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Abstract8

While eXplainable Artificial Intelligence (XAI) has significant potential to glassbox Deep Learning,9

there are challenges in applying it in the domain of Geospatial Artificial Intelligence (GeoAI). A10

land use case study highlights these challenges, which include the difficulty of selecting reference11

data/models, the shortcomings of gradients to serve as explanation, the limited semantics and12

knowledge scope in the explanation process of GeoAI, and underlying GeoAI processes that are not13

amenable to XAI. We conclude with possibilities to achieve Geographical XAI (GeoXAI).14

1 Introduction20

The acronym eXplainable Artificial Intelligence (XAI) is, simply put, AI whose functioning can21

be understood by humans, although XAI more commonly describes a suite of computational22

algorithms that are applied to AI algorithms to render their output and corresponding training23

processes more interpretable for given users [1][15]. XAI has the potential to ‘glassbox’ the24

blackbox of AI, specifically in Deep Learning (DL). In DL we lack control over how the model25

detects and classifies features, which means that the features can be misclassified even as26

the model optimizes performance or features may be classified in unexpected ways. To date27

XAI has largely not been actively applied to the domain of Geospatial Artificial Intelligence28

(GeoAI) (cf., [3]). Our concern is that GeoAI is not well-suited to XAI and therefore may29

generate misleading interpretations.30

We briefly describe some challenges of integrating XAI and GeoAI. We illustrate these31

challenges with a land use classification case study using an XAI called SHapley Additive32

exPlanations (SHAP). We conclude with possibilities to realize a GeoXAI.33

2 Challenges Integrating XAI and GeoAI34

We envision four potential issues in integrating GeoAI and XAI. These include the difficulty35

of selecting reference data/models, the shortcomings of gradients as explanation, the limited36

semantics and knowledge scope in the explanation process of GeoAI, and underlying GeoAI37

processes that are not amenable to XAI. To a certain extent this latter issue is the most38

important because difficulties in integrating ’geo’ into AI complicates the application of any39

explainability approach.40

First, most XAI algorithms require reference data points to serve as a baseline of feature41

and model explanation [22]. Reference data points or datasets are features where the42
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XAI results are selected to measure a neutral contribution of neurons to the output at a43

particular layer [15]. Usually, a good reference neither classifies nor misclassifies elements44

in a convolutional layer. These non-reactive reference points can be challenging to find45

and any cartographic attributes (e.g, locations, distances, coordinates, and projections)46

can be neglected. GeoAI models are so spatially explicit that even neutral data will likely47

activate in some layers [8]. A popular XAI technique, Taylor Decomposition, deconstructs48

neurons in the layers’ choices in terms of the contributions of input variables. In a Taylor49

Decomposition, such reference points are treated as hyperparameters that require onerous50

tuning [13]. Hyperparameter tuning is useful as it often occurs in the input layer but the51

process emphasizes model performance and not domain-specific attributes like geography.52

The explicit integration of geographic attributes (e.g., adhering to Tobler’s Law) should53

increase progress in both GeoAI and GeoXAI [11].54

Second, gradients are one of the founding optimization algorithms in DL and play a pivotal55

role in a large number of XAI techniques [1]. They offer a kind of sensitivity test of the impacts56

on the output of tweaking the input data. Balduzzi et al. [2] formally described what is called57

the shattered gradient problem, in which differentials among gradients decay as the number58

of layers increase. Algorithms like SmoothGrad [17] flatten differentials between layers but59

can blur layer boundaries and, more important for GeoAI, ignore geographic boundaries60

(e.g., between land uses). Such XAI approaches can distort the importance of activation of61

the boundaries in the original geographic datasets and thus reduce interpretability.62

A third challenge of realizing GeoXAI lies in gaps in geographic semantics in its output63

interpretation [9]. Research on geospatial semantics and ontologies (e.g., [10]) are largely64

absent in many GeoAI applications and are challenging to insert into XAI. Without an65

’explanation of the explanation’, XAI might fail to inform us if the model structure is66

adequate, if the input data is sufficient, or if the training process is implemented correctly.67

Semantics could reconcile colloquial labels to model results of terms like mount to describe68

large mounds and tall mountains. Knowledge representation and approaches like qualitative69

spatial reasoning could contribute to GeoXAI as well as GeoAI [7].70

As part of this challenge, the knowledge scope required for any AI is usually larger71

and more complicated than prosaic AI tasks, which suggests additional knowledge for72

interpretation, even with adequate training/input datasets. DL has been largely applied for73

highly specific tasks, such as cat/dog recognition from images. However, GeoAI tasks are74

complicated due to their close connections with geographic context [6]. In remote sensing-75

based land use change detection, decisions are not only associated with slight pixel value76

differences among images acquired at different times, but also the semantics of land use77

changes [21]. Autonomous driving systems do not only depend on current traffic conditions,78

but also are subject to local transportation regulations [4]. Such additional knowledge should79

be analyzed by XAI along with the input geographic datasets.80

Lastly, most training processes in GeoAI are not geographic because they can fail to81

preserve scale, geometry, and topology. Several mature neural networks (e.g., VGG16 and82

Resnet-101) have been deployed for GeoAI [24]. These networks usually enforce geospatial83

datasets to be split into small chunks (i.e., reduction in spatial extents), which introduces84

problems when decomposing boundaries [20]. Hierarchical feature extraction of DL alters the85

resolution and may distort topological and geometric relationships in the original datasets,86

such as the maxpooling [14]). No current XAI framework informs us of the degree and87

impact of such geographic distortion in the training and testing of GeoAI. We also should88

pay additional attention to ontological differences in how scale is defined in XAI and GeoAI.89

Most review works in XAI treat scale as an issue of quality (i.e., of the explanations for a90
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given audience) or scope, but XAI algorithms usually interpret scale as global explanations91

(i.e., XAI for the whole model) or local explanations (i.e., XAI for some portion of the input92

data).93

3 A Case Study94

To illustrate the challenges and opportunities of integrating XAI with GeoAI, we look at95

land use classification. Land use classification represents a typical GIScience application and96

has had a number of applications with GeoAI (e.g., [18]). The reason that it is a typical97

application is that it is full of scale (resolution/extent), geometry/topology, and boundary98

issues. Additionally, land use classification often requires place-based context. Janowicz et99

al. [8] mention that spatially explicit GeoAI models should not be invariant under relocation100

of the studied phenomena. Any DL classification modelling requires considerable training101

data; we use a standard training dataset called the University of California Merced Land102

Use datasets (UCMLC) developed by Yang and Newsam [23]. The UCMLC contains 100103

labelled images for each of 21 land use classes (e.g., from agricultural to storage tanks to104

airplanes and runways – http://weegee.vision.ucmerced.edu/datasets/landuse.html).105

Figure 1 (A) SHAP values depicted with top 5 labels for a runway and overpass example at the
2nd layer of VGG16 model and (B) SHAP explanation at the 9th layer. Red colour ramp depicts
impact on the output of positive classification. Blue ramp indicates the negative influence.

Our XAI case study uses land use classification with the UCMLC dataset on the 16-layer106

University of Oxford Visual Geometry Group (VGG16). VGG16 is a Convolutional Neural107

Network (CNN) that is widely used for computer vision image classification [16]. Without108

fine-tuning the VGG16 model to optimize classification results for UCMLC, we still achieve109
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an accuracy of 89.1 percent. We used an XAI called SHAP. Albeit a simple approach, it110

focuses on feature importance by identifying which patches of features (e.g., from images)111

from the training or input data contributed to the model’s output [12]. This glassboxing112

algorithm allows the user to determine what is important or what should be done in terms113

of “feature engineering”. Figure 1 shows preliminary XAI results using SHAP method of the114

classification results to investigate the performance of two layers of VGG16.115

We randomly chose one correctly classified example (i.e., runway) and a misclassified116

one (i.e., an overpass is labelled a “mobilehomepark”). In Figure 1(A), the XAI identifies117

whichever the convolutional layer is identifying for the runway seems to confirm, according to118

the SHAP values, that it is contributing to the predicted output. Likewise, the SHAP rejects119

the “river” classification (or rather which feature patches are being used in the convolutional120

layer) as a negative contribution to the output. XAI often also can provide insight into121

multiple layers of the neural network. Figure 1(A) shows that, for the second convolutional122

layer, there is no predictive value identified by SHAP for overpass due to the selected reference123

points.124

Figure 1(B) shows that the ninth convolutional layer does not register for runway in125

terms of SHAP, as a good selection of reference. Conversely, the feature patches used in126

Layer 9 confuse the classification of overpasses. Examination of the underlying feature127

patches suggests the difficulty of AI to infer complex land use patterns, and the way in128

which VGG16 is likely misled by the coincidence of green space and cement. The overpass in129

Figure 1(B) shows the necessity of finding good reference points against which to explain130

the misclassification. As we mentioned earlier SHAP can be used for feature engineering,131

it can be used to eliminate ‘outlier’ regions in the input data. We can potentially create132

synthetic data to emphasize the most widely recognized SHAP areas or enhance edges.133

SHAP also employs gradients as the explanation for neuron/layer contributions, in which the134

shattered gradient problem could lessen the explanation, while smoothing techniques could135

generate better explanation values but distort the object boundaries. This again highlights136

the importance of considering geographic attributes in the reference selection.137

Figure 1 implies that it is easy to observe raw image regions attributed to the right/wrong138

classification results but these patches do not contain meaningful geographic semantics. We139

cannot attach labels such as “overpass” or “runway” to the patches because intermediate140

image features extracted by VGG16 are computationally but not geographically meaningful.141

Moreover, the SHAP values stand for the contribution of these patches to the classification142

results and not the likelihood of geographic features of interest. We cannot be sure if the143

SHAP values generated are semantically consistent with specific locations, especially if we144

are interested in invariant spatially-explicit models. It is not only necessary for the final145

results of the classification to be semantically understandable, but also the XAI outputs to146

be geographically interpretable, otherwise knowledge generated by XAI will be inaccessible147

to non-GeoAI expert users.148

Lastly there may only be 21 class labels in the UCMLC datasets but non-experts can infer,149

with additional knowledge, concepts such as “grassland” and “cement pavement”. Moreover,150

a group of trees can be classified under “green space”, “park”, or even “forest” labels; a151

small water area can be labelled as “pond”, “lake”, or “meander”. Appropriate labels should152

originate from disciplines related to geography, not from computer science, which chooses153

labels based on feature similarity to other labelled data. Current XAI techniques can provide154

a fitness score for each individual label but cannot suggest if the labels are optimal for155

the given task or whether additional labels are needed in the training and testing of given156

GeoAI methods. Therefore, we might have to adopt an over-provision strategy. We could,157
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for example, develop additional rules in which the XAI constrains layers (e.g., deep Taylor158

Decomposition [15]) or we could develop ensemble models, not to improve the performance159

but to achieve better GeoXAI.160

4 Future Research161

XAI is essential in glassbox DL and ensure GeoAI is more understandable and trustworthy.162

This comprehension cannot be achieved by simply applying XAI techniques to GeoAI. In163

this paper we argue that geographic interpretation should be integrated with XAI to develop164

specific explanation frameworks for GeoXAI. (1) Current XAI techniques only offer low-level165

abstractions, which are difficult to utilize without considerable expertise in AI, a GeoXAI166

should be designed by and for geospatial information scientists. (2) Current XAI can be167

incompatible with geospatial data because most explanation techniques are feature-based168

and not location-based (e.g., retaining boundaries and wholeness of features). For instance,169

XAI can treat geospatial data as plain tensors that can be arbitrarily split. Among other170

remedies, we recommend a recomposition approach (cf., [20]) that superimposed the original171

geographic coordinates to recover geographic context in GeoXAI. (3) XAI visualization tools172

like https://github.com/yosinski/deep-visualization-toolbox could be modified to provide173

insight into impacts of geographic scales on explanatory power. (4) Geographic knowledge174

graphs [19] could supply background information to enhance GeoXAI’s explanatory power.175

We could add spatiality to the neural network layers to create an explanation ’Space time176

atoms’ similar to Xing and Sieber [21]. (5) Social sciences, especially methods to address177

explainability to different users [5], offer an important path to achieving GeoXAI. (6) Most178

XAI outputs lack comparability (e.g., SHAP to Taylor Decomposition), although initial179

work with SHAP might offer such an unified explanation framework [12]. Overall, the180

geospatial information domain knowledge needs to be integrated into the design of future181

XAI techniques, in addition to being considered for specific groups of users like GIScientists182

and cartographers, as well as individuals impacted by GeoAI.183
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