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Abstract Particle swarm optimization (PSO) techniques
are widely used in applied fields to solve challenging opti-
mization problems but they do not seem to have made an
impact in mainstream statistical applications hitherto. PSO
methods are popular because they are easy to implement and
use, and seem increasingly capable of solving complicated
problems without requiring any assumption on the objec-
tive function to be optimized. We modify PSO techniques
to find minimax optimal designs, which have been notori-
ously challenging to find to date even for linear models, and
show that the PSO methods can readily generate a variety
of minimax optimal designs in a novel and interesting way,
including adapting the algorithm to generate standardized
maximin optimal designs.
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1 Introduction

Particle swarm optimization (PSO) is a population based sto-
chastic optimization method inspired by social behavior of
bird flocking or fish schooling and proposed by Eberhart
and Kennedy (1995). In the last decade or so, PSO has sin-
gularly generated considerable interest in optimization cir-
cles as evident by its ever increasing applications in vari-
ous disciplines. The importance and popularity of PSO can
also be seen in the existence of many websites which pro-
vide PSO tutorials and PSO codes, track PSO development
and applications in different fields. Some exemplary web-
sites on PSO are http://www.swarmintelligence.org/index.
php, http://www.particleswarm.info/ and http://www.cis.syr.
edu/~mohan/pso/. Currently, there are at least 3 journals
which have a focus theme on swarm intelligence and appli-
cations with a few more having an emphasis on the more
general class of nature-inspired metaheuristic algorithms, of
which PSO is a member. Nature-inspired metaheuristic algo-
rithms have been rising in popularity in the optimization
literature in the last 2 decades and in the last decade have
dominated the optimization world compared with traditional
mathematical optimization tools (Whitacre 2011a,b). Of par-
ticular note is Yang (2010), who saw a need to publish a
second edition of his book on nature-inspired metaheuristic
algorithms published less than 2 years earlier. This shows
just how dynamic and rapidly expanding the field is. Clerc
(2006) seems to be the first book devoted entirely to PSO
and an updated overview of PSO methodology is available
in Poli et al. (2007).

Interestingly, PSO has yet to make an impact in the statis-
tical literature. We believe PSO methodology can be poten-
tially useful in solving many statistical problems because
ideas behind PSO are very simple and general yet requiring
minimal or no assumption on the function to be optimized.
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Our aim is to show that PSOmethodology is effective in find-
ing many types of optimal designs, including minimax opti-
mal designs, which are notoriously difficult to find and study.
This is because the design criterion is non-differentiable and
there is no effective algorithm for finding such designs to
date, even for linear models. Specifically, we demonstrate
that PSO can readily generate different types of minimax
optimal designs for linear and nonlinear models which agree
with the few published results in the literature.

PSO is a stochastically iterative procedure for optimiz-
ing a function. The key advantages of this approach are that
PSO is fast and flexible, there are few tuning parameters
required of the algorithm and PSO codes can be easily writ-
ten down generically to find optimal designs for a regression
model. For more complicated problems, such as minimax
design problems, the code will have to be modified appropri-
ately. Generally, only the optimality criterion and the infor-
mation matrix in the codes have to be changed to find an
optimal design for another problem. We discuss this further
in the exemplary pseudo MATLAB codes which we provide
in Sect. 4 to generate the optimal designs.

In the next section, we provide the background. In Sect. 3,
we demonstrate that PSOmethodology can efficiently gener-
ate different types of minimax optimal designs for linear and
nonlinear models. In Sect. 4, we provide computational and
implementation details for our proposed PSO-based proce-
dure. Section 5 shows that PSOmethodology can bemodified
to find standardized maximin optimal designs. As illustra-
tive examples, we construct such designs for enzyme kinetic
models and Sect. 6 closes with a discussion.

2 Background

We focus on continuous designs which are treated as prob-
ability measures on a given design space X . This approach
was proposed by Kiefer and his collection of voluminous
work in this area is now documented in a single collection
(Kiefer 1985). If a continuous design takes pi proportion of
the total observations at xi ∈ X, i = 1, 2, . . . , k, we denote
it by ξ with p1 + p2 + · · · + pk = 1. Given a fixed sample
size N , we implement ξ by taking roughly Npi observations
at xi , i = 1, 2, .., k subject to Np1 +Np2 +· · ·+Npk = N .
As Kiefer had shown, one can round each of the Npi ’s to
the nearest integer so that they sum to N without losing too
much efficiency if the sample size is large. The proportion pi
is sometimes called the weight of the design at xi . Continu-
ous designs are practical to workwith, alongwithmany other
advantages widely documented in design monographs, such
as Fedorov (1972), Silvey (1980), Pázman (1986), Atkinson
et al. (2007) and in Kiefer (1985).

Our setup assumes we have a statistical model defined on
given compact design region X . The mean of the univari-

ate response is modeled by a known function g(x, θ) apart
from the values of the vector of parameters θ . We assume
errors are normally and independently distributed, all with
zero means and possibly unequal variances. The mean func-
tion g(x, θ) can be a linear or nonlinear function of θ and
the set of independent variables x . Following convention, the
value of the design ξ is measured by its Fisher information
matrix defined to be the negative of the expectation of the
matrix of second derivatives of the log-likelihood function.
For example, consider the popular Michaelis–Menten model
in the biological sciences given by

y = g(x, θ) + ε = ax

b + x
+ ε, x > 0,

where a > 0 denotes the maximal response possible and b >

0 is the value of x for which there is a half-maximal response.
In practice, the design space is truncated to X = [0, c]where
c is a sufficiently large user-selected constant. If θ� = (a, b)
and the errors ε are normally and independently distributed
with means 0 and constant variance, the Fisher information
matrix for a given design ξ is

I (θ, ξ) =
∫

∂g(x, θ)

∂θ

∂g(x, θ)

∂θT
ξ(dx)

=
∫ (

ax

b + x

)2
(

1
a2

− 1
a(b+x)

− 1
a(b+x)

1
(b+x)2

)
ξ(dx).

For nonlinear models, such as the Michaelis–Menten model,
the informationmatrix depends on themodel parameters. For
linear models, the information matrix does not depend on the
model parameters and we denote it simply by I (ξ).

Following convention, the optimality criterion is formu-
lated as a convex function of the design and the optimal
design is found by minimizing the criterion over all designs
on the design space X . This means that for nonlinear mod-
els, the design criterion that we want to optimize contains
unknown parameters. For example, to estimate parameters
accurately, weminimize log |I (θ, ξ)−1| over all designs ξ on
X (D-optimality). As such, a nominal value or best guess for
θ is needed before the function can be optimized. The result-
ing D-optimal design depends on the nominal value and so
it is called locally D-optimal. More generally, locally opti-
mal designs require nominal values for the model parameters
before optimal designs can be found. In addition, when the
criterion is a convex function in ξ , this means that a standard
directional derivative argument can be applied to produce an
equivalence theorem which checks whether a given design is
optimal among all designs on X . Details are available in the
above cited design monographs.

Minimax optimal designs arise naturally when we wish to
have protection against the worst case scenario. For example
if the vector of model parameters is θ and� is a user-selected
set of plausible values for θ , one may want to implement a
minimax optimal design ξ∗ defined by

123



Stat Comput (2015) 25:975–988 977

ξ∗ = argmin
ξ

max
θ∈�

log |I−1(θ, ξ)|, (1)

where the minimization is over all designs on X . The optimal
design provides someglobal protection against theworst case
scenario by minimizing the maximal inefficiencies of the
parameter estimates. Clearly, when � is a singleton set, the
optimal minimax design is the same as the locally optimal
design.

A common application of the minimax design criterion is
in a dose response study where the goal is to find an extrap-
olation optimal design which provides the best inference on
the mean responses over a known interval Z outside the dose
interval X . If we have a heteroscedastic linear model with
mean function g(x) and λ(x) is the assumed reciprocal vari-
ance of the response at dose x, then the variance of the fitted
response at the point z is proportional to

v(z, ξ) = gT (z)I (ξ)−1g(z),

where

I (ξ) =
∫

λ(x)g(x)gT (x)ξ(dx).

The best design for inference at the point z is the one that
minimizes v(z, ξ) among all designs ξ on X . However if we
know there are several dose levels of interest and they are all
in somepre-determined compact set Z , onemay seek adesign
to minimize the maximal variance of the fitted responses on
Z . Such a design criterion is also convex and one can use the
following equivalence theorem: ξ∗ is minimax optimal for
extrapolation on Z if and only if there exists a probability
measure μ∗ on A(ξ∗) such that for all x in X ,

c(x, μ∗, ξ∗) =
∫

A(ξ∗)

λ(x)r(x, u, ξ∗)μ∗(du) − v(u, ξ∗) ≤ 0

with equality at the support points of ξ∗. Here, A(ξ) =
{u ∈ Z |v(u, ξ) = maxz∈Z v(z, ξ)} and r(x, u, ξ) =
(gT (x)I (ξ)−1g(u))2. If X is one or two-dimensional, one
may visually inspect the plot of c(x, μ∗, ξ∗) versus values of
x ∈ X to confirm the optimality of ξ∗. In what is to follow,
we display such plots to verify the optimality of a design
without reporting the measure μ∗. A formal proof of this
equivalence theorem can be found in Berger et al. (2000)
and further details on minimax optimal design problems are
available in Wong (1992) and Wong and Cook (1993) with
further examples inKing andWong (1998, 2000). Extensions
to nonlinear models are straightforward if one assumes the
mean response can be adequately approximated by a linear
model via a first order Taylor Series expansion.

There are three points worth noting: (i) when Z is a sin-
gleton set, the probability measure μ∗ is necessarily degen-
erate at Z and the resulting equivalence theorem reduces to
one for checking whether a design is c-optimal, see Fedorov

(1972) or Silvey (1980); (ii) equivalence theorems for min-
imax optimality criteria all have a form similar to the one
shown above and they aremore complicated becausewe need
to work with the subgradient μ∗. A reference for subgradi-
ent is the full chapter called “The subgradient method” in
Shor (1985). Finding the subgradient requires another set of
optimization procedures which usually is more tricky to han-
dle and this in part explains why minimax optimal designs
are much harder to find than optimal designs under a differ-
entiable criterion, and (iii) under the setup here, the convex
design criterion allows us to derive a lower bound on the effi-
ciency of any design (Pázman 1986). This implies that one
can always assess how good a design is by providing its effi-
ciency lower bound (without knowing the optimal design).

3 PSO-generated minimax optimal designs

Minimax optimal designs are notoriously difficult to find and
we know of no algorithm to date which is guaranteed to find
such optimal designs. Even for linear polynomial models
with a few factors, recent papers acknowledge the difficulty
of finding minimax optimal designs; see Rodriguez et al.
(2010) and Johnson et al. (2011),whoconsideredfinding aG-
optimal design tominimize themaximal variance of the fitted
response across the design space. Optimal minimax designs
for nonlinear models can be challenging even when there are
just two parameters in the model; earlier attempts to solve
such minimax problems have to impose constraints to sim-
plify the optimization problem. For example, Sitter (1992)
found minimax D-optimal designs for the two-parameter
logistic model among designs which allocated equal num-
bers of observations at equally spaced points placed sym-
metrically about the location parameter. Similarly, Noubiap
and Seidel (2000) found minimax optimal designs numer-
ically among symmetric and balanced designs after noting
that ”by restricting the set of regarded designs in a suitable
way, the minimax problem becomes numerically tractable in
principle; nevertheless it is still a two-level problem requiring
nested global optimization.” In the same paper on p.152, the
authors remark that “Unfortunately, the minimax procedure
is, in general, numerically intractable”.

We are therefore naturally interested in investigating
whether the PSO methodology provides an effective way to
find minimax optimal designs. Our examples in this section
are confined to the scattered few minimax optimal designs
reported in the literature, either numerically or analytically.
The hope is that all optimal designs found by PSO agree
with results in the literature and this would then suggest that
the algorithm should also work well for problems whose
minimax optimal designs are unknown. Of course, we can
also confirm the optimality of the design found by the PSO
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Table 1 Selected locally
E-optimal designs for the
Michaelis–Menten model found
by PSO and from theory when
the design space is
[0, x̃] = [0, 200]

Table shows the two support
points with their weights in
parentheses

a b ξPSO E-optimal designs

100 150 46.520 (0.6925) 200 (0.3075) 45.510 (0.6927) 200 (0.3073)

100 100 38.152 (0.6770) 200 (0.3230) 38.150 (0.6769) 200 (0.3231)

100 50 24.783 (0.6171) 200 (0.3829) 24.780 (0.6171) 200 (0.3829)

100 10 6.516 (0.2600) 200 (0.7400) 6.515 (0.2600) 200 (0.7400)

100 1 0.701 (0.0222) 200 (0.9778) 0.701 (0.0220) 200 (0.9778)

10 150 46.497 (0.7071) 200 (0.2929) 46.510 (0.7070) 200 (0.2931)

10 100 38.142 (0.7068) 200 (0.2932) 38.150 (0.7068) 200 (0.2933)

10 50 24.778 (0.7058) 200 (0.2942) 24.780 (0.7058) 200 (0.2942)

10 10 6.515 (0.6837) 200 (0.3163) 6.515 (0.6838) 200 (0.3162)

10 1 0.701 (0.1882) 200 (0.8118) 0.701 (0.1881) 200 (0.8119)

using an equivalence theorem. Example 3 below is one such
instance.

We selectively present three examples and briefly a fourth
with two independent variables out of many successes we
have had with PSO for finding different types of minimax
optimal designs. One of the examples has a binary response
and the rest have continuous responses. The first example
seeks to find a locally E-optimal design which minimizes
the maximum eigenvalue of the inverse of the Fisher infor-
mation matrix. Example 2 seeks a best design for estimat-
ing parameters in a two-parameter logistic model when we
have a priori a range of plausible values for each of the
two parameters. The desired design is the one which max-
imizes the smallest determinant of the information matrix
over all nominal values of the two parameters in the plausi-
ble region. Equivalently, this is the minimax optimal design
which minimizes the maximum determinant of the inverse
of the information matrix where the maximum is taken over
all nominal values in the plausible region for the parameters.
The numerically minimax optimal design for Example 2 was
found by repeated guess work followed by confirmation with
the equivalence theorem in King and Wong (2000) with the
aid of Mathematica. We will compare their designs with our
PSO-generated designs. The third example concerns a het-
eroscedastic quadratic model with a known efficiency func-
tion and we want to find a design to minimize the maximum
variance of the fitted responses across a user-specified inter-
val. Theminimaxoptimal designs are unknown for this exam-
ple and we will check the optimality of the PSO-generated
design using an equivalence theorem.

The key tuning parameters in the PSOmethod are (i) flock
size, i.e. number of particles (designs) to use in the search,
(ii) the number of common support points these designs
have, and (iii) the number of iterations allowed in the search
process. Unless mentioned otherwise, we use the same val-
ues for these tuning parameters for the outer problem [e.g the
minimization problem in Eq. (1)] and the inner problem [e.g

the maximization problem in Eq. (1)]. We use default values
for all other tuning parameters in the PSO codes which we
programmed in MATLAB version R2010b. Section 4 pro-
vides information on these default values. All CPU comput-
ing times (in seconds)were froma IntelCore2 6300 computer
with 5 GB RAM and operating system Ubuntu 64bit Linux
with kernel 2.6.35-30.

Before we present our modified PSO method called
Nested PSO in Sect. 4, we present four examples, with a
bit more detail for the first example.

3.1 Example 1: E-optimal designs for the
Michaelis–Menten model

TheMichaelis–Mentenmodel is one of the simplest andmost
widely usedmodel in the biological sciences.Dette andWong
(1999) used a geometric argument based on the celebrated
Elfving’s theorem and constructed locally E-optimal designs
for themodelwith twoparameters θ� = (a, b). Such optimal
designs are useful for making inference on θ by making the
area of the confidence ellipsoid small in terms of minimizing
the length of the longest principal axis. This is achieved by
minimizing the larger of the two eigenvalues of the inverse
of the information matrix over all designs on X . For a given
θ , they showed that if the known design space is X = [0, x̃]
and z̃ = x̃/(b+ x̃), the locally E-optimal design is supported
at x̃ and {(√2 − 1)bx̃}/{(2 − √

2)x̃ + b} and the weight at
the latter support point is

w =
√
2(a/b)2(1 − z̃){√2 − (4 − 2

√
2)z̃}

2 + (a/b)2{√2 − (4 − 2
√
2)z̃}2 .

We use the Nested PSO procedure to be described in
the next section to search for the locally 2-point E-optimal
design using 128 particles and 100 iterations. Selected mini-
max optimal designs are shown in Table 1 along with the the-
oretical optimal designs reported in Dette and Wong (1999).
All the PSO-generated designs are close to the theoretical
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Fig. 1 Plot of the maximum eigenvalue of I (ξ, θ)−1 versus the itera-
tion number in the nested PSO search in Example 1

E-optimal designs and for those which show a small dis-
crepancy, the difference quickly vanishes when we increase
the flock size or the number of iterations.

It is instructive to demonstrate the search process of the
PSO method in a bit more detail for this example; similar
demonstrations can be shown for the other examples as well.
As an illustrative example, consider the case when a = 100
and b = 150 with 128 particles and 100 iterations. Figure 1
plots the “best” maximum eigenvalue of I (ξ, θ) over the first
10 iterations of the PSO procedure. Notice how quickly in
just 3 iterations, PSO finds the smallest value of the larger
of the two eigenvalues from information matrices generated
by the θ ’s in �. Figure 2 shows the initial positions of the
128 randomly generated particles and how they move after
the 1st, 5th and at the 10th iteration when they converged.

3.2 Example 2: a minimax D-optimal design for the
two-parameter logistic regression model when we have
plausible ranges for the two parameters

The widely used two-parameter logistic model assumes the
probability of response is p(x, θ) = 1/{1+exp(−b(x−a))}
with θ� = (a, b). For a given design ξ , a direct calculation
shows the Fisher information matrix to be

I (θ, ξ)

=
∫ (

b2 p(x, θ)(1 − p(x, θ)) −b(x − a)p(x, θ)(1 − p(x, θ))

−b(x − a)p(x, θ)(1 − p(x, θ)) (x − a)2 p(x, θ)(1 − p(x, θ))

)
dξ(x).

Suppose now that instead of having nominal values for θ , we
have a priori a known set � of plausible values for the two
parameters a and b, i.e. θ ∈ � and � is known. We wish to

find a minimax D-optimal design ξ∗ such that

ξ∗ = argmin
ξ

max
θ∈�

log(|I−1(θ, ξ)|),

where theminimization is over all designs on a given compact
design set X . As mentioned above, this minimax optimal
design reduces to a locally D-optimal design when � is a
singleton set.

Following King and Wong (2000), we assume that � =
[aL , aU ]×[bL , bU ], where aL , aU , bL and bU are the known
limits of the lower and upper bounds for a and b. In King and
Wong (2000), the numerically minimax D-optimal designs
were found by first running the Fedorov-Wynn algorithm
(Fedorov 1972). Invariably, the algorithm did not converge
but provided clues on the number and locations of the sup-
port points of the optimal design. King and Wong (2000)
then used the information along with the equivalence theo-
rem to find the numerically minimax optimal design using
Mathematica. A certain amount of guesswork was still nec-
essary because not much was known of the subgradient μ∗.
The process of finding theminimax optimal design was labor
intensive and time consuming.We now use the nested PSO to
find minimax optimal designs for two exemplary cases from
King andWong (2000) and compare results. For case (a), the
design interval was non-symmetric and the number of par-
ticles for the inner loop is 64 and the number for the outer
loop is 32. The outer iteration number was 100 and the inner
iteration number was 50. In case (b), the design interval was
symmetric and larger, and the number of inner particles is
256 and the number for the outer particles is 512. The outer
iteration number is 200 and the inner iteration is 100. In both
cases, the PSO generated designs were found quickly and a
direct calculation shows both had at least 99.4 % efficiency.

Case a � = [0, 2.5] × [1, 3] and X = [−1, 4]. The
4-point PSO-generated design ξ is supported at
−0.4230, 0.6164, 1.8836 and 2.9230 and the weig-
hts at these points are 0.2481, 0.2519, 0.2519 and
0.2481 respectively. This design is close to the one
reported in King andWong (2000) and Fig. 3a plots
c(x, ξ, μ∗) versus x ∈ X and visually confirms the
design ξ found by PSO is nearly optimal or optimal.

Case b � = [0, 3.5] × [1, 3.5] and X = [−5, 5] (Example
3.2 in King and Wong (2000)). The 6-point PSO-
generated design is supported at −0.3504, 0.6075,
1.4146, 2.0854, 2.8925 and 3.8504 and the weights
at these points were 0.1799, 0.2151, 0.1050, 0.1050,
0.2151 and 0.1799 respectively. This design is also
close to the one reported in King and Wong (2000)
and Fig. 3b similarly confirms that the design found
by PSO is nearly optimal or optimal.
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Fig. 2 The movement of particles in the PSO search for the locally E-optimal design for the Michaelis–Menten model at various stages. The red
star in each of the last three plots indicates the current best design. (Color figure online)

3.3 Example 3: a heteroscedastic minimax design for a
quadratic polynomial model with an increasing
efficiency function

Consider heteroscedastic polynomialmodels on a given com-
pact design space X that have the form

y(x) = g�(x)β + e(x)/
√

λ(x),

where g�(x) = (1, x, . . . , xd), β� = (β0, β1, . . . , βd) and
e(x) is a random error having mean 0 and constant variance
σ 2. The function λ(x) is a known positive real-valued con-

tinuous function defined on X and inversely proportional to
the variance of the fitted response at x . All observations are
assumed to be independent. Recalling that the variance of the
fitted response at x usingdesign ξ is proportional tov(x, ξ) =
g�(x)I−1(ξ)g(x), the sought design is ξ∗ defined by

ξ∗ = argmin
ξ

max
x∈Z v(x, ξ),

where the minimization is over all designs on X . Here Z is a
compact set and pre-selected for prediction purposes, which
mayoverlapwith the design space X .When Z = X , thismin-
imax design is called the G-optimal design (Wong and Cook
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Fig. 3 Plot of c(x, μ∗, ξ) versus x for Example 2 for case a � = [0, 2.5]×[1, 3] and X = [−1, 4]; case b� = [0, 3.5]×[1, 3.5] and X = [−5, 5]
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Fig. 4 Plot of c(x, μ∗, ξ) versus x over the design interval X = [−1, 1] for the quadratic regression model with λ(x) = 2x + 5 in Example 3 for
case a Z = [−1, 1] and case b Z = [1, 1.2]

1993). King and Wong (1998), Brown and Wong (2000)
and Chen et al. (2008) proposed algorithms and discussed
computational issues for finding such designs in simple and
quadratic models. Our experience with these proposed algo-
rithms is that they may not work well for more complex
models and a more complicated heteroscedastic structure.
Accordingly, we applied Nested PSO and tested if it can
find the minimax optimal design for the quadratic model
with a monotonic increasing efficiency function when (a)
X = Z and (b) Z is outside of X . The first case corresponds
to G-optimality and the second case corresponds to a design
extrapolation problem where we want to make predictions
outside the design space. The optimality of PSO-generated
designs will be ascertained by equivalence theorems. In both
cases, we used 128 particles and 100 iterations to find the
minimax optimal designs.

Here we consider the quadratic model with a monotonic
increasing efficiency function λ(x) = 2x + 5. This is a more
difficult problem than the case when we have a symmetric
efficiency function because one can then exploit the sym-
metry of the design problem and reduce the dimension of
the optimization problem. Specifically, we applied PSO to
find an minimax optimal design when (a) X = Z = [−1, 1]
and (b) X = [−1, 1] and Z = [1, 1.2]. For the first case,
the PSO-generated 3-point design is supported at ±1 and
0.0777 with weight at 1 equal to 0.2126 and weight at −1
equal to 0.4928. In the second case, the PSO-generated 3-
point design is supported at ±1 and 0.0967 with weight at
1 equal to 0.6667 and weight at −1 equal to 0.0768. The
efficiency lower bounds for the PSO-generated designs are
0.9974 and 0.9975, respectively. Figure 4a is the graph of
c(x, ξ, μ∗) for case (a) and Fig. 4b is the graph of c(x, ξ, μ∗)
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for case (b). They both visually confirm the optimality of the
PSO-generated designs ξ .

We note that earlier work on optimal extrapolation designs
for polynomial models were carried out in a series of papers
by Kiefer andWolfowitz (1964a,b, 1965) and Levine (1966),
assuming the efficiency function λ(x) was a constant. Under
the homoscedastic model, they were able to obtain analytic
results when X = [−1, 1] and Z = [e, f ] for selected values
of e and f , including results for non-polynomial regression
problems involvingChebyshev systems. Spruill (1984, 1990)
worked on similar problems where bias was factored into the
criterion as well. Interest in such design problems continues
to date, see Broniatowski and Celant (2007) for example.
PSO was able to produce optimal designs reported in the
above papers and for problems with a more general setup.
Because of space consideration, we do not report here addi-
tional results from PSO for extrapolation minimax optimal
designs.

3.4 Example 4: a linear model with two factors

Our final example shows PSO can also findminimax optimal
designs for regression models with multiple variables. Con-
sider a homoscedastic quadratic model with two variables
given by

E(y) = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2

on the design space (x1, x2)∈ X = [−1, 1]2 and we want
to know how to take independent observations to mini-
mize the maximum variance of the fitted response across
X . We used 500 outer iterations with an outer flock size of
500 and 50 inner iterations with an inner flock size of 50
in our PSO search. The PSO-generated design from Algo-
rithm 2 is supported at (−0.0296,−1), (−0.0015, 0.0099),
(0.0161, 1), (1,−0.0342), (1,−1), (−1, 1), (1, 1), (−1,−1)
and (−1,−0.0225), and the corresponding weight distribu-
tion at these points is respectively given by 0.0815, 0.0962,
0.0790, 0.0801, 0.1454, 0.1468, 0.1464, 0.1443and0.0804.

How close is this 9-point design to the G-optimal design?
Fig. 5 shows the plot of the directional derivative of the G-
optimality criterion evaluated at the 9-point PSO-generated
design and confirms visually that the the PSO-generated
design is optimal or near to theG-optimal design. The model
has homoscedastic errors and so the soughtG-optimal design
is also the D-optimal design (Kiefer and Wolfowitz 1960),
which is always easier to find. This D or G-optimal design
was reported in Farrell et al. (1968) and has weight 0.1458 at
each of the 4 points (±1,±1), weight 0.0802 at each of the
4 points (±1, 0) and (0,±1) and weight 0.0962 at the center
point (0, 0).

The maximal variances from the D-optimal design and
the PSO-generated design are 6.000 and 6.002, respectively,

Fig. 5 Plot of the directional derivative of the G-optimality criterion
evaluated at the 9-point PSO-generated design for the quadratic model
with 2 variables

providing a G-efficiency of 0.9997 or 99.97 % for the PSO-
generated design.

In the next section, we provide computational details for
the PSO. As may have been already noticed in the above
examples, a couple of the designs found by the PSO method
appeared to be slightly numerically different from the theo-
retical optimal designs. Our experience is that the discrep-
ancy can be entirely attributed to the choices for the tuning
parameters. For simplicity, we used the same set of tuning
parameters for all cases in the same example even though
this may not be adequate for all the cases. Generally, when
more particles and more iterations are used, the discrepancy
disappears and PSO is more likely able to find the optimal
design. Interestingly, when we used 256 particles and 500
iterations in Example 1, the discrepancy persisted even when
we increased the iteration and particle numbers to the thou-
sands. Further investigation revealed that the smaller support
point of the theoretical optimal design in the first row of
Table 1 calculated from the formula was wrongly reported
and the correct value was the one found by PSO!

4 Computational and implementation details for PSO

PSO, proposed by Eberhart and Kennedy (1995), is an iter-
ative method which can be generically and readily coded to
simulate the behavior of a flock of birds in search for food.
Before presenting our modified PSO algorithm for finding
optimal minimax designs, we first describe how PSO works
in its most basic for solving a minimization problem:

min
x∈X f (x), (2)
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where X is a given compact domain and f (x) is the objective
function. We initialize PSO using a user-specified number,
sayn, randomly generated particles to search for the optimum
over the search space. In our context, X is the design space,
f (x) is the design criterion formulated as a convex function
of the information matrix and the particles are the flock of
birds or search designs definedby theirmass distributions and
support points. If the model has k parameters in the mean
function, it is typical to choose the initial flock of search
designs to be those with k support points.

The two basic equations that drive movement for the i th
particle in the PSO algorithm in its search to optimize an
objective function f (x) is as follows. At times t and t + 1,
the movement of particle i is governed by

wt+1
i = θtwt

i + γ1α1(pi − xti ) + γ2α2(pg − xti ), (3)

and

xt+1
i = xti + wt+1

i . (4)

Here,wt
i and x

t
i are, respectively, the velocity and the current

position for the i th particle at time t . The initial velocityw0
i is

set to be zero. The inertia weight θt modulates the influence
of the former velocity and can be a constant or a decreasing
function with values between 0 and 1. For example, Eberhart
and Shi (2000) used a linearly decreasing function over the
specified time range with an initial value 0.9 and end value
of 0.4. The vector pi is the personal best (optimal) position
attained by the i th particle up to time t and the vector pg is
the global best (optimal) position attained among all parti-
cles up to time t . This means that up to time t , the personal
best for particle i is pbesti = f (pi ) and gbest = f (pg).
The two random vectors in the PSO algorithm are α1 and
α2 and their components are usually taken to be indepen-
dent random variables fromU (0, 1). Note that in Eq. (3), the
product in the last two terms is Hadamard product. The con-
stant γ1 is the cognitive learning factor and γ2 is the social
learning factor. These two constants determine how each par-
ticle moves toward its own personal best position or overall
global best position. The default values for these two con-
stants in the PSO codes are γ1 = γ2 = 2 and they really
seem to work well in practice for nearly all problems which
we have investigated so far. Further details are in Chatter-
jee and Siarry (2006), Fan and Chang (2007) and Shi and
Eberhart (1998a,b).

The particles’movements along various paths are clamped
to a user-specified maximum velocity wmax . After updating
the velocity wi via (3), if a certain component of wi exceeds
the corresponding component ofwmax , the component veloc-
ity will be limited to the corresponding component value of

wmax . In our implementation, we set wmax = 100 · 1, where
1 is the unit vector.

Algorithm 1 PSO for the minimization problem (2)
(A1a) Initialize particles

(A1a.1) Choose initial position xi and
velocity wi for particle i, for i =
1, . . . , n.

(A1a.2) Calculate fitness values f (xi ).
(A1a.3) Determine local and global best

positions pi and pg.
(A1b) Repeat until stopping criteria are satisfied.

(A1b.1) Calculate each particle velocity
using equation (3).

(A1b.2) Update each particle position
using equation (4).

(A1b.3) Calculate fitness values f (xi ).
(A1b.4) Update best positions pi and pg

andbest values pbesti and gbest .
(A1c) Output pg and gbest .

To find minimax optimal designs, we modified Algo-
rithm 1 and call the modified PSO method nested PSO
because it involves double optimization, one after the other.
More generally, let g(u, v) be a given function defined on
two compact spaces U and V . Minimax optimization prob-
lems have the form:

min
u∈U

max
v∈V

g(u, v) ≡ min
u∈U

fouter (u) ≡ min
u∈U

[
max
v∈V

finner (v)
]

,

(5)

where

fouter (u) = max
v∈V

finner (v), (6)

and, for fixed u,

finner (v) = g(u, v). (7)

We call functions fouter (u) and finner (v) the outer and inner
objective functions respectively. Note that the maximization
problem (6) is equivalent to the minimization problem

min
v∈V

[− finner (v)] ,

which can be solved by Algorithm 1. For our design prob-
lems, we set g(u, v), U and V appropriately. For instance,
for G-optimality, we let U be the set of all designs defined
on X, let V = X and let g(u, v) be the variance of the fit-
ted response at v for design u. The same setup is used for
Example 3, except that we now replace V = X by V = Z .
The minimax design problem is now formulated as a nested
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(or double) minimization problem and solved using Algo-
rithm 2, which in essence is Algorithm 1 applied twice, once
to the outer function and another to the inner function.

Algorithm 2 Nested PSO for the minimax problem (5)
(A2a) Initialize particles

(A2a.1) Choose initial position xi and
velocity wi for particle i, for i =
1, . . . , n.

(A2a.2) Calculate fitness values
fouter (xi ) by solving (6) via
Algorithm 1.

(A2a.3) Determine local and global best
positions pi and pg.

(A2b) Repeat until stopping criteria are satisfied.
(A2b.1) Calculate each particle velocity

using equation (3).
(A2b.2) Update each particle position

using equation (4).
(A2b.3) Calculate fitness values

fouter (xi ) by solving (6) via
Algorithm 1.

(A2b.4) Update best positions pi and pg
andbest values pbesti and gbest .

(A2c) Output pg and gbest .

To apply the Nested PSO to solve minimax design prob-
lems we use Example 3 as an illustrative example and set
fouter (ξ) = maxz∈Z v(z, ξ)which is first computed via PSO
for each fixed ξ . The optimal design is then found by another
PSO by treating each particle as a design ξ represented as
(x1, . . . , xk, p1, . . . , pk)�, where xi , i = 1, . . . , k are the
support points in the design space and pi , i = 1, . . . , k are the
corresponding weights with 1 > pi > 0 and

∑k
i=1 pi = 1.

All minimax optimal designs in Sect. 3 were found using
Algorithm 2. In the supplementarymaterial, we provide open
PSO codes which implement Algorithm 2 and demonstrate
how to use a MATLAB toolbox to obtain a G-optimal design
for an illustrative case when we have a simple linear model
and the efficiency function is λ(x) = x + 5 defined on X =
[−1, 1]. We also show how the codes can be readily amended
to find different optimal designs under various setups.

In the next section, we show the flexibility of the
PSO methodology by finding standardized maximin optimal
designs for a class of nonlinear models. Maximin optimal
designs are similar in spirit to minimax optimal designs in
terms of interpretation and construction via PSO. Standard-
ized maximin or minimax optimal designs were proposed
by Dette and Biedermann (2003) to make locally optimal
designs more robust against mis-specification of the set of
nominal values for the model parameters.

5 Standardized maximin optimal designs for enzyme
inhibition kinetic models

The two-parameter Michaelis–Menten model in Example 1
is commonly used enzyme kinetics studies. There are four
popular extensions of the Michaelis–Menten model used to
further identify the types of inhibition process involved in
the enzyme-inhibitor system. These nonlinear models have
three or four parameters and their mean velocity functions
are

Competitive inhibition model:

υ = V S

Km(1 + I
Kic

) + S
; (8)

Noncompetitive inhibition model:

υ = V S

(Km + S)(1 + I
Kic

)
; (9)

Uncompetitive inhibition model:

υ = V S

Km + S(1 + I
Kiu

)
; (10)

Mixed inhibition model:

υ = V S

Km(1 + I
Kic

) + S(1 + I
Kiu

)
. (11)

Here S and I are the two design variables denoting the con-
centration of the substrate and the inhibitor concentration
respectively. Themodel parameters areV, Km , Kic, Kiu , and
Bogacka et al. (2011) found locally D-optimal designs for
these four enzyme inhibition kinetic models. The locally D-
optimal designs do not depend on V because this parameter
enters the four models linearly. Thus we only consider the
parameter vector θ = (Km, Kic, Kiu)

�.
We now use the nested PSO algorithm to find standardized

maximin D-optimal designs for these models. Let ξ∗
θ be the

locally D-optimal design with respect to the parameter θ and
let � be a known set containing plausible values of θ . The
goal here is to seek an optimal design which maximizes the
design criterion (ξ), where

(ξ) = min
θ∈�

|I (ξ, θ)|
|I (ξ∗

θ , θ)| .

We follow the set up in Bogacka et al. (2011) where
the design space for the two variables x = (S, I ) is X =
[0, 30] × [0, 60] and the range set � of possible values
for θ = (Km, Kic, Kiu)

� is [4, 5] × [2, 3] × [4, 5], which
includes the nominal values used in their study for an appli-
cation using the Competitive Inhibition model.
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Table 2 The nested
PSO-generated standardized
maximin D-optimal designs for
the four inhibition models using
the following PSO parameters:
number of particles in the outer
(inner) loop = 256 (128),
number of iterations in the outer
(inner) loop = 200 (100) and
γ1 = γ2 = 2

Type ξPSO Lower bound
of efficiency
(%)

Competitive inhibition model

(
3.4445
0.0000

) (
30.0000
0.0000

) (
30.0000
18.8982

)
99.99

0.3333 0.3333 0.3334

Noncompetitive inhibition model

(
3.4429
0.0000

) (
30.0000
0.0000

) (
30.0000
2.4495

)
99.99

0.3333 0.3333 0.3334

Uncompetitive inhibition model

(
3.4461
0.0000

) (
30.0000
0.0000

) (
30.0000
5.1383

)
99.99

0.3333 0.3334 0.3333

Mixed inhibition model

(
3.4406
0.0000

) (
4.2835
3.1445

) (
30.0000
0.0000

) (
30.0000
4.0191

)
99.92

0.2503 0.2498 0.2501 0.2498

Table 3 Standardized maximin
D-optimal designs for the four
kinds of inhibition models

Type ξ∗
ci

Competitive inhibition model

(
3.4429

0

) (
30
0

) (
30

18.8944

)

1/3 1/3 1/3

Noncompetitive inhibition model

(
3.4429

0

) (
30
0

) (
30

2.4495

)

1/3 1/3 1/3

Uncompetitive inhibition model

(
3.4429

0

) (
30
0

) (
30

5.1424

)

1/3 1/3 1/3

Mixed inhibition model

(
3.4429

0

) (
4.2943
3.1231

) (
30
0

) (
30

4.0199

)

1/4 1/4 1/4 1/4

The nested PSO-generated standardized maximin optimal
designs are shown in Table 2 alongwith their efficiency lower
bounds. For each of these design ξ , the bound is given by

p

maxx∈X
∫
A(ξ)

∂g(x,θ)�
∂θ

I (ξ, θ)−1 ∂g(x,θ)
∂θ

μ(dθ)
,

where p is the number of the parameters in themean function,
A(ξ)= {θ ∈ �|(ξ)= effθ (ξ)2}, effθ (ξ)= (|I (ξ, θ)|/|I (ξ∗

θ , θ)|)1/2
and μ is the probability measure defined on A(ξ) which
minimizes the denominator; see Wong and Cook (1993)
or Dette and Biedermann (2003) for details. For instance,
for the mixed inhibition model we have g(x, θ) = υ =
V S/(Km(1+ I

Kic
) + S(1+ I

Kiu
)) and p = 4. Table 2 shows

that all the designs found by the nested PSO are at least
99.9 % efficient and so they are all very close to the theoret-
ical standardized maximin optimal designs.

To find the maximin optimal designs, one notes that the
maximin criterion is a concave function on the space of
designs on X and so conditions from an equivalence theorem
can be applied. For example, consider the competitive inhi-

bition (ci) model where Table 2 suggests the optimal design
ξ∗
ci should be an equally weighted design with the following
structure:

ξ∗
ci =

⎛
⎝

(
S1
0

) (
30
0

) (
30
I3

)

1/3 1/3 1/3

⎞
⎠ .

One could also conjecture that when we have the maximin
optimal design ξ∗, the measure μ∗ is equally supported at
(4, 3)� and (5, 2)� in the parameter space. This conjecture
comes from the best design found by the nested PSO. The
requirements of the equivalence theorem then provide uswith
equations to solve for S1 and I3. In this case, the solutions are
S1 = 3.4429 and I3 = 18.8944. Both values are close to the
design points shown in Table 2 and the design displayed in
Table 3 for this model is the standardized maximin optimal
design. Similarly, the other designs found using hints from
the generated designs shown in Table 3 are also standardized
maximin optimal for the other 3 models. The plots of the
directional derivatives for the maximin criterion for these 4
designs in Fig. 6 confirm their optimality.
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Fig. 6 Plots of the directional derivatives of the standardized maximin D-optimality criterion evaluated at the PSO-generated designs for the four
inhibition models

6 Discussion

Given rapidly rising costs of experimentation, optimal design
ideas take on an increasingly important role. Awell designed
study is able to answer scientific questions accurately and
with minimum cost. It is therefore not surprising that opti-
mal experimental designs continue to find increasingly more
applications in different fields and novel applications are
continually seen in traditional areas, see Berger (2005), for
example.

Computer algorithms have played and will continue to
play an important role in our search of optimal designs. They
are usually sequential in nature and typically involve the addi-
tion of a carefully selected new design point to the current
design by mixing them appropriately to form a new design.
The generated design accumulates many points or clusters
of points as the algorithm proceeds and judicious rules for
collapsing points into distinct points is required. The weights

typically used in popular algorithms such as Fedorov’s algo-
rithm for finding optimal designs to combine designs from
each successive iterations are between 0 and 1 and have the
following properties: (a) their sum is infinity and (b) the sum
of squares of each term is finite. One common choice for the
weight at the kth iteration is 1/k, where

∑∞
l=1 1/k = ∞ and∑∞

l=1 1/k
2 < ∞. Both conditions help ensure successful

termination of the algorithm.
Stopping rules are employed to decide when to terminate

the search; they typically require either a maximum num-
ber of iterations allowed or when the change in the value
of the optimality criterion in successive searches is negligi-
ble according to a user-selected tolerance level. An example
of such an algorithm is the noted Fedorov-Wynn algorithm
which is still popular aftermore than 3 decades of use.Details
and exemplary codes for generating D- and c-optimal designs
can be found in design monographs like Silvey (1980) and
Fedorov (1972). Several modified versions of the Fedorov-
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Wynn algorithm have been proposed and we refer to them as
the Fedorov-Wynn types of algorithms.

Amain difference between PSO and the popular Fedorov-
Wynn types of algorithms is that PSO uses many particles
(designs) right from the start to cover the design space before
searching for the optimum,whereas the Fedorov-Wynn types
of algorithms use only one starting design. This means that a
poor choice of the starting design in the Fedorov-Wynn algo-
rithm may require a relatively long time for it to get near the
optimum. In contrast, PSO’s usesmany particles to search for
the optimum at any one time by sharing information among
the search particles. In addition, PSO is flexible and easy to
implement; our experience is that only the number of itera-
tions and flock size seem to affect PSO’s ability to find the
optimal design.; all other tuning parameters in the PSO do
not seem to matter, and so we set them all equal to their
default values. In this sense, PSO compares favorably with
other algorithms like genetic algorithms which can depend
sensitively on the tuning parameters. In sum, our experience
with PSO agrees with findings reported in the literature.

To get a sense of computing time which nested PSO
required to run through a search, we revisit Example 1 for
the Michaelis–Menten model. For brevity, we consider an
illustrative case when the model parameters are (a, b)� =
(100, 150) and we use different numbers of particles and
iterations. When the iteration number is fixed at 100, and
the number of particles is 128, 256, 512, 1024 and 2048, the
search took 0.87, 1.65, 3.16, 6.32 and 12.58 s respectively.
When the number of particles is fixed at 128, and the iter-
ation number is 200, 500 and 1,000, the PSO search time
is 1.68, 4.13 and 8.05 s respectively. In all cases, the gener-
ated designs agree up to 5 decimal places in terms of both
weights and design points. Clearly larger flock size requires
more time to partake in the sharing of information and larger
numbers of iterations require longer time.

In summary, PSO is a novel and powerful method to gen-
erate different types of optimal experimental designs. We
continue to have other successes not all reported here when
we applied PSO to find A, c or D-optimal designs for non-
linear models with 3 or more parameters. Each time PSO
would find and confirm the results in the literature usually in
a few seconds of CPU time. We have also verified that PSO
is able to generate D-optimal designs for Scheffe’s quadratic
polynomial mixture models up to 8 factors with a hundred
or more variables to be optimized.

PSO methodology has potential for finding other types of
optimal designs. We have two areas for future work. The first
is to apply PSO to find multiple-objective optimal designs.
Such designs are more attractive because studies typically
have several goals and not all of them may be of equal inter-
est. Multiple-objective optimal designs are discussed exten-
sively with examples in Cook and Wong (1994), Huang and
Wong (1998), Zhu and Wong (2000, 2001). The second area

for future work is to apply PSO to find optimal designs under
a non-convex criterion, where we no longer have an equiv-
alence theorem to confirm whether a design is optimal or
not. Our latest results include modifying PSO in a novel
way to find balanced optimal supersaturated designs, which
have a very different setup than the one considered here. The
design space is discrete and because we allow more factors
than have been considered in the literature, the optimiza-
tion problem is high dimensional. Other examples of opti-
mal designs under non-convex objective functions are exact
optimal designs, replication free optimal designs, minimum
bias designs or designs which minimize the mean square
error. We plan to apply PSO methodology to find these types
of optimal designs and hope to report results in the near
future.
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