

 üg,n (4.1)
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Also recall from Chapter 3 that the filters approximating the spring force gen-

erated by the horizontal and rocking foundation impedance functions take the

form

fx,n ≈ bx,0uf,n +
J∑
j=1

bx,puf,n−j −
J∑
j=1

ax,jfx,n−j (4.2)

for the horizontal direction and

fθ,n ≈ bθ,0θf,n +
J∑
j=1

bθ,pθf,n−p −
J∑
j=1

aθ,jfθ,n−j (4.3)

for the rocking direction. When conducting a time-history analysis using numer-

ical integration, past values of the foundation displacements uf and θf and the

spring forces ff and fθ are known quantities. Given this, substituting (4.2) and

(4.3) into (4.1) and grouping these known values on the right-hand side of the

resulting equations yields
m 0 0

0 mf 0

0 0 If



üt,n

üf,n

θ̈f,n

+


c −c −ch

−c c ch

−ch ch ch2



u̇t,n

u̇f,n

θ̇f,n


+


k −k −kh

−k k + bx,0 kh

−kh kh kh2 + bθ,0



ut,n

uf,n

θf,n

 = −


m

mf

0

 üg +


0

f̂x,n

f̂θ,n

 (4.4)

where

f̂x,n =
P∑
p=1

bx,pθf,n−p −
Q∑
q=1

ax,qfx,n−q

f̂θ,n =
P∑
p=1

bθ,pθf,n−p −
Q∑
q=1

aθ,qfθ,n−q .

Stated in matrix from, these equations of motion become

Mün + Cu̇n + K̂un = P̂n (4.5)

where M is the system mass matrix, C is the system damping matrix. The filter

adjusted stiffness matrix and force are K̂ and P̂n respectively and the acceleration,

velocity, and displacement vectors are likewise ün, u̇n, and un.
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Using these equations of motion, the system’s time-history response may now

be determined through application of Newmark’s numerical time-stepping integra-

tion method in a manner similar to that used in §2.2.1 for the fixed-base response.

To do so, begin by restating (4.5) at time n+ 1 as

Mün+1 + Cu̇n+1 + K̂un+1 = P̂n+1 . (4.6)

Next, recall that displacement and velocity at time n+1 are defined by Newmark’s

Method as

u̇n+1 = u̇n + (1− γ)∆tün + γ∆tün+1 (4.7)

and

un+1 = un + ∆tu̇n + ∆2
t

(
1

2
− β

)
ün + ∆2

tβün+1 (4.8)

where ∆t represents the time step and β and γ are Newmark’s integration and

damping constants respectively. Substituting (4.7) and (4.8) into (4.6) and solving

for acceleration at time n+ 1 yields

ün+1 = M̃−1P̂n+1 −C(u̇n + (1− γ)∆tün)− K̂(un + ∆tu̇n +

(
1

2
− β

)
∆2
t ün)

(4.9)

where M̃ = M + γ∆tC + β∆2
tK̂ .

Iterating equations (4.7), (4.8), and (4.9) from initial conditions will yield the

system’s time-history response.

4.1.1 Implementation Example

To demonstrate the procedure outlined in the previous section, once again recall

the system depicted in Figure 2.2, the accompanying values listed in Table 2.1,

and the input ground motion shown in Figure 2.3. The substructure model of this

system contains the horizontal foundation impedance function

k̄x = Kx [kx + ia0cx] (4.10)
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where

Kx =
8Gr

2− ν
kx = 1 cx = 0.65 a0 =

ωr

Vs

and the rocking foundation impedance function

k̄θ = Kθ [kθ + ia0cθ] (4.11)

where

Kθ =
8Gr3

3− 3ν
kθ,l = 1− β1(β2a0)2

1 + β2a0)2
cθ =

β1β2(β2a0)2

1 + β2a0)2

β1 = 0.8 β2 = 0.5 a0 =
ωr

Vs
.

Applying the algorithm outlined in §3.2 to the horizontal impedance function

yields the second-order filter coefficients contained in Table 4.1. The magnitude

and phase components of both the original impedance function and the filter

approximation are shown in Figure 4.1. The fit is quite good across the entire

frequency range. It should be noted that the least-squares algorithm returned a

negligible imaginary component (on the order of 10−12) for each coefficient, thus

producing what is in essence a real filter.

Table 4.1: Coefficients of discrete-time filters approximating horizontal and rock-

ing impedance functions for rigid disk resting on uniform soil half-space.

j ax,j bx,j (×103) aθ,j bθ,j (×108)

1 1.0000 8.9369 1.0000 + 0.0000i 0.4665 + 0.0000i

2 0.9580 −1.5411 2.4172− 0.0023i 1.1272− 0.0011i

3 −0.0420 0.0490 1.2505− 0.0073i 0.5827− 0.0034i

4 −0.7505− 0.0076i −0.3500− 0.0036i

5 −0.5838− 0.0027i −0.2721− 0.0012i

The rocking impedance function was more difficult to approximate. As with

the second example in Chapter 2, it required use of the recursive algorithm given
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Figure 4.1: Comparison of foundation impedance function and filter approxi-

mation for rigid disk resting on uniform soil half-space.

by Equation (3.18). Applying this yields the fourth-order filter coefficients also

found in Table 4.1. The original rocking impedance function and the filter approx-

imation are shown in Figure 4.2. Notice that the while the fit is generally good

over the lower two-thirds of the frequency domain it deteriorates significantly in

the upper third, beginning at around 18 Hertz. Fortunately, recalling Figure 2.4,

nearly all of the input motion’s frequency content is found below this threshold

with the majority occurring from 0 to 5 Hertz.

Figure 4.3 shows the time-history response obtained using the filter method

compared with both the fixed base response the substructure response computed

using the frequency domain method. The filter method’s response closely resem-
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Figure 4.2: Comparison of rocking foundation impedance function and filter

approximation for rigid disk resting on uniform soil half-space.

bles that obtained using the frequency domain. Table 4.2 contains a comparison of

the maximum displacement and predominant period between the three methods.

4.1.2 Results at Various Structure-to-Soil Stiffness Ratios

The so-called structure-to-soil stiffness ratio offers engineers a quantifiable met-

ric of a soil-foundation-structure system’s susceptibility to inertial soil structure

interaction. Defined as

σ−1 =
h

VsT
(4.12)
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Figure 4.3: Time history response of SDOF structure with rigid disk foundation

resting on uniform half-space.

Table 4.2: Response parameters for SDOF system subjected to horizontal ground

motion.

Model
Predominant Period

[sec]

Max. Structural Displacement

[in]

Fixed-Base 0.97 4.18

Frequency Domain 1.18 3.15

Impedance Filter 1.17 3.31

where r represents foundation radius, Vs represents soil shear wave velocity, and T

represents the structure’s fundamental period, the lower a system’s σ−1, the lower

its risk of susceptibility. To wit, a relatively flexible structure founded on rock

would have a lower σ−1 than a stiff structure founded on soft soil. Thus, to be

functional, the impedance filter method should produce responses that approach

the fixed base response at low σ−1 values and demonstrate the most divergence

from the fixed base response at high σ−1 values.
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Figure 4.4 shows that this is indeed the case. The figure was generated by

holding all system parameters constant except shear wave velocity, which was

allowed to vary from 300 to 1600 ft/sec. The figure shows that all three impedance-

based response calculation methods (frequency domain, representative frequency,

and filter) approach the fixed base response at low values of σ−1 and diverge from

the fixed base response as σ−1 increases.
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Figure 4.4: Maximum top story displacement relative to base at varying soil to

structure stiffness ratios.

4.2 Multiple Degree of Freedom Systems

The procedures outlined in §4.1 are easily expanded to accommodate soil-foundation-

structure systems in which the structure contains multiple degrees of freedom. To

demonstrate this consider the system depicted in Figure 4.5. Figure 4.5(a) con-

tains a shear building with an arbitrary number of stories. The building is founded

on a rigid rectangular foundation, which is embedded in a uniform soil half-space.

Figure 4.5(b) shows the fixed-base model of the system, and Figure 4.5(c) shows

the system’s substructure model. The substructure model contains the horizontal

foundation impedance function, k̄x, and the rocking impedance function, k̄θ.

For the fixed-base case, the system’s equations of motion may be expressed in
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(a) Soil-Foundation-Structure

System

(b) Fixed Base Model (c) Substructure Model

Figure 4.5: A multiple degree of freedom soil-foundation-structure system with

fixed base and substructure models.

terms of relative displacements as

Msüs,n + Csu̇s,n + Ksus,n = Ps,n (4.13)

where

us,n =



uJ,n

uJ−1,n

...

u2

u1


Ms =



mJ 0 . . . 0 0

0 mJ−1 . . . 0 0
...

...
. . . 0 0

0 0 0 m2 0

0 0 0 0 m1


Ps,n = −



mJ

mJ−1

...

m2

m1


üg,n
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Ks =



kj −kj . . . 0 0

−kj kj + kj−1 . . . 0 0
...

...
. . . −k3 0

0 0 −k3 k3 + k2 −k2

0 0 0 −k2 k2 + k1


and Cs =

2ξ

ωn
Ks

with g representing the acceleration due to gravity, ωn representing the structure’s

natural frequency, and the subscript s denoting that the respective matrices rep-

resent the structure only. Likewise, the equations of motion for the substructure

model areMs Msf

Mfs Mf

üs,n

üf,n

+

Cs Csf

Cfs Cf

u̇s,n

u̇f,n

+

Ks Ksf

Kfs Kf

us,n

uf,n

+

 0

Ff,n

 =

Ps,n

Pf,n

 (4.14)

where

Msf = M>
sf = 0 Mf =

mf 0

0 If

 Pf,n = −

 mf∑
mjhj

 üg,n uf,n =

uf,n
θf,n



Csf = C>fs =


0 −cJhJ

0 −cJ−1hJ−1 + cJhJ
...

...

−c1 −c1h1 + c2h2

Cf =

c1 0

0
∑
cjh

2
j

 cj =
2ξ

ωn
kj

Ksf = K>
fs =


0 −kJhJ

0 −kJ−1hJ−1 + kJhJ
...

...

−k1 −k1h1 + k2h2

Kf =

k1 + k̄x 0

0
∑
kjh

2
j + k̄θ



Ff,n =

fx,n
fθ,n


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with the subscript f identifying matrices are representing the foundation. Like-

wise, the subscripts, fs and sf represent foundation-structure coupling matrices.

Adapting these expressions for the filter method yieldsMs Msf

Mfs Mf

üs

üf

+

Cs Csf

Cfs Cf

u̇s

u̇f

+

Ks Ksf

Kfs K̂f

us

uf

 =

 Ps,n

Pf,n + F̂f,n

 (4.15)

where

K̂f =

k1 + bx,0 0

0
∑
kjh

2
j + bθ,0

 F̂f,n =

f̂x,n
f̂θ,n


f̂x,n =

k∑
j=1

bx,juf,n−j −
l∑

j=1

ax,jfx,n−j

f̂θ,n =
k∑
j=1

bθ,jθf,n−j −
l∑

j=1

aθ,jfθ,n−j .

In matrix form, (4.15) is expressed as

Mün + Cu̇n + K̂un = P̂n (4.16)

where M contains the mass matrices, Ms, Msf , Mfs, and Mf with the damping

matrix C, the filter-adjusted stiffness matrix K̂ and force vector P̂n and the

acceleration, velocity, and displacement vectors ün, u̇n, and un assembled in a

similar manner. Equation (4.16) may now be used in conjunction with (4.7), (4.8),

and (4.9) to determine the system’s response history.

4.2.1 Implementation Example

This next example demonstrates use of the filter method to determine the response

history of a soil-foundation-structure system with multiple structural degrees of

freedom. In doing so, the values found in Table 4.3 are applied to the system

59



shown in Figure 4.5. The system will be excited by the east-west acceleration

record from the 1994 Northridge Earthquake as recorded at California Strong

Motion Instrumentation Program Station No. 24538 on the grounds of the Santa

Monica City Hall.

Table 4.3: Multiple degree-of-freedom system model parameters.

Geology

G: Soil Bulk Modulus 6.7458 kip/in2

Vs: Shear Wave Velocity 1100 ft/sec

ν: Poisson’s Ratio 1/3

Structure

n: Number of Stories 3

W : Story Weight 2000 kips

Wf : Foundation Weight 1000 kips

h: Story Height 12 ft

k: Story Stiffness 500 kip/in

ξ: Damping Ratio 0.03

2B: Foundation Width 15 ft

2L: Foundation Length 20 ft

D: Foundation Embedment 5 ft

During this event, the site felt a maximum horizontal acceleration of 0.29g.

The event’s acceleration record and its Fourier amplitude spectrum are plotted in

Figure 4.6

In its publication, Soil-Structure Interaction for Building Structures, the Na-

tional Earthquake Hazard Reduction Program (NEHRP) offers foundation impedance

functions, originally derived by Pais and Kausel [13], for a rigid rectangular foun-
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Figure 4.6: East-west ground acceleration as recorded on the grounds of Santa

Monica City Hall during the 1994 Northridge Earthquake (top) and the Fourier

amplitude spectrum of this record (bottom).

dation embedded in a uniform soil half-space. They take the form

k̄j = Kjαjηj[1 + 2iβj] (4.17)

where Kj represents static stiffness, ηj represents an embedment modifier, αj

represents a surface stiffness modifier, and βj represents the foundation’s radiation

damping ratio [7].
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For the horizontal direction, these parameters are calculated via

Kx =
GB

2− ν

[
6.8

(
L

B

)0.65

+ 2.4

]
(4.18)

ηx = 1 +

[
.33 +

1.34

1 + L
B

] [
D

B

]0.8

(4.19)

αx = 1.0 (4.20)

βx =
4
[
L
B

+ D
B

(
ψ + L

B

)]
Kxηx
GB

(
a0

2αx

)
(4.21)

in which

ψ =

√
2(1− ν)

1− 2ν
≤ 2.5 and a0 =

ωB

Vs
.

Likewise, for the rocking direction

Kθ =
GB3

1− ν

[
3.73

(
L

B

)2.4

+ 0.27

]
(4.22)

ηθ = 1 +
D

B
+

[
1.6

0.35 + (L
B

)4

][
D

B

]2

(4.23)

αθ = 1− .55a2
0(

0.6 + 1.4
( L
B

)3+a20

) (4.24)

βθ =

 4
3

[
(L
B

)3D
B

+ ψ(D
B

)3 L
B

+ (D
B

)3 + 3(L
B

)2D
B

+ ψ(L
B

)3
]
a2

0

Kθηθ
GB3

[
1.8

1+1.75( L
B
−1)

+ a2
0

]

(
a0

2αθ

)
+

{
4
3
(L
B

+ ψ)(D
B

)3

Kθηθ
GB3

}(
a0

2αθ

)
. (4.25)

Given these impedance formulas and the values in Table 4.3, it is possible

to approximate k̄x with a first-order filter and k̄θ with a fourth-order filter. The

coefficients of both are found in Table 4.4. Figures 4.7 and 4.8 depict the horizontal

and rocking impedance functions and their filter approximations, respectively.

As with the rigid disk on half-space, the filter approximating the horizontal

impedance function offers a better fit over the entirety of the frequency domain.
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Table 4.4: Discrete-time filter coefficients approximating horizontal and rocking

foundation impedance functions for rectangular foundation embedded in uniform

soil half-space.

j ax,j bx,j (×104) aθ,j bθ,j (×109)

1 1.0000 4.7879 1.0000 0.4191

2 1.0000 −2.6604 3.0007 1.2576

3 3.0015 1.2580

4 1.0007 0.4195

5 0.0000 −0.0265
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Figure 4.7: Horizontal foundation impedance function and first-order filter ap-

proximation for rigid rectangular embedded in uniform half-space.
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Figure 4.8: Rocking foundation impedance function and fourth-order filter ap-

proximation for rigid rectangular embedded in uniform half-space.

The filter approximating the rocking impedance function fits well over lower fre-

quencies. Once again, this is sufficient as the majority of the frequency content of

the input motion occurs over those frequencies where the fit is good. Figure 4.9

shows the time history analysis computed using the filter approximations. Also

shown are the fixed base time history analysis and a substructure time history

analysis computed using the frequency domain. Peak top story and displacement

and predominant period for all three responses are listed in Table 4.5. The fre-

quency domain and filter solutions show similar period elongation. They also

show similar top story displacements and drifts.

4.2.2 Implementation at Various Structure-to-Soil Stiffness Ratios

Figure 4.10 depicts the maximum displacements of the MDOF soil-foundation-

structure system at various structure-soil-stiffness ratios. As with with SDOF case

in §1.1.4, both the filter and frequency domain responses agree with the fixed-base

response at low values of σ−1 and diverge at higher values. Interestingly, for this
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Figure 4.9: Time history analysis of MDOF soil-foundation-structure system

subjected to horizontal ground motion.

Table 4.5: Response parameters for MDOF system subjected to horizontal ground

motion.

Model

Predominant

Period

[sec]

Max. Top

Story Displacement

[in]

Max. Top

Story Drift

[in]

Fixed-Base 1.43 9.18 1.84

Frequency Domain 1.63 10.98 2.83

Impedance Filter 1.62 10.97 2.81

case, both substructure models show an increase in structural response as the

effects SSI become manifest.
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Figure 4.10: Maximum top-story total displacement of multiple degree-of-

freedom soil-foundation-structure system at various soil-to-structure stiffness ra-

tios.

4.3 Stability

Stability of Newmark integration is well understood [34]. For an implicit scheme

used by itself, selection of β = 0.25 and γ = 0.5 will yield stable results. Likewise,

a recursive digital filter is considered stable if all its poles—i.e., the roots of the

denominator polynomial, found in Eq. (3.7)—lie within a complex unit circle

[32]. Unfortunately, as will be demonstrated, meeting these two criteria will not

necessarily assure the stability of the combined method.

To examine why, consider the uncoupled horizontal free vibration of the foun-

dation, with the structure removed, induced by an initial unit velocity pulse. The

equation of motion for such a system is

mf üf,n + fn = 0 with uf,0 = 0 and u̇f,0 = 1 (4.26)

where fn represents the filter approximating the spring force in the foundation

impedance function (note that in following derivation, the subscript f denoting

the foundation degree of freedom is dropped for brevity). Selecting integration
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and damping constants of β = 0.5 and γ = 0.5 yields a stable implicit scheme and

simplifies the ensuing algebra. Evaluating (2.16) and (2.17) as such yields,

u̇n+1 = u̇n + ∆t[
1

2
ün−1 +

1

2
ün+1] , (4.27)

un+1 = un + ∆tu̇n + ∆2
t [

1

2
ün+1] . (4.28)

Now, following the procedure outlined in [35], it is possible, through a series of

substitutions, to reduce (4.26), (4.27), and (4.28) to a linear constant coefficient

difference equation for displacement. To do so, take the difference of (4.28) eval-

uated at times n+ 1 and n to get

un+1 − un = un − un−1 + ∆t[u̇n − u̇n−1] + ∆2
t [

1

2
ün+1] . (4.29)

Next replace the velocity difference in (4.29) with (4.27) evaluated at time n and

rearrange the result, grouping displacements on the left-hand side and accelera-

tions and the right-hand side to get

un+1 − 2un + un−1 =
∆2
t

2
[ün+1 + ün−1] . (4.30)

4.3.1 Stability of Integrator with First-Order Filter

At this point, for derivation purposes, assume that fn is approximated by the

following first-order filter

fn = b0un + b1un−1 − a1fn−1 (4.31)

Substituting (4.31) into (4.26) and the subsequent result evaluated at both time

n+ 1 and time n− 1 into (4.30) yields,

un+1−2un+un−1 = −∆2
t

2m
[b0un+1 +b1un−a1fn+b0un−1 +b1un−2−a1fn−2] (4.32)

Next, eliminate fn and fn−2 by substituting (4.26) evaluated at times n and n− 2

into (4.30) and substituting this result into (4.32). Grouping the like terms yields
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the following linear, constant-coefficient difference equation for the displacement

un+1 in terms of the previous displacements from time n to time n− 2:

φ1un+1 + φ2un + φ3un−1 + φ4un−2 = 0 (4.33)

where

φ1 = 1 +
∆2
t b0

2m
φ2 = −2 +

∆2
t b1

2m
+ a1 φ3 = 1 +

∆2
t b1

2m
− 2a1 φ4 =

∆2
t b1

2m
+ a1 .

As established in [36], such a difference equation is said to be stable if it

satisfies

|λj| < 1 where j = 1, 2, · · · , O (4.34)

where O is the order of the difference equation and ρj are the roots of the char-

acteristic polynomial
O+1∑
j=1

φjλ
O−j+1 . (4.35)

Thus, for this case of a first-order filter combined with a Newmark integration

scheme of β = 0.5 and γ = 0.5 stability is governed by the roots of the cubic

equation

φ1λ
3 + φ2λ

2 + φ3λ+ φ4 (4.36)

and is a function of the integration time step, the filter coefficients, and the foun-

dation mass.

4.3.2 Stability of Integrator with Arbitrary Order Filter

As a first-order filter offers a poor approximation of most impedance functions, it

is necessary to expand the stability derivation to account for filters of arbitrary

order, N . Following the logic outlined above, the characteristic polynomial for

such a filter, again combined with a Newmark integration scheme of β = 0.5 and

γ = 0.5, takes the form

φ1λ
N+2 + φ2λ

N+1 + · · ·+ φN+2λ+ φN+3 (4.37)
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where

φ1 = 1 +
∆2
t b0

2m

φ2 = −2 +
∆2
t b1

2m

φ3 = 1 +
∆2
t b2

2m
+ ∆2b0

2m
− 2a1 + a0

φj =
∆2
t bj−3

2m
+

∆2bj−1

2M
+ aj−3 − 2aj−2 + aj−1

where j = 4→ J + 3 3 bj = aj = 0 ∀ j > J

As before, the method will be stable if the magnitude of all the roots of the

polynomial (4.37) are less than one. Furthermore, this stability is also a function

of the time step, the filter coefficients, and the foundation mass. Note that a filter

of order J yields a characteristic polynomial of order O = N + 3. As such, the

algebra involved in determining the roots complicates determination of any closed-

form solution for stability criteria. That said, Eq. (4.37) is still of value as it may

be used either as a constraint on the curve fitting algorithm used to determine

the filter coefficients or as an a posteriori check on whether a filter-integrator

algorithm will yield stable time history analyses.

4.3.3 Stability Demonstration

Close inspection of Figure 4.10 reveals a missing data point for the filter method

at σ−1 = 0.01. The maximum characteristic root of the filter-integrator of the hor-

izontal impedance function at that stiffness ratio is λmax = 1.0018. As predicted

by §1.3.2, the result is unstable! Figure 4.11 displays a stability map for stiff-

ness ratio. The map, which is unique to the soil and foundation properties of the

substructure system, is generated by varying integration time step, ∆t, and the

frequency step, ∆ω, used to the sample the impedance function prior to mapping
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Figure 4.11: Stability map for horizontal filter at structure-to-soil stiffness ratio

of 0.01. Color bar on right represents maximum characteristic root magnitude.

from continuous to discrete frequency. As such, each frequency step represents

a distinct filter design. The color bar on the right side of the figure represents

the maximum characteristic root value for each filter. The figure shows a band of

instability between frequency steps of approximately 1.505 and 1.51 radians per

second. To remedy the issue, the filter must be redesigned using a frequency step

outside the instability band. Indeed, selecting a frequency step of 1.52 radians

per second yields a filter-integrator with a maximum characteristic root value of

λmax = 0.9998. The coefficients of both filters are displayed in Table 4.6.

Table 4.6: Coefficients of original (unstable) and revised (stable) filters approxi-

mating foundation impedance function for soil-to-structure stiffness ratio of 0.01.

Original Filter Revised Filter

j ax,j bx,j (×10−6) ax,j bx,j (×10−6)

0 1.0000 7.4793 1.0000 7.4776

1 1.0000 6.4627 1.0000 6.4644
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For verification, consider Figure 4.12. Figure 4.12(a) depicts the time-history

response for the MDOF substructure system subjected to a unit velocity pulse as

computed using the original filter. The result is clearly unstable, with displace-

ment increasing without bound. Figure 4.12(b) depicts the same, this time with

a stable result, for the redesigned filter.
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Figure 4.12: Displacement of foundation with horizontal impedance function at

structure-to-soil stiffness ratio of 0.01.

4.4 Coupled Impedance Systems

Up to this point, all the soil-foundation-structure systems in this work have been

modeled using uncoupled horizontal and rocking impedances. In such systems the

forces generated in the foundation impedance functions may be represented in the

frequency domain as Fx,lFθ,l

 =

k̄x,l 0

0 k̄θ,l

Uf,lΘf,l

 (4.38)

with zeros in for the off-diagonal terms in what may be called the impedance ma-

trix. From a signal processing perspective these forces can be thought of as the
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resultants of two independent single-input, single-output (SISO) systems. Con-

versely, the forces in a coupled system are the resultants of what is termed a

multiple-input, multiple output (MIMO) system. For such systems, the forces

are, Fx,lFθ,l

 =

 k̄x,l k̄xθ,l

k̄θx,l k̄θ,l

Uf,lΘf,l

 (4.39)

in which the coupling terms k̄xθ,l and k̄θx,l indicate an interaction between hor-

izontal and rocking motion. As impedance matrices are generally symmetric in

the following these coupling terms are referred to as k̄c,l in the frequency domain

and k̄c,n in the time domain. The presence of these terms somewhat complicates

analysis and as they are generally relatively small as compared to the on-diagonal

impedance terms, they are often ignored in practice. That said, all of the meth-

ods examined in Chapter 2 can be modified to accommodate coupled systems.

This section formulates and demonstrates implementation of the filter method for

coupled systems.

4.4.1 Formulation

The equations of motion for the substructure model of a coupled single degree

of freedom soil-foundation-structure structure system are similar to that of the

uncoupled case. In matrix form, they are

Mün + Cu̇n + Kun + fn = pn (4.40)

where fn contains the time domain representation of (4.42):

fn =

fx,nfθ,n

 =

k̄x,n k̄c,n

k̄c,n k̄θ,n

uf,nθf,n

 , (4.41)

and M , C, and K represent the mass, damping, and stiffness matrices as shown

in (4.1). Following the methodology outlined in Section 4.1 these are adapted for
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the filter method as:

Mün + Cu̇n + K̂un + fn = p̂n (4.42)

in which

K̂ =


k −k −kh

−k k + bx,0 kh+ bc,0

−kh kh+ bc,0 kh2 + bθ,0

 , (4.43)

and

p̂n = −


m

mf

0

 üg,n +


0

f̂x,n + f̂c,n

f̂θ,n + f̂c,n

 . (4.44)

Formulating the equations in this manner allows approximation of the MIMO

system via approximation its component SISO systems, these being,

k̄x,n ∗ uf,n = fx,n ≈ bx,0uf,n +
k∑
j=1

bx,juf,n−j −
l∑

j=1

ax,jfx,n−j = bx,0 + f̂x,n , (4.45)

k̄xθ,n ∗ θf,n = k̄θx,n ∗ uf,n = fc,n ≈ bc,0θf,n+

k∑
j=1

bc,jθf,n−j −
l∑

j=1

ac,jfc,n−j = bc,0 + f̂c,n , (4.46)

and

k̄θ,n ∗ θf,n = fθ,n ≈ bθ,0θf,n +
k∑
j=1

bθ,jθf,n−j −
l∑

j=1

aθ,jfθ,n−j = bθ,0 + f̂θ,n . (4.47)

4.4.2 Implementation Example

To demonstrate implementation, consider a single degree of freedom structure

supported by a rigid disk foundation resting on a uniform soil half-space, the key

physical properties of which are found in Table 4.7.
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Table 4.7: Key physical properties of soil-foundation-structure system for cou-

pled impedance implementation example

Geology

G: Soil Shear Modulus 2.68 (×105) kPa

Vs: Soil Shear Wave Velocity 200 m/sec

ν: Soil Poisson Ratio 1/3

Structure

Tn: Structural Period 1 sec

ξ: Damping Ratio 3.0 %

h: Structure Height 50 m

w: Structure Weight 1 kN

Foundation

r: Foundation Radius 5 m

t: Foundation Thickness 1 m

wf : Foundation Weight 0.1 kN

The impedance functions for this system are taken from Veletsos and Wei [10].

The system’s impedance matrix takes the form

k̄ =

k̄x k̄c

k̄c k̄θ

 =

 (k11 + ia0c11)Kx (k21 + ia0c21)Kxr

(k21 + ia0c21)Kxr (k22 + ia0c22)Kθ

 (4.48)

in which the coefficients k11, k21, and k22 representing the horizontal, coupling,

and rocking stiffnesses and c11, c21, and c22 representing the same for damping are

found in Figure 4.14. The constants Kx and Kθ take the form

Kx =
8Gr

2− ν
and Kθ =

8Gr3

3− 3ν
. (4.49)

As indicated in (4.45), (4.46), and (4.47) three discrete-time filters are required
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Figure 4.13: Stiffness and damping impedance coefficients for rigid disk resting

on elastic soil half-space.

to approximate k̄. The coefficients of these filters are presented in Table 4.8 with

the corresponding curve fits found in Figure 4.14.

Figure 4.15 shows the total displacement time-history response for the struc-

ture when subjected to the Loma Prieta SFA ground motion. Plotted are the

fixed-base response, the response computed ignoring the coupling terms (assum-

ing k̄c = 0), and the coupled response. Figure 4.16 shows the Fourier amplitude

spectra of the same three responses. Considering both figures, it is apparent that

the coupled and uncoupled responses are quite similar. The coupled response

does exhibit slightly more damping and period elongation than the uncoupled

response. This is confirmed by Table 4.9 which compares the key response pa-

rameters. Thus for this case, ignoring the coupling terms could be considered a

conservative assumption.
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Table 4.8: Coefficients of discrete-time filters approximating horizontal, cou-

pling, and rocking impedance functions for rigid disk foundation resting on uni-

form soil half-space.

Horizontal Filter Coupling Filters Rocking Filter

j ax,j bx,j (×10−4) ac,j bc,j (×10−3) aθ,j bθ,j (×10−5)

0 1.0000 2.7220 1.0000 −0.8950 1.0000 3.4365

1 0.3336 −3.3358 −1.6272 −0.7195 0.5669 −3.1817

2 0.4322 4.0570 2.6572 0.1501 0.3142 3.7139

3 0.1320 −4.3011 −3.7285 −0.4008 0.2435 −2.8721

4 −0.2906 3.3368 3.5038 2.7206 −0.2564 2.0023

5 0.2805 −2.0997 −3.6980 −1.0432 0.1293 −0.8476

6 −0.2083 1.0916 2.9264 2.4274 −0.1431 0.2297

7 0.1331 −0.3863 −1.9238 −2.3913 −0.0090 0.0000

8 −0.0447 0.0593 1.2955 0.9807

9 −0.0035 0.0000 −0.5638 −1.4341

10 0.2361 0.5892

11 −0.0716 0.0000
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Figure 4.14: Real and frequency normalized imaginary components of discrete-

time filters approximating horizontal, coupling, and rocking impedance functions

for rigid disk foundation resting on a uniform soil half-space.
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Figure 4.16: Fourier Amplitude spectrum of time history response of soil-

foundation-structure system consisting of single degree of freedom structure

founded on rigid disk resting on uniform soil half-space.
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Table 4.9: Key response parameters for soil-foundation-structure system with

coupled impedance.

Model

Predominant

Period

[sec]

Max. Total

Displacement

[cm]

Fixed-Base 0.97 10.65

Uncoupled 1.35 13.50

Coupled 1.33 13.30
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CHAPTER 5

Inelastic Implementation

This chapter explores implementation of the filter method for soil-foundation-

structure systems in which the systems’ structures are subjected to deformations

beyond their elastic limits. The confluence of two major factors has served to

fuel demand for such analyses. The first is the realization that, contrary to the

guidelines offered in many prescriptive design documents, inertial SSI, under the

right conditions, has the potential to significantly increase structural response.

The second is the continued trend within the civil engineering community toward

performance-based design.

Prior to the turn of the century, most building codes offered prescriptive de-

sign methodologies that allowed engineers to either ignore inertial SSI or apply

a blanket reduction in expected demand when considering its effects on inelastic

structures [37, 38]. In 2000, Mylonakis pointed out the danger of this approach

by showing that substructure analyses of stiff inelastic structures subjected to

long period motion may demonstrate increased response when compared to cor-

responding fixed-base cases [2]. These results have been confirmed through sim-

ilar works by the likes of Aviles and Perez-Rocha [39] and Khoshnoudian and

Behmanesh [40].

These revelations coincided with emergence of performance-based methods

as the future of seismic design [41, 42]. Generally speaking, performance based

seismic design (PBSD) seeks to ensure structures meet required performance levels

when subjected to various levels of hazard, in this case from earthquake induced
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ground shaking. Figure 5.1, adopted from the Structural Engineers of America’s

Vision 2000 [43], depicts this concept graphically with desired performance on the

horizontal axis and earthquake hazard on the vertical axis. Structures falling in

the operational, life safety, and near collapse categories all may experience some

form of damage that would require inelastic vice elastic analysis. Furthermore,

structures with active or passive damping systems that absorb vibrational energy

may require inelastic analyses in the fully functional performance category.

Figure 5.1: Performance Based Seismic Design (adapted from SEAOC Vision

2000).

Recall from Chapter 2 that the challenge in applying substructure analyses

to determine structural response histories involves addressing the frequency de-

pendence of the foundation impedance functions. As with elastic analysis, the

current state of practice for inelastic analysis includes several options of doing so.

These include sampling the impedance function, either at the structure’s flexible

base period [7] or a period adjusted for inelastic effects [44], use of replacement

oscillators [39], and use of lumped parameter models [24]. For the inelastic case,

these methods are subject to the same detractors identified in Chapter 2 with the

replacement oscillator methods similar to the representative frequency methods
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in that they effectively sample the impedance function at a single frequency. Note

also that the frequency domain method is not listed among these options as it is

incapable of accounting for the time-dependent nature of inelastic deformations.

Chapter 4 used the frequency domain method as a baseline substructure solu-

tion with which to verify the effectiveness of the filter method. As the frequency

domain is incapable of accounting for structural inelasticity, this chapter will use

the time domain convolution solution in its place.

5.1 Elastoplastic SDOF Systems

To demonstrate inelastic implementation, consider the soil-foundation-structure

system depicted in Figure 5.2(a) and the corresponding system parameters found

in Table 5.2. This system is identical to that in found in Figure 2.2 with the

(a) Soil-Foundation-Structure

System

(b) Fixed Base Model (c) Substructure Model

Figure 5.2: A simple soil-foundation-structure system with fixed base and sub-

structure models.

exception that the structure is now constrained to perform in an elasto-plastic
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Table 5.1: Inelastic Soil-Foundation-Structure System Parameters.

Geology

G: Soil Bulk Modulus 2.4285 kip/in2

Vs: Shear Wave Velocity 1000 ft/sec

ν: Poisson’s Ratio 1/3

Structure

w: Structure Weight 1000 kips

wf : Foundation Weight 100 kips

h: Structure Height 30 ft

T : Structural Period 1 sec

ξ: Damping Ratio 0.03

f̄y: Normalized Structural Yield Strength 0.5

r: Foundation Radius 10 ft

manner by the normalized yield strength f̄y. Note that structural displacement is

also defined differently in Figure 5.2. Introduced is the parameter us as a measure

of the structures displacement relative to its base. Use of this relative displacement

in formulation of the substructure system’s equations of motion will facilitate

numerical integration of the resulting nonlinear system of equations. Note that

for the fixed base case, u1, the displacement from Figure 2.2, is equivalent to us.

For the substructure case however,

us = u1 − uf − hθf . (5.1)
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5.1.1 Plasticity Function

Following the conventions outlined by Chopra [45], f̄y is defined as

f̄y =
fy
fo

(5.2)

in which fy denotes structural yield strength and fo denotes the maximum struc-

tural resistance force assumed to be generated if the structure were to remain

elastic. The structural resistance force at any time n is thus

fs,n =

kus,n us,n < us,y

kus,y us,n ≥ us,y
(5.3)

where k is the structure’s elastic stiffness computed according to (2.6), us,n is

the structural displacement at any given time n, and uy is the structural yield

displacement defined as

uy =
fy
k

(5.4)

Note that for the case of the substructure model, us,n denotes only the relative

motion of the structure compared to the foundation and does not include either the

rigid body displacement or rotation caused SSI. Two other parameters related to

normalized yield strength are the yield strength reduction factor Ry and ductility

factor µ. Computed as

Ry =
f0

fy
and µ =

us,max
us,y

(5.5)

where us,max refers to the maximum inelastic structural deformation, these factors

offer convenient means of quantifying inelastic structural response.

For an elastoplastic system, the structural restive force, fs,n can be found at

any time n given the system’s displacement history according to Simo’s return

mapping algorithm [46], which is outlined in Figure 5.3. Adopting his notation,

the algorithm uses current structural displacement us,n and the past value of

the structure’s plastic displacement upn−1 to compute the current value of the
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1 Compute trial force: fTrials,n = k(us,n − ups,n−1);

2 Compute trial yield condition: fTrialn = |fTrials,n |−fy;

3 if fTrialn ≤ 0 then

4 Elastic Step:

5 Compute resistive force: fs,n = fTrials,n ;

6 Compute plastic displacement: ups,n = ups,n−1;

7 Set tangent stiffness to elastic stiffness: kt,n = k;

8 else

9 Plastic Step:

10 Compute resistive force: fs,n =
[
1− fTrial

fTrials,n

]
fTrials,n ;

11 Compute plastic displacement: ups,n = ups,n−1 + fTrial

k
sign(fTrials,n );

12 Set tangent stiffness to plastic stiffness: kt,n = 0;

13 end

Figure 5.3: Return mapping algorithm for elasto-plastic system, adapted from

Simo and Hughes [46].

structure’s resistance force fs,n by computing a trial resistive force fTrials,n and

subsequent trial yield condition fTrialy . If the yield condition is less than or equal

zero, the structure is assumed to be undergoing elastic displacement between

us,n−1 and us,n and the trial force is kept. If not, the displacement is assumed to

be plastic and the return mapping is used to update fs,n and ups,n. For both cases,

the algorithm also provides a tangent stiffness, kt,n at each time which represents

an estimate of the stiffness between any two successive displacements, un−1 and un.

As an illustrative example, Figure 5.4 depicts the force-deformation relationship

for the system in Figure 5.2 when subjected to the displacement-based CUREE

loading protocol [47]. The linearly elastic, perfectly plastic nature of the structure

is clearly evident from the bilinear behavior of exhibited in plot. In the following,
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Figure 5.4: Force-deformation relationship (a) for elasto-plastic system sub-

jected to CUREE loading protocol (b).

this algorithm will be used to compute structural resistance force for both the

fixed base and substructure cases. Both formulations will be modular, allowing

for use with any plasticity scheme of similar construct.

5.1.2 Fixed Base Case

Returning to the system in Figure 5.2, the equation of motion for the fixed base

model is:

müs,n + cu̇s,n + fs,n = pn (5.6)

in which m and c represent structural mass and damping (with both calculated

according to (2.6)). The term pn represents the external force applied to the

system at each time step n. It is calculated according to

pn = −müFIM,n (5.7)

with üFIM,n representing the foundation input motion. As with Chapters 2 and 4,

the foundation input is assumed to equal the free-field motion thus ignoring the

kinematic interaction effects.

Numerical integration of this partial differential equation is complicated by

86



the nonlinear nature of the restive force fs,n. It is typically accomplished using

an iterative, incremental version of the Newmark scheme outlined in Chapter 2

such as that offered by Chopra [45] and outlined in Figure 5.5. Steps 9 through

14 include a Newton-Raphson iteration scheme intended to reduce errors induced

through use of the tangent stiffness kt,n as an estimate of structural stiffness and

through use of a constant time step ∆t which may delay identification of stiffness

changes [45,48].

The time-history response for the inelastic soil-foundation-structure system

shown in Figure 5.2 when subjected to the Loma Prieta SFA ground motion (re-

call Figure 2.3) is shown in Figure 5.6. The system’s elastic fixed-base response is

included in the plot for comparison. The major differences in the inelastic response

compared to that of the elastic system are a noticeable decrease in maximum dis-

placement and the addition of a permanent displacement which manifests as the

non-zero displacement at the end of the time-history. The maximum displace-

ment of the inelastic response is us,max = 3.17 inches as compared to the elastic

maximum of 4.23 inches. The permanent inelastic displacement, resultant from

unrecoverable yield deformations within the structure, is us,final = 1.10 inches.

Another way to quantify the effects of inelasticity on structural response is by

examining the energy dissipated during yielding. Calculated as

Ey =
n∑
j=1

u̇s,jfs,j −
1

2k
f 2
s,j (5.8)

this represents the cumulative energy dissipated through yielding of the structural

system. For the fixed base case this amounts to Ey = 663.2 kips.
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5.1.3 Substructure Case

Using the relative displacement convention, the time domain equations of motion

for the substructure model are:
m m mh

m m+mf, mh

mh mh mh2 + If



üs,n

üf,n

θ̈f,n

+


c 0 0

0 0 0

0 0 0



u̇s,n

u̇f,n

θ̇f,n

+


fs,n

fx,n

fθ,n

 = −


m

m+mf

mh

 üFIM,n (5.9)

where fx,n and fθ,n represent the forces generated in the horizontal and rocking

foundation impedance functions, If represents the foundation’s mass moment of

inertia, and θ represents foundation rotation. Recall for the filter solution, these

forces are approximated by the recursive relations

fx,n ≈ bx,0uf,n +
J∑
j=1

bx,jux,n−j −
J∑
j=1

ax,jfx,n−j (5.10)

and

fxθ,n ≈ bθ,nθf,n +
J∑
j=1

bθ,jθf,n−j −
J∑
j=1

aθ,jfθ,n−j (5.11)

in which the leading teams are kept out of each summation as they involve the

unknown displacements uf,n and θf,n where as past values of displacement uf,n−

and θf,n−j are known at each time step n during numerical integration. Inserting

these into the equations of motion and arranging the known values on the left-hand
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side and the unknowns on the right-hand side yields
m m mh

m m+mf, mh

mh mh mh2 + If



üs,n

üf,n

θ̈f,n

+


c 0 0

0 0 0

0 0 0



u̇s,n

u̇f,n

θ̇f,n

+


fs,n

bx,0uf,n

bθ,0θf,n

 = −


m

m+mf

mh

 üFIM,n −


0

f̂x,n

f̂θ,n

 (5.12)

where

f̂x,n =
J∑
j=1

bx,jux,n−j −
l∑

j=J

ax,jfx,n−j (5.13)

and

f̂θ,n =
J∑
j=1

bθ,jθf,n−j −
J∑
j=1

aθ,jfθ,n−j . (5.14)

Stated in matrix form, these become

Mrüs,n + Cru̇s,n + fs,n = pr,n (5.15)

with the subscript r added to the mass and damping matrices and the exter-

nal force vector to differentiate them from those used in the total displacement

formulation of the equations of motion used in Chapters 2 and 4.

Figure 5.7 contains the algorithm used to solve the equations of motion. It

is conceptually similar to that used for the fixed base case (Figure 5.5) with the

latter’s scalar quantities replaced by the appropriate vectors and matrices. There

are, however, several changes worth noting. In Step 8 for instance, computation

of the the external force includes execution of the recursive filter at each time step

without the leading terms, bx,0 and bθ,0. Accordingly,

pr,n = −


m

m+mf

mh

 üFIM,n −


0

f̂x,n

f̂θ,n

 . (5.16)
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The leading coefficients, associated with the unknown displacement terms at time

n, are instead included in the tangent stiffness matrix:

Kt,n =


kt,n 0 0

0 bx,0 0

0 0 bθ,0

 . (5.17)

Also, the scalar residual R from the fixed base algorithm is replaced by the vector

residual R. The Newton-Raphson iterations continue until the maximum value

of this vector is within the desired tolerance.

The time-history response for the SDOF implementation system computed

using the filter method is depicted in Figure 5.8. The impedance functions used

were those for a rigid disk resting on an elastic half-space outlined in (4.10) and

(4.11) and approximated by the coefficients in Table 4.1. Plotted for comparison

are the fixed-base inelastic response and substructure inelastic response computed

using the convolution method. The filter response generally conforms with the

convolution response, exhibiting a maximum displacement of us,max = 2.55 inches

and a cumulative energy dissipated through yielding of Ey = 258.5 kips compared

to the convolution obtained values of us,max = 2.46 inches and Ey = 280.4 kips.

Table 5.2 compares these values with the fixed base response.

Table 5.2: Response parameters for MDOF system subjected to horizontal ground

motion.

Model Cumulative Yield Energy
Max. Structural Displacement

[in]

Fixed-Base 663.2 3.17

Convolution 280.4 2.46

Impedance Filter 258.5 2.55
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Another means of juxtaposing inelastic responses is through comparison of

their force-deformation relationships. Figure 5.9 depicts these for each of the three

response histories. The fixed-base case’s comparatively greater energy dissipated

through yielding is evident in its larger hysteresis loops. As with the displacement

versus time plot, the filter and convolution responses generally conform, exhibiting

relatively smaller hysteresis loops.

This result tends to confirm the assumption that inertial soil-structure inter-

action reduces structural response for inelastic systems. Indeed, the substructure

system exhibits a lower maximum displacement and less energy dissipated through

yielding than that exhibited by the fixed base system. Thus, for the case of this

particular soil-foundation-structure system, excited by this ground motion, an en-

gineer could conservatively choose to ignore inertial SSI during the design process.

Mylonakis and Gazetas, however, caution that this may not always be the case [2].

For the first application in the following chapter, the filter method is used to ex-

plore this assertion and highlight under which conditions inertial SSI may lead to

an increase in structural response for inelastic systems.
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1 Select Newmark integration and damping constants: β, γ;

2 Execute plasticity function to compute initial restive force and tangent

stiffness: fs,0, kt,0;

3 Compute initial acceleration: üs,0 = m−1(p0 − cu̇s,0 − fs,0);

4 Compute: a = 1
β∆t

m+ γ
β
c;

5 Compute: b = 1
2β
m+ ∆t

(
γ
2β
− 1
)
c;

6 for Time steps n = 2 to n = N do

7 Guess differential displacement: ∆un,s = 0;

8 Compute differential effective force:∆p̂n = pn − pn−1 + au̇s,n + büs,n;

9 repeat

10 Compute current displacement: us,n = us,n −∆un,s;

11 Execute plasticity function to compute resistive force and tangent

stiffness: fs,n, kt,n;

12 Compute residual: R = a
∆t

∆us,n + fs,n − fs,n−1 −∆p̂n;

13 Update differential displacement: ∆us,n = ∆us,n −
(

a
∆−t + kt,n

)−1
R

14 until Residual is within desired tolerance;

15 Compute current velocity:

u̇s,n = u̇s,n−1 − γ
β∆t

∆us,n − γ
β
u̇s,n−1 + ∆t

(
1− γ

2β

)
üs,n;

16 Compute current acceleration: üs,n = 1
β(∆t)2

∆us,n − 1
β∆t

u̇s,n − 1
2β
üs,n;

17 end

Figure 5.5: Incremental, iterative Newmark integration scheme for inelastic

systems. Adapted from Chopra [45].
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Figure 5.6: Time history response of fixed-base model of inelastic SDOF soil-

foundation-structure system.
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1 Select Newmark integration and damping constants: β, γ;

2 Execute plasticity function to compute initial restive force and tangent

stiffness: fs,0, kt,0;

3 Compute initial acceleration: üs,0 = M−1
r (p̂r,0 −Cru̇s,0 − fs,0);

4 Compute: a = 1
β∆t

Mr + γ
β
Cr;

5 Compute: b = 1
2β
Mr + ∆t

(
γ
2β
− 1
)
Cr;

6 for Time steps n = 2 to n = N do

7 Guess differential displacement: ∆un,s = [0 0 0]T;

8 Execute filter recursion and compute external force: pr,n;

9 Compute differential effective force:

∆p̂r,n = pr,n − pr,n−1 + au̇s,n + büs,n;

10 repeat

11 Compute current displacement: us,n = us,n −∆un,s;

12 Execute plasticity function to compute resistive force and tangent

stiffness: fs,n, kt,n;

13 Assemble internal stiffness force vector: fs,n = [fs,n bx,0uf,n bθ,0θf,n]T;

14 Compute residuals: R = a
∆t

∆us,n + fs,n − fs,n−1 −∆p̂r,n;

15 Assemble tangent stiffness matrix: Kt,n = diag[kt,n bx,0 bθ,0];

16 Update differential displacement: ∆us,n = ∆us,n −
[

a
∆t

+ Kt,n

]−1

R

17 until Maximum residual is within desired tolerance;

18 Compute current velocity:

u̇s,n = u̇s,n−1 − γ
β∆t

∆us,n − γ
β
u̇s,n−1 + ∆t

(
1− γ

2β

)
üs,n;

19 Compute current acceleration: üs,n = 1
β(∆t)2

∆us,n − 1
β∆t

u̇s,n − 1
2β
üs,n;

20 end

Figure 5.7: Incremental, iterative Newmark integration scheme for inelastic

systems including impedance filters.
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Figure 5.8: Time history response of substructure model of inelastic SDOF soil-

foundation-structure system
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CHAPTER 6

Applications of the Filter Method

This chapter includes three practical applications of the filter method. In the

first application, the filter method is used to graphically investigate the effects

of inertial SSI on inelastic systems through generation of so-called ductility maps

that present a system’s ductility demand for a range of both structural and input

periods. The maps give insight into the answer of the question “Is inertial SSI

beneficial or detrimental?” to inelastic systems. The second application demon-

strates how the current state-of-practice for generating constant ductility spectra

of inelastic soil-foundation-structure systems can be improved through use of the

filter method. The final application is a case study involving the Millikan Library

on the campus of The California Institute of Technology that evaluates the filter

method’s effectiveness in predicting a measured structural response.

6.1 Ductility Mapping: Is Inertial Soil-Structure Interac-

tion Beneficial or Detrimental?

This section borrows its tile from a seminal work published by Mylonakis and

Gazetas in 2000 entitled Seismic Soil-Structure Interaction: Beneficial or Detri-

mental? In it, the authors challenged the prevailing notion that consideration

of inertial soil-structure interaction leads to a decrease in structural response for

yielding systems. Exemplifying this, Minimum Design Loads for Buildings and

other Structures - ASCE 7-10 states that “an SSI reduction shall be permitted
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where determined using Chapter 19 or other generally accepted procedure ap-

proved by the authority having jurisdiction [37].” Mylonakis and Gazetas asserted

that for short period inelastic structures excited by long period motion, such a

reduction is not appropriate. They further demonstrated that such systems may

indeed experience a significant increase in structural response as compared to the

fixed base case. The filter method offers a means of investigating this assertion

through generation of ductility maps.

Ductility maps, shown in Figure 6.1, are a graphical representations of the

effects of soil-structure interaction on a system’s ductility demand. Recall from

-0.75

-0
.7

-0.65

-0.6

-0.55

-0.55

-0.5

-0
.5

-0.45

-0.4

-0
.4

-0.35

-0.35

-0
.3

5

-0.3

-0.3

-0
.3

-0.25

-0.25

-0.25

-0
.2

5

-0.2

-0.2

-0.2

-0.2

-0
.2

-0.15

-0.15 -0.15

-0.1

-0.1

-0
.0

5

-0
.0

5

0

0

0.
05

0.
050.
1

0.
15

Structural Period [sec]
0.5 1 1.5 2

In
pu

t P
er

io
d 

[s
ec

]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Ry = 1.10

-0.75
-0

.7

-0.65

-0.6

-0.55

-0.5
-0

.5

-0.45

-0
.4

5

-0.4

-0
.4

-0.35

-0.35

-0
.3

5

-0.3 -0.3

-0
.3

-0.25

-0.25

-0.25

-0.2

-0.2

-0.2

-0
.2

-0.15

-0.15 -0.15

-0
.1

-0.1

-0
.0

5

-0
.0

5

-0
.0

5

0

0

0
0.

05

0.
05

0.
05

Structural Period [sec]
0.5 1 1.5 2

In
pu

t P
er

io
d 

[s
ec

]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Ry = 1.25

-0.65
-0.6

-0.55

-0.5

-0
.5

-0.45

-0
.4

5

-0.4

-0
.4

-0.35

-0
.3

5

-0.3
-0.3

-0
.3

-0.25 -0.25

-0
.2

5

-0.2

-0.2

-0.2

-0
.2

-0.15

-0.15 -0.15

-0
.1

-0.1

-0.1

-0
.1

-0
.0

5

-0
.05

-0
.0

5

0

0

0

Structural Period [sec]
0.5 1 1.5 2

In
pu

t P
er

io
d 

[s
ec

]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) Ry = 1.50

Figure 6.1: Ductility maps for various yield strengths strength reduction factors.
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(5.5) that ductility demand is the ratio of a structure’s maximum inelastic defor-

mation to its yield deformation. Ductility demands greater than one indicate a

yielding system, while ductility demands less than or equal to one indicate that

a given system has remained elastic. The maps in Figure 6.1 were generated by

comparing a system’s the fixed base ductility demand to a relative ductility de-

mand computed for the corresponding substructure model at various structural

and input periods. The SSI ductility demands are qualified as relative as they

are computed using the ratio of inelastic SSI deformation to fixed base yield de-

formation.1 Each map is created for a unique yield strength reduction factor Ry

of a given soil-foundation-structure system. Figure 6.1 shows maps generated

for Ry = 1.10, 1.25, and 1.50 for the soil-foundation-structure system depicted in

Figure 5.2 subject to the parameters in Table 5.2. The filter coefficients used are

those found in Table 4.1. The plotted data represent a ductility demand reduction

ratio Rµ computed as

Rµ =
µ̃r − µ
µ

(6.1)

in which µ represents fixed base ductility demand and µ̃r represents SSI ductility

demand relative to fixed based yield deformation. Thus, values of Rµ less than

one represent cases where the effects of SSI are beneficial in that they reduce the

ductility demand compared to that generated by the fixed base case. Conversely,

values over one indicate instances where the effects SSI are detrimental, increasing

ductility demand.

For each map, structural period is varied via modifying structural stiffness

according to (2.6). The inputs are supplied through use of a suite of Ricker

1Typically SSI-related ductility demands are computed as the ratio of inelastic SSI deforma-
tion to yield deformation computed as a percentage of maximum deformation of the correspond-
ing elastic SSI system [7]. This relative ductility demand uses of the same yield strength for the
fixed base and SSI cases, allowing the effects of SSI to be quantified as the difference between
the fixed base and relative ductility demands.
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wavelets generated according to

üg,n = g

(
1− τ 2π2

Tp

)
e

(
Tp

τ2π2

)
(6.2)

where

τ = n∆t− t0 , (6.3)

and t0 represents the desired central time of the pulse and g represents the accel-

eration due to gravity. Figure 6.2 depicts the time history and Fourier amplitude

spectrum of such a wavelet with a predominant period of Tp = 1 and central time

of t0 = 10 seconds. Based on the work of geophysicist Norman Ricker [49], Ricker
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Figure 6.2: Ricker wavelet with predominant period Tp = 1.0 seconds

wavelets offer an approximation of the frequency content of seismic motion. They

do not, however, replicate the complexity of naturally occurring seismic records.

For this reason, the ductility maps found in Figure 6.1 should be considered only

as demonstrations, and not as design tools. They do, however offer insight into

the behavior of inelastic SSI systems.

All three maps tend to confirm the assertion that short period structures sub-

jected to long period ground motions may exhibit increased ductility demands

when soil-structure interaction is considered. On the plots, yellow regions indi-

cate those where the SSI ductility demands are higher than their fixed base counter
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parts. As Mylonakis and Gazetas claimed, these are generally confined to regions

corresponding to lower structural periods and higher input periods. Interestingly,

on Figures 6.1(b) and 6.1(c) the regions corresponding to the lowest structural

periods paired with the highest input periods show the relative ductility as lower

than their fixed base counterparts.

It is of course possible to use the filter method to verify the ductility maps

using ground motion records. Table 6.1 contains ductility data from four ground

motion records with various predominant periods. Included are two longer period

records from the 1994 Kobe, Japan earthquake recorded in Fukushima and on

the campus of Kobe University and two shorter period records, one recorded in

Tarzana during the 1994 Northridge earthquake with the other being the Loma

Prieta 1989 motion used in previous examples. While the ratios displayed in the

table do not exactly match those displayed in Figure 6.1, they do follow their

general trend.

So, is inertial soil-structure interaction beneficial or detrimental? Based on this

demonstration, the answer is that in most cases inertial SSI is indeed beneficial for

inelastic systems. For most structural period-input period pairs ductility demand

is reduced when inertial SSI is considered in dynamic analyses. However, just

as Mylonakis and Gazetas asserted, it is possible that for short period structures

subjected to long period motions the effects inertial SSI has the potential to induce

increased ductility demands. For this reason, engineers should use extreme caution

when applying blanket strength reduction factors during they design process.
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Table 6.1: Ductility demand ratios for four ground motion records at various

structural periods

Event / Station
Predominant

Period [sec]

Structural Period [sec]

0.60 1.2 1.8

Ry = 1.10

Kobe 1994 / Fukushima 2.11 0.22 −0.03 −0.08

Kobe 1994 / Kobe University 1.35 0.31 −0.07 −0.19

Northridge 1994 / Tarzana 0.67 −0.62 −0.21 -0.14

Loma Prieta 1989 / SFA 0.35 −0.72 −0.23 −0.14

Ry = 1.25

Kobe 1994 / Fukushima 2.11 0.32 −0.06 −0.07

Kobe 1994 / Kobe University 1.35 0.10 −0.01 −0.20

Northridge 1994 / Tarzana 0.67 −0.60 −0.10 −0.16

Loma Prieta 1989 / SFA 0.35 −0.68 −0.25 −0.08

Ry = 1.50

Kobe 1994 / Fukushima 2.11 −0.13 −0.13 −0.01

Kobe 1994 / Kobe University 1.35 0.16 −0.05 0.14

Northridge 1994 / Tarzana 0.67 −0.65 −0.08 −0.14

Loma Prieta 1989 / SFA 0.35 −0.70 −0.15 −0.03
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6.2 Design Application: Constant Ductility Spectra

Response spectra are tools widely used in earthquake engineering design [50].

Figure 6.3 contains the pseudo-acceleration response spectrum of an elastic, fixed

base, single degree of freedom system. The plot depicts the maximum value of
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Figure 6.3: Pseudo-acceleration response spectrum for an elastic fixed base single

degree of freedom system.

the system’s pseudo-acceleration (where pseudo indicates the acceleration was

computed via the system’s base shear vice directly measured from the response

history) for a range of structural periods and damping ratios. Each response

spectrum is generated using a single ground motion. Often spectra from a suite

of ground motions representative of those expected a particular site are averaged

to give a general indication of how a structure will perform.

Computation of elastic spectra are straightforward. The response history is

computed for each structural period. The spectral ordinates are than taken as
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the maximums of the desired response quantities from each history. Computation

of spectra for inelastic systems however, is more complicated. They are typically

calculated for a constant ductility demand. As the relationship between yield

strength and ductility is not necessarily linear in nature, an iterative procedure is

required [45].

Inclusion of inertial SSI effects requires only slight modification of the es-

tablished fixed base inelastic procedures. The difficulty lies in response history

computation. Generation of a viable response spectrum requires computation of

response histories over a wide range of structural periods, often varying from as

low as 0.01 seconds to as high as five seconds (or higher). The frequency domain

cannot be used as a solution method. The period range inhibits use of a sin-

gle representative frequency. Recent works use replacement oscillators [39] and

lumped parameter models [51–54] to generate response histories. These methods

are limited to the foundation-soil characteristics of the models used to generate

them, in most cases a rigid foundation embedded in a homogeneous half-space

or soil layer. The filter method can leverage the advances in impedance function

computation methods to improve these methods through generation of spectra for

arbitrary foundation shapes and soil profiles.

6.2.1 Formulation

In general, constant ductility spectra are generated according to the algorithm

outlined in Figure 6.4. To begin, a target ductility demand is selected. Next,

for each desired structural period, the yield strength leading to that target duc-

tility demand is calculated. As the algorithm shows, this is done through both

interpolation and iteration. Lines 5 though 10 accomplish the interpolation lines

11 through 17 the iteration. The interpolation produces a initial estimate of the

yield strength leading to the target ductility demand. The iteration then adjusts

this estimate until the residual is within a desired tolerance. Note that the factor
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10 in line 16 is selected based on the relationship between the magnitude of the

normalized yield strength and ductility demand and may need to be customized

to assure convergence.

6.2.2 Implementation

Consider the soil-foundation-structure system and its substructure model depicted

in Figure 6.5. They are similar to that of Figure 5.2 with the exception that the

elastic soil half-space is replaced by a soil layer over an elastic soil half-space with

a contrasting elastic modulus such that E1:E2 = 1:4, in which E1 represents the

elastic modulus of the layer and E2 represents the elastic modulus of the underly-

ing half-space. The relevant parameters for this model are given in Table 6.2. The

Table 6.2: System Parameters for inelastic soil-foundation-structure system with

layered soil profile.

Geology

E1: Shear Modulus of Upper Soil Layer 1× 109 N/m2

E2: Shear Modulus of Lower Soil Layer 4× 109 N/m2

Structure

µ: Ductility Demand 4.0

w: Structure Weight 22× 103 kN

ξ: Damping Ratio 0.05

h: Structure Height 15 m

wf : Foundation Weight 22× 102 kN

b: Foundation Width 7.5 m

d: Foundation Thickness 1 m
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constant ductility spectrum will be generated using the ground motion recorded

at the Imperial Valley Irrigation District substation in El Centro, California dur-

ing the 1940 Imperial Valley Earthquake. The record’s acceleration history and

Fourier amplitude spectrum are depicted in Figure 6.6.

Previous studies have offered means of approximating constant ductility spec-

tra for such a system, but they rely lumped parameter models generated for rigid

foundations resting on either an elastic soil half-space or a finite soil layer over

bedrock. As such they are only approximations and do not necessarily represent

the true foundation geometry or site conditions. Recent advances in computa-

tional methods have offered means of generating impedance functions for more

complicated soil profiles and foundation geometries. One such work by Jeong et

al. [3] reports impedances for foundations resting on layered media with various

impedance contrasts. Figure 6.7 displays the real and imaginary components of

the horizontal and rocking impedance functions for this system generated accord-

ing to this method. Plotted for comparison are the impedance functions for the

same foundation resting on an elastic half-space, denoted by E1:E2 = 1:1. The

impedance functions for the contrasting layers exhibit significantly more variation

with respect to frequency (especially for the horizontal case) than those for the

uniform half-space due to reflection at the layer interface. The filter method can

accommodate this variation through careful filter design. Figure 6.8 shows the

fit of 17th order filters approximating both the horizontal and rocking impedance

function for the 1:4 case. Likewise, Figure 6.9 shows the fits for the filters approx-

imating the impedance functions for the 1:1 case. The coefficients corresponding

to both sets of filters are contained in Table 6.3.

6.2.3 Analysis

Figure 6.10 depicts three sets of constant ductility spectra for this system. The

solid black line represents the spectrum for case with a 1:4 contrast in elastic
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modulus between the soil layer and the underlying half-space. The dashed red line

represents the case without impedance contrast. The dashed blue line represents

the fixed base case. All three spectra were generated using using the algorithm

outlined in Figure 6.4 with a set of ten trial yield strengths evenly spaced from 0.1

to 1.0. The system was excited using the the north-south component of the May

18, 1940 Imperial Valley earthquake as recorded at the Imperial Valley Irrigation

District Substation in El Centro, California [45]. The three spectra generally

agree at relatively high structural periods. This is to be expected as long period

structures are generally less susceptible to the effects of inertial SSI than those

with shorter periods. Indeed, at shorter periods, the spectra diverge, especially

so at periods less than half of a second. Of special note is the difference between

the contrasting moduli case and the constant moduli case. At these low periods

the contrasting moduli case demonstrates a marked increase in yield strength as

compared to the constant moduli case. At a period of 0.5 seconds the contrasting

case is approximately ten percent higher. At 0.2 seconds it is nearly seventy-five

percent higher.

This result is indeed significant. It shows that soil profile can play an impor-

tant role in structural response to ground motion. As computational techniques

continue to improve, giving design engineers will have better access to site specific

impedance functions. The filter method offers them a means of incorporating such

functions into the design process.
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1 Select desired target ductility demand: µtarget;

2 for each structural period Tn do

3 Compute elastic response history: un,elastic;

4 Determine maximum elastic displacement: umax,elastic;

5 for each trail normalized yield strength f̄y,j do

6 Compute inelastic response history response history: un,inelastic;

7 Determine maximum inelastic displacement: umax,inelastic;

8 Compute ductility demand: µj;

9 end

10 Interpolate normalized yield strength assuming linear relationship

between log(f̄y,j) and log(µj): f̄y;

11 repeat

12 Compute inelastic response history: un,inelastic;

13 Determine maximum inelastic displacement: umax,inelastic;

14 Compute trial ductility demand: µtrial;

15 Compute residual: R = µtarget−µtrial
µtarget

;

16 Update normalized yield strength: f̄y = f̄y − 10Rf̄y;

17 until Residual R is within desired tolerance;

18 end

Figure 6.4: Algorithm for computation of constant ductility spectrum
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(a) Soil-Foundation-Structure

System

(b) Substructure Model

Figure 6.5: SDOF Structure with rigid foundation resting on layered soil.
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Figure 6.6: Horizontal ground motion as recorded at the Imperial Valley Irriga-

tion District substation in El Centro, California during the 1940 Imperial Valley

Earthquake.
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Figure 6.7: Horizontal and rocking impedance functions for rigid foundation

resting on soil layer above uniform half-space.
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Figure 6.8: Discrete-Time filters approximating horizontal and rocking

impedance functions for rigid foundation resting on soil layer over uniform half-

space with modulus contrast 1:4.
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Figure 6.9: Discrete-Time filters approximating horizontal and rocking

impedance functions for rigid foundation resting on soil layer over uniform half-

space with modulus contrast 1:1.

113



Table 6.3: Coefficients of discrete-time filters approximating horizontal and rock-

ing impedance functions for rigid foundation resting on soil layer over uniform

half-space.

E1 : E2 = 1 : 1 E1 : E2 = 1 : 4

Horizontal Rocking Horizontal Rocking

j ax,j bx,j (×10−4) aθ,j bθ,j (×10−9) ax,j bx,j (×10−4) aθ,j bθ,j (×10−9)

0 1.0000 1.3580 1.0000 0.8353 1.0000 0.9790 1.0000 0.6605

1 0.253 −1.8521 −0.6324 −1.6281 −0.0269 −1.4499 0.1209 −0.6278

2 −0.7869 0.5653 −0.0345 1.8677 1.6373 2.9665 0.6589 1.1551

3 −0.0475 0.0000 -0.2403 −2.0731 −1.0800 −4.6578 −0.0826 −1.1906

4 −0.6013 1.6078 1.1351 5.8549 0.2907 1.4394

5 0.6621 −0.9338 −1.981 −7.7527 0.5458 −1.0351

6 −0.3413 0.4213 0.6444 8.3533 −0.0463 0.9886

7 0.2016 −0.1432 −1.4347 −8.683 0.4495 −0.5684

8 −0.0346 .06280 0.8028 8.5001 −0.2179 0.3850

9 0.03910 −0.0180 −0.5002 −7.2833 0.2344 −0.1419

10 −0.0008 0.0031 0.7255 6.1266 −0.0726 0.0645

11 −0.0097 0.0000 −0.2832 −4.5462 0.0387 0.0000

12 0.3484 3.0262

13 −0.3516 −1.9689

14 0.0819 0.942

15 −0.2527 −0.4459

16 0.0178 0.1273

17 −0.0627 0.0000
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Figure 6.10: Constant ductility spectrum for single degree of freedom structure

with rigid foundation resting on soil layer above uniform half-space.
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6.3 Case Study: Millikan Library

The Millikan Library on the Campus of the California Institute of Technology has

been the subject of numerous investigations since its construction in 1967. It’s

relatively simple structural plan and thorough instrumentation make it ideal for

both ambient and force vibration analyses. The goal of this study is not to add to

this body of knowledge, but to instead take advantage of the wealth of published

information to demonstrate the use of the filter method on an actual structure.

Specifically, this study aims to use both analytical and experimental impedance

data to predict the structure’s north-south response as recorded during the 2002

Yorba Linda Earthquake. As with previous studies in this work, the effects of

kinematic interaction are ignored. In this case, the due to the unavailability of a

viable free-field motion, the recorded foundation motion is used as the foundation

input motion.

6.3.1 The Structure

The Millikan Library, pictured in Figure 6.11(a), is a nine-story reinforced concrete

structure with a single-story basement. Figures 6.11(b) and 6.11(d) depict the

building’s north-south structural elevation a typical story plan respectively. Its

total height as measured from ground level to the roof is 39.6 meters. Including

the basement, the total height is 43.9 meters. Its length is 21.5 meters in the

north-south direction and 23.42 meters in the east-west direction. The structure

resists later forces in the north-south direction through shear walls located along

its east and west faces. It resist east-west lateral motion through the central

elevator core. Further detail on the structural system may be found in Kuriowa’s

thesis [56].

The library’s foundation, shown in Figure 6.11(c), consists of a central pad

9.75 meters wide and 1.22 meters deep running with width of the building from
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in the east-west direction flanked on each side by continuous foundation beams,

each 3 meters wide and 0.6 meters deep. The foundation beams are connected to

the pad via stepped beams as shown in the foundation elevation.

6.3.2 The Site

Data for the geology and soil profile for the Millikan Library site comes from two

primary sources. A site investigation as part of construction was conducted in 1959

by Converse Foundation Engineers of Pasadena, California, the results of which

are summarized by in Reference [57]. A subsequent investigation was undertaken

after the San Fernando Earthquake of 1970, by Eguchi [58] and summarized in

Wong et al. [59]. The values pertinent to this study are presented in Table 6.4

Table 6.4: Key soil parameters of the Millikan Library site.

Unit Weight [kN/m3] 19.2

Shear Wave Velocity [m/sec] 382

Shear Modulus [kN/m2] 2.86× 105

Poisson’s Ratio 0.25

6.3.3 Substructure Model

The substructure model used in this study for the Millikan Library soil-foundation-

structure system is based on that offered by Foutch and pictured in Figure 6.12

[55]. The model consists of a 10 story shear building modeling the structure’s

first floor through roof, resting on a rigid foundation that is attached to a fixed

reference through both horizontal and rotational impedance functions. Table 6.5

contains the values used for the structural model. The story heights and weights

are taken from Kuroiwa [56]. The story stiffnesses were derived from the model
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Table 6.5: Millikan Library shear building model parameters.

Story B 1 2-9 Roof

Height [m] 4.27 4.88 4.27 4.88

Weight [kN] 10141 8674 8674 11565

Stiffness [MN/m] 3170 2120 3170 2200

of a cantilever shear beam as outlined by Foutch [55]. The model includes 1.8

percent viscous structural damping which is consistent with the values identified

by both Kuroiwa [56] and later, Luco et al. [60]. The foundation mass moment of

inertia for rotation about the east-west axis is assumed to be 1.1264× 105m4.

This study uses two sets of foundation impedance functions, one analytically

computed, and the other experimentally identified. The analytical impedances

are taken from the 1988 study by Wong et al. [59]. For this work, they calculated

horizontal, rotational, and coupling foundation impedance functions according to

Apsel and Luco’s method for rigid foundations embedded in layered media [61].

The second set were identified by Luco et al. (also in 1988) through forced vibra-

tion testing [60],. These identified impedances include only those for horizontal

and rocking motions. Both sets of impedance functions are shown in Figure 6.13.

The impedance magnitudes are normalized by soil shear modulus and an effective

foundation radius L such that

k̄x = GL[<(kx) + i=(kx)a0] , (6.4)

k̄θ = GL[<(kθ + i=(kθ)a0] , and (6.5)

k̄θx = k̄xθ = GL[<(Kxθ) + i=(kxθ)a0] (6.6)

represent horizontal, rocking, and coupling impedances, respectively, where the

operators < and = denote the real and imaginary parts of their complex-valued
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arguments. The value for shear modulus is taken from Table 6.4. The value for

effective radius is taken as L = 13.7 m. Dimensionless frequency is calculated

according to

a0 =
ωL

Vs
(6.7)

with ω representing continuous angular frequency and Vs representing shear wave

velocity, which is also taken from Table 6.4.

Table 6.6 contains the coefficients of the discrete-time filters approximating

the analytical impedance functions.

Table 6.6: Coefficients for discrete-time filter approximating Millikan Library

analytical impedance functions.

Horizontal Rocking Coupling

j ax,j bx,j (×10−7) aθ,j bθ,j (×10−7) ac,j bc,j (×10−6)

0 1.0000 3.2942 1.0000 2.2688 1.0000 0.9622

1 −0.0961 −1.4007 1.0811 2.2568 2.5687 2.4254

2 0.1782 1.9524 0.0509 0.0943 4.7470 4.4074

3 0.8044 1.0238 −0.1922 −0.4964 5.9521 5.4558

4 −0.4066 −0.5861 0.4810 1.2239 6.4415 5.8394

5 0.0610 0.0000 0.9874 2.0993 5.6585 5.1017

6 0.1843 0.4329 4.7246 4.2644

7 −0.2590 −0.6619 3.1723 2.8230

8 0.0635 0.2548 2.0402 1.8090

9 0.7184 1.5684 0.8989 0.7275

10 0.5143 1.0945 0.4178 0.3375

11 −0.1210 −0.3784 0.0478 0.0000

12 0.0089 −0.0205

13 0.0137 0.0000
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The curve fits for these filters are shown in Figure 6.14. Likewise, the coeffi-

cients of the filters approximating the identified impedance functions are found in

Table 6.7 with the curve fits shown in Figure 6.15. According to the conventions

Table 6.7: Coefficients for discrete-time filter approximating Millikan Library

identified impedance functions.

Horizontal Rocking

j ax,j bx,j (×10−7) aθ,j bθ,j (×10−7)

0 1.0000 2.0341 1.0000 1.9770

1 1.0379 1.2621 2.7033 5.2900

2 0.1426 0.7343 2.5134 4.7987

3 0.5824 0.5142 −0.6957 −1.6501

4 0.9834 2.5826 −3.2433 −6.7362

5 0.9624 0.7360 −2.0504 −4.4245

6 0.3434 1.3950 1.0940 1.7634

7 0.2224 −0.2288 2.1291 3.8708

8 0.8269 2.0844 1.0147 1.8377

9 0.1644 −0.2394 0.0643 0.1025

10 −0.2516 −0.1077 −0.0066 0.0000

11 0.0453 0.0000

outlined in Chapter 4, the equations of motion for this system areMs Msf

Mfs Mf

üs

üf

+

Cs Csf

Cfs Cf

u̇s

u̇f

+

Ks Ksf

Kfs K̂f

us

uf

 =

 Ps,n

Pf,n + F̂f,n

 (6.8)
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where

K̂f =

k1 + bx,0 bc,0

bc,0
∑
kjh

2
j + bθ,0

 F̂f,n =

f̂x,n
f̂θ,n


f̂x,n =

J∑
j=1

bx,juf,n−j −
J∑
j=1

ax,jfx,n−j +
J∑
j=1

bc,juf,n−j −
J∑
j=1

ac,jfc,n−j

f̂θ,n =
J∑
j=1

bθ,jθf,n−j −
J∑
j=1

aθ,jfθ,n−j +
J∑
j=1

bc,jθf,n−j −
J∑
j=1

ac,jfθ,n−j .

6.3.4 Excitation and Recorded Motion

The ground motion used for this study is that generated by the 4.8 magnitude

Yorba Linda Earthquake on September 3rd, 2002 and recorded by the USGS

Station No. 5407, instrument 134, channel 4 in the basement of Millikan Library at

a distance of 40.5 kilometers from the epicenter. Figure 6.16 displays the record’s

Fourier amplitude spectrum. The pending simulation results will be compared

against the displacement and acceleration records measured by instrument 133,

channel 18 on the library’s roof.

6.3.5 Results and Discussion

Figures 6.17 and 6.18 show the simulation results for both substructure models.

Figure 6.17(a) compares total roof displacement calculated using the analytical

impedance substructure model with the measured displacement response. The two

signals generally agree with both displaying predominant periods of 0.60 seconds.

The simulated displacement does, however show a more damped response with a

maximum displacement of 4.14 cm as compared to a measured maximum of 6.49

cm. Figure 6.17(b) compares the signals’ Fourier amplitudes along with that of the

structure’s simulated fixed base response. Again, the signals generally agree, both

showing lengthening of period as compared to the fixed base case. Figure 6.18(a)

compares the total roof displacement calculated using the identified impedance
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substructure model. As with the analytical case, the signals generally match,

both displaying predominant periods of 0.60 seconds. Also like the analytical case,

the identified shows a relatively damped response, in this case with a maximum

displacement of 5.08 cm. These results are confirmed by the Fourier amplitudes

shown on Figure 6.18(b). Figure 6.19 directly compares the Fourier amplitudes of

the two simulated signals with that of the measured response. For both simulated

signals, the largest deviation from the measured signal comes at low frequencies.

Thus, based solely on roof displacement, both substructure models appear

to comparably approximate the measured response. A look at roof acceleration

response however, casts doubt this result. Figure 6.20 compares the Fourier am-

plitudes of the acceleration time-histories of both substructure models with the

that of the measured roof acceleration. From this figure, it is readily apparent

that the models are not, in fact, equal. The identified model displays significant

frequency content at around seven hertz that is not found in either the signal of

either analytical model or the measured response. Indeed, the identified model’s

maximum acceleration of 16.78 meters per second is nearly double that of the an-

alytical model’s 8.36 meters per second and the measured response’s 8.48 meters

per second.

Table 6.8 summarizes the key parameters for each time history response.
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Table 6.8: Key response parameters for Millikan Library when excited by the

2002 Yorba Linda Earthquake.

Predominant

Period [sec]

Maximum

Displacement [cm]

Maximum

Acceleration [m/sec]

Measured 0.60 6.49 8.48

Analytical Substructure 0.60 4.14 8.36

Identified Substructure 0.60 5.08 16.78

Fixed Base 0.55 3.97 4.72

123



(a) View looking north-west (b) North-south structural elevation

(c) Foundation plan with north-

south elevation

(d) Typical story plan

Figure 6.11: The Millikan Library on the Campus of the California Institute of

Technology (image from earthquake.usgs.gov; structural drawings originally pub-

lished by Foutch [55]).
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Figure 6.12: Substructure Model of Millikan Library, redrawn from Foutch [55].
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Figure 6.13: Analytical and identified impedance functions for Millikan Library

(adapted from Wong et al. [59] and Luco et al. [60]).
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Figure 6.14: Filter approximations of the Millikan Library’s analytical

impedance functions.
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Figure 6.15: Filter approximations of Millikan Library identified impedance

functions.
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Figure 6.16: Fourier amplitude spectrum of acceleration recorded by the 2002

Yorba Linda Earthquake at USGS Station No. 5407, Instrument 134, Channel 6.
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Figure 6.17: Response of Millikan Library with analytical impedance to 2002

Yorba Linda Earthquake.

128



Time [sec]
0 5 10 15 20 25 30 35 40 45

T
ot

al
 R

oo
f D

is
pl

ac
em

en
t [

m
]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Measured
Simulated

(a) Time History

Frequency [hz]
1 1.5 2 2.5

F
ou

rie
r 

A
m

pl
itu

de

0

10

20

30

40

50

60

70
Measured
Simulated Fixed Base
Simulated Substructure

(b) Fourier Amplitude Spectrum

Figure 6.18: Response of Millikan Library with identified impedance to 2002

Yorba Linda Earthquake.
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Figure 6.19: Comparison of Fourier amplitude spectra of displacement time-

history responses of Millikan Library to the 2002 Yorba Linda Earthquake.
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Figure 6.20: Comparison of Fourier amplitude spectra of acceleration time-

history responses of Millikan Library to the 2002 Yorba Linda Earthquake.
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CHAPTER 7

Discrete-Time Filter Design Revisited

Chapter 3 outlined the basics of discrete-time filter design and introduced the least

squares method of curve fitting. This chapter revisits the filter design process,

adding detail and offering options to improve both filter accuracy and stability.

The goal being to assist a practicing civil engineer, who might not be familiar with

the intricacies of signal processing, with the discrete-time filter design process. In

general terms, filter design consists of three major steps: frequency sampling,

frequency mapping, and curve fitting. Frequency sampling involves reduction of a

continuous signal into a sequence of discrete values. Frequency mapping involves

conversion of the signal’s domain from continuous to discrete frequency. The final

step, curve fitting, involves approximation of the resultant sequence of discrete

impedance data by a ratio of two polynomials. The following sections explore the

role of each of these steps on accuracy and stability. Included is a demonstration

of how to modify and apply the MATLAB built-in function invfreqz.m [62] to

accomplish filter design.

7.1 Sampling

Impedance data is typically available in three formats: as algebraic expressions;

as plotted real and imaginary (or magnitude and phase) functions; or as tabular

values. Sampling is the process by which data from the first two formats are

reduced to sequences of discrete values. As tabular data is already discretized,

the following does not directly apply, but an engineer may find that resampling
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data (from any of the formats) at different sampling intervals may lead to improved

accuracy and/or stability. To demonstrate the concept of sampling, consider the

arbitrary continuous impedance function

k̄ = k + iωc (7.1)

in which frequency, ω, assumes continuous values from zero to some maximum

frequency, ωmax. Sampling involves evaluating k̄ at each frequency, l(∆ω) where

l takes integer values from one to L and ∆ω is the sampling interval. Thus, the

continuous function k̄, when sampled, becomes the sequence,

k̄l =
{
k̄1 k̄2 · · · k̄L .

}
(7.2)

7.2 Mapping

Once the impedance data is discretized, the next step in the filter design process is

to map the frequency samples from the continuous domain, to the discrete domain

where frequency is defined around the unit circle from zero to 2π. This process

is known as frequency warping [63]. As introduced in Chapter 3, this mapping is

not linear, but is instead accomplished via the transformation

Ωl = 2 arctan

(
ωl
2fs

)
(7.3)

in which fs is the so-called sampling frequency which is equal to twice the value

of the largest continuous frequency sample in hertz. Thus,

fs =
ωmax
2π

. (7.4)

The non-linearity in this mapping leads to a distortion in the mapped discrete

frequency domain. It is possible to control the effects of this distortion by selecting

a pre-warping frequency that will minimize that distortion at the desired frequency

in the discrete domain [32]. In the context of soil-structure interaction, this would
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allow an engineer to specify a closer filter ”fit” at the natural frequency of a

structure, or at the anticipated predominant frequency of a ground motion. Pre-

warped mapping is accomplished according to

Ωl = 2 arctan

(
ωl tan(π fp

fs
)

2πfp

)
(7.5)

where fp is the designated pre-warping frequency in hertz.

7.3 Curve Fitting

The final step in the filter design process is fitting the impedance data with a curve

described by a ratio of polynomials. As previously mentioned, algorithms for ac-

complishing this abound in signal processing literature. This work has demon-

strated two, a standard approach based on Levy’s [31] single least-squares error

minimization and presented in Equation (3.10) and Sanathanan and Koerner’s [33]

iterative least-squares approach presented in Equation (3.18) and restated here:

E =
L∑
l=1

∣∣Dk̄j −N ∣∣2 1

|D|2
(7.6)

in which N represents the numerator polynomial:

N = b0 + b1z
−1 + · · ·+ bJz

−J , (7.7)

and D represents the denominator polynomial:

D = 1 + a1z
−1 + · · ·+ aJz

−J , (7.8)

and z represents the z-transform parameter, L represents the total number of

discrete frequencies Ωl and J is the filter order. Although what follows is directed

toward the iterative approach, it is equally applicable to the standard method.

7.3.1 Polynomial Order

There is no hard rule governing selection of the order of the filter numerator and

denominator polynomials. In general, the more “wavy” the impedance function,
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the higher the polynomial order that will need to be to offer an acceptable fit.

However, as Safak cautions, using too high an order can lead to instability in addi-

tion to adding to computational expense. He suggests determining the polynomial

order by designing filters of increasing order until the difference in the optimization

error metric between successive iterations drops below a an appreciable level.

It is also important to note that the order of the numerator and denominator

polynomials need not be the same. Indeed, for his rational approximations, Wolf

suggests selecting the degree of the numerator to be one less than the degree

of the denominator to aid in subsequent manipulation into lumped parameter

models [24]. Interestingly, this author has found that the best fits tend to come

using the opposite, a numerator order of one greater than the denominator. Unless

otherwise stated, all filters in this work are designed as such.

7.3.2 Weight Functions

If difficulty is encountered obtaining a fit over a desired frequency range, weighting

functions may be added to the least-squares approximation process to add empha-

sis to those frequencies. Modifying the iterative method in (7.8) to accommodate

a given weight function, Wl yields:

E =
L∑
l=1

∣∣Dk̄l −N ∣∣2 Wl

|D|2
. (7.9)

Examples of weight functions that emphasize low frequencies include a simple

frequency inverse, or standard weight function:

Wl =
1

Ωl

, (7.10)

and the well known Gaussian weight function:

Wl =
1

σ
√

2π
e

(
ωl
2π−µ)2

2σ2 (7.11)

in which σ and µ represent the standard deviation and mean of the desired Gaus-

sian distribution. This work uses σ = 7 and µ = 0 throughout.
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7.3.3 Filter Stability

An accurate curve fit is just one of two major requirements for an adequate filter.

The second is stability. Unlike Chapter 4, which investigates stability of the com-

bined filter-integrator, this section address only stability of the filter. A recursive

discrete-time filter is said to be stable if all of its poles lie within the complex

unit circles, the poles being the roots of the denominator polynomial D stated

in (7.8). It is possible to stabilize and unstable filter by mirroring any offending

poles inside the unit circle, but doing often involves a loss in accuracy. Often,

the best way to stabilize a filter is to simply redesign using a different sampling

interval, pre-warping frequency, and/or filter order. A filter design algorithm can

be readily programmed to iteratively adjust these parameters until desired the

desired fit is achieved.

7.4 Discrete-Time Filter Design Using the MATLAB Pro-

gramming Environment

The MATLAB programming environment offers a built-in means for design of

recursive discrete-time filters via the function invfreqz.m. The function Impe-

danceFilter.m (the code for which is included in Appendix A) makes use of the

invfreqz.m algorithm to design filters in an SSI context via the modified func-

tion invfreqz2.m. This function contains one minor debugging modification

the details of which are outlined in ImpedanceFilter.m’s preamble. Inputs to

ImpedanceFilter.m include the sampled impedance function k̄l, sampled con-

tinuous frequency ωl in radians, the desired filter order, the desired pre-warping

frequency in hertz, and user specified options controlling the least squares algo-

rithm and weight function. The function returns the filter numerator and de-

nominator coefficients bj and aj and the filter’s transfer function Hl which can be

juxtaposed with k̄l to determine goodness of fit.
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7.4.1 Frequency Warping

The function begins by warping the sequence of sampled continuous frequencies

ωl into a sequence of discrete frequencies Ωl according to two options. If the user

passes a pre-warping frequency of “0” the function uses the Line 47 to apply the

standard mapping transform given in Equation (7.3). If the user passes a non-

zero pre-warping frequency, the function uses Line 51 to apply the pre-warping

transform given in Equation (7.5).

7.4.2 Weight Function

The function next computes the weight function according to the user’s prefer-

ence. Three options exist: no weight function computed on Line 55, the standard

inverse frequency weight function of Equation (7.10) computed on Line 61, and the

Gaussian weight function of Equation (7.11) computed on Line 59. The Gaussian

weight function is coded have a mean of zero and a standard deviation of seven.

This may be modified as desired by the user.

7.4.3 Least Squares Approximation

The function offers four least squares approximation options. These include a

choice between a complex or real filter and the choice of whether of not to invoke

MATLAB’s polystab.m [62] function to stabilize the denominator polynomial.

The polystab.m function reflects any pole outside the unit circle inside. As

already mentioned, this may come at a cost in terms of accuracy. It should be

noted that the least squares approximations in invfreqz.m are slightly different

than those presented in this work, thus the coefficients of filters designed using

ImpedanceFilter will be slightly different than those designed using (3.10) and

(3.18)/(7.6).
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7.5 Discrete-Time Filter Design Example

The following example demonstrates the effects of the aforementioned filter design

parameters on both fit and stability. All curve fitting is done using the iterative

least squares algorithm given in (7.6) or its weighted counterpart given in (7.9) via

the MATLAB function ImpedanceFilter.m. The example uses the impedance

function and soil-foundation parameters from the rigid disk on elastic soil layer

above bedrock example in §3.3.2 of this work. Table 3.3 contains the values of rel-

evant parameters. Figure 3.3 displays the impedance coefficients. The impedance

function itself is given in equations (3.16) and (3.17).

The design parameters used for each iteration are listed in Table 7.1. The

Table 7.1: Parameters for discrete-time filter design example.

Iteration
No. of

Samples

Frequency

Step [hz]

Filter

Order

Least

Squares

Option

Weight

Option

Pre-Warping

Frequency

[Hz]

1 17 6 4 Real None 0

2 17 6 13 Real None 0

3 100 1 13 Real None 0

4 100 1 13 Real None 55

5 100 1 13 Real Gaussian 55

6 100 1 13 Real Standard 55

7 100 1 13 RealPolystab Standard 55

resultant filters are shown in Figure 7.1 for iterations one through four and in

Figure 7.2 for iterations five through seven.
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7.5.1 Discussion of Results

Iteration 1

The first design iteration demonstrates the effects of selecting too low a filter

order. The resultant filter is stable with a maximum pole radius of rp = 0.8952,

but as shown in Figure 7.1 (a), the fit is not good.

Iteration 2

The second iteration increases the filter order from N = 4 to N = 13. The result,

shown in Figure 7.1 (b) is a much better fit. Unfortunately, the filter is now

unstable with a maximum pole radius of rp = 1.0005.

Iteration 3

For the third iteration, the impedance function is up-sampled to so k̄l and ωl

include 100 samples at an interval of ∆f = 1.0 hertz. The filter is now stable,

with a maximum pole radius of rp = 0.9826. The fit, shown in Figure 7.1 (c) is

still good, perhaps even better than Iteration 2’s, but it has a distinct kink at

around 55 hertz.

Iteration 4

In the fourth iteration, a pre-warping frequency of fp = 55 hertz was used with

goal of reducing distortion at that frequency. As seen in Figure 7.1 (d) this

was achieved. However, although the result is still stable, with a maximum pole

radius of rp = 0.9994, the fit at the lowest frequency is now poor. As much of the

frequency content of typical ground motions occur at relatively low frequencies,

this may have a significant effect on the accuracy of any time-history response

generated using the filter.
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Iteration 5

The fifth iteration adds a Gaussian weight function to emphasize low frequencies

during least squares optimization. The result of this are shown in Figure 7.2 (e).

While fit to low frequencies is indeed very good, the fit to high frequencies has

suffered greatly. Also, the resultant filter is unstable, with a maximum pole radius

of rp = 1.1549.

Iteration 6

The sixth iteration switches the Gaussian weight function with an inverse fre-

quency, or standard, weight function. This result, shown in Figure 7.2 (f) is a

stable filter (maximum pole radius rp = 0.9646) with better fit, but still with

inaccuracy at the lowest frequency.

Iteration 7 - Final Design

The final design uses the sampling rate, order, standard weight function, and pre-

warping frequency of the sixth iteration, but uses the “realpolystab” least squares

option, invoking an iterative design with a prescribed maximum pole radius of

one. Figure 7.2 (g) displays the result. The fit is good across the entire frequency

range and the maximum pole radius of rp = 0.9031 is indeed less than one. The

coefficients of the final filter are displayed in Table 7.2.

139



Table 7.2: Coefficients of discrete-time filter designed using

ImpedanceFilter.m.

j Aj Bj (×10−4)

0 1.0000 0.4570

1 0.0948 −0.6097

2 1.5810 1.3377

3 −0.0988 −1.6254

4 0.9466 2.0422

5 0.0141 −2.0161

6 0.2623 1.9841

7 0.3422 −1.5752

8 −0.1164 1.2576

9 0.3602 −0.8267

10 −0.2289 −0.2641

12 −0.1068 0.1148

13 0.0690 −0.0411

14 −0.0150 0.0000
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(a) Trial 1 - Low filter order yields poor fit.
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(b) Trial 2 - Increased filter order to address fit but resultant filter is unstable.
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(c) Trial 3 - Up-sampled to address stability
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(d) Trial 4 - Frequency pre-warped at 55 Hz to address kink in fit.

Figure 7.1: Iterations 1-4 of discrete-time filter design.
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(a) Trial 5 - Gaussian weighting function added, poor fit, filter unstable
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(b) Trial 6 - Standard weighting function added
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(c) Iteration 7 - Final Design - Iterative least squares with standard weight function

Figure 7.2: Iterations 5-7 of discrete-time filter design.
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CHAPTER 8

Concluding Remarks

8.1 Summary

The goal of this dissertation is to offer practicing engineers a viable method of

accounting for inertial soil-structure interaction in the time domain. The first

chapter outlined four lines of effort that direct work toward that end. The first

explored the background of, and motivation for, the use of discrete-time filters as

time-domain approximations of frequency dependent foundation impedance func-

tions. The second demonstrated implementation for systems with both elastic

and inelastic structures. Addressed were both uncoupled, or scalar impedance

functions, and coupled, or matrix impedance functions. For the matrix case, the

multiple-input-multiple-output filter representing the impedance matrix was im-

plemented as four single-input-single-output filters. Also included with this line

of effort was a rigorous investigation into the stability of the method when com-

bined with a time-stepping numerical integrator. To this author’s knowledge,

no previous works on rational approximations for use in SSI substructure analy-

ses have have addressed this. It was shown that the equations of the combined

filter-integrator may be reduced to a linear constant coefficient difference equation

(LCCDE). If the roots of the characteristic equation of this LCCDE are all less

than one, the combined filter-integrator will be stable.

The third line of effort applied the results of the second using practical appli-

cations that included ductility maps, constant ductility spectra, and the Millikan
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Library case study. The ductility maps, corroborated Mylonakis and Gazetas’ as-

sertion that, contrary to the guidance of popular code-informing documents, iner-

tial SSI may in fact be detrimental to inelastic structures. The second application

demonstrated the ability of the filter method to generate site-specific constant

ductility spectra using impedance functions generated via state-of-the-art compu-

tational methods. These spectra can vary significantly from those produced with

impedance functions that assume simplified site geology. The final application

demonstrated the ability of the filter method to predict the motion of Millikan

Library when subjected the motion recorded at the site during the 2002 Yorba

Linda Earthquake. This case study used both analytically derived and experi-

mentally generated impedance functions. It was demonstrated that the response

history generated using the analytical impedances offers a better match to the

structure’s motion as recorded during the earthquake.

These applications demonstrate the potential of the filter method, especially given

continuing advances in computational methods for derivation of impedance func-

tions and the growing demand for accurate, efficient response history analyses

fueled by the rise of probabilistic based seismic design. While these lines of effort

account for the majority of the project, in terms of both academic effort and writ-

ten words, the true legacy of this work will be judged by its final line of effort,

that of relevancy. To achieve its goal, practicing engineers must find this work

of use. At first glance, the filter method may seem formidable. Mere mention of

discrete-time filters is likely enough to scare off civil engineers who may lack expe-

rience in signal processing. Chapter 3 may only serve to make matters worse as it

rigorously addresses both the method’s derivation and the mathematical aspects

of filter design. Chapter 7 is specifically targeted to allay such fears. It lays out

the necessary details of the filter design process in an easy to follow manner and

offers a design tool in the form of a filter design function for the MATLAB coding

144



environment. This function will provide filters that are ready to be inserted into

equations of motion as outlined in Chapters 4 and 5 of this work. Download it

and give it a try!

8.2 The Road Ahead

What of the road ahead? In general the way forward consists of two related, but

distinct paths. The first is software development. As outlined in this work, the

filter method is ready to be packaged as a module compatible with state-of-the-

art structural analysis software. Such a tool would give engineers an accurate

and efficient means of accounting for arbitrary (coupled or uncoupled) foundation

impedances for both elastic and inelastic analyses. The second path is improved

implementation. The signal processing community continues to invest signifi-

cant effort into discrete time-filter design. Many cutting edge technologies such

as speech-to-text, voice recognition, and wireless communication rely on discrete-

time filters. As the signal processing state-of-practice continues to advance, so too

will opportunities continue to arise to apply new techniques to the soil-structure

interaction context. While there is certainly a learning curve involved in being

able to understand and apply signal processing literature, it is an investment

worth making. Specific areas that this author would like to see addressed include

improved curve fitting over the least-squares approaches addressed in this work

and a detailed investigation into the stability of coupled filters, or impedance ma-

trices when combined with time-stepping numerical integration methods.

A third way ahead also exists. In general, the filter method offers a means of

reducing the domain of the soil-foundation interface to the forces generated by

notional springs and dashpots. This is in essence a model order reduction tech-

nique similar to that used in other dynamic analysis simulations such as vibration
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of an airplane wing caused by rotating engine turbines. This third way ahead

involves seeking out research areas outside the soil-structure interaction context

where the filter method could be applied. Sharing knowledge with other fields,

which may indeed be significantly ahead in terms of model order reduction, will

directly benefit the civil engineering community.

Now is an exciting time to be a civil engineer. Computational methods continue

to rapidly advance. The design community is rapidly shifting from prescriptive

to performance-based methods. Construction materials and structural systems

continue to evolve. All of these changes highlight the need to for efficient, accu-

rate methods of conducting response history analyses of soil-foundation-structure

systems. The filter method offers a viable means of meeting this need.

146



APPENDIX A

MATLAB Code: ImpedanceFilter.m

The following is a function coded in the MATLAB environment to generate the

coefficients of a recursive discrete-time filter. As shown in the documentation, its

use requires modification of the built-in MATLAB function invfreqz.m.

1 function [Az Bz H] = ImpedanceFilter(Kw,w,N,method,weight,fp)

2 % ********************************************************************

3 % Richard J.H. Gash

4 % 06 March 2013

5 %

6 % Function to compute time domain approximation of frequency dependent

7 % foundation impedance function.

8 %

9 % Input:

10 % Kw 1xn Complex Foundation Impedance Values

11 % w 1xn Frequency Values [Radians]

12 % N 1x1 Filter Order

13 % method String identifying desired least squares algorithm

14 % 'Real' Designs a real filter

15 % 'Complex' Designs a complex fitler

16 % 'RealPolystab' Asks INVFREQZ2 to stabilize denominator

17 % 'ComplexPolystab' Asks INVFREQZ2 to stabilize denominator

18 % weight String identifying desired weight funciton

19 % 'None' No weight function used

20 % 'Gaussian' Guassian weight function

21 % 'Standard' Standard weight function
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22 % fp 1x1 Prewarping frequency in hz

23 %

24 % Note: INVFREQZ2 is a version of MATLAB function INVFREQZ modified

25 % as follows to correct bug. Change line 179 as follows:

26 % INVFREQZ: while all([V1 > Vcap ll<20])

27 % INVFREQZ2: while all([V1 >= Vcap ll<20])

28 % Output:

29 % Az 1xN+1 IIR Denominator Coeffiecients

30 % Bz 1xN+1 IIR Numerator Coeffiecients

31 % H 1xn Transfer function of approximation

32 %

33 % Output can be organized into ratio of polynominals as:

34 %

35 % Bz(1)*zˆ0+Bz(2)*zˆ(-1)+...+Bz(nzeros+1)*zˆ(nzeros)

36 % H = --------------------------------------------------

37 % Az(1)*zˆ0+Az(2)*zˆ(-1)+...+Az(npoles+1)*zˆ(npoles)

38 %

39 % Where

40 %

41 % z = exp(1i*pi*wd)

42 %

43 %********************************************************************

44

45 f = w./(2*pi); %Frequency [Hz]

46 fs = 2*max(f); %Sampling Frequency [Hz]

47 % Frequency warping. No prewarping if fp = 0

48 if fp == 0

49 wd = 2 *atan(w/(2*fs));

50 else

51 wd = 2*atan(w*tan(pi*fp/fs)/(2*pi*fp));

52 end

53 % Calculate weight function

54 if strcmpi(weight,'None') == 1

55 wt = ones(1,length(f));
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56 elseif strcmpi(weight,'Gaussian') == 1

57 mu = 0; % Mean (May be adjusted by user)

58 s = 7; % Standard Devaiton (May be adjusted by user)

59 wt = 1/(s*sqrt(2*pi))*exp(-(f-mu).ˆ2./(2*sˆ2))*1000;

60 elseif strcmpi(weight,'Standard')

61 wt = 1 ./ (2*pi*f);

62 end

63 % Compute Time Domain Approximation

64 n = 1; % Make denominator one order higher than numerator

65 % May be changed to suit user preference

66 if strcmpi('ComplexPolystab',method) == 1

67 wd = [-fliplr(conj(wd)),wd];

68 Kw = [fliplr(conj(Kw)),Kw];

69 wt = [fliplr(conj(wt)),wt];

70 [Bz,Az] = invfreqz2(Kw,wd,'complex',N,N+n,[wt],[]);

71 elseif strcmpi(method,'Complex') == 1

72 wd = [-fliplr(conj(wd)),wd];

73 Kw = [fliplr(conj(Kw)),Kw];

74 wt = [fliplr(conj(wt)),wt];

75 [Bz,Az] = invfreqz2(Kw,wd,'complex',N,N+n,[wt]);

76 elseif strcmpi(method,'RealPolystab') == 1

77 [Bz,Az] = invfreqz2(Kw,wd,N,N+n,[wt],[]);

78 else

79 [Bz,Az] = invfreqz2(Kw,wd,N,N+n,wt);

80 end

81 % Generate Transfer Function

82 H = freqz(Bz,Az,wd);

83

84 return

149



References

[1] Applied Technology Council (ATC), Tentative Provisions for the Develop-
ment of Seismic Regulations for Buildings, ATC-3-06. San Fransisco, CA,
1978.

[2] G. Mylonakis and G. Gazetas, “Sesmic soil-structure interaction: Beneficial
or detrimental,” Journal of Earthquake Engineering, vol. 4, pp. 277–301, July
2000.

[3] C. Jeong, E. E. Seylabi, and E. Taciroglu, “A time domain substructuring
method for dynamic soil structure interaction analyses of abitrarily shaped
foundation geometries on heterogenous media,” in Proc. International Work-
shop on Computing in Civil Engineering, pp. 346–353, ASCE, June 2013.

[4] J. M. Roesset, “Soil structure interaction the early years,” Journal of Applied
Science and Engineering, vol. 16, no. 1, pp. 1–8, 2013.

[5] E. Kausel, “Early history of soil-structure interaction,” Soil Dynamics and
Earthquake Engineering, vol. 30, no. 9, pp. 822–832, 2010.

[6] J. Zhang and Y. Tang, “Dimensional analysis of structures with translating
and rocking foundations under near-fault ground motions,” Soil Dynamics
and Earthquake Engineering, vol. 29, pp. 1330–1346, 2009.

[7] National Institute of Standards and Technology (NIST), Soil-Structure In-
teraction for Building Structures, NIST GCR 12-917-21. Gaithersburg, MD,
2012. Prepared by the NEHRP Consultants Joint Venture, a Partnership of
the ATC and CUREE.
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