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ON THE MICROSCOPIC AND MACROSCOPIC ASPECTS
OF NUCLEAR STRUCTURE WITH APPLICATIONS TO

SUPERHEAVY NUCLET -

Chin-Fu Tsang
Lawance Radlation Laboratory-

University of California -
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ABSTRACT

‘ The'thésis is concerned with the:rélation,between
a microScopic approach and a macroscopiébapproachnto the
study<ofvthe‘nuclear binding‘enérgy és a function of neutrén
number, proton number and nuclear deformatiohs,‘

First.of ail we give_a generalfdiscussion[of.the

potential.energy of:a'sy$£em which can be divided into
a bﬁlk region and a thinvSRin layer. We find that this
’ energy can-be written downvin the usual liquid'drop type of
exﬁression, i.e., in terms of the volume, the surface-area
and othgr macfoscopic propertiesfof_the system. The discus-
sion is illustrated by a.study:of noninferécting.particles
" in an orthorhombic potential well with:zero potential inside
and infinite potential butéide.' Thé totai energy is calcul-

ated both exactly (a microscopic approach) and also from a
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liquid drop type of expression (a macroscopic approach).
’It turns out thét the latter approach reproduces the
smooth average of the exact results very well.

We next make a digression to study the saddle
point shapes of a charged conducting drop on 'a pure‘liquid
drop model. We compare the properties of a conducting
drop with those of a'drop whose Chargeé are distributed
uniformly throughout its volume. The latter is the usual
model employed in the study of nuclear fission. We also
determined some éf the more important symmetric‘saddle
point shapes. |

In the last part of the thesis we generalize a

method due to Strutinski to synthesize a microscopic ;
appfoach (the Nilsson model) and a macroécopic approach |
(the 1liguid drop model). The results are applied to

realistic nuclei. The possible occurrence of shape isomers ;
comes as a haturalvconsequencg of the present calculation.
Their trends as a function of neutron and pfoton members
are discussed and the results are tabulated. We also work » | %
out the stabilities of the predicted superheavy nuclei. with , E
proton number around 114 and neutron number around 184 and
196. Some of these nuclei appear to have extremely long

life times. The possible experimental production of these

superheavy nuclei are also discussed.



©
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1. General Iﬁtrodubtion'
Of central importance in the physics of the nucleus is a study

of the nuclear binding:enefgy as a function of its deformation and mass

‘number A. Such a study is not only relevant for the ground state

- masses and deformations, but is also essential in the theory df-alpha

decay, beta decay as well as the spontaneous fission of the nucleus. 

. It also providés a possible explanation for the so-called shape or'

fiséion isomers which have recently induced extensiVe'sxpefimenfall,
efforté{ |

| For ﬁhe last thirty—five’yéars béth a.microscopic aﬁd a macro- .
scopic aﬁproachrfor the caiéﬁlation of the nuclear bindiﬁg.enefgy ﬁaver
been deveiqped in parallel. Byvﬁhe maéroscdpié aﬁproaéh Qe ére thinking
of an approach in whiﬁh one expresses the biﬁding'energy as a functidﬁ
of macroscopic properfies such és‘the Qolume, surféce areg; and the
integrated curyature over thebsurface of the nucleué.v The'apprbach'is

usually associated with the liquid drop modell) of a nucleus, although .

;_in sOmévaspects it is considerably more general than fhe_representationv

of a nucleus as a fluid droplet. We shall discuss this in detail in -

~ the next paft of the thesis. By the'micrbscopic'approach wevare, 

referring to an independent particle model, where one coﬁsidéfstfﬁe_"
nucleons to mbye-aroundlin an average nucleaf’fieid; ;Residaélviqter- 
act}ons such as pairingvéffects can be included. This model ié,commonly
applied with g?eét succéss'to‘correlaie nuclear épectxqscépic,dafa'énd‘v
tp‘explain the'occurrencé bf.magic nuﬁbers.: Its.succeséful.épplicatioh
to a.quéntitative desériptioﬁg’5) of:nuClear.masses~and Qeformabiiitieé"

is a development of the last few years.



The miecroscopic approach is mére fundamental than the macro-
scopic approach in the sensé that all results of the latter should be
derivable in principle as some sort of an average of the results of the
former. - However in its present state, 1t turns out that the independent
particle model does not give correctly the absolute values of the experi-
mental binding energiesg;B), though it is very successful in reproducing
thé relative values for neighbouring nuclei. Cnvthé other hand the
macroscopic approach looks at the nucleus as a whole and considers the
bindihg energy as a sum of the volume, surface, curvature as well as
coulomb energy terms. The éoefficients in‘these terms are fitted to
experimental values and the approach is able to reproduce the absolute
values of the binding energy correctly.

It is'important to study the relation between the two approaches
and to try to synthesize them in éome way so that we may have the useful
results of both in a unified approach. The basic idea advocated by

4) 5)

Myers.énd Swiatecki and Strutinski améng others is that one‘should
replace the smooth average trends of the results of' the independent

particle model, which do not reproduce experimental trends adequately
-by those from the liquid drop model. The resulting unified model will

then represent the real nucleus more closely than is péssible with

either the microscopic or the macroscopic model.

In the next part of the thesis we will discuss the justification'

of a macroscopic approach. We are going to look specifically at a

o
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system with althin skin (ofgconsfant thickness), which we will call a
leptodt—:qr‘mousJr system. A'liquid drop is a.sbecial example,cf-such a
system. ° By considering Just the'geometry'of this System we can write
down its energy as a suﬁ of a volumé term; a surface ter@, and an
inﬁegrated.cﬁrvature term..v

The third part is,é study'of the energy of nohinteracting‘
nucleons in én orthorhombic pcténtiallwell ﬁith infihife potehfial.Walls,

which will be feferréd'tc as a;Hill—Wheélér'box6>. The total energy as
fcba function of the relative lengfhs‘of thé:sides.can be calculated

: cxactiy as well as from a macroscopic ?oint‘of view. A comparison shows
~that the macroscopic approach does indeed gi?e véry‘closely the‘smooth
_trends of thé energy caiculated exactly:.

The fourth‘part-is_abstudy of a.purefccllectiVe phenomenon. It
is aldigressicﬁ from our m@in:thémc'ofbstudying.the relation betwcen the
micro;copic and macroscopic'approaches, to which we shall return in -

‘the fifth and last part. HIt:dealé.with'the-thébry of fiscion,of‘a
chafged drop which.is electrically conducting so that the'charges reéidc
~on fhc‘surface cf the drop. 'The usual liquid drop model of ﬁuclear”
fission assumes a charged noccoﬁducting dibp with a'uniform distribuﬁion
of charges.‘ However theré»aré»sﬁfficienﬁ.simiiérities and rather ihter-.
esting differences to make a study of a charged conducting drop'prcfit}

able. This is coupled with the great advantage,that a macroscopic

T The word "leptos" in Greek means "thin" and the word "derma" means

”skin"; A leptoaermous system is then a system having a thin skin.
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charged conducting liguid drop can actually be investigated experi-
mentally. We have looked at the statics of the fission of such a drop

and have been able to determine some of the more important equilibrium

shapes of the drop.

' The fifth partT of the thesis tries to combine the microscopic
and macroscoﬁic appréaches. Specifically we study the synthesis of the
Nilsson modele) and the liquid drop modell). Such_a unified model is-
then applied to realistic nuclei from the rare earth elements up to the

yet unknown superheavy elements. Besides ébcounting for many known §

- nuclear properties, we have been able to predict the stabilities of

superheavy nuclei and to discuss features in our results which we

believe to be associated with the shape or fission isomers. A

T This part of the thesis was done with the guidance and collaboration
of Professor S. G. Nilsson of Lund Institute of Technology, Lund,
5) '

Sweden. The Nilsson Model calculations were developed by C.
Gustafson, I. L. Lamm, B. Nilsson, and S. G. Nilsson of Lund Institute !

of Technology, Sweden. The initial version of the'computer problem

employing the Strutinski Prescription5) was written by J. R. Nix of

Los Alamos Scientific Laboratory, University of California.

.I

A. Sobiczewski, Z. Szymanski, and S. Wycech of the Institute of
Nuclear Research, Warsaw, Poland, performed the microscopic calcula-
tion of. the inertial parameter associated with spontaneous fission7) v

that is used in the present work.
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© occur in nature. "~

C5e

5)idiSéussidn iS'alsé_given on the prospect of the experimeﬁtal'prodﬁétion“

. of superheavy elements as well as on the possibility that they might

[

 The vqfiodé.p@rts of the theéis,are pfesented-séhémaficdily in-

“_?; Table 1.0 =

S



2. A Discussion of Leptodermous (Thin-skinned) Systems

2.A, Leptodermous Systems and the Ligquid Drop Model

In this part of the thesis we shall discués the nature of the
potential energy expression for a class of physical systems that may be
considered as consisting of a bulk region.and a thin surface region.
(We shall refer to such systems as leptodermous.) In some cases, when
the bulk region is uniform, the potential energy expression reduces to
that usually associated with the Liquid Drop Mcdel of a nucleus. The
principal energy terms are then a volume energy and a surface energy.

\ For historical reasons, however, the Liquid Drop Model of the -
nucleus is often undersfood to imply more than Jjust the presence of a
bulk region and a surface region. Thus it is often taken‘to'imply the
existeﬁce of strong correlations between the particles constituting the
. system, and, in dynamical problems, it is frequently taken to be synoh-
ymous with the aésumption of aﬁ irrotational flow of fluid. When
understood in this sense the Ligquid Drop Model is an extremely poor
representation of the nucleus. This seems to haVe led to an unjustified
skepticism as regards the relevance of the Liquid Drop Model for the
description of even the purely static aspects of the nuclear binding
energies and deformabilities. |

- To clarify this confusion we would like to stress two:points.
First, the validity of the Licuid Drop type of expressions for the
description of static properties has of course ﬂothing to do with

further possible assumptions concerning dynamics, such as the assumption

<

[*3
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of irrotational flow. Secondly, as we'hope'to demonstraté; it has also

" nothing to do with the assumption of strong correlations between the
particles constituting the system. 1In fact the basic condition for the

vvalidity_of a Licuid Drop type of expreésion for the potential energy is

the possibility of dividing the system into a bulk region and a thin

'surfaCe.region., We have thought it worthwhile to introduce a name -

‘leptodermous - to describe systems satisfying this specific assumption

regarding‘fheir constitution, in order to avoid‘confusion with the lesé
Qell defingd phrase "Liquid brop Model".
| Examﬁles of leptodermous systems afe
1) A drop of water (made uﬁ of.strongly interacting molecules).

2) A élassical gas of noninteracting point particles in a

container.

3) - A degenerate gas éf noninteracting fermions in an exterﬁal 
potential well. -
L) Avsystem'of particles iﬁte?acting by shorf—ranged saﬁurating
forces treatea in "the stétistical Thomas-Fermi appfOximationS)Q.
5) Same as (4), but withvnonsaﬁu?éﬁing'glecﬁrostétic‘forces
also presént8). |
S 6) :Amofphoué solids.
7) .Nucleig
In example 1, the constituent particles interact strongly and
arevhighly-correlated. Example 2 is a trivial special case of

noninteracting particles where the skin thickness is zero. Example 3,

which is the subject of Part 3 of this thesis, is a case of noninteracting
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particles treated guantum mechanically and is a prstotype of a‘nuclear‘
shell model. The skin thickness turns out to be of tﬁe order of the
wavelength of the fastest particle present. In example L there are
(éaturating) forces between the particles but no cbrrelations and the
guantum nature of individual particles is disregarded. The skin
thickness turns out to 5e of the order of the fange of the forces
between the particles. In example 5 the presencé of electrostatic
forces results in a nonuniform bulk dehsiﬁ& but the thickness of the
‘surface region remains as-in 4. In the case of an amorphous solid
(exdmﬁle 6) the potentialvenergy would, we presume, also be a sum of a
- volume and a surface term provided any deformationé5of thé system were
sufficiently slow so that internal stresses would be relievedby plastic
_flow. Example 7, a nucleus, is known from electrpn scattering experi-

9)

" ments to satisfy moderately well the condition of being thin-skinned.
The nuclear pétential energy also appears to be well represented by a
~bulk term and a.sufface term.

Examples of nonleptodermous systems are atoms and stars, for
which it is not possible to make a distinction between a bulk region

and a thin surface region.

2.B, The Potential Energy of a Leptodermous System

Let us write down the potential energy of a leptodermous system

with a uniform bulk particle densityT Pa* The density p falls to

T The more general case where the bulk density is smoothly varying

(Example 5 above) can be treated as a straightforward generalisation

of the present calculation.

8)




zero in ‘a thin surface layer. The total number of particlgs.is given

N =[p ar .

The total energy'is

E  = fp e dr , o .‘ | @

where e 1is the energy per particle at every point. In general e

by

- is a functional of the dénsity distributibn p. It is the purpoée of
the'présent'section to‘write down the potential'energy E as‘atsum of
terms proportional to the'volume, surfacé7area; aﬁd iﬁtegrated cufyature
véf the system. | N |

Let us assume that-in_thé bulk region every point is just like
aﬁy other innt in the.éensé fhat.a cOnStént valﬁe e, éan'be ﬁrittgn_

for the energy per particle in the bulk.. Then Eq. (1) may be written

E = feech+fp(e-ec) at -

Let us define an "eguivalent.system”'as-one with the same bulk density
94 but having a sharp surface; the original leptodermous system
results when the sharp surfaceﬂi$ diffused into'a skin layer of c0nstaht

thickness. Thus the volume of the equivalent systembis

fp dt
. pc- .

Hence we may write

P
]

= e, p, V +VJ[é(e - ec) ar
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‘The integrand in the second term is nonzero only in the thin skin layer

because p tends to zero outside the skin and e - e, inside. Now we

~define a normal n to any point in the surface with n = 0 at the sharp

_ surface of the equivalent system. Then the integrand as a function of
n is Zero for.large positive or negative values of n. We may denote
this‘integrand by |

| Pln, &) = ple - e) |
where we ha&evindicated that the integrand is also.a function of the

curvature k  at the point on the surfaceT. Let us write down an

T 1n general one would think that F is a function of l/Rl and l/R2

where R, and R are the principal radii of curvature in two per-

1. 2
pendicular planes through the point. If one makes an expansion about

a plane, for which 1/R, = 0 = 1/R then
1 27

F(%—,%— = F(0, 0) +T]'1_’— ai' +%— 6{ + o
1 72 1\ 0 = 2\ o =
' 1/0 2/0

Since all directions in a plane are equivalent, the two derivatives
of F with respect to 1/R, and l/R2 are equal.

/1 10N\ ' . 1 1 oF -
F<—, -—> - ¥ o)+<—,+_> b
R’ R, AV R, R, ,

a%—.
170

Hence to the first order in the deviations from a plane we have,

3 ‘P is then a function

bdll—'

N v
F(k) = F(0) + « <g% where Kk = %— +
. 0 . 1 2

of & rather than of_thé separate compbnents l/Rl' and l/R2.

©

[C
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expansion of F in & to the first order:

F(n; k)  ::‘F(n, 6) + k F'(n, O)v.,v’

-where the prime indicates differentiation with respect to{ k.- We also

write the volume element drt inAtermSvof the co-ordinéte,' n, and the

curvature, k, to the first order,
dr = (1 + Kﬁ) dn do ,

where do 1is the area element at the point on the equivalent sharp .

’ surf‘ace . Hence we have

¢

E = e, p, V + /[dc.jpdn(ll+‘mn)[F(n,'O) + k F'(n, O)]

= e_ 0, V + fdoj:dn F(n, O)+ fdo K].dn[nF(n, 0) + F'(n, 0)1. .

‘Since F(n, 0) and F'(n, 0) are evaluated for & = 0, -i.e., for a

plane sufface,.théy are independent of the.position onrthe surface and

the surface integrdtions in the second énd'third terms may be carried

- out at once. If;we define the surface area S and ﬁhe_integrated

curvatﬁre 'L of the equivalent»sharp surfaée_By
erc' 5
[ree

S

1l

L

we have thelresult

j=al
i

aVv + bS + cL + *°* | o o (e)i
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where

& = &P
b = fdn F(n, 0) , | (3)
c = fvdn[F'(n, 0) + nF(n, 0)]

Eguation (2) shows how the energy of a leptodermous system may be
decom?oséd, under the stated assumptions, into volume, surface and
curvature térms. Equations (3) shows explicitly how the relevant
coefficients can be calculated from the properties of the System;. The
coefficient a 1is the volume energy density. The coefficient b 1is
the surface tension coefficient which gives the difference per unit
area of a plane surface, between the energy of a number of particles
touching the surface énd the energy of the same number of particles in
tﬁe bulk.

The coefficient ¢ 1is the‘curvature coefficient which describes
‘the modification in the effectivevsurface energy resulting from the
curvature of the suiface. Note that both b and c¢ are integrals over
functions localized in the surface layer and may therefore be fegarded
as intrinsic proﬁérties of the surface region. As discussed in Ref. §
(pp. 69 and 126) the coefficient ¢ consists of two parts. The first
part is associated with the modified conditions (i.e., increased
-exposure or "fewer neighbours") for particles in a curved surface. The
modification is expressed in terms of F' describing the response of

the surface energy function F to a bending of the surface. The second

g
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part is associated with‘the_purely geometrical fact ﬁhat a given surface

layer contains fewer particles when (convexly) curved than when flat.

"(The two effects are usually of opposite sign and may even cancel

" exactly. See Ref. 8)

It should be noted that the simple structure of Eg. (2) and the

above interpretation of the coefficients of § and I is intimately

related to our definition of an equivalent sharp volume V (éﬁd the

associated area S and 1ntegrated curvature L)» of the orlglnally

-diffused leptodermous system. The fact that for a system w1th a dlffused
-surface‘there appears at first sight to be a degree of arbitrariness in
. the definition of its volume, surface area, and integrated curvature,

has led in the past to some confusion and even to serious misinterpreta-

tions of the surface teﬁsion chffiéient6).

We»denote‘the remaiﬁder of this section to a_discﬁssion of these
Préblemé.¢‘we shéll give below a detailed.demoﬁstration of the.sdmetimes
subtié effecté involved, ﬁut we would like to.stéte at the outéet what
the root‘of the problém:is; if the wvolume, surface area, etc. of the
diffuse‘system is definéd in any other way.thah‘the-abové‘(i.e.; by
means of the equivaient system with a sharp surface which containé tHe'

total number of pafticlesAat the bulk dénsity) then in general the.

‘assoc1ated volume energy differs from the true bulk energy by terms

which may have the appearance of surface and curvature terms (even
though their orlgln is in the bulk). The result is in fact a host of
spurious terms parading as éontributions-to the surface tension and
curvature correction coefficients aﬁd creating'confusion in the

identification of correct values of these coefficients.
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To illustrate this let us consider what would happen to Eg. (2)

if instead of the equivalent sharp volume V (and its area and integrated

curvature) we choose‘to express the energy in terms of another volume

0 and its érea > .and the integrated curvature A. The cases of most
relevance and which have caused confusion in the past are thqse in
which Q is related to V by a (small) normal shift of the surface by
an amount t; say, of the order of the diffuseness of the surface. The
relations between .V, S, L and Q, X, A are easily derived by
noting that the element of area on a normally displaced surface is

related to an element of area on the original surface by

4941 splaced (1 + &t) do
Hence
L = 95(1+Kt)do=s+tL
Also +
Q = V + dt (1L + xt) do
t=0
= V + St + % teL .

Inverting these relations we may write

Q-Z‘G+%t2/\+--- _ .

<
n

oeth e | (4)

2]
It

L - A+ e
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(For our purposes, it suffices to write the three relations to

successively lower orders in t.) We may now insert the above relations

in Eq. (2), which may first be rewritten as

B = el 4 b(p)s + (o)t

We have displaye

bﬁlk density op.

- the bulk ‘energy

el 1instead of

O
-

v, and A.

o
il

o
P= 7

If we insert his

a explicitly the,dépehdenée of the coefficients on the.
(We have dropped the suffix c¢ on o as well as e,

per pafticle. We'have'also writfen the leading term as

aV.) Our objective is to write E as a funétion df

The density p .is given by N/V, which-is related to.

N/ through Eq. (4). Thus

| 1
1.2
trzt Q:)

o] fivg|

I}
5(}'

: ‘ ' 2
O
{l + 5 t 50 t +.<§2 t7 o+ ].

07

expression for p in the argument of e(p), say, and

make a Taylor expansion about the value ¢ = e(p), we find

e(p) =

where

) . . : » D ) : . .
s, E e ren(D° (1) z
e+te S+ [(e + 5 € ) s) -3lg) el t

(D.
i
N
818
N
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Dealing similarly with b(p) and c(p) and using Egs. (4), we find

E = oN + by + oA + 3(22/0) , : | (5)
where
B = b + e' gt
S = ¢ - bt - % e"Bt2
d = b't + (e + % e") Ste_ .

Suppose now we assume the volume>'Q to be'préportional to N and
independent of the shape of the system (i.e., we take S to be.
ccnstant). The'coefficiehts '3, a, ﬁ,v ¢, d are then constants and
.Eq. (5) gives the total energy as a funetion of N (or Q), v, and
A, i.e., asva functionjof volume, area, and integrated curvature>of ai
‘surface obtained from the standard equivalent shafp surface by a small
normal shift +t.

To the relevant order this equation is equivalent to Eq. (2), but
note the following features. Firet, in addition to terms proportional
to N (or- Q), %, and A, there is a new term proportional to 22/9.
Second, the velues of the coefficients of £ and A are different
from the previous values and if one were to identify b with the surface
tension coefficient and ¢ with the curvature eorrection coefficient
one weuld deduce values quite different from those given by Eq. (2).

Thus the coefficient of £ has an additional term e'pt which comes

from the bulk energy and the cdefficienf of A has two additional terms,

L)

&




¥
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-bt, which comes fromvthe'surface energy, and -% e‘g tg, which comes

from the bulk energy. In Eq. (5) there are altogether six spurious

terms e'pty, -btA, —% e'StgA, b'tzg/Q,. e'EtEZQ/Q,_ and %e"gtgzg/ﬂ.

Note that of these, the first, third, and fifth vanish if e' =0

13 .
(}}e;, if (p Se/ép)a<= O). This means that for a system whose bulk
energy is stationary with respect to density deviations from 5 A{i.e.,.
a saturating system) these terms do not appear. Tt has recently been

8)

that for a saturating system the surface tension coefficient is

. also étatioﬁary, i.e., b' = 0, and the fourth term would also be

. absent for such a system. The second and sixth terms are, however,

present even for a éaturating system. For a'nonsatufating system (like

.a Fermi gas or a nuclear individual particle model in an external

potential weli) all six terms are present, and great care must be
exercised in interpreting the results of the energy calculations of such

systems, unless the proper choicé of the equivalent sharp surface has

 been made to begin with.
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3. On the Total Energy of Noninteracting
Particles in a Hill-Wheeler Box

‘5.A. Introduction

It is the purpose of this part of the thesis to demonstrate the
relation between a microscopié dpproach and a macroscopic approach on
as simﬁle a model as possible. One such model is furnished by non-
interécting spinless Fermi-Dirac particles iﬁ an orthorhombic box with
infinite repulsive potential outside and zero potentiai inside. Such
a box will be referred to as a Hill-Wheeler box, ~ It was first intro-
duced by Hill.and Wheelér6) who applied it in an attempt to obtain the
coefficients of the nuclear surface and curvature energies. Due to a

‘misinterpretation of their equations théy did not get the correct

10)

“results which had been given by Swiatecki in a semi-infinite model.

The correct interpretation for the surface energy was given by Knaak

11) .. .le) . . .
. Hilf considered also the cases of cylindrical and

et al
spherical boxes.

The Hill-Wheéler box is a particularly simple model because all
the wavefunctions in the box can be easily written down in terms of
trigonbmetrié functions. The total energy as a function of the particle
number and the deformation of the box can be exactly written down. On
the other hénd we can also take a macroscopic point of view and approxi-
mate the total energy by a function of macroscopic quantities such as
the volﬁme and surface area of the Hill-Wheeler box. We shall démon—

strate that this macroscopic approach gives the smooth trends of the

exact results very well.
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~ 3.B.. The Microscopic Approach

The solution of the problem of noninteracfing spinless Fermi-
Dirac particles in an orthorhombic infinite potential well is well-
known. It suffices that we indicate the main results below.

- Let the three sides of the box be. specified by

a = R exp [a cos (}‘— %ﬂ ]
b = R exp |0 cos (&‘+-§£
A .
¢ = R exp [o cos 1]

where o and Y are two deformation parameters. We have chosen the
definition‘such'that the Volume of the box is equal to R3 independent

of a and. Y. When a =0..and Y =0, the box is simple cubic. When

i

T

'%/3 and a > 0, we have a =c > b and the box is "oblate".
All the wévé functions in the box have ﬂo-go to zero at the

walls. This requires the'singlé particle energy leveis to bé'given by

T\ 22 Jom

where M 1is the mass of the particle. The quantum numbers n, ‘m,

and £ are integers greater than or equal to_one;“The single particle

_energies as a function of the deformation parameter « ‘(wifh Y =0)

2)

are shown in Fig. 1, which is essentially the familiar Nilsson diagram

0O and «a > 0, we have a = b < ¢ and the box is "prolate". When
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for the present case of spinless fermions in a Hill-Wheeler box. The
above calculation is in effect a protoﬁype of the Nilsson model
calculationsg). We have indicated in the figure the positions at o = O,
where large gaps among the levels are found. These cdrrespond to magic
numbers where special binding occurs. For a particular shape of the box,
a given number of particles fills the energy levels up to a level whose
‘energy 1is referred to as the Fermi energy €pe All ievels below €p

are filled and all levels above ¢ are empty.

F
We can associate each particle with a momentum vector ki such
that the particle's energy is given by

ﬁ2

2

i

Let us look at the momentum space with the coordinate axes along the

‘ three axes of the Hill-Wheeler box. Then an octant of a sphere is

J

drawn with its center at the origin and having positive values of kX

ky, and kz, The radius of the octant kF is given by

o
A 2
M ka‘l = %p

A lattice is constructed in this space by choosing the units in kx,

ky’ and kz directions to be ﬂ/a, n/b, and n/c respectively. The

y

- designation of the lattice points in (kx’ k_, kz) would be just the
set of quantum numbers n, m, £ of the energy levels. 1In particular the

lattice point (1, 1, 1) corresponds to the lowest energy state with

n=1, m=1 and £ = 1. Since the particles fill the ehergy levels up
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to €ps all the lattice points in the momentum space within the octant -
of radius kF are occupied by particles, and those without are not.

The number of lattice points inside the octant is equal to the number

of particles in the box. The'energy of the system, E, 1is given by'

: .12 A - ' .
DN AL - - (8)
i : A
whérg the summation is éarried over all the lattice points inside,£he
octant.

3.C. The Macroscopic Apprdach'

By the macrbscopic approach we hope'to write down the total

. energy of the pdrticles in a Hill-Wheeler box in terms of some macro-

scopic quantities. One way to do this is to imaginé each lattice point

in k spacé'inside the octant of radius kF. to be smeared out into an

orthorhombic box cenfered at the lattice poiht and with éides éqﬁal to -

w/a, w/b, and n/c. Suchorthorhombic boxes build up into an octant

_with slabs of thickness w, = n/2a, W, = n/2b, and w, = w/2¢ .cut

1° 2 3

away from the planes k =0, k =0, and k = 0 respectively.

¥

'(Seé Fig. 2; which shows only the k#k& _plane.)v Also on the .curved -

surface of the octant, bumps and'dips'OCcur that corfeSpond to parfs éf
the‘bOXeé sticking»out and parts missiﬁg'from theé smooth curved surface.
We-can adqut the position of this curved surface to an effective Fermi
radius - q (see Fig. 2)‘suéh thaﬁ_the voluﬁes of.the bumps and dips

cancel. The volume F of the resulting '"incomplete octant" with slabs



cut away is then related to N, the number of particles.in the Hill-

Wheeler box, by

nB'
N = 8 ww.w,N

F o= el - 1"o¥3N

since the unit box around each lattice point has the volume

A straightforward calculation gives F as a function of q:

W, W
F = Lz q5 - q3 tan-l l 2 T
36 > (¢° - w.° - w42)§
d 1 2
+ (£ % Ly 5> sin~t __—_Yg__——T + sin’t ————Yé————r
294% 8" ) 2.2 2 23
(" - w ") (" - w")

) 1 ) 2 23 5 03
I A C R AR R
- L www. + Permutations with r t to W
AL utatio espect to Wy, w,, W,

(including the first term)

If we assume Wiy Wy, W < g, which is the case corresponding to a

5

large number of particles, we can make an expansion in wl/q, wg/q,

“and W3/q.

|
1
i
i
i
|
|
|
|
i
i
!
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Fos 4 < SRy vy w5) + gy + W+ W )

3) - WoW W, b et

53, 3
+12(w1.+w + W 1WoV

2 3
'The first three terms are equivalent to the.résﬁlts obtéined by,Hill.
and Wheeler6); The first'term-corresponds to tﬁe volume of the Wholei
octant in k space. The second term'correspohds to the slabs that are
to be cut away.from the octant-at the k = 0, K, :{O,.and k, = 0

- 'planes. Whefe the slabs interéeét we subﬁract too mﬁch by the columns
qlong.the kx’ ky; and kZ éxe%. This is fﬁe.drigin of fhe third term:
The fourth and fifth terms repfesént even higher corrections to the

- _geometry of the volume F of fhe incémplete octant. Gi&en VE,'one can
‘calculate thé particle numbér N. ‘Converseiy if we are gifen N, we
can find the effective Fermi momentum q.

We neXt pkdceed fo calculate the enérgy in terms ofvmacfoscopic
Quahtitiesf The exact énergy. E calculated in fhe last sectién is
'givén by Eq. (6)% which.ig a.summétion of the function kig'ﬁ /éM over
"the lattice poihts.b For'thé éake of clarity, We,maké‘two pfovisionai
simplifications. First we assume each lattiée poiﬁt to bé:sméared out
'int.o_ a..ﬁvorthorhémbic box varvo'und this point with _sidés _ﬁ/a, n/b, and’
ﬂ/c. Thus ihstéad of ki2 in the equatién, wé use an infeéral of k°
over'fhe box. Second, ﬂeafbthé.Fermi Surface'we-sméoth out thevbumpsvaﬁd-'
diﬁs by means of a smooth curved $Urface of radius q. as defined before.

In other words we replace the integration of kz' over a bﬁmp by that

over a dip of equal volume. We shall discuss the consequences of these
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two simplifications in the next section. What these simplifications
amoﬁnt to is that one can now get an approximate energy E' by inte-

grating ﬁgkg/QM over the volume F

2 ab
g . Aoabe o
oM 3 ’
7
where

_ X 5

I = 5 q
w w
l -]
¥ (2 - ten 2 = ei'tanl 2 h 2\5
- - 2 : - -
ICH Y a(a” - w,” - W)
W_W
-1 51 7t
- tan - W, + W
W@ - vl - wD)F 18 4 (W + W)
3 1

1 4 1 2 3 1 5) -1 Yo - "
+| Fqw, - =qgw-” + W sin 7 —————— + sin = ———————

8 12 Lo 2 oy 2 5%

7 > > (a° - w,)z (a° - w,°)2
3 3

1 k4 2 3 5 -1 v - "1

-+ 8q_W2 lngg +'IEW2> S1ln '————"Tg ’23+51n —__-——TE 2_?_
| (@7 - w,7) (a7 - w,")
w W
1235 1 5 -1 2 - 3
tlza W iT6) wlj> sin E—§—j——7§;§ + sin z_irj———EXg
. @ - @ ="

2 2.3 72 2 1.
+o(am -t - wy)R ('-moqwlweJr%cSWlBWé+H6w1w25>

(Equation continued on next page)

s
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(Equation continued)

| 2 2.3 2 | 105
+ (q - Wy -y )? (E i%6~q W3Wi,+ %6 v3wi§ +* 15 w33wi:> '

. 2 2%— 3 2 o Z 3 _Z 3D
G )‘-(:20 A Wals © 120 Y2V T 150 23
s 2 o3 % 3 a5 _ 5 .5 L 3.
+ 31 a (-2 Wl..+ w,, f vy ) +,8O(hwi W, . vy ) - 3 Wy W
.+ Permutations with respect to w > Moy wz' .

1

If we'dgain make an expaﬁsion:in‘ wi/q, wg/q, and ws/q, we get

_ S .=
I =19 o'z T Vg

We can expressfthe energy Ef “in terms of N by substituting for q.

Remembering that Q= abc, we get after some algebra,

) o } 5 g o ‘ g : ' g _g
2M L, 3,23 /NN\3 . . 3Bn,, 2.3 5 (iy 3 3
/}/12 E' = .5(.6Tf ) (Q) - N +E(6’T ) 5273 Q) N- .
2 - 2 l" . ,
Jn ' Z 1 _A L R S
¥ [6& RYCH Ql/a] (a) S | (7),_

5 qu(Wi Wy F Wj) + % q3(wiw2'+ Wow, 4+ W_W ) + -



s T

where

1 = abc

2(ab + bc + ca) (8)

™
1t

h

% h(g + Db + c)

If we assume that N is proportional to Q, we find that the terms in
the energy are proportional to N, NQ/B, and Nl/B. We shall refer to
these terms as the N-term, Ng/B—term, and Nl/B-téfm respectively.

To bring out the shape dependence,‘we may make a simple

rearrangement in the equation, giving

T it is found that A is Just the integrated curvature of a Hill-

- Wheeler box. The plane surfacés of the box have zero curvature. At

 the edges of the box, we have an infinitely lafge curvature on an
infinitesimal surface area. The iﬁtegrated cﬁrvature may be calcul -
ated by first rounding off the edge and then taking the appropriate
limit of the integrated curvature of this rounded edge. In general
at the edge formed by two plane sﬁrfaces at an angle a, thevintegrated
curvature turns out to be just « per unit length. For the Hill-.
Wheeler box, the integrated curvature is thus .n/2 pef unit edge

length.
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- LG )5()59+ (6 )5(>5

This equation has the same form as Eq.(5) in Part IT of this
'thesis, where we discussed the potential enérgy of-a leptodermous
system. The system of particles in a Hill-Wheeler box is in fact an

10)

-example of a'léptodermogs éystem{ Swiatecki has shownvthat its
skih thickness3isvof the order of the waveleﬁgth of the fastest'
particle in the box. More spec1flcally, with reference to the volume
V, surface area S, and 1ntegrated curvature L of an equlvélent
system"-(with zero skin thickness, containing the séme_total number of

particles at the bulk density), one may express the volume and

area % of the Hill-Wheeler box to the first order as follows:

‘0 = V 4+ t8S + -
: 3 - (10)
o= 8+ ce , e
~where t ' is the skin thickness,(SWiateckilo) used the symbol b) given
by10)

% o 'ég l_ _ 2 (: i>3
= 3 =
. 6ﬂ N
This 1s to be compared with a characteristic dimension ofvthe box/given

’by Vl/B. Thus the skin thickness is smaller by one order in Nl/5.

Hence partiéles innthevHill-Wheeler box form a. leptodermous system.
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Letrus write the energy Eq. (9) in terms of the V, S, and
L of the equivalent system, which is the reference system we should
use, as explained in Part IT. Then one has. to wriﬁe Egs. (10) up to
the curvature term (see Eq. (h)). Here a difficulty appears, associated -
with the singular nature of the boﬁndaries of a Hill-Wheeler box (the
occurrence of infinite curvatures over infinitesimal areas of the
boundary). For a smooth leptodermous system the additional terms can
be found by expanding about a plane surface.(see P ih). The result is
two extra terms: % t2A in the expression for V and -tp in the
expression for S. (see Eq. 4) These terms are thus both determined
once t 1is known. It turns out that for a Hill-Wheeler box the
additional terms are still proportional.to A but the constants of
proportionality are not, in general, % t2 and t. They are unknown
coefficients which could'only be determined from’a closer study of the
properties of a Fermi gas in the neighbourhood Qf a right-angled edge

in a potential well. In considering the relations between §, £, A

and V, S, L we are thus force to write

Q = V+tS +gL+ «--
£ = S +hL+ -
A o= L+ 0, ’

instead of Eq. (4). Using these relations, one finds ' v hl
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)

As.eipected-fhefferm proportionalito -Sg/V 'drops’out, demonstfating the
diséussion in Part II <?q. (5)>'£hat such a term is spurious, andlarises
‘frbm an inapprbpriate choice.of a reference system. The surface tensiOn -
c_o.éffi‘ciént is givén by the coefficient of S and this confirms the
‘vaiﬁe,bbtaihed'by Swiateckivby a difféfent metﬁodlo). If we haa taken
fhe coéffigient of bein Eq. (9) to be the sufface-tension poéfficient

: wé would. have obﬁaiﬁed a value wﬂich is five times too lafge. Thus
.fdur-fiffh Qf_thié term is épurious, coming froﬁ_the bulk term |
proportional to. Q;‘ The$e'¢oncluéi§ﬁs are indépendent of the values of
.é, and 'hv and"dé‘not reqﬁiré theif knoWiedge; However,»iﬁ order to
deduce the tfue'curvatuée‘cdrrecfioh'coéfficient.fbrva Hill-Wheeler

pox (i.e., the‘cdeffiéiént of L in Eg. (ll)‘réﬁhef than'ﬁhe coefficient
of A in Eqg. (9)} a:knowiedgé of g _and h ‘would bé required;‘ These
.numbers;'chéractqristic of the propertiés of férﬁidnsvin the neighbour-
'.hood 6f.a-right:angled édge,_afé'unknown at the;present.time;

B.D; The Méaning of the Approximate Energy Expression

The approximate energy expressidn E' in terms of macroscopic
guantities has been th@ined'by making use of two simplifications in’

our calculation'of I (p. 23). We have studied the corrections that

L3
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should be applied to account for these simplifications. It will be
shown below that both these corrections enter the energy Eg. (9)

through the Nl/3 and higher order terms, and these two corrections

miraculously turn out to cancel each other to this order. Thus it will ’ -
~turn out that E' 1is correct up to and including the Nl/5 term.
The first simplification was made when we smeared each lattice
point into an orthorhombic box. Thus instead of taking the enefgy as
2

proportional to ki at the lattice point, we integrated k2 over

the box (kix + Wy kiy + LY kiz * W5). This overestlmates the true

energy. The energy we calculated is

)

2 2
2 5. A4 2 A1 2.3
[ (k; +1)" &r = 5k *éﬁvfrdr ’

box

2|
=
< |

where r is measured from the center of the box so that ‘jrfdjr = 0.
(The term J/k- rd’r vanishes by symmetry.) The volume of the box

is v = nB/abc. The first term gives the correct energy. Thus the

correction to our calculated value is
2
™1 2 .3
-m;]‘r d’r . . . (12)

Let us define a function w(r) such that the portion of the box that
is in the shell between r and r + dr is given by w(r) dr. Then the -

correction may be written as
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The function w(r) is zero when r is greater than the distance from
‘the center of the box to its farthest corner. The total correction
El is Just the above quantity multiplied by the number of lattice

points which, to the lowest order, is given by .

o=
Qoo
<=

o o
g, = - % a _%Eﬁgﬁ, r? w(r) dr . (15):
The secondISimplification Was made when we smoothed out.the
Suﬁps and dips:by aésuming a smooth éffeqﬂive Fermi.surféce of rédius‘
q (Fig! 2) this amounts to remoVing the bumpslaﬁd filling up the dibsQ
vSince‘ﬁhe bumps are asSocigted.with a ﬁighef énergy than the dips, we
havé uhdérestimated the true eﬁérgy. Té calculaﬁe'the‘correction to
» be denoted by '52, we frocéed aslfoliows; FirSt we note.that the
. bumps are portions of the orthorhombié‘boxés that stick out of the
éurved‘fermi'Surface. For ﬁoxes that are at a fixed distance from the.
v Féf@i surface, wev consider all the possible‘shapesvof the bumps over .
thé Fermi surface. Taking an averagé of such shapes, it turns out ksee
'1bgloW) that we can represent an average typical bUmp'by aléeries of
portions of sphefical shélié centered at théicéntéf of theforthorhombié
box.with:radius from zero up to the value equalvto‘thevdistgnce from
the Ceﬁﬁer to'thevfarthest corner of the'box;‘-Then we calculate the
change iﬁ average énergy-ﬁhen we.remové the portion.of a shell above
thg Fermi surface and fill up avéimilar portion below. Lastly we

/
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average this change of energy with respect to the position of the box
relative to the Fermi surface. The correction \§2 is shown as an
integral over the series of spherical shells.

Since wl(wé’ WB)_ is much smalle? than ¢, we may consider a bump v
to be the portion of an 6rthorhombic box left when one éuts it by a
plane Fermi surface at a distance d, say, from the center of thé box.
Over the Fermi surface the boxes‘are found to be cut in all orientatioﬁs
(Fig. 2). Let us assume that all orientations are equally probable,
then one may describe the box averaged over orientations by specifying
the ambunt of matter in thé shell Between r and r +‘Ar where r

is measured from the center of the box. This quantity is given by

1
v w(r) ar o,

where w(r) has been defined before in connection with the Eg. (13) for

él. The factor 7 has been included for normalisation since

5
( = = L
J[;(r) dr = v = —=

For a shell between r and r + Ar, consider the portion
outside the Fermi surface when the center of the box is at a momentum
value k. (See Fig. 3) This is related to d, the distance of the

center to the Fermi surface:

d = gq -k



~
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The volume of the portion of the shell outside the Fermi surface is
5 = 21{1‘(1’ - d) Ar
Its energy is given by

e

: o)
1 2 ﬁ
By = % Ar rdd 2nr sin G(k +r) T
o .
where 90 ~is given by
d .= r Ccos GO .
After some algebra one gets
Mp - K4 k(r + 4d)
‘62 B ° T : .

Now consider-a dip on the Ferml surface to be a 31m11ar portlon of a
shell below the surface (see Flg 3), we would be looklng at a box
w1th-1ts‘centre at a momentum of-value "k o+ 2d. ‘Its energy is glven by

B = 1 Ar.rdo - 2qr sin 6(k_+ 24 + r)2 =
B o A~ M

Al o kP o ha(k v a) - (k¢ 2a)(r +a) .

Thus the change in energy of the shell when we replace'the bump by the.

dip is, after simplification,
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where we have made use of the relation, q =k + d.

| Now we average this change in energy over all possible values of
k between gq ~r and g. This may be done by writing the total energy
change, LB, for such a shell over all the boxes on the Fermi surféce

(which is in the form of the curved surface of an octant) as follows:
-T

2
AE = (Bp - E

k™ dk

<+

hid
D) 6
q'-'I‘

Carrying through thé integral, we get to the lowest order,

2

m|ﬁ<
=

/e - Lgd TP
v

q r

ON=R

This corresponds to one of the shells of radius r. The total correction

is then

€ = 3 [AE w(r) dr

2
2
= %qB-]-‘-ég-—M[r w(r) dr
v .

Hence we arrive at the result that to the lowest order the two correc-

tions El and §2 add up to zero: : ' o+

§l+§2:0
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It is most remarkable that the lowest order effects from two apparently
unrelated sources (the feplacing of lattice points by boxes in the
volume of the octant, and the smoothing of bumps and dips on its surface)
should .cancel each other. =

1

Let us now look at the order of the energy correction £. and

EE' We find that we can actually calculate explicitly. Equation

(12) gives the correction due to the replacing of a lattice point by .

a box:

= -‘%ﬁ % ' : (x2 + y2‘+ zg)dxdydz ,

where Wy wé, and w, have been defined in- the last section to be half

5 ,
of the léngths of sides. “The integrétion can be carried out:trivially.
The total correction §l in just‘thé number.df lattice points ‘N

'multiplied by the correctioh due to one such case. Rememberiﬁg that

i

v = 8W.w.W_

3 :
1V = /abc, we get, .

 Expressing this in terms of the volume, Q, surface area £ and
integrated curvature A of the Hill-Wheeler box we finally obtain after

some algebra,



~36-

N
o=
=)

CE D

This shows explicitly that the lowest order correction enters into the

use
,_l

i
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-Nl/5 term in the‘energy Eq. (9).

The above completes thé proof that E' should be able to
reproduce the true energy E up to the Nl/5 term. We show the
numerical comparison of E and E' in the next section.

3.E. Results and Comparisons of the Microscopic and Macroscopic

Approaéhes

We exhibit results from the microscopic and macroscopic

approaches in this section. From the former, we obtain the exact total

energy E <ﬁq. (6)). By the latter, the approximate total energy E'
is calculated by successi?ely including terms of order N, N2/5, and
Nl/B.CFq. (7)). Iﬁ both these calculations we have assumed that N
is proportional to -Q.

In Figs. La-~d, we show the energies as a function of the
particle number N for a cubié box, an oblate box, a prolate box, and
a box with three unequal sides. We display the energies also as a
function of‘the deformation parameter « (putting v = 0) in Figs.

5a,b, which is on a somewhat larger scaleT. In the latter case two

T The exact results E as a function of deformation are the lowest

possible energies at each deformation. They correspond to,an adia-

batic process of deforming the Hill-Wheeler box.
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systems are studied, one with N = 60 whén a shell occurs at zero
deformatioh; and one with N = 68 where no shéllvoécursvat éero
“deformation. | |

When we calculate 'E'_ onlyIUp‘to the_volume-térm? i.e;, the
N-term, we find that fhe results'give' (at. N = 60) about 70% of.vE.
| We can‘maké a cofrespondehée between our calculated enefgiés with the
" realistic nuélear energies, 5y‘requiring'théldensity_of particles ih
the box fo_be given'by nuéieér‘matter density (correéponding to a radius
constanf: ry = l.é.fhl). Wefremember aléd thaﬁ we are fiiling évery
energy ievél with onevparticlé ﬁhéreas in the nuélear-casé;there are two
E protons _and two neutrons,in each ievel. It then turns out that the

'calqulaﬁed total.énergy for:‘N =‘60 in'the caée-of Zero deformation,
'v;coffégﬁpnds %o 691& MeV in a nuc;eﬁs of A ; 2L0; the energy correspon-.
diﬁg to the N—term’is'thO MeV. The‘figures also shows that the diffefénce
_increases»ﬁith inCreasing :N;A As a funcfiohrof deformation a; E' is
a constant (not shown in the figureé),'W£ereas E iﬁcfeases with
deformation.

The inclusion of the N°/2 term in the calculation of E'
improvés_the bicture substantiélly. Values 6fv E?  arevstii1 smallef
than E but the differencelis less. At N =60, E' is 6675 MeV
.whichvagcbunts'fdr 97% of the true value. The:difference is a lesé

rapidly varying function of VN:V Also as a function of defdrmation,
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E' now represents the trend of E fairly wellT, though there is a
difference in absolute values. In Figs. 6a-d and 7a,b we plot the
differences between E and E' ©both as a function of N and as a
function of a on a much expanded scale. The differences are shown
to be increasing slightly with N Qr‘ .

The further inclusion of Nl/5 term in the calculation of E'
seems to be capable of reproducing the exact energy E -very well. In
Figs. 4 and 5 there appears to be no difference at all on the scale
used. In the Figs. 6 and 7 where the differences Qf E and E' are
plotted on a much.expanded scale we find that E' 1is étill slightly
AbelOW‘ E. The mean difference over N values is only about 14 MeV
putting E' within 99.8% of the éxact value. The difference is
expected to-be in the N° term, and we find indeed that it does
appear to be constant as a function of N. It also appears to be
fairly constant as a function of Q, apart from local fluctuations.

‘The strong convergence of the various terms in the macroscopic
result E' to the exact result VE is 1llustrated by listing below the

contributions from these terms for the case of N = 60:

t Hill and Wheeler6) in their work show a.graph which appears to
indicate that the trend of BE' to order NE/3 is quite different
from that of E.. However as was pointed out by Myers and Swiatecki
there seems to be a mistake in their plot though their equations are

correct.

k)

2
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N-term' o ,- .'_MBBO MeV
‘NEZB—ferm _ 1845 Mev -
Nl/B-term "~- o 225 MeV
No-terﬁ + Rest 1h Mev

Exact result E 691k MeV

Itvfhué appears thét by including enough terms in E;, the exact
result E 'may_be reproduced Qery glosely by the macroscﬁpic'éalculatibn.
| Let ué study further the'difference'between.the'true‘resﬁlt B
:and the resultf .E"bwhere terms up‘to the .'Nl/5 fterm have been
inéluded. ‘in Figs. 6 and 7 we sée a wiggiy.Structure in_thebdifferehées
both éé a function ofy N .and.as a fuﬁction of_'a.  A dip in energy
occurs where'theré is a shéll.-'Thus”the diffefénce beﬁween E . and Ef
‘ furnisheévavconvenieﬁt way of'studyihé the shell effects. For.zerob
deformation (Fig. ‘bra) we find shells at N =1, k, 17, 35, 38, 60, -+
These correspond to gaps in the single pafficle level diagram (Fig.>l).
We ﬁote that -the occurrenceAdf.shells is.assoqiated‘with a given
deférﬁationQ For instance,vthe' sz 60 shell for:zero deformation is
cdmpleﬁely'removéd-when the shape becomés proiate  (a = 0}25, :Y =>Oj',
as shown in Fig. hc. 1In this.prOIate;casé shellsAappeaf at N'=17, 14,
27, 5u’;..;'beafing little resembiance to'the‘pésitions of shelié'at |

zero deformation.
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3.F. Summary and Conclusions

In this part of the thesis we have considered the model of
noninteracting spinless Fermions in a Hill-Wheeler box. The exact
values qf'the total enérgy as a function of the particle numﬁer‘ N and
the shape of the box were calculated. This is a prototype of the
2)

microscopic Nilsson model calculation In the macroscopic approach

' the‘energy is found as a liquid drop type of expression, i.e., as an
exPansion in N—l/5 with terms dependent on the volume, surface area,
and iﬁtegfated curvature of the system. It is found that as one
successively includes terms of orders N, N2/5, and Nl/B, the results
converge very qﬁickly to the smooth average of the exact résﬁits..

Hence we see that>the liquid dfop‘ty?e of expression fof the
energy is applicable even-in the present'case which assumes no inter-
actions between particles and is in fact a pure shell model. The
a?plicability is based only on the fact that the system wé are consider-
ing is leptodermous. |

‘ 'In application to nuclear problems the liquid drop type of
expression is usually truncated at fhe'leading volume, surface, (and
" curvature) terms. A question may be asked how bad is such a truncation.
This has béen discussed by'SwiatéckilB). The main peoint is that in
practice the coefficients of these leading terms are adjustable para-
meters chosen so that the masses of éll nuclei in the periodiq table
as well as the known fission barriers are approximatelf reproduced. This

means that any smoothly varying higher order terms arebpartly absorbed

in the leading terms. Although this compensation,cannotvbe perfect,
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-only a fraction of these smooth highef ofdéf termé.wiil not be;accoﬁnted
for. On the other héhd,'rapidly oscillating'termé, such as the single
' partiéle shell corrections neither remain éonstaﬂt_tﬁroughout a nuclear .
deformatidn,‘ndr can they be absorbed in the smooth léading ﬁerm;

| All thése discussions lead.one to a hypothésis>that for a
_nucleué (which is a leptodermous system: See Part II), the liquid drop-
type df eneréy expression with the first few‘terhs givgs correétly the .
-Smooﬁh éveragevtrends Both as a fﬁﬁction of the nﬁcleonvnumber and as
a function of the»deformation. The single particle shéll effects may
. be considered as.iocal wiggles supefimpoéed on these smoofh trends.
~This is the basié philosophy,ﬁehind the ﬁethod of the synthesis 6f'a
microscopic model and a_maéroscopic model thaf will be presented in-

Part V of this thesis.
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4. On the Symmetric Saddle Point Configurations
of a Charged Conducting Drop

4,A. Introduction

In this part of the thesis, we turn. to a pure liguid drop model
study of fission of a charged conducting drop whose charges reéide on
its_sﬁrface. Such a model is in contrast to the usual liquid drop model
of nuclear fission which assumes a liquid drop with charges uniformly
distributed throughout its volume. Nevertheless it is interesting to-
carry out a theoretical and an experimenfal inveétigaﬁionvon a charged
conducting drop as a parallel to the theoretical and experimental study
of nuclear fission. Beginnings invthis direction have been madelu).
Furthermore the charged conducting drop is also interesting for its own.
sake and for its role in the cloud physics and other fieldsl5).

In 1882 Lord Rayleigh published a paper on the staﬁility of a

16).

If one had combined the results of this

17)

charged conduqfing sphere
work with the sémi-empirical nuclear mass formula due to Weizsacker
in 1935, one would have been led to expect nuclear fission. It even
'tﬁrns out that the criterion for the étability of a charged conducting
drop is identical with the criterion for ﬁhe stability of the.nucleus
against fission. Ryce and collaboratorslu) in 196k, 1965, and 1966
conéidered some simple aspects.in the splitting of a conducting drop.

They looked at ohly the initial and final stages of the fission and

speculated on features that could possibly be applied to nuclear fission.

Very recently at the International Symposium on Electrohydrodynamics

15)

(1969) more studies on the charged conductihg drop were reported.
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It is the purpose of this present ﬁork to study the first stage
of the thebry of fission of a conducting drop, i.e., its statics. 1In
particular we have determined approximately, the most important symmetric

equilibrium configurations.of the drop. ’The‘Similarities and differences

bf the conducting drop and a volume charged drop are:also discussed.

- L.B. Basic Concepts in Fission Theory

In this sectlion we Shall.review some basic concepts and results
in the theofy of nuclear fissionlB); For an ihcompressible volume

charged drop, two forces are acting: a Coulomb forcé which tends to |

‘break up the drop and a surface tension which tends to keep it together.

A guantity of importance is then the rafio of the Coulomb energy and

‘the squace energy. One may define what is called the fissility para-

meter, x, as

where EC(O)_‘ahd ES(O)_ are Couldmb and Surface'energies of a sphere

- with charge Q, radius ;R, and volume V. For x <1, the Spherical

drop'is stable with_respect_tO“deformatioﬁs and for x > 1, the Coulomb

foice.ié_greater than the surface tensi@n and the drop is unstable;

Let‘us write down the enérgy-excess of a deformed drop over the.original

spherical drop as

g -£ ) +x5 -5 (0
S c. c.

s Es(é)(Bg - l)_+'Ec(é)(Bc.; 1) -

ES(O){(BS - 1) %'éx(Bc -1
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where ES and EC are the surface and Coulomb energies of the drop
and the superscript (o) implies that the quantity is evaluated for the
case of a sphere. Also B_ =E_/E (o) and B =E [E (O). If we
' s s'7s e c’7e

define & as the energy ekcess in units of ES(O) then & is Jjust the

(o)

above. expression divided by E

£ = B, -1+ ex(Bc -1) . (1h)

in Fig. 8, we sketch the behavior of £ as a function of

deformation for a particular value of x < 1. The configuration at
zero deformation, i.e., a sphere, is a potential energy minimum. The
energy ié increased -as one deforms the drop until a point is reached‘
where the disruptive Coulomb force 1is dominaht and the drop undergoes
fission. The configuration_correspondingvto the point where the drop
will start dividing of its own accofd is called the saddle point shape.
It is unstable with respect to the deformation leading to fission.
Obviously the cufve’will be diffefent for different values of‘charge
on the drop, i.e., different values of x (see Fig. 9). Thus for
x > 1, the sphere is at a potential maximum.

| Let ER denote the difference in éhergy between the
initial sphere and the final fragmentsvat infinity in ﬁnits of ES(O).
“For division into two equal spheres which is illustrated in the figure,

=0 at x =0.35. For x> 0.35, <0, and for x < 0.3%5,

gR ER
£, > C0. In the general case of division into n equal spheres, a

°R
19)

general formula may be written for The charge on each sphere

Ex

il




b5

is Q/n and its radius is (RB/n)l-/5 = Rn 1/3, so that the Coulomb
énergy of the n spheres is n multiplied by the Coulomb energy of

each sphere:

E < nd Q/n2
c 5.R n_l~5
39 ,72/3
= 5Rl’l
B = w2
o = 1B

Total Surface energy of the n spheres is-

| Es - Y_n;un(R n%l/B)2 = uﬂRgfnl/B
- BS = nl/5
Hencevthe[energy’exceéslg) over tﬁe éphere in units of ES(O)S.is
QR:_: "(n_lA/3 - lj + 2xtn_?/5:-‘l)i'.. | v-.' . (155;
Thié'is-showﬁ in Fig.'lO? where the.energy reléése._é ' is plotted

R
. againsf x. for di#isibn info two, three,_four; up.tq eight equal
spheres. .For.éach valué‘of"n, the pldt is.é-straight liﬁe. The-
'.étréight_linevfor n=2=2 ‘goes throﬁgh:zero‘at b'4 ; 0.55. >For li < QL55,
- the sphere has.the.10west energy. For 0,35 <x < 0.61, the division |

into two Spheres gives the lowest energy. For 0.6l < x.< 0.87, the .
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division intc three equal spheres giveé the lowest energy. Finally,
for 0.87 < x < 1.12, the division into four equal spheres gives the
lowest energy. |

In fig. 11, we present the shapes of a volume charged drop at
the saddle pbint as found by Nixgo), so that we can compafe it with the
results we are going to obtain for a surface charged drop. The
abscissa gives the fissility parameter x from O to 1. The ordinate
gives RMIN/R and RMAX/R as a measure of the shape, ﬁhere for an

asymmetric shape radius R is the minimum radius of the neck of the

MIN

drop and the two‘maximum radii RMAX are the distances from the center
of the neck (at its minimum radius) -to the two ends of the drop. For
a éymmetric shape the two maximum radii are equal.

Along RMAX/R = 1 1s the sphere which is at a potential energy
minimum for all x < 1. The rest of the curves represent a family of
refléctioh symmetric saddle point shapes and é family of reflection
asymmetric saddle point shapes. The two families cross each other at
x = 0.396. Their shapes a?e schematically indicated in the figure.

A point to notice is that along the symmetric family there is a fairly
rapid change in the trend.of .RMAX/RO at x wvalues around O0.7. It

is found below (Sec. F) that for a conducting drop a similar change

occurs at a larger value of x.

4h.¢. Comparison of a Conducting Drop and a Volume Charged Drop
In the last section we have reviewed some basic properties of
a volume charged drop. In this section we shallvpoint out some -simil-

arities and differences in the properties of a conducting drop and of a




-47_

&olume charged droﬁ. For'e'conducting drep‘the fissiiity parameter x
‘Caﬁ be'similarly:defiﬁed as the ratio‘ef'the Ceﬁlomb’energy to twice-
the‘surface energy evalueted for a conducting sphere. The equation (lﬁ)
for the'energ&,excess E .Wiil.be.the"same as for the'volume charged
| drop case except thatvthe Coulomb energiee will now be evaluated on the
aesumption.thet'the-drep is conducting.A |
o Let us first-censider the similarities;

e(l) Fof x'= 0, there'is no charge on the drop so that the
_ equilibriuﬁ ehapes are the same whether‘the drop is coﬁductihg or notf
For x = 1, it turns out nontfivially that as in the case of a volume
charged'dropgl), the Couloﬁb:foree iS'just‘balanced by'the surface
tensionifor'a sphericel'conducting drop;e

(2) YA:second similarity is apparent if we look atlthe energyv
difference &

R

from the initial to”the’final_sfate when the‘dropiis
~divided into equal spheres. We have described this in defail:for a .

_ VOlﬁme'charged drop in reference to Fig; 10. When we make'a Similaf ;
study for a éoﬁductiﬁg drop,’ﬁe'get,completely identieal stfaight linee
aﬂd.eonclusions.:vThe reasion is thetIOnly spherical: shepes;are in?olved‘
viﬁ EOth-the initial and‘final states, and theFCoﬁlomb energy of e o
_&olqme charged sphere (which is % QQ/R) and that of a coﬁducﬁing
sphere (which is % QE/R) differ by only a numerical factor, 6/5,

that is the same for both states._‘Hence BS. and BC are‘tﬂe same for
both cases and_the‘same energy Eq. (15) holds good. .

(3) It also turns out that the Coulomb energy of a volume

-charged ellipseid and that of a_condﬁcting ellipsoid differ‘also by the

1
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same numerical factor. Thus the Coulomb energy of a conducting ellipsoid

is given byzg)
o
E, = %;Q,Q (a2 + )% + W) (e + x)]"% dn
0
so that
| ® .
B, = % R [(a2 + x)(be + x)(cg + x)]"% an
0

where a, b, and c¢ are the lengths of the axes of an ellipsoid. The

B, for a volume charged case turns out to be the samegB). ‘In the case

of a prolate spheroid b = ¢ we get on integration

1 1 + e
Bc'_ R?aeg <l-e>

where e° = 1 - ag/cg. Since RO = acg, we get

1 o 21/31 l+e>
Bc"E(l(e) e£n<l—e

For an oblate spheroid, we can just set e to ie and e2 to -e,

and find

B = (lL+e )l/5 L tan™t e

These expressions for Bc hold good for both a volume: charged drop and
a conducting drop. Hence if we make the drop to takeoh only ellipsoidal
shapes, then any conc¢lusions about the statics of the volume charged

drop will be true for the conducting drop.'
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Now let us look at some differences between the two cases.
The first.differehce between tﬁe volume charged drop agd,a conducting
drop can be found if we consider the division of the drop intoltwo unequal
sphefes at an infinite distance apart, one with volume -BV aﬁd the other
with volume (L - g)V. 1In Fig. 12 is plotted the energy ehange Ex
| 2k)

between the initial and final states as'a function of g for varieus
_values of the fissility parameter x;_ For B =0 and. B ; 1 we get
a sphere with volume V which is juet the initial state. TFor Blz 0.5,
weeget two eqﬁal spheres. The energy chenge is zero at x = 0.55 for
Bl= 0.5, as was pointed.out abevevin‘connectiOn with Fig. 10. For a
conducfioe droﬁ Fig. 13 is fouﬁdeu); We note that here again the energy
is zero at x % 0.35 for 5 = 0.5 ' consistent with ou? previous statement
that Fig; lO_also applies to a conducting drop. Except for the points_
at B =0, 0.5, and 1.0 the curves in the two. figures are very different.
A potential minimum for a volume charged drop occurs at B = 0;5 for
x> 0.2, but a pofehtial maximum for a conducting‘dIOP occurs at B = 0.5
for all x wvalues less than ohe. In.the latter case minima occur at
points where the fragments are unequal. |

The major reason fof the-aboye differenee is ﬁhatvthe cﬁarge
to mass ratio for the vélﬂme'charged-drops‘is a constant, but for the
conducting drops it is not required to be a constant. :This is also the
underlying:cause for the'second difference that appears when we try to
find the configuration with the absolute lowest energy for a drop with
a glven fiesility parameter. X.. Fer a volume charged drop, this

19)

configuration is n equal droplets at infinity and the number n
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depends on the x value of the drop [Eq. (15)]. One would at first
expect that the same conclusion might hold for a conducting drop. But,
as we shall show, for a_conductihg drop, the configuration at the lowest:
energy 1s one with all the charges ‘Q on the drop taken off and '
distributed among many infinitesimal droplets at infinity. It turns
out that the total energy of the droplets may be made to vaniéh and we
are'just left with the surface energy of the original?drop. The possi-
bility of'such a configuration is shown as follows. Let % of the
original dfop of radius R be taken off carrying all the chafge Q.
This isvthen divided‘into m equal spheres, each with a charge Q/m.

Thus for each sphere the sum of the Coulomb and surface energy is ’
baRET 1 /3 ¢ = QE (nm)l/3 132
i nm 2R \m )
Hence the total energy of the small spheres is m times this gquantity:
2 /3 197, \1/3 -2
LeRy m(nm) - +3 ﬁ—(nm) m *m
‘ 5 »
o - -
= LRy nt/3 n72/5 % %— /3 2/3

.Now’let”us choose m o n °. The energy of the droplets is now equal

to

unRQY n

n
N |+
+

!
S
5 4

W[
not -
DUIJO

ot

which is zero when n goes to infinity provided

-2 <8 < -%
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and we obtain the proposed configuration. In other words, we have made
the Coulomb energy of the given drop.zero by dispersing the charges onto
an infinite number of infinitesimal dioplets without increasing the

surface energy by a finite amount.

L.D. Parameterizatioﬁ of a COhdueting Drop

In the remainder of this pert of the thesis we shall try to
determine the equiiibrium shapée of a chafged conducting drop..

The caleulatien of.the Coﬁlomb eﬁergy of a cenductihg drop
with an arbitrary shape is in geﬁerai a difficulf prcblem vWe have
side- stepped this’ dlfflculty by requlrlng the drop ‘to assume a pres-'
cribed famlly of shapes, and have in fact made the calculatlon of its
Coulomb energy a trivialvmatter. It is well—known from the theory of

25)

‘electrostatlcs thét‘the electric>potential of any eystem Qf charges
is the same at every point outside any equipofehtiai which.sufroundé
~all the chafges,las that ofvthevsame total eharge spread over a
conductor that has the'shape pf_thie eqﬁipotentiai; Hence we require the
dfop to assume the shape'of an equipofeﬁtialvef~poten£ial o due to a
Systemlof point charges with total charge Q. Then if.we_put the.
eharge- Q on this conaucping drep, ite potenfialeis equal'to Qa, and 
its Coulcmb energy is jus£} % aq,. |

Consider an example of two equal poiht chargee. " The shapes of-
'equipotentials that enclose the pdintkchargeeeare shoWn in.Fié. ih,
where the volumee of the shapes have been‘normalised to the same value;

We shall refer to these'shapes as the symmetric N = 2 family since .



they are generated with two point charges and are reflection symmetric.
Fach of these equipotentials is associated with a potential «. Then
the Coulomb energy of a drop with this shape is %-aQ where @ 1is
the charge on the drop. If R is the radius of a sphere that has the
same volume as the drop and possesses the same amount of charge, its

Coulomb energy is % QE/R.' Hence we get

¢

B = OR/Q . . _ (16)

The surface energy relative to that of the sphere BS‘ can simply be
found by calculating its area numerically. Hence for a given fissility -
X fhe energy of the drop is calculated [Eq. (1L4)]. Ecguilibrium shapes
are then the shapes whose energy is stationary.

The symmetric N =2 family has only a very restricted series
of shapes. However it is easy to increase the possible shapes by
looking instead at the shapes that correspond to the equipotentials of
a largervnumbér of'point charges. We have put the charges on a straight
line so that all our shapes remain axially symmetfic. .The reflection

~symmetric N = 3 family is generated with two equal charges situated
at equal distances on opposite sides of a third point charge. The .

‘shapes are shown in Fig. 15. They include the symmetric N = 2 family.

Similarly we can go on to N = h;5,--- family of shapes. -

Let us consider in general the ' N-family of axially symmetric
shapes. To specify the situation we need to give the magnitudes of the
N point charges and their positiohs as well as the value of the poten-

tial on the équipotential we are looking at. These are 2N + 1 numbers.
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-Hoﬁevef not all these numﬁers_are‘required to specify a shape. ‘Three
'numbers;may be arﬁitrary&' (l)bThe center of mass ofiailvthe poinf |
charges may be ét aﬁy poinf in space; (2) The total charge may be fixed _
beforehand;i(j) We‘caﬁ also ﬁresét é scéle‘by ﬁhich the disténces
'béfween'ﬁhe.point qharges are measured. The first point just puts fhé
drop'at'any piace in spéce, while the last ﬁwo-ppints just.introduce a
»scaling factér into the volume of the shape, whi;h will be taken care‘of
when.we calculate BS and. BC’.eventually. vHence‘we set. the sum of.all

the pbiht charges to be unity:

We also place'the charges o a horizontal axis with the end charges at
positions =0.5 and +0:.5 with respect to the origin, and specify the
relative positions of the other.chafgeé in units of the diétance between

"the end charges.

-0.5 < 2, < 0.5

=05 -

Thus we are left with 2N - 2 parameters. (For reflection symmetric _
shapes, the distribution of point charges and their magnitudes are
réflectionfsymmetric with respect to the origin and we have only W - 1

parameters. )
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Let uy be the distance from the,poiﬁt charge 1 to any point
on the equipotential surface. Then a point on this surface may be

specified by the symmetric and antisymmetric variables v and w given

by

The éurface of the drop cuts its axis at w = #1 and cuts the plane

through the origin pérpendicular to its axis at W = 0. The distance,
Y, of this point from the axis and its position along the axis Z, as
well as uy and the value of the elecfric potential «o can be found

to be given in terms of v and w as follows:

1
Z = EVW
¥ o= § @ - eE - )
ui2 = 1 (v© +w") - vw £ - (% - zig)

=
H
l—J

or




.Sinée, o 1is given as one of the parameters, we can use the last equation

to solve for v ‘when w -is given..

- The?totéi'volumé V' and surface area S ,éan bé.written.down>
2 az i}
jﬂ}fﬁ aw.

‘ [ on y(dz® + dy®)Z

4|| :

o .
0o

2o |2 (2 +1(1;2> "
R ORE DN I
" Then We,can_fiﬁd R  from37"\

E.1T.R5. = V

3

" and - -

_lHtR .

B = oR .
S -

‘:-Weishﬁllgfind‘later,that,Wefréquire the curvétufef-mv5and fhé'eiectrié;
| fiéldf'é; at any point on the surface, Whichfméy"bé"ShOWn_torbe’givenf
by .
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where the prime superscripts denote derivatives with respect to z.

The coefficients CO and Cl as well as the derivatives that enter

into these equations are listed below:

1
—§wCo+vC

av 1

dw ~ 1 ,

§ v CO W Cl
dz 1 dv
aw 2 (v +w dw
2

ay) _1 2y, &v _ .2

o =3 (L - w)v o w(v® - 1)
a?) _ (G} - at)yaw

dz - C, T dz/dw
2 . .
g__b’—_gl = -2 + _6_<D - ‘11 - 6_C]_-_ D. - ‘1%
dZE Co\ 2 C, COE 1 C,

where

. ' 3
CO : Z qi/ui

3
1 z a345/9;

C =

5
Dy = z qi/ui
Dl = Z qizi/ui5

o
i

b = Z a4y /ui5
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4.E. The Determination of Equilibrium Shapes

‘In_our numerical calculatisﬁs, we have restricted the drsp £o
assﬁme only reflection symmetrié shapes. Thﬁs we have chosen the |
magnitﬁdes and positishs of the point chsrges such that they are
reflection symmetric with respect to_the origin. As discussed in the
last sectiqn, a total of N -1 parameters Will specifyvthe shspe.

Let us denote them by p = (pi pé oo The energy of a conducting

, Py-1)-
drop with fissility x in units of the surface energy'of a sphere of

eQual volume is then -
E(p) = By -1+2x(B, -1) .

Let fi be the derivative of ¢ with respect to. p;- Then: fi(i) =0
if 5 represents the equilibrium shape. Expanding fi(i) about the

parameters p, we have,

o e\ |
£.(p) = £,(p) +§E¥mj <;§f;>
- T
to the first order. Since the left-hand-side is zero, -

f. . = = ZA . ——— . . . » )
;(p) WA TRl - (17)
J ‘ : :
The factors vépj are the differences of the parameters‘ p from the
~ equilibrium values p. Thus for a given fissility x, a first gﬁess of
the parameters p <close to the equilibrium values is made, and fi

and 1its first derivatives are calculated numerically. - Then solving the

|
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system of éimultaneous linear Egs. (17), (i =1,2,---,N-1), we obtain
corrections A@jv to the guessed values. Correctioné to successive
guesses are found until théy are less than a prescribed accufacy. Then
the parameters finally obtained are assumed to &escribe an equilibrium
shape and -the energy of the drop is calculated. By calculating and
diagonalising the second derivatives of the energy with respeect to all
the parameters, we find the number of co-ordinates with respect to which
the equilibrium point is a maximum and the number of co-ordinates with
respect to which it is a minimum.

The shapes generated even by a large number of poiﬁt charges
are not general enoﬁgh ‘to represent an‘arbitrary shape. Thus an
oblate shape cannot be found in our scheme. This raises thg guestion
whether the equilibrium shapes we have determined are indeed true
equilibrium configurationsvwhen the drop is free to take on any arbitrary
shape. To answer this gquestion a criterion will be developed to test a
‘given shape for equilibrium. (A similar-critérion exists for a volume
_charged droﬁzl).). |

If_we'deform a conducting drop at equilibrium by specifying a
normal displacement' ®n  of the surface element dS without affecting
its total chafge, the Coulomb energy change is found to be25)

SE = -j%of@nds

[¢]

The change in surface energy may also be found:



where T ié-ﬁhe~éﬁrféée_tensi

is

=7 van sn ds
CQéfficient. The total eneréy”change'

E :
s
on .

BE_ + OF

R
Subtracting ::6ndS» times afLaérahge’multipliérr k to ensure conserva-

;ftionjof;vélume dnd equafingithéﬂinfégrandvto Zero (for equilibrium
--shaﬁes):gives s v-'-_:rj S

By\GauSS’ ThéOremgi

where,wé~ha&e introduced .k ~as- the curvatureionfa Sphere with the sdme

'vdluméias‘the drop and _E:foi'td*be‘the electric fiéld_bh:the sphefeﬂi

. Since
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EC(O) _ 1 802

og_ () ™" 8n
s 0
k = <— - x —&— > (18)
The Lagrange multiplier is determined by considering the

effect of a uniform change of scale (while keeping @ constant) on the
shape satisfying Eq. (18). If &m is the nonvolume-preserving dis-
placement of the surface associated with the change of scale and &V

is the corresponding volume change, Then

f(m—%ce)amds =kf6mds = k& . (19)
On the other hand by dimensional considerations,

E ac V2/3
S

E la ] V-l/5
c

s E(V o+ 8V)

1]
=
o
Z)
<
O7<
<3
\./'_‘
~
\N
+
=
2]
Q
4
[o/4
<
N4
no
~
N

1 ov 2 SV
6E_-3ECV—+3ESV .
Comparing with Eq. (19),
, 1.1 .21
"k“'5EcV+5EsV .
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Expressing all quanfities in units of their valueé for a sphere we get
after some algebra,
_ . . ' ~ (20)
k 2 KO(BS XBC) | | (20)

~ Comparing Eqgs. (18) and (20), we get

2
E__ng' |
KO éjo E

=1
B - xB -
s

Thus for an equilibrium shape, any point on its surface should satisfy
A =.0, where ‘A is given by
B 5

e b
o &

As a measure of the deviation from equilibrium we can define a root-

mean—squaré'Valué:of A over the surface ofithe drép:
o 2. 1
RMs = ([ |a]® as)?

.If RMS << 1, the drop is close to equlllbrlum - If RMS > l the shape'
is farvfrom-equll;brlum. Thls quantlty w1ll be used as a measure of how

close the shapes We_have,determlned are to the true equ111br1um.
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L4, F. Results

The results for symmetric equilibrium shapes of a charged
conducting drop based on a family of shapes generated by two, three
up to six point charges are shown in Fig. 16 as a series of curves.
The figure is equivalent to Fig; 11 for a volume charged drop. The
serieé of curves with different N valueé are just successive orders
of approximation of the true equilibrium shapes. One would hope that
for a high enough order of approximation, the results may be very
close to the true ones, so that an even higher order will change the
results very little. Typically,‘for successive orders the RMS values
improve by a factor of two. For N = 6‘ para@eterization, RMS ~ 0.01
for x close to 1 and x < 0.8, and RMS ~ 0.1 for x ~ 0.9. This
indicates that for x < Q.8 and x 1.0, the shapes we obtain are
close to true equilibrium shapes, but for x ~ 0.9, there are more
uncertainties. By studying the change of RMS values at x ~ 0.9 for
succesgive approximations, we find that the RMS values decrease very
<slowly in this regidn, mﬁch less than factors of two. This indicates
that our model of avcohducting drop using the equipotential surfaées of
ﬁdint charges is probably not good enough for x ~ 0.9. A more general
or appfopriate family of shapes appears to be in demand here. Hence
one should regard the calculated results in this fegion with great
reservations.

Let us take the N = 6 curve at its face value and examine its
main features. As we follow the curve from x = 1 toward small x

values, the equilibrium shape elongates from a sphere, i.e., RMAX/R
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increases with decreasing x in>thé region near -x'= 1. This is in
contrast to cases of sméll x values " (x $0.7) where RMAX/R is
slowly decreaéing-with decreaSing valﬁes.of_ x. The shapes in the
latter cases_are.long and look like a dumbbell. (see also Fig. 17)
Similar to a volume éharged diop theré'is a rapid change of shépe; but
0ccurfing af x = 0.9. in the present caéef Actually the curve for
RMAX/R even turns bébk at s = 0.887 and again at x = 0.906. Howéver
it is in exactly this region that our results begome unreliable and the
double turn might be spurious (see Refs. 26 énd 27 for a similar
uncertainty which once exisﬁed511the volume charged case).

Let us now consider the nature of these equilibrium shapes byb
looking at the signs of:the second de;ivatives of their energy with
respect to all fhe parameters. The followihg results are found when we
restriet the éhapés to only the dég;ees Qf'freedom that allow refleétion_
symmetric shapés. For i > x > 0.887 the energy”of‘the drbp is a
maximum in one degree of freedom, but a:minimum.in thé‘other N - 2.
Between the bends, for 0.887 <x< O.906, the energy is a minimum.

For yalues of x -smaller than 0;906; it is again a maxihum in one
degree of freedom. With respect to the degrees_éfvfreedom:that describe '
reflection asymmetric deformation; the energy of the drop is a minimum
from x =1 to x = 0.892. From x = 0.892 to; X = 0.68 it is a
maximum in one deéree Qf freedom. Below x =_b.68 it appears to be a
maximum in two degfees of freedom. The implication of the changé of the |
number of degrees of freedomvwith réspect'to which an equilibrium shape

has a maximum energy is part of a general problem of the trend of
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equilibrium shapes as a function of a parameter x, which has been

26,28,29)

discussed by various authors One may classify the equilibrium
shapes into three types. Thg first is a miﬁimum, i.e., the system is
.stable in all directions. The second is a saddle point, at which the

- system is unstable in only one direction, i.e., it is a maximum in this
direction. Physically this correspoﬁds to a'pass in a mountain range.
vThe system has to go over the saddle point to get from one side of the
range to the other. The third is what we shall call a "mountain top",
at which the system is unstable in two or mére directions. Thué in a
subspace containing these direcfions this equilibrium point appears as

a mountain top. Looking at thé equilibrium sﬁapes we have obtained with
reference to both the.symmetric and asymmetric degrees of freedom, we
can distinguish the various'types. The equilibrium point is a saddle

from x =1 to x = 0.892.- From x = 0.892 to x = 0.887 it is a

mountaiﬁ-top. Between the bends at x = 0.887 ahd"x = 0.906 it is
again g saddle. For x vsméller'than 0.906, it turns out to be a
mountain top. As discussed before the saddle point close to x =1 is
fairiy well determined, but at the bends the results are no lonéer
reliable. |

In‘Fig. 18 we show the energy of the symmetric equilibriﬁm
shapes above that of a.sphericalvliquid drop. It has an‘OQerall trend
of an increase with a decréase of x, but it alsojexhibits kinks cor-
responding to the region of a bend shown in Fig. 16. In Fig. 17 we
display several shapes along the N = 6 curve. Their RMS Vglues are

also indicated.




4.G. Summary and Conclusions

We have looked at the static properties of a charged conducting
drop and compared them with a volume~chaiged drop.. We have discussed
the similarities as well-as some of the differences. The symmetric

equilibrium shapes of a thducting drop_are determined with reasonable

confidence for x valués not in the neighbourhood of x = 0.9. At x

'close'to.0.9 the'éhapes found may not apprOXimate the true-equilibrium

L
%
i
{

‘shapes adequately. The next step woﬁid be to try to use another param-.
eterisation (e.g. that introduced by Nix18))vso that equilibrium éhapes

at these values of x are determined with greater reliability. ~This is

important because it is in this region that we find interesting stability
features, such as the occurrence of a bend in the family of equilibrium
shapes and of points at which there is .a change in the number of degfees

of freedom with respect to which the shape has:a maximum energy.

It is interésting to.note that even some eighty years.after
Lord Rayleigh's study of a charged conducting drop, the whole problem
is still a very open subjeét. We haveAbeen able to detefmine the'saddle
points of a charged conducting dropﬂfof values of k between 1 énd
0.892. But for the regioﬁ of x from zero up to 0.892, one is still
very ignorant of the saddle point shapes and éﬁergies of a charged

conducting drop.
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5. On the Synthesis of the Liquid Drop Model
and the Nilsson Single Particle Model
With Applications to the Study of Shape Isomers
and the Stability of Superheavy Nuclei

5.A. Introduction

In the first three parts of the thesis we have referred, from
several-angles, to the idea of synthesizing a macroscopic and.a micro-
scopic model. 1In this part, which represents joiﬁtvwork with the authérs
quoted on p. k4, we shail attack the problem directly and study in

h)

detail the synthesis of the liquid drop modell’ and the Nilsson single
particle-model2’3).

We shall begin by describing the Nilsson model on which the
microscopic calculation is based, and also a calculation of the most
im?ortant residual interaction that is not included in the model. .This

30)

residual interaction is the pairing f§rce which is responsible for
‘the familiar 6dd—even mass differences. The description will be very
.brief both because it is not difectly relevant to the main theme of this
wofk and also because the materials have already been publishedjl).
Details of the‘single particle calculations may be found in these
refefencés. In a simildf manner the liqﬁid drop mass fofmula due to
Myers.and Sﬁiateckiu) is briefly deécribed. Then the method of the.
syntheéis of these two models is discussed in detail. The unified
ﬁodel is applied to give nuélear méssesvand deformations with very

good agreement with experimental values. The calculationSISuggest the

existence of metastable states of nuclei that correspond to nuclear
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shapes different from the ground state shapes. These shape isomerng)
are believed to be associated with the experiméntally studied spontaneous
fission isomers that occur in the actinide region.. Somescomparisons
between theory and experiments are made. We next turn to the study of

superheavy nuclei in the neighbourhobd of Z =114 .and N = 18k - 196
| 53, 34)

which are predicted .to ‘be relatively stable .‘ Half-lives of alpha
decay and spontaneous fiséion as Well as stability against béta decay
are calcuiated fbr the acfinide elements as Well as for these supefheavy
nuclei. By these'quantitative.stﬁdies we find that thesevsuperhéavy |
hﬁclei could havevvery_lbng total half lives.. Séveral of them might<
éveh have life times cémparable to the age of the'éolar system. A~

:discus$ion is given of'their possible production and of theimdst
fa#orable candidate for suryival in earthly matter‘aﬁd invprimary

5&). . . .

cosmic radiation

5.B. Single Particle Calculations

The single particlevcalculétionSBI) afe‘based on the Nilsson' 
model Whicﬁ aSéumés that the neutrons of'protons.move ih‘é‘harmonic
_oécillator potential whose Shape is described by two deformation»para-
meters € vand ‘eg. The paramefer € 'déscribes a spheroidél-deforma_l
tion énd the‘pafameter euf describes a neckiﬁg-in:ér bulging-eut near
the waist of the spherdids. Only axially symmetric and reflection
symmetric shapes have been considered. The‘shapég;inzthe. (e,'eu)

pléne are shown in Fig..l9. The relation of ¢ and eh' with the

commonly employed deformation parameters, «

o and au gilven by

T It is seéen in the figure that the shapes for. eu‘¥ O 1is too "rec-

tangular"and is probably not good enough a description of the real

nucleus.
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R =R (1+aP,+ O‘ui’u + -++) is shown in Fig. 20. - The usual modifica-
tion of the harmonic oscillator potential by the addition of a spin-orbit
coupling (%-5) is employed. A further modification is @ade such that
effectively the central part of the’harmonic'oscillator, which 1is
originally!a parabplic shape, is flattened to some extent. Two para-
meters k and p are associated with these two modifications and they
are adjusted to reproduce experimental energy level spectra.

The Nilsson‘model has been applied with great success to the

known nuclei. However one may question its reliability when one tries

to apply it, in extrapolation, to very heavy nuclei far beyofid the

presently known regipn; One may suggest that a Hartree-Fock calculation based

on detailed knowledge ofvnuclear forces may be more reliable. But the
large number of matrix elements associated with the interactions among _
the great number of particles involved makes such a calculation imprac-
tical with presently available computers. A more realistic one-body-
central potential than the Nilsson potential described above is the

6)

Woods—Saxpn potential5 shape with a constant surface diffuéeness.

" Several groups are currently studying this potentialf So far this
problem has not yet beeh adequafely sélved for strong dgformations. On
the other hand the Nilsson model has been studied for rather large
>deformations and is fairly_well understood. Thus we consider the Nilsson
model to be the best available microscopic approach for our purpose

of calculating the nuclear binding energy.

The two shell parametes 'k and p have been adjusted by

Gustafson et’aLB) to approximately reproduce the experimental level

|
|
|
|
I
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_schemes for the rare earth':ﬁucl'ei (A ~ 165) and th'e‘actir_lides
(A_;.2h2). We take thése.VaiueS'and for the other'regibns we assume
'k and u to vary lineariy wifh "A. The parametefé used are tébulatéd
in Table 2. The“results of the calculations reproduce the known maéic
numbers. Fofvthe A y'300.region, we find'ﬁhé protén number 114 to be
_a'fairly good magic'npmber, éonfirming.prévious resultsBB). 1In this
>régi6n we find, besides the magic neutron number 184 that is géﬁgrallj
éipectéd, also the magic neutron nﬁmbeﬂfl96} These results are shown
invFigéfIEl and 22, which also sho&s the leVei séhemes obtained by
bRos£55)tho.used a sPherical-Wons-Saxon'poténtialB6). .Aithougﬂ in
detail considerable differences are foﬁhd, there ié an dyerall7agreement
in fhe pfedictién of low level denéity for'sphericai‘shapés for
:‘Z = 11k - 126 ané'fot N = l78_-‘l8h.’ Wé»show for illustration in
'.Fig.'EB the Niissdn diégram fof_protohé‘ih the  A ~ 298 region. A gaﬁ‘
exists in the level density for the spﬁeribal nugléuélatb'z = 114 which
is a proton shell. - At each particuléf deférmation,,fhe poténﬁiai enéréy
j_éanvbe found by filling up. the levels: with nucleons. The eﬁefgy of

~ the highest level that is filled is called the Fermi energy.

5AC} The Pairing Force .
:The‘average interaction among tﬁe nucleons has been representéd
k by the Nilsson pétential."The most important'résidﬁél interaction>i3"
" the pairing fofce, which ié resﬁonsible fof the oégurrenée pf odd-eveﬁ

" mass differences; This forée was originally introduced by Bohr,

30)

Mottelson, and Pines and may be basigally thought of as béing a

simplified'repreSentatioh of a 8-force interaction.  1£ is'limited'to'

_Tv‘See also p. 103 for a further commént on this néﬂtron magic: number.
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act only between pairs of time reversed states, which have complete
orbital overlap. Since protons-and neutrons have different orbitals in
‘geheral, the pairing force is assumed not to act between them. It is
also assumed not to act in levels far below the Fermi energy, since
interéctions in these levels are much hindeied because of the exclusion
principle and the fact that neighbouring levels are all océupied. This
“latter point is discussed in detail in Ref. 37. |

Theveffeét of the.presence of neutrons (or protons) on the
‘pairing'interaction of. the other kind of nucleons is represented by
assuming a (N - Z)/A dependence of the pairing‘strengths. Furthefmore

38,40)

there are indications in both theory and experimentng) that the

pairing effect increases with increasing surface area of the nucleus.

ko)

We thus follow Stepien and Szymaiski in assuming that the pairing
étrengthsvare proportionalvto the surface area. The choice of these
‘strengths and the number of levels near the Fermi surface where the
pairing force is assumed to act, 1s made so that the odd-even mass
‘differences of the rare earth and actinide nuclei and their general
A_% dependence are approximately reproducedBl).

The effect of the inclusion of the pairing interaction relative
to a simple summation of single-pafticle'energies is exhibited in Fig;

2L for the case of 25k

Fm. The pairing effect increases the binding
for all deformation. Though the increase in binding is in general not
independent of €, it does not significantly change the equilibrium

deformations from the values given by the Nilsson calculations without

pairing.
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5.D. The Liquid Drop Formula

We have discussed in some detail in Part IIvof this thesis the
@dtential eneréy formula of a leptédérmousjsystem,.which.ié usually.
referred to as the liquid drop formula. We shall not reﬁéat,the
dlscuss1ons here but merely state below the llquld drop formula due to

h).

Myers and Sw1ateck1 We have chosen thls partlcular formula, because
it involves only a fewparaﬁeterswhich have beéﬂ chosen.to reproduce
both the grOundvstate masses and ghe spoﬁtaneous fission barriers. Thus
thé formula has been adjustédeor.large defdrmations that éorrespond'td
these fiséion barriers. This is most 1mportant for our purpose of

calculatlng binding energles as a function of deformatlons

~ The formula is given'by

ELD = , _al.(

1 - K’IE)A +ay(l - K'IE)AE/B»f(éhépé) 4‘Eé- ,

.where  1'=-(N,f Z)/A' and f(shape) is propqrtioﬁél ﬁo the_nuciear
surface area, having the valﬁe of 1 when thé nﬁcleﬁé is spheriéalgT

~ The Coulomb énergy‘ Ec -ié‘éalculafed by aségming the‘charge‘to be.,,

. uniformly diétributéd in the nuclear volume.. Surface diffuseﬁess and -

'ekchangé energy corrections to the Coulomb'enérgy'are-aléé considered.

The pafameters in-thé abové formula are giveh 5yIRef, 41. Note in

_particular.that the samé coefficient k' :is assumed;for both ﬁhe
volumekand the surface symmetry enexgiés. _ | |

5.E. Generalised Strutinski Prescriptién and the Syntheéis df the

!

Liquid Drbp Model and the Nilsson Model

In this sectlon we shall study the prescrlptlon by which the

:synthes1s of a mlcroscoplc and a macroscopic model is effected. As a
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preliminary, we shall give a discussion of the basis for such a synthesis.

Though we have commented on it in the previous parts in some general
terms, we shall now discuss the basis more specifically with reference
to the Nilsson model and the liquid drop model.

5.E.1. The basis for the synthesis

In the Nilsson model; the nuclear potential energy ﬁay be
written as the sum of single particle energies of nucleons filling up
the Nilsson enefgy levels. It is well known that such a simple summa-
tion of single particle energies of the Nilsson potential is inadequate

~in the study of binding energies. In particular one is unable to
account for the observation that the separation energy and the average
binding energy are equalug). In Fig. 25 we display a potential energy
surface for the nucleus 252Fm as a function of deformation parameters
€ and €) based.on the simple summation procedure. It is seen that
the energy gets larger and larger for iarge € and large €), This

is in disagreement with experiment since we know that fhe fission
barrier of 252Fm is only three or four MeV. This is not unexpected
since we do not expect the Nilsson model to give correétly the absolute
values of.the binding energy as a function of deformation and mass
number. However we find that it gives the relative values for
neighbouring nuclei very well. On the other hand we have discussed in
Part II that a liquid drop formula should rebroduce the smooth trends
and absolute values. The success of the liquid drop model as applied
to fission phenomenon, where large deformations are involved and to the

calculation of nuclear masses, where large number of nucleons are
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considered seems to confirm this. ALl this leads to the basic idea
.adVOcated bylMWers and Swiatecki%), Strﬁtinski5) among othersthat if we
take away the‘average trénd froﬁ the single partiéle'ahd pairing energies
~and replace‘it;by thelliQuid drop forﬁqla, we would_éet a much improved“
potential energy surfacé,vwherevthefloéalvwigglés are given by the Nilsson
' model calcﬁlatibns and the smdoth trends are given by the-liquidvdrép
_formﬁla. In othgr words in the formula of.the potential ehergy PE given
vby the-sumVQf the single particle energies E | |

SP

PE = E

—

we replace the average single particle énergy,sum- ESP by the liquid

drop §nergy ELD;

__;) . E

FE = (Bgp = Egp) + Brp -

We may‘wrlte_out -ESP

energy of the neutrons and protons.  Then,

in terms of the shell énergy and the'pairing

. PE(N) Z) €, eu)

Z)‘f EPair(Z)"’,

N) + Epy s (M) + By (

= Erp * Bgpes (

" where ‘EShéll and E are the shell &nd pai?ing corrections obtained

by subtracting from the shell energy and pairing energy their average

Pair

values.
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The smooth trend of the pairing energy turns out to be approxi-
mately a constant independent of A and is equal t031> -2.3% MeV which
is conveniently subtracted bff from the pairing energies. The smooth

~trend of the shell energy is however not a cOnstantvaé a function of the
mass number or of defofmations. Iﬁs extractioh is the key to the
.synthesis of the ligquid drop and the Nilsson modei. Onc¢e the smooth
avefage éf the shell‘energy”is found, we can obtain the shell correctioﬁ
byvsﬁbtracting it from the shell energy. The éhell correction and ﬁhe
ﬁairing correction are then added to the liquid drop enérgy to_give the
tétal potential energy, which has the useful features of botﬁ the‘micro-
"scopic and macroscopig apprOacHes. The cruqial problem of the extrac-
tion of the smédth average trend of the sheil energy is discussed in

the next subsection.

: 5.E;2. Generalised Strutinskibprescription
In this sﬁbsection we shall study and generalise a prescription
due to.Strutinski fof finding the smooth trend of thevshell energy.
The method is very similar to’the method of data smoothing where one
tries to obtain the average value at a pqint by evaluating a weighted
~ mean of a region around that.point. |
Strufinski5)

rather than over the total energy itself. Given a level density G(e)

we may write the total shell energy as
E

F
E(g) = ] 2e G(e) de

introduced a method to average over the energy levels
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..where B, is the Fermi energy. Thebfactor, 2. comes from the fact
that there are two nucleons'per level. The function G(e) has the
characterlstlc that it has both a smooth trend with a characterlstlc
length L which should be of the order of the Fermi energy and also
- short rangeffluctuatiohs_whose wavelengths are less than or equal to thev
energy spacing A between Shells;‘ he problem'is'to‘find a smooth
level density g(e) which retains the long.range variations bat removes
the:short range oscillations (the shells).

Cne may formulate the'problem by writing G as follows
G(e) = ' GL(e) + Gs(e) 2

where . GL(e) is the slowly varying part and Gy . is the-rapidly :

S
'flUCtuating'part Strutinski suggested that to smooth out Gg (e) one
could flnd an average by Welghtlng the p01nts by a Gaussian of sultabie
w1dth As already recognized by Strutlnskl, a s1mple Gaussian welghtlng,
turns out to be inadequate because whlle it smooths out the rapldly

_ fluctuatlng part, it also distorts the slowly varylng part ~In order

to preserve the latter (i. e., L(e)) one introduces a correctlon

factor F. Then the weighting is»given by

1 | - e -e'
—T € F(u); u-= —
P v

where is' the width of theGaussian.L TheﬁreQuirementvon F may be-

- written as o s e
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1 _ 2
—r e F(u) Gle) de = GL(e') ’
()2

-00
which is equivalent to the two relations

2

o™ P() g le) de = a(er) (21)
. rGr)* :
and
S 5 ‘
——l—I e™ F(u) Gs(e) de = O (22)
I (GO L

In the case that GL is a finite polynomial of order p, F

can be found explicitly. Equation (21) gives

1 . n v-u2 i
— u e F(u) du ;
( )'é‘ n,O b

ﬂ ~00

]
(o4

Setting F(u) to be a polynomial

i
F(u) = E: cyu
i

we find, after some work, from the last equation
c, =0 for all i>p

¢c. = 0O for all odd i
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and

i=even

o (n +1i -1t ‘5
i 2(n+i)/2 ~ “n,0

which can be solved for the coefficients Ci' In other words, if GL

_isia'polynomial of order vp,'we find a polynomial for F(u) also of
‘order of p with only terms of even orders, such that with our

weighting function, G is retained in the smoothing procedure. When

L
the polynomial for F(u) is of order m < p, denoted by Fm(u) we do

completely and the error made can be written down in

not retain- GL
general. The error gL made when m =p =~ 2 andvthe céefficient of
the pth order term~ih GL is ap turns out to be
L I ) ] m+2 . .
£, = <L> S @)

where

‘Whén: m is given,v EL. wouldvbe small when 7Y 1is smdll compafed’with
L.
‘The prescription is also'supposed to smooth out the shoft-vv'

range fluctuating part of the lefel density, GS(e)._'Let us represent
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the term in Gs(e) with the longest wavelength A by
Gs(e) = b exp(ie/n)

If this term is smoothed away, terms of shortér wavelength are also
smoothed away (see below Eq. 24). The error introduéed‘by our prescrip-
tion with Fm(u) of the order m is then given by

2
1 -u

E, = - —=— e F_(u) Gy(e) de
S - Y(ﬂ)3 mu S‘e

After some manipulation, we find

“eg = Ggle) - (/207 :>:an"~1 (ﬁ’)k (}1{7 L)
o) .

k=0, even

When we put m +to infinity the summation is just exp(Y‘/Ex)2 and

tg = Ggo s

the smoothing is more effective when ¥ is large éompared with .

i.e., we do not smooth away G, at all. It is also clear that

We sketch in Fig. 26 the total error |&_| + |§S| as a function

.

of 1 for the cases of m =0, 6, and o. The term &L dominates at
large Y values and decreases as m 1is increased. The term gs

dominates at small Y wvalues. When Y =0, ¢ is maximum, i.e., ho

S

S

spread of ES is dependent on the values of m. It is larger for larger

smoothing has been done, but as Y increases ¢ decreases. The

m and in the limit when m is infinite, ¢ has an infinite spread

S

and no smoothing is made for any value of Y. From the figure we see
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two points. First that we should use an m value which is not too

- large (for which cases 3

g 1s spread over all values of 7Y), and also,

which is not toQ smallA(for which cases ¢ is large even for Y

L
values close to 23). Secbnd,one should choose a 7 value.betﬁeen
2n and L such that the total error is a minimum. For an appropriately
,chésen m value' (mv=»6' in, the figﬁré)'theré éétually exists a'fiat
‘region inside thesé limits where the total error is smail and 1is
indépendent of Y. This is the case one should choose.

NOW'wé apply‘the smoothing prescriptionkto the.resulfs of the
Nilsson calculation; The Nilssop'calculatién gives a ééries éf'sharp

energy levels ev, so that

Then for a prescriﬁtion,with given values of m and 7y the smoothed »

level density g is-given by

o ” 1 --u2 ’
gle') = —— e  F (u) G(e) de
V =-co Y'(T()? e Co v
= i “";*I é_HQIFm(u) :E:.(e -e ) de
o r(n)” . ‘ y v
- = ¥ R@) em(w?)

Y(ﬂ)s v
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where

Then g(e) will have the same smooth polynomial behavior as G(e) up

to the seventh ofderk Any error will be in the eighth order.

The smooth total single particle energy is then

E

' F
E(g) = .[ 2e g(e) de

with the Fermi energy EF given by

+

R. A. Millérua) has done calculations along similar lines and
written»down’ F as derivatives of g(e). He has tried to study
the convergence of the results of smoothing asba function of m.
However he used only one value of Y close to 2) (see Fig. 26)
and so reached the‘erng conclusion that the results of the

prescription do not converge.
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R
N = 2 gle) de |,

where N 1is the neutron numbef._ Similar equations can be written down

‘for the protons.v'The shell corregtion EShell.‘is then given by

ESheli - 5(0) - 2(e)

In.Figsl 27 and 28,.ﬁe‘show;this quantity as é'fungtion of theL
Gaussian width Y for the neutrons in the case of 2§2Pub énd 2O8Pb,
respectively. Similar figuréé are valid forbthe'protdns. It is
ébvibusvfhat if‘ﬁe use Fm”'with n.= 2, we haVe a serious folding error
and the result is strongly depehdenﬁ on Y, but whén.wé use m ; 6, the
fesult is rather Yhindépendént except when v is 00 large or too
small. For a fixedvvalue'of Y .(say Y = 0.8‘ﬁwb in the figUré,.Where
'wb is the'qscillator freqﬁency in fhe Nilsson ﬁpteﬁﬁidl),vthe change
_ from the zeroth (m = 0) to the second ordér '(m ;=2) is about
60 MeV; from second to fourth is' ~1 MeV, and from foﬁrth to ;ixth
only’ N%ﬁ MeV. Tt isliﬁtereéting to not¢ fhat' (Y‘/L)2 turns out to 56
_just of ﬁhis order %5' and the above rate.of'éonvérgehce is indeedv
to bevéxpected'when the main error qome§ from ELA (Eq. 23).

In our éalculation ﬁe have ﬁsed m=6 and Y =‘l.24hw6 and we
find that our results converge very well to a unique value for the shell
correction. It is these shell wiggles that are édded to the:smoqth

. 1igquid drop energy.
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In summary, we have thus a unified quel obtained by replacing
the smooth part of the totai potential energy surface of the Nilsson
modgl by the results of the liquid drop model. All chal shell structure
variations (the loéal wiggles of the energy surface) have, howé&er, been
retained.

5.F. Compaiison with-Experiments"

To studj the behavior of a nucleus at various deformations we
have abplied the unified model to calculate the fptal potential energy
surfégé for the range of ¢ ’between -0.5 and 0.95 and éh between
-0.08 and 0.16. Smaller ranges of € and €), are taken for some
nuclel whose physically interesting features appear to be in a.smaller
rregion.

The lowest minimum in this‘potential energy surface corresponds
to the ground state of the nucleus. Hence the ground state mass (or
binding energy) and disﬁortion can be read off from the energy surface

and compared with experimental values.




5.F.1. Nuclear massesT

In Fi€5 29,”Wg cbmparevempirical and theoretical masses with
referencé’té the'liqﬁid drop méséeé'at,zero_deformatidn. Thus the top
curve givés the expérimental values minus the respective spherical
'liquid drop maésés in MeV, Immediately bélow, the theofetical values‘
at ground state equilibrium deformations are plotted. These contain all
the effects of distortions and-shell structure:.‘The differences between
the theoretical and experimental valués are exhibited as the third and
lowefmost graph iﬁ’the figuré._ They refleét on the appropriateness
‘both of the liquid drop parameters chésen and of the nuclear shell and
péiring fields employed. The comparison showskvéry good agreements.
Discrepancies are only arbund _1;5 MeV. Three points of deviation may

be pointed out:

T Our calculations of masses are similar to those‘réportedvby P. A.
Seeger and R. C. Perisho, Los Alamos Scientific Léboratory Report,._
LA-3751, 1967, which provided part of‘the Original stimulus for
undertaking caiculations described in this section. These authors
neglgcted the Pu- degree of freedom and invtheir.fission calcula-
tions represented thé liquid drop bafrier by a cubic in €. (There is
an error in the coefficiént of their cubic ferm{) Howevef; ﬁhey dllow
for an adjustment of liquid drop parametérs.' Our inclusion of the
P6 degree of fréedom appears to improve the mass fit cbnsiderably.

No adjustment of liquid drop parameters is made in the present work.
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(1) The overall trend seems to be toward toé small theoretical
‘masses at large A values.

(ii) There appear to be relatively large discrepancies connected
with the doubly closed shell of 20SPb. The theoretical binding energy
is underestimated by aboﬁt 2 MeV around A = 208. .

(iii) TFor iarge A values there>is a marked discrépancy in the
isospin dependence within each band of isotopic masses.

First of all, it would be desirable.to readjust thebMyers—‘
Swiateckil liguid drop parameters using our shéll corrections. Masses
of spherical and déforﬁed nuclei could be affected differently. If we
further aésume different isospin dependence (symmetry energy coefficients)
‘for the volume and surface energy terms, we would probably be able to
improve én the theoretical results.

On the other hand the underestimate of binding near the doubly
closed shell may reflect on the details of the single particle'calcula-
tioﬁs. The pairing enérgy calculation described in Section 5.C
collapses near closed shells, whereas in fact there should still remain
some pairing energy of the order of one MeV as can be brought out by a
random-phése—approximation célculationhu). The underestimate in binding
for A  between 190 and 200 may be associated with the neglect of the
rotational asymmetry degree of freedom which is believed to play a role
in this region.

The masses for the superheavy nuclei beyond the present experi-

mental region show a broad shell structure at Z = 114 and N = 184 to

|
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208y, shell, but

196. This sheli'effect-is uot'as strong as for the
it may be a‘bit’underéstimaﬁed.as in the YPB region. As shown below, -
this éhell ié the maiu’reasonfto pelieve that fhére‘mayvexist in thié
'regiou an islaud of relaﬁive.stébility uhichlmight be explored
éxpeiimentally. | |

5.F.2. Ground state distortions

"In'Figsi 30 and 31 we exhibit ﬁheuréﬁiéalvdéformation parameters
'1€i and €) associated-wiﬁh nuclei in the rare earth and actinide
regions. We should note that'there is a general trend of the nuclear
déformation to go from the spherical at uné magic nucleus to a deformed'
nucleué with lafge ei buf.zero ‘eu, and then back to:the»spherical at
the neit magic nucleus. Nuclei in the_intermediate region have nonzero
values Qf'.eh. ‘

Lét us comment here that if.wé iook at the equilibrium €
calculatedh5)‘on the‘Nilssonkﬁodel without renormalisation toifhe liquid
drop sﬁoothvtréndsg wéifindvthe_differencesifiom uur results to be
,small; in most cases less than five per cent. This is‘not unexpected
because we knOW‘thut fhe liquid drop parﬁ of the'total'potehtial enérgy
is & smoothly Vaiying fuuctibn,,always ﬁredicting ground states_ﬁo‘be at
zero deformation. Any deformed ground state would be due io thé local
fluctuations from the part counected with the sinéle pérticle calcula-
tion,‘that uaue been retained.b Hence Both caluulationu are equally
successful in giving the € deformation;-

In the case of €), deformations, let us look at the experimental

results obtained by Hendrie et al.h6), who did a detailed optical
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potehtial analysis of inelastic alpha scattering data on the rare earth

nuclei. They assume the nuclear equipotential surfaces to be given byJr

By = ﬁ%(l + Ba¥po + ByYio * BeYgo)

The differential cross-section involving populations of rotational
bands of even-even deformed nuclei up to 6" (in some cases 8+) state
are fitted by a combination of 32, Bh’ and 66. The experimental
values of Bh are compared with the theoretical values obtained frpm
a tranéformation by means of Fig. 20. ThisTT may be seen in Fig. 32.

The agreement appears remarkable.

The relation between 5K and the conventional co-ordinate a% is

given by

5, = [in/(2r + 1)]Z

Tt The theoretical results in Fig. 32 represent an older calculation
on a Nilsson model without renormalisation to the liquid drop
smooth trends, but, as mentioned earlier; the new results are

essentially the same within an accuracy of 5%.



5.G. 'Potenfial Energy Surfaces

' From the minimum of a poténfial énergy surf§ce ﬁe can obtain
the ground state mass'and-defo;mation which are discussedlabove. A
further Sfﬁdy of the potential energy'surfacesvwill.bring_out more
features of physical interest, invpérticular those.cbnnected.witﬁ
épontaneoué fission barriers and shape isomers.

In Figs. 33a-4 we exhibit the barriers obtéined for isotopes
of Z =92 %o Z =11k as a functionvof  e” with minimiéation of
‘enérgy with respect ot' €), fbr each Qalue'of € Thisbﬁype of plot
-re?resents a cut through the twofdimensibhal tbpogfaphical map'in the
(ez.euj plane along the:potential enérgy minimumvpath with the energies
projected dnto the € axis.  |
| in’the following we shall study thé stfﬁctures found in the

barriéfszith:reference'to these figures. The pbssible.errors in these

potential barriers are discussed at the end of this section.

5.G.1. The structure of spontaneous fission barriers of

heavy and superheavy nuclei

The ¢onventional 1iquid dfop barrier'has~the’ordinary one peak
“shape, but becauSe Qf secOndary shell effects, sﬁrﬁctures can be found
in.the potential energy barrier.“ By'fhé secondary shell effects, bné.
refers tpbthe‘eXtré shéll binding that occurs af some moderate defor@a;
tion as compared with the usually understood shell effects that appear
for the s@hérical shapes. They were first pointed out bj‘Geilikmanh7)
and studied by Myers gnd Swiateckiu) and Strutinski5>. Tt was
Strhtinskisg) who first emphasized that they will cduse a two-peaked .

fission barrier.



As a general rule, for a nucleus with its proton or neutron g
number near a magic number, the ground state is spherical and the ‘ ;
secondary shell'effect occurs at € ~ 0.4. For a nucleus with its
proton 6r neutron number away from a magic number, the ground state is
at € = 0.2 and the secondary shell effegt occurs at € = 0.6. In
Fig. 34 we show the effect of shéll corrections to the liquid drop
barrier. It is seen that the fission barrier ié basically that of the
1liguid drop with indentations due to shell effects. For the actinide
region (A ~ 242), even though the liquid drop would like to have a
spherical ground state minimum, the nucleus has deformation € = 0.2
because of shell effects. A secondary minimum occurs at € =~ 0.6 due
to the secondary shell effect. For a nucleus near a closed shell, the %
shell correction makes the liquid drop minimum at the spherical shape
even stroﬁger»and a secondary minimum is found at € ~ O.4. For the
actinides (and also the rare earth nuclei) another minimum corresponding
to an oblate shape occurs (see Fig. 3%3). This minimum, for the actinide
case, is usually more than 5 MeV higher than the ground state. When
the rotation asymmetric (y) degree of freedom is included, the nucleus
corresponding to this minimum is found td be unstable in the 1

48)

direction , leading down to the lower ground state through a path
provided by this extra degree of freedom. TFor the lighter nuclei in
the rare earth region, this minimum is not much higher than the ground

state minimum. In some cases it may abtually be lower and should be

taken as the ground state. This oblate shape will then have important
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phys1cal s1gn1f1cance, espe01ally as regards the N and Z values
where a trans1tlon from a prolate to an oblate ground state takes place

As we have-Seen in Fig. 34, the existence of the two-peak |
structure of fhe potenfial eneréy barrier is due tolthe secondary shell
- effect.  If the secondafy shell efféct occurs at or near the liquld drop
‘saddle boint, the two-peaked structure will be most,prominent and the
peaks will be ef about equal height. If the secondary shell effect is
to'oneJSide of the liquid drop barrier, the peak on this side will be
smaller than on the ether...lﬁ fheeextreme case.when it is faf off from
fhe liquid drop saddle poinf'we see a big peak.and avvery.small second“
peaklin the barrier. Thisiis then essentially just the ordinary one
peak barrief structure. |

For the_actinideS'the'secondary shell effeeﬁ occurs at

~ 0.60-0.70. _As we go from lighter to hea&ier‘aetinides, the

fissility parametert b4 iﬁcreases.and the'liquid‘drop saddle points
~will move from large € to small . Thus the liquid drop saddle

238 - 2k 248 250 25l

p01nts for u, ~Pu; T 7Cm, Ct, and Fm .are at values

of e about 0.85, O. 7h .0.65, O. 59, and 0.54, respectlvely Then it

appears that in the region around Cm - the saddle ‘points are at about

T The fissility parameter x 'may‘be.defined_as

/SR N -z
50.88(1 - 1.7826 Ig)v

h1)

using the Myers-Swiatecki liquid drop parameters
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the position of the secondary shell effect so that the twbhpedked
character of the>barrier would be most prominen’tJr with peaks of about
eQuai height. As we go away from Cm to nuclei with higher or lower
valuesbof ‘x, one of the peaks will become smaller than fhg other apd
eventually‘i£ will be mostly washed out. Detailedvresults of actual
caléulatiqns'in our model may be found in Table 3 whefe we tabulate the
heights of the'fwo peaks as well as the secondary minimum in between,x
relative to,the grouhd state. 'Because of the'inaccuraCy in the-deter-
 mination of the energy surface which-will be discussed. at. the end of
 this section,.as well .as uncértéintiesvin‘the assumptioﬁs-explicitly
and implicifly made in the present calculations{’the_table'should be
-‘looked upon as an indicationlbf trends rather fhan as a,quantiﬁative
brédictioh, The tfends are also illusfrated in Fig. 35.

For. thé‘superheavy nuclei (2 ~ llh. and N ~ lBh); Arguments
similgr to those above apply. Since there is practically no liguid
dfop‘bérrier in’this regidn; the two péak effect is épparent for 29LlZ‘LlO
where.the secondary shell oécurs at fhe flat part of the deformation
curve, but is not apparént for cases where the secondary'shell occurs
at the rapidly'dropping parf (see Fig. 3h4).

It should be pointed out fhat for a particular élement, a

change in the number of neutrons may change the picture significantly.

T This however does not mean that Cm isomers will have the longest
" spontaneous fission half lives, since these depend'also on ‘excitation
energies of the isomeric state and the competition of gamma transition

back into the ground state.

<
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Not only dpés N affect the value ofl x,‘but shell'structuré effects
éssociated with ;N .mAy have important conséquénces.‘ Aﬁ-example is
fhé fqllowing result from thevpresent preliminary:investigations. For
Z between 102 and 114 anq-fbr N 1less than l76,vthe nuclei ﬁave
ground stateé hear  € - 0.3, and secbndary shell effects at e ~ 0.70.
SinceithéSe nﬁclei<héve very large x valueé the.fissidn barriers
.exhiﬁit ohly one peak. There is also a’minimum at éero defofmation
which lies higher than the ground state. 'But as. N is increased, this
minimum is getting lower until ét ﬁ ~ 1764178, it is actually lower
than the minimum ét € =~ 0;5 and so it has fo be taken as the grouna
state. Hence for N i 176 wevhave a deformed grpund state with a one-
peaked barrier. But for N > i78, we have a spherical ground state
with a two-peaked barriér Wifh the secbndary minimum at € = 0.3.
Obviously this latter case ﬁas a much.thicker fission barrier and
‘should be‘much more stable.against spontaneous”fission.

5.G.2. Spontaneous fission isomers in the actinide region

The existence of the hwo—peaked.strﬁcture with'a_secbndary

" minimum in between may be associatéd with fhe spontaneous fission:
isomers that have been studiéd experimentally fér some years. An
isomeric state that corresppnds to the secéndary minimum has a
différen£ shape from the grdund'state and is higher thaﬁ thé ground
state by severél MeV. The isomeric state may decay by gamma emission
to‘thé ground state or by spontaneous fissioh through the second |

49) -

barrier The transition to the ground state is hindered by the

presence of the first peak. For the actinides the first peak is large
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so that gamma transition is greatly hindered and it is more likely for
the isomeric state to penetrate through the second peak and undergo
fiséion. Obviously the ground state has a much thicker barrier against
fission. Thus though the ground state of 2ugPu has a spontaneous
fission half life of the order of lO5 years, one expects that the
isomeric state has‘a half life of the order of 100 nano—seconds'only.
Experimentally this kind of isomeric state is found in nuclei
with 236 <A §12h6. The first fission isomer, in 2LLgAm, was
discovered by Polikanov et al.5o) énd by Flerov et al.Sl) with a

fission half life of 1L ms. Since then a number of other cases have

5 .
been found5"53) with half life ranging from milliseconds to nanoseconds.

The isotope 2ugAm seems to have an extraordinary long isomeric fission
half 1ife. This has been studied to some extent by Nix and Walkerug)
who also speculated about the possible explénations. The excitation
'energies of these isomeric states appear to lie between 2 and U MeV.
Reievant data are shown in Table 4 togéther with our theoretical
results taken from Table 3. As pointed out before, our theoretical
values dre not expected to be quantitative predictions, but rather an
indication of the trends. Thus the discussion of trends in the last
subsection is applicable here and can be used in a qualitative way to
see where we expect to find these shape isomers.

Additional evidence that appears to support the existence of the
secondary minimum is based on the study of the energy dependence of

the thermal neutron fission cross sections for elements in the region

231 < A< 2L2, An example 1s the thermal neutron fission cross-section
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of 235U. Superposed on the fine structure of a few ev, oécurring at
about 6-7 MeV of excitation, there appears.a sequence of resonances
~with a spacing of about 100 eV and a width of a few eV. 'The ratio of

the spacing of the resonance type states to the spacing of the usual

type of states is about 500. Tt is about .50 for the case of 2M'Pu. If

one'interprets the resonance states as the states of the secondary
miﬁimum' as suggested by Lynnsh), then, using the standard level density '

fdrmula, one may estimate the secondary minimum to lie 1.5-3 MeV above
the ground state for the various nuclei betWeen.v23)U ~and -eugAm.
These results appear to be in qualitative égreement with the predictions v

of the present calculations. .

' 5.G.3. Shape isomers for the neutron deficient heavy

nuclei (A ~ 206)

Let us first make é_éomment about the éhapé isémers for the
rareleéfth nuclei along the beta-stability line. ~These nuclei have their
'ground>statgs situated at -about ¢ =»d.2 iénd:the seéondary shell_effeét
isvexpéctedvto éaﬁsévén indehtafionof tbe liquid drop bafrier.at
€ ~ 0.6. Bﬁt\sinde,the liquid drép saddle point is at archh,greater
,deformation,thaﬁ_this valﬁe, what we expect*fd see ié a two peak
structure with the second peak much gréater'than'ﬁhe first peak.
Actuélly the first peak is on the»rising part of-the_liquid droé barrier
éo £hat ité effect is.furthervreduced., Then'if the nucleus is at the .
isomeric state, it would frdbably pfefefia gamma, transition to the

ground state rather than spontaneous fission through the second barrier.



i

Recently Bj¢rnholm55) suggested that one might look for fission
20Lk_. 118

isomers in some neutron deficient heavy nuclei such as -86Rn . This may

be argued as follows. The proton and neutron numbers are close to the

magic numbers 82 and 126 respectively. One thus expects the ground

state to be sphefical and the secondary shell effect to occur at e = 0.k,

Compared with the rare earth nuclei, this secondaryishell effect occurs
at a smaller deformation than for the rare earths so that its effect
.willvbe_strongér. For the neutron deficienf case the.liquid drop
fissility parameter is increased so that the liquid drop'saddie point
will be moved toward the point of secondary shellveffect. As discussed
in the subsection G.l. ﬁhis would enhance the two-peak effect.

We have calculated the barriers for the neutron deficient heavy
nuclei centered round Z = 86, A = 20é. The results are displayed in
- Figs. 36 a-e. They seeﬁ to indicate that while the above diséussion is
true, the suggested enhancement of the two-peak effect on the fission
barrier is not enbugh. Even though the fissility parameter is increased
somewhat, the liquid drop séddle point 1is stili at a very large defbrma—
tion. Thus the shell effects will occur at the rising part of this
liquid drop Bérrier with the result that the isomeric state is at a
Véry.high excitation energy above the ground state (~5 MeV). For the
same reéson the second peak is much broader than the first pgak. Hence
for these cases one expecfs the same conclusions as in the rare earths
case, namely that if the nucleus is in the isomeric state, it would more
likely undergo penetration through the first barrier and gamma decay"

to the grouhd'statq than spontaneous fission through the second barrier.
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In this étudy éne realises an impdrtant point that when one is
looking for regibns of fission isomers, one should look at the shell
éffects on the background of the liquid drop fission barrier. Just
looking at the shell cérrectibns by themselVésvmay be misleading.

5.G.4. Unéertainties in the potential energy surfaces

" Two representative energy surfaceé'are-exhibited in Figs.'BYa,b.

. :The separate contributions erm the liquid drop terms and thé shell plus
pairing energies are-exhibited.in Figs..58 and 39. For small distortiéns
frdm the épherical shape we expecf the (e; eu)' parametetiiation as |
used_to e adéquatéf' Howeﬁef at large distortions higher multipoles

will be important in the éalculations of saddle boint energies27).

Since for larger valueé of the fiésility parameter x, the iiquid drop
séddle,points occﬁrlat smaller distortions and vice'veréa, we expect
that higher multiboles‘tdbbe importaﬁt for lightervnuclei whose values
of x are small, and that the (e, eu) parameterization should be
sufficient for>heavier nuclei which have iarge values of x. Thus when
we compare the 1iquid drop saddle point energies on 6urv (e, eh). scheme
'with the more geﬁeral parametgrization used by Cohen and Swiateckig7>

we £ind that for U, with its saddle point at € ~ 0.85, our value is
too high by 0.6 MeV;V for Pu whose saddle point is at e ~ 0.75,
oﬁr result is too high by 0.3 MéV; and for nuclei heavier than Cm

(z = 96) the error is less than 0.1 MeV. In particular for supérhea&y

-nuclei (Z ~ 11k, A ~ 298), the error due to the restricted parameteri-

“zation should be small.
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Thé potential energy surface plots show the importance of the
€) degree of freedom as € 1is increased. Although in the ground
states both positive and negative values of €, occur, the saddie
point always occurs for a positive €) representing a smaller waistline
relative to the spheroid. 1In, Fig. éh, one may study the effectvof the

25uFm.

€), degree of freedom on thé‘barrier of

v.The further considerations of deviations from axial symmetry of
the nuclear shapes appear to reduce the saddle point energies. Thus
» aé reported by V. V. Pashkevich56> the energies of the saddle points
closest to the ground state for nuclei bétween 2‘uolﬁx and 256Fm are
reduced by amounts ranging from .O.M MeV to 2.1 MeV.

On the whole'we would say that we have over-estimated the

potential surfaces somewhat at large deformations. At small deforma-

tions, they should be reasonably reliable.

5.H. Barrier Penetration and Spontaneous Fission Half Lives

For the purpose of calculating spontaneous fission half lives,
we use the éimple WKB theory for the penetration of a barrier.

Let us assume that the problem is one-dimensional and that e
is the relevant fission co-ordinate. According to the WKB approximation,
the probability for the penetration of a barrier is given by the

expression

E" o
: °B 2 -
P o= e (-2 —S(W(e) - B) ) ae exp(-K)
E’
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.wheré B is the inertial mass associated with fission assumed to be
independent of e,'-E .is.the initial excitation energy of the nuc;gus
towards fission, and W(e¢) fepreseﬁts the barrier aé obtained from a
potential enérgy surface.considered iﬁ the»previous.section. ‘There

57,

exists an improved‘expressioh, as shown ﬁy P. 0. Froman and N. Fromen
Pv = (1‘ + exp ‘K)"l

This differs from thé one above mainly_for small .K yalues; i.e}, for

Energies E . near the top of the fission barriéf.. In particular, when

E..is‘eQudl to the top of the barfier, the'probability-for penefration

is 0.5. Iﬁ our'qalculaﬁions-beiow'we consider only vefy small  E |

values fof spontaneoﬁs fission, so we use the pfevious eXpressiéh,

which should be'adeQuaté. ~Since € is dimensiohless, B vwill have

. the dimensions of a moment of iﬁertia. Thus if wé scale fhé.nuclear_

- system simply according td its_masg number, the B will be probore

tional to a%/3. |

Let n be the ffequency of beta vibrational'motion that.is

lOgO'BS corresponding

associated with the fission mode. Setting n =
to a nominal vibrational energy of one MeV, we have the half life

“given by

lO~20.5h

IS
s}
no

exp K (seconds)

or

lO-EB'Ou’exp K (years) . , _ (26)
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Three main sources of error enter into the half life estimation.
(1) We have made a éimplification of the problem so that it is reduced . .
to a one dimensional. barrier penetration. We construct a path in the '
energy surface by minimizing the potential engrgy with respect to €),
for each ¢ and then projecting this path onto the ¢ axis. (2) With
the barrier, W(é),'thus obtained, there are errors for lafge e‘ since

we consider only € and €), deformations whereas higher orders of

deformations are important at large distortions. This effect will be
especially large for light'actinides whose barriers extend to rather |
large distortions. (3) Furthermore, shell effects will have their main

" impact near the ground states and will be washed out at large distortions.

Thus any error in shell calculations will distort the potential barrier

and hence affect the life time estimates. Ali these errors will be very

crﬁdely accounted for.when we tréat BA_5/5 as a parameter to be
adjuéted so that the experimental half lives are reproduced; We have
estimatéd this parameter BA—S/5 by applying Egs. 25 and 26 to the
potential barrieré we have calculated for the actinides Z = 92-102

and their experimental spontanequs fission half lives. We have attempted
to see the dependence of this parameter on saddle point shapes by
plotting it against the fissility parameter x and also against the

mean deformation of their barriers. 1In both cases, no simple trends -

are discerned. . Thus as-anja$sumption,(wévhave taken. BA_5/5' to be a

-7

constant for all heavy and superheavy nuclei. This is the simplest
procedure one can take in lieu of anything definitely better, but one

is not at all clear how valid this assumption is.
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Severai methoas afe ﬁsed to estimate BA_5/3. .Thevfirst is
taken from'a‘microeCOPiC'calculation due to Sdbiczeweki et al.7).‘ The
inertial farameters for the heavy nuclei are found te cluster within
50% of a mean value.

A second estimate of ”BA'5/3"iS_the empirical Qaluesldbfained
v by using fhe barriers for the actihides ﬁhieh we foﬁnd from our calcula-
. ‘tions and'fequiring these'fo give the correet‘experimental half lives.
’-These are also foﬁnd to cluster within ~304, about a mean value. A
" third estimete is also empirical'and is due toVMorefto and Swiatecki58).
They used liquid dfop barriers modified by.eiMyers-Swiatecki shell

41)

correction term . and with'the:ground’state ﬁasses and fissidn-barfiers
adjusted to experimentalvvalues. They are able to estimaee the mean |
value of 'BA's/i for the actinides with only a 109 spread. It wasvfound
that all of these_three estimates lie withinFBO% ef each other.

| -5/3

~ These estlmates of the mean value of BA are shown in

~ Fig. 4O, where we have plotted

1.
3

m T against (BA 5/5/ﬁ )

for 7 = 110 and 11k. The slope in this plot is

oYz A5/6f<W(e) \? e

where the eXcitatlon energy E is taken as half an MeV, correspondlng
to the Zero p01nt v1bratlonal energy in the f1551on mode. From this

figure the half lives can be read off. We have taken among the three -
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estimates, the Moretto-Swiatecki value which is the lowest of the three.
The reaéon for the choice is that this éstimate incorporates the experi-
mental ground state masses and fission barriefs, whereas the other
estimates have uncertainties in both these quantities. If we had taken‘
the other estimates, some of our values for spontaneous fission half
lives Woﬁld be larger by one or two orders of magnitude while others
are increased by a factor less than 10.

It is to be commented here that thisvinertial parameter which we
adopt is more than seven times the value obtained by the assumption
bf a pure liquid drop with irrotational flow, which of course cannot be
considered to be anything more than an extreme lower limit. This ratio,
seven, turns out to be somewhat larger than the corresponding ratio for
the rotational moment of inertia for deformed nuclei and also the ratio
for the quédrupole vibration. |
| The spontaneous fission half lives‘of the superheavy nuclei are
discussed in the next subsection. The half lives for the acfinides are
représented in Table 5 as the ratio in powers of ten of the experimental
to theoretical values. Thefe seems to be a systematic underestimate of
half lives on the neﬁtron-poor side and an overestimation on the neutron-
rich side. A reédjusfment of the liquid drop pafameters with indepen-
dent volume and'surface.symmetry energy coefficients might be able to
take care of this systematic discrepancy. |

5.I. 8tability of Superheavy Nucleil

There are three main mechanisms for the decay of a nucleus:

spontaneous fission, alpha decay, and beta decay (or electron capture).
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;AlphaAdecay'half lives canpbe estimatéd from the Q-values of the process,
which are dirgctly‘found'ffom'the masses of'parent'and daughtér nucléi.
Similariy Ey-comparing masées of adjacent isobars, beta stabilitj cah be
determined; 'Sinqé-thesevbrdcesses involve only mass differences‘bgtwéen
" nuclei one or two units of N or Z fromveach\other their half life
estimations will be rélatively litﬁlé affected by any errors that occur
in these nuclei to a similar degree. Hence the alpha énd beta sfabilities
can bevdetérmiﬁed with réasonable reliability. For the actinide region
(Tabie 5) we aré able to reproduce the experimental Q-values‘of alpha
decay to within iO.Q‘MeV' and beta stable nuclel are uéuaily verified.
‘The results for the lead region afe not éo satisfactory. " In this fegion
thedifferencésbetween éxpérimental and.theoretical‘Q—Vaiués for alpha‘
decéy could be about 0.6 MeV. This is partly due to the inadéquacy
‘of our calculations iﬁlreproducing.the trends of the nuclear masses \
near the lead region (see Sectibn F;l.).

The estimation‘of spontanéoué fission half lives iﬁvolves'

larger uncertainties as discussed in the last section.

5.7.1. Island of stability in the neighbourhood of

7z - 114 and N = 184-196

The stability against alpha and befa aecay as well as spon-
taneoﬁs fission has been worked out Tor nucleil with proton numbef from .
106 to 128 ana neutron numbers from 178 to 204. 1In this‘regién aié :~
the magic numbers Z = 11k, N = 18k, énd' N = 196 (seé Figs. 21 and
P2). The results.are tabulated in Tables 6-8, which are summarised in

the half life contours of Fig. U4l.
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Some general features of this figure may be poiﬁted out. The
longest fission half-lives center rather symmetrically around (z = 11k,
N = l8h—i96). Tt must be emphasized here that any stability against
spontaneoﬁs fission‘in this region is due to the extra binding resulting
from the shell effect so that as one goes éway from Z = 114 and
N = 18k-196, the fission half-lives decrease rapidly. Without the shell
effect, the alpha half-lives depend on the inclination of the AN = AZ
line (which is the direction of alpha decay) with respect to the
direction of the beta stability valley. The shell effect essentially
‘increases the alpha half—lives for nucleil with 7Z < 114 and N < 184
and decreases those for nuclei 7 > 114 and N> 184 and also
z > 11k and N > 196. The kinks in the curves oceur when either the
pareﬁt or the daughter nucleus expefiences a maximum éhell bindipg
effeét.

The great uncertainty associated with the numbers obtained must
be emphasized. First of all there is the uncertainty of fhe extrapola-
tion of the shell modgl_potential to an unknown mass region. Further-
more, a deviation of 30% in the estimate of the inertia ﬁarameter B
corresponds roughly to a factor of 106 in the spontaneous fission half-
lives, while a 1 MeV deViation in alpha energy corrésponds‘to é factor
106 difference in alpha half-lives. An underestimate of a éiven
nuclear mass due'tp a locai shell effect leads normally to an over=-
estimate of the fission half-life. On the other hand, the error in
al?ha energy is comparatively small. For the actinide region (where

we do not have the uncertainty due to the extrapolation of parameters,




-10%-

Table 5, our alpha energies are.within 5% of the experiméntal values
correépondimg to half-livés»agreeing:withih a factor of ten, but'our
fisSion'half-lives for some isotopes éan be wrong by:a factor as large'
as 106 either way.- |

All.ﬁhese uncertainties may move the contouré dfbhalf-lives in
Fig. ﬁl, but the general pattern should remain fhé séme'so long as
7 = 11k, N = 184, and N = 196 are good magic'numbefs. The magic
numbers 7 = 114 and Nx= 184 have been confirmed by various calcula-
tionsBB) so that the paft of:thé figurevaround the nucleus llhigi
can 5é used with'reaéonable éonfidence;v‘Thévmagic number N =vl96,
however, has not yet beén'verified by»othervcalculations. At the
moment one is not sure wheﬁher'this number will remain magic when a
ﬁore'realistiq-calculationlfhén ours is made.’

The use of this figure as a guide in the search for relatively

long-lived superheavy‘nuclei will be illustrated in Section J below.

5.I.2. Possibility of the occurrence of surviving .

superheavy elements in nature
Applying a survival-of-the-fittest" test with respect to
fission, alpha decay, and beta decay in the above region and taking the

calculated numbers at their face value,.one ends up with one probable

Recently Bolsterli, Fiset, and Nix59)

calculated the single particle
énergies by a scheme in which: no extrapolatibn of parameters is

necessary. Their preliminary results indicate that there is no gap

in the levels at N = 19¢.
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candidate for survival in earthly matter, namely 29hllO, which has a
total half life of about 108 years. However, the uncertainty of our
numbers as discussed above may indicate that, instead, a nucleus closeby
‘may have a befter chance of survival.

Self—coﬁsistent field calcﬁlations of the eiectronic configura-

60,61)

tions indicate that the elements with evén Z from 106 up to
116 have chemical properties similar to those of W, 0s, Pt, Hg, Pb;
and Po, respectively (Fig. 42). So these éupefheavy elements, if they
occur in nature, may be found in ores of their respective chemical

_homologues. However if the total half-life falls below ~ 2 X 108

years, its detection in eafthly.mattef is beyond the caﬁabilities of
our present techhiques.T |

Even if the longest half lifé in this region of elements is
less than é X 108 years, it may be possible to obtain information
concerning superheavy nuclel existing at some time in the past by
searching for neﬁtron-rich products of spontaneous fission in metebrites
or in natural ores of platinum and its neighbouring elements.

A quéstion may be asked whether such a long—lived superheavy
eiement may be produced in nature in the first place. This is still an
bpen guestion. However, it may be_rJr that such a suferheavy element

62)

could be formed by the so-called r-process in which a nucleus absorbs

We would like to thank Dr. Luciano Moretto for drawing our attention
to this point.
TTYHWe'are grateful to Dr. P. A. Seeger for helpful discussions of the

r-process.
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a large-number of ﬁeutfons Qery rapidly and then undergoes successive
beta deééys, enaing up as muéh heavief relatively stable hﬁciei.WL Moéﬁ
very'néutron fichvisotopes‘seem to beisufficiently fissibn stable for
“this process, which aisbvrequirés a éandition of huge ﬁeutron flux and
very high temperatufes} This cdnditién may hé&e prevailed at éome ?bint
in the history of the universe and may also exist in some méssive stars
and'quasi—stellar radio oﬁjécts at‘this present:time! Thié“at once
faises tﬁe possibilityvof-defeétingfsuperheaﬁy nuclei invthé primary
cosmic fadiation. According to the most 6ptimistic esﬁimafes; the
‘nucléi of interéét'iﬁ the primary cosmic rédiation méy haVé been

~ produced lO5-years ago, while elements in the‘solaf system have én
.age 6f ~5 109 years. Ifgweftaké;Fig. hl at its face wvalue, we see
that in the stﬁdy of the érimary cosmic rayé, one might be able to find

a few more nucleil which live longer than lO5 “years.

" Qur eétimate of masses along the prospective r-proéeSs path is, -
‘however, sensitive tovthé'value assumed for fhe coefficient of!the
surface symmetry energj. Conceivably the value of this coefficienﬁ,
aftéf feadjustment df all the iiquidvdrop parameters, might be such
as to make the generatioﬁ.ofAsuperheavy élements'imPOSSiblé. The
isotopic trends of actinide fission half-lives, Which‘We fail to

reproduce adeguately (Table 5), may be indicative of this.
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A recent preliminary search of element 110 in a platinum ore

63,64)

at Berkeley .and Livermore has yielded negative results A study

of very heévy nuclei in the primary cosmic rays has recently been carried

out by P. H. Fowler, P. B. Price,and R. W. Walkef in a balloon experiment.

The data are still under analysis.

5.J. Posgible Experimental Production of Superheavy Nuclei

The heaviest elements presently produced (Z > 100) are all
synthesized by the bombardment of target elements of sufficiently high
atomic number with beams of heavy ions. The heaviest ion presently

Lo

availlable is 18 Ar, but in the future ions as heavy as U may be

g2
accelerated. On the other hand there is also a possiblity of producing
these superheavy nuclei by bombarding a target with an intense flux of

neutrons in a reactor. These will be discussed belowT.

5.J.1. Heavy ionreactionsby available projectiles

By heavy ion reactions one tends to reach nuclei on the neutron
deficient side of the béta stability line. This is so because the
stability line bends more and more towards the neutron-rich side relative
to its initial 45° direction in the N-Z plane. Both target and projec-
tile are therefore less neutron-rich than the center of the superheavy
region (Z = llh; N = 18k4), near to which the stability line happens

to pass.

T

The reader is also referred to the extensive review given in Ref. 65.
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248 .
96Cm and the most
Lo

One of the most neutron-rich targets is
neutron-rich prdjectilejthat.ié preséntly avéilable is 18 Ar. In

fhe experiments by Thompson et'al.66) and Ghiorso et al.67)5 the

following'reaction was attempted:

2LLSCm + -qur - 28&11&‘ + In

96 - 18

28L

~Oné obtéins only the'relatively light isotope 114, whose half life

we estimate to be much 1ess-£han J_O-l5 éecbnds. This is beyond the
.senéitivity of thevpresenf experimental:techniquesﬁv‘The.upfortdnate'
loss of four neutrons is necessary to take awayrthe excess energy‘of
the'compound nucleus which»results from the.high energy required'to
_overcome the Coulomb barrier between the heavy ion and:the target

nucleus. Even with a ;gCa projectile,

48 ohh 088 -
_,goca: + 94Pu = “11h e+ hn  y

. . s i

288

the product 114 has a half life less than 100 seconds. At the
'momént'it appears from Fig.-hl that one has to obtain an isotepe of
114 with mass number equal to or‘greater‘than 290 before the half life "

becomes long enough to make detection possible. For this’é'heavy

projectile like ggKr is required. . : - . . -
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5.J.2. Heavy ion reactions by future projectiles

When heavier and hence more neutron-rich ions than Arho can
be accelerated the prospect is much better for the production of the
Vsuperheavy‘nuélei. In general one has to overshoot the llh298
nucleus and let‘various decay mechanisms take one to its neighbourhood.

238

An extreme example is the reaction U258 + U Either a transfer-

rea&tion takes pléce where the target takes off a part of the projectile

or a compound nucleus is formed which then undergoes fission. One

hopes to find products that are close enough to the center of the island

of stability so that they have long enouéh life times to make detection

possible. |
An example that is not so extréme is furnished by reactions

induced by the ggKr ign. In Table 9, we show the compound nuclei

that might be formed by bombarding various neutron rich targets from

Pb to Cm with 86Kf. The question whether such a compound nucleus

would be formed will be discussed below. At the moment, letvus assume

that by emitting four neutrons we get a cold compound nucleus in the

ground state. If we look at Fig. L1, we see that for 208Pb and

gloPo targets, the compound nucleus undergoes spontaneous fission at

once aﬁd we do not expect to produce any superheavy nuclei. With targets
heavier than 226Ra, it appears that the alpha half life is always less
than the Sppntaneous fission half life (Fig. 41). 1Indeed if we let the

compound nucleus decay by emitting alpha particles all the way we. end

up in each case with a long-lived superheavy nucleus.
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The above discussion assumes that the compound nucleus was o

formed in the first place. This agssumption is very questicnable for
the.following feasoﬁs. (1) There are indications ‘that for the same
pfoducts, the cross-section of a reaction with a heavy pfojectile is |
cut. down by se&eral orders of magnitude compéred with a reaction in
'whicha‘iighter projectile is uséd.- (2) The large angular momentum .
introdﬁced with the heavy projecfile may cause the'compbund,nucleus to
fission at once. (3) Fdrthermore we know that ény binding of a super-
heavy hﬁcleus is due to a_shell effect. At the excitation enéfgy of
the compound nucleus when it is first formed, the shell effect might bel
greatiy réduéed so that little binding would be presenf and the compound
nucleus would break up (or would simply not be formed) béfore any
de-excitation can take.place by neutron or charged partiéle»emissiop;-

68)

The first two points are illustrated by the fact that the production

260 2k

of 104 by bombardment of 2Pu with ““Ne has a cross-section

of ohly, 10_54 cm2. The iast point is a difficulty.characteristic of
the production of superheavy nuclei.

These effects have nof.yet been underStoed and no définite
opinion can be expressed as. to their importance in any'futﬁre attempts
to produce‘superheavy nuclei by heavy ioh reactions. Further studies_’
of these problems are essential not only for the production lof super;

heavy nuclel but also for an understandihg of heavy ilon reactions in :

,general."
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5.J.3. Neutron capture reactions

An altgrﬁative_way to attempt the productionbof superheavy nucleil
is by exposihg heavy nuclei to a high flux of neutrons. There is a.
cOmpetitionﬁbetﬁeen (n, 7) “and (Y; n) ‘reactions. Under suitable
condifions of ' extremely 1intense neutron'flux and very high temperatures,
. the nuclei will capture a large number of neutrons and then beta decay,
‘ending ﬁp as heavy nﬁélei of much higher proton number, which in turn
undergd the same process. Eventually they would, hopefully, reach the
superheavy'region. An intense neutron flux can be found in a nuclear:
_reaétor and also in nuclear explosions65). By the former,.bne can
échieve'a‘neﬁtron flux of 1015/cm2 - sec. By the latter the neutron
flux is much larger, of the order of 1051/ e - sec, but'thé exposure
time is less than 1 usec. The advaﬁtage of both these methods is that
comparatively large masses of target'maferial can be used. However
these methods have produced feﬁer heavy elements than exbected. Indeed

o . .
57Fm is the nucleus with the largest Z andv A numbers that has

65)

. On our model we do not expect 258Fm to possess very

257 256

been made

much shorter life time than Fm or Fm. There are presently no.

satisfactory explanations as to why heavier nuclei are not produced. -

5.K. vSummary

In this part of the thesis we have tried to ﬁake use of the
ideas advanced in the previoﬁs parts in a practical applicatioh in the
synthesis of the Myers-Swiatecki liquid drop formula and the Nilséon

single particle calculations. By means of a generalised Strutinski
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prescription we have been able to replace'the smooth average of'the

'Nllsson calculatlons by the liquid drop (or leptodermous) model. The

o resulting unified model is expected to be good in accounting for not

only single particle effects but also the absolute values and trends of
the’bindingvenergies. a

There are two 1mportant consequences that come out of this
study. First of all is the occurrence of s1ngle partlcle structure
fission barrier. 1In particuiar, one finds in the energy barrier a
_two-peak structure w1th a secondary minimum between the two peaks. This
secondary minimum may be assoc1ated w1th spontaneous ‘fission isoners
found'in the actinide region. We have given a discussion of the trends
and the regions where one would-ekpect to find observable shape isomers.

The second,conseduence are,tne predictions about superheavy
' elements.'We have confirmed previous calculations that 2 = 114 and
N = 184 are magic numbers, but the present work suggests that N = 196‘
may also be magic.. We have been able tovmake quantitative predictions
on masses,vdeformations, as well as half lives for tne various decay
'mechanisms for these superheavy nuclei. it is‘foundﬁthat some of the
half lives might be extremely iong, even of theé. order of the age of-the=
solar system. Tnough great uncertainties are involved in the numbers'as
~discussed, one can still usevthese predictions as an’indication of |
trends and as & general guide in attempts to produce superheavy nuclei-

or in .a search for them in nature.
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Table 1.

" Table 2.

Table 3.

Table L.

tion correspohding to different regions of mass along the beta-

~120~

Table Captions

Summary of topics studied in the thesis. -

Values of k¥ and p employed in the single-particle calcula-

stability line. The first column denotes the mass of the center
of each region.

Calculated properties of the two-peak spontaneous fission
barriers and shape isomers from potential energy surfaces of -
the actinides. The deformations of the ground state and
isomeric state are listed.‘ The heights of the two peaks and
the excitation energy of the isomerie state are given in MeV
abeve the ground state. It is assumed that the zero-point
vibrational energies of the ground state and isomeric state

are equal.

Experimental properties of shape isomeric states. The first
group of columns identifies the‘nucleus. The second group
gives the experimental fission barriers based on the erroneous
assumption of a one-peak sfructure. The excitation energy of
the isomeric state is shown in the next group, estimated from

threshold measurement and from (n,f) resonance experiments.

. . )’«
The next entry gives the ratio of distances between resonances v‘ﬁ

in the isomeric state to those in the ground state. The last column
indicates the experimental spontaneous fission half-lives of
the isomers. Theoretical values are taken from Table 3. We

are grateful to Dr. S. Bj¢rnholm and Dr. J. R. Nix for their

~help 'in supplying us with the experimertal data.
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Table 5.

Table 6.

Table 7.

Table 8.

Table 9.
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Beta stability, alpha.decay energies and spontaneous fission-

characteristics of the actinides. In each square classified

by Z and N, the uppermost figure gives'the~maSS'excess on

lgC scale in MeV. If the nucleus is found to be beta-stable,

this number is underlined. The two numbers below give the
theoretical and experimental alpha decay @Q-values respectively.

The integer to the right is the ratio of the experimental

spontaneoué fission haif 1ife to the theoretical value.

Table of masses, ;pontaﬁeogs-fission'and alpha half-lives
for 106 < 7 < 116 -and i78 <’ﬁ < 189. The’ﬁpper number
in each squarevgiVes the mass eXcéssbin ;120 scale (Sée
Ref. 41) in MeV. In fhe line below is listed the spontaneous-

fission‘half-lifeﬂand ih-parenthesis the barrier’height in

vMeV.‘ The bottom line in each square gives the alpha half-

- . B '
life and the alpha Q-value (in parenthesis). Beta-stable

nuclei are underlined.

Same as Table 6, but for the region li6_< 7 < 128 and

© 176 < N < 190.

Same as Table 6, but for the region. 116 < Z < 128 amd

190 < N < 20k,

86
-36Kr50

column identifies the target nucleus. The second column

Production of superheavy nuclei by beam. The first

*indicates the compound nucleus that is formed byvthe fusion of

the target and the projectile. Assuming that all the excita-

tion energy might be carried away by the emission of four
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neutfoﬁs one~éets the nucleus shown in the third column. Now
aésuming«thatbbeta aecays were extremely slow compared with
spohtaneous fission and alpha decay one finds the longest lived
superheavy nucleus that can be reached as indicated in the
fourth CSlumn with its major mode of decay. If we let the
nucleus in coluﬁnrh undergo beta decay one gets the_super-
heaﬁy hucleus shown in the fifth column with its major mode |

of decay.

-l

\\'j i
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Table 1.

General Introduction <:>

Macroscopic o - . SR

(Liquid Drop Model) U

,////generaldlscuss%ﬁ?s.\Tzfs\\\\\\\\\Fission of a charged

: /’/,//”/// conducting drop (:)
Relation: - ‘

Noninteracting nucleons in

an orthorhombic- infinite ‘ - '\\\\\Synthesis: applications to.

potential well

iy
N
N
_ superheavy nuclei and shape '

v /’//”’///////,(fission)isomers '<:>

-

,Microscopic-”’

(Wilsson Model) -
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Table 2.
PROTONS NEUTRONS
A vaiue K " K !
165 .0637 0.600 L0637 - 0.L420
187 .0620 0.61k . 0636 | 0.39%
208 L0604 0.628 L0636 . . 0.367-
" 205 L0590 0.639 L0635 . 0.3h6
2&2 L0577 - 0.650 .0635 0.325
265 L0559 0.665 L0635 . 0.296
285 .053L 0.678 0634 0.272
298 L0534 0.686 .o65h 0.256
308 .0526 0.693 .0633 0.24kL
520 .0516 0.701 .0633 0.229
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Table 3
'Isomei‘ic State -
- First Peak : Second Peak
| | Ground state| Height o | Excitation | Height
Z N A | Deformation. { above g.s.| Deformation above g.s. |above g.s.
€ éu :Mer € €, MeV 'Mév
92 136 228 0.15 -0.06 | 3.4 flat region 5.3
138 230 0.17  -0.06 ‘3.6  flat region 6.1
~1k0 232 0.18 20,06 4.0 0.59 0.06 2.9 7.5
W2 2354 0.195 -0.05 k.9 0.585 0.05 o5 8.
14k 236 0.20 -0.05 5.6 0.605 0.06 2. '.8.9
146 238 0.21  -0.0k 6.1 0.60 0.07 2.7 _ 9.5
148 240 0.23  -0.05 6.8 0.64  0.06 3.2 10.0
9& 138 232 0.18 -0.06 3.5 . 0.65 0;08' 1.9 h.o
140 234 0.19 -0.05 k.2 0.6 0.08 2.1 5.0
12 236 0.20  -0.05 5.0 0.6L 0.06 2.1 6.2
© 1k 238 0.215 -0.04 5.8 0.60 0.06 2. 7!0
146 2&0  0.02  -0.05 6.5 0.6L 0.07 2.5 7.6
ius‘ oz 0.225 '—0.05.‘ 69 o.él - 0.07 3.0 7.95
150 24k 0.23 -0.02 o702 0.62 0.07 3.6 8.3
152 246 0.25 -0.0L 7.3 0.6l .06 3.8 . 8.3
96_'. Lh2 238 0.21  -0.0k 5.1 0.65 0.07 1.5 4.0
_1h4 2hko 0.22  -0.0k4. 6.05 o.6i 6.67 . 1.65 4.9
16 2he 0.205 -0.05 6.7 ' 0.60 0.67 2.2 5.5
148 24k 0.23 -0.02 7.4 0.615 0.07 | 2.8 6.0
150 246 0.23  -0.01 7.6 0.625 0.07 3.1 6.2
‘152 248 0.23 -0.01 7.7 0.65 0.07 = 3.5 6.4
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Table 3 {(Continued).

Ground State

‘First Peak
Height

__Isomeric State

—

Excitation

Second Peak
Height '

Zz N | Deformation | above g.s. | Deformation above g.s.| above g.s.
e : eu MeV e g MV MeV
: 98'.1h6i oLk 0.22 50;05' 6.7 0.615 'd.Q§ 1.4 3.2
148 246 0.23 '-o.oé' 7.45 0.625 0.07 2.0: }5}75
150 '248‘ 0.23u -0.01 7.8 -0.68  0.07 2.5 h,1 
‘v152 250 o;23f  'oggo' '8.Q'_ 0.695 0.08 2.7 by
15k _252”'0,255" o@ol “7,§ : o,7b5 ogpé 2.6 4.0
- 100 1A8Vf248‘-of25,"-0.01 7.7 0.73 »o.o8' 1.0 1.8 :
1500 250 0.235 ;0;01‘ 7.9 0,72 ' 0.08 1. 2.1
152 250 0.24 10.00 'J 8.2 0.2 0:09 1.7 2.5
13k 25k o.2h - 0.01 81 0.75  0.09 1.6 o1
:'Tmi56_ 2§6 0.2%35  0.02 . ,'7J9U 0.75 - 0.09 1.5 1;9:~
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*‘Table k.
ueleus _Heigh_t of Barrier Exc. Energy of Sec.*rMin. ' lFission
ue S (MeV) (MeV) ' i _ Isomer
: - - D._/D - Ref.
: o N L I T SF . .
7w A & ‘-t Theoretical . From From Theor ! ' :
: WY 1st Peak 2nd Peak | D, /D thresh. O | T1/2
) meas . i (sec)
% 143 2351 5.75 3 | sho 8
Wk 236} 5.8 | 5.6 8.9 2.4 2.4 | 260 {1.1x107 | b
' 93 145 238 6.04 é
© o9k 1ko 236 5.0 6.2 2.1 E <2.1Q'9 "
[ b3 237 {07 c
1k 2384 5.3 . 5.8 7.0 2.2 <2.1079 c
145 239 | 5.5 .10 c
1h6 240§ k.7 6.5 7.6 1 2.5 '.2;5‘ 100 - § - 4.1077 4, c
7 21l 6.5 2.1 4313100 e,
148 2h2 %,5.2 6.9 7.95 3.0 ‘ 5108 iy
149 2b3 § 5.8 3.2 'E'19bo 76.1078_-' a, b

-LzT1-



Table 4 (Continued).

Height of Barrier Exc. Energy of .Sec. Min. " Pission
5 (MeV) (MeV) Isomer
é ‘ Dr/Dri - o Ref.
7 N A § Exot Theoretical From From Theor T
} *P 1st Peak 2nd Peak DII/DI thresh. y 1/2
P =T T meas: (sec)
95 143 238 !
1L 239 | 5.9 2.1077 b
145 240 | 3.0 9.107" b
146 241 | 5.9 2.5 1.107° b
{ .
17 2k2 ;6. 3.1 2.9 900 |1.4.1077 £, b
148 243 |
149 2uk ¢ (6.2) 1.1077 b
98 148 26 745 5.75 (2.5) 2.0 (4.5.207%) | gt
a. Harwell Group Los Alamos Group Expt. Barriers quoted from
b. Copenhagen Group Dubna Group Myers and'Swiateckill)
c. Seattle Group This result is doubtful. Recent experiments by the Berkeley
d. Saclay Group Group (Bowman, Cheifetz and Gatti) did not confirm the result.
e. Euratom_Group

, —82T-
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Table 5.
138 1ho 1k 1hh T 146 148 150 152 15k
- g -
> 83.k1
102 . ’ | 8.3
3
8.23
%
70.3k4 T72.64 75.5T 79.18
o~ 100 7.62 7.48 7.25] 7.09
: - [} o
N '8.00 7.56 - 7.16l 7.32
60.29 | 62.73 65.88 69.66 7+.06
98 7.17 6.67 6.42 . 6.24 6.02
- 2 -3 Rl -6
7.30 6.87 | 6.37 6.13 6.22
59.5% 62.65 66.56
48.3h 50.69 53.61°| €0.99 65.61
9 6.74 6.60 6.29 ] 5.9 5.59 5.39
h 0| -2 -5 -
6.62 6.450 6.22 5.91 5.h48 5.16
18.32 | s1.s2 58.27 62.96
37.21 39.17 41.66 44,89 | 48.70 52.97 57.79 67.23
9l 6.60 6.17 5.82 5.38 k.o 4.66
) A 2 -2 -6
6.70 6.31 5.87 5.26 4.98 k.66
46,66 51.17
30,57 33,01 36.72 4d.93 559 50.70
92 |
6 l 6 5 b
T — v

™

i




116

1k

13

112

110

109

108

107

106

189

‘178 179 180 181 182 183 . 184 185 186 187 188
187.87 190.36 193.14 196.h2 201.30 206.55
(1ms) (5.8) 14 (7.1) 10%y (8.3) 10ty (9.4) . My (9.0 | o
1s (10.1k) dmin (9.92) 108 (9.71) 4min (9.58) 0.1s (10.%3) 1s (10.2%)
183.02 185.75 ) 188.85 192,05 197.66 203.25
) 10min (8.89) 10 (8.58) 14 (8.45) 10s (9.39) 1omin (9.11)
178.01 186.09 181.00 183.17 184,41 186.56 188.34 191.29 19386 197.32 {199.84 . - |e203.52
lmin {5.4) . 102y (7.0) 109y (8.3) |. ) 10 y (9.6} o[ty (_9.).) S 10ty (9.4) ’ \
(10d (7.97) | W (7.71) | 1y (7.55) | 10%y (7.20) || 20y (7.80) fl200a (7.87) | 2a (B.31) | 'sn (8.49) | 104 (8.09) 102 (8.00) :
174,43 177.84 181.57 185.84 ’ 191.71 ' 198.00
10y (7.33) 10%y (6.80) 10y (6.58) - 1y (7.53) 10y (7.29) 5
170.60 173.05 17863 176.95 178.51 | 180.99 183.11 186.40 189.32 193.09 195.94 199.95 :
1s (4.1) 104 (5.7) 1% (6.9) - 1053y (8.1) _ 1013y (8.1) 10%%y (8.1) -
, 1 (7.46) | 10%. (7a7) | 163 (6.83) | 10% (6.52) || 10"y (6.5) ||10% (7.10) | 1y (7.50) | 100 (7.65) [ 10y (7.24) |10y (7.16)
168.08 172.3b 176.83 179.47 181.75 188.28 ’ 195.23
: ‘ 1oy (7.05) 10y (6.38) 107y (6.03) 10%y (6.98) 10% (6.72)
164.54 167.33 269.25 172.04 i7h.ah ) 176.87 179.39 183.01 186.27 190.36 193.54 197.88
(1ms) (3.2) lomin (4.3) | - 10y (5.5) | . 10*% (6.8) 10%% (5.7) . lozy (6.8) \
10y (7.20) 10% (6.85) | 10"y (6.40) | 1% (6.18) | 10% (5.63) [ 10% (5.76) [0y (6.24) | 20% (6.73) |20y (6.86) | 20"y (6.45) |10'y (6.35)
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Production of Superheavy Nuclei by

TableVQ..

86,
368 50

Projectile

: ) - Longest=lived
_ Aftef' nuclei reached
Compound s i after competition After p-decay
Target Nucleus em;zﬁlng i between s.f. and T -
' successive
a~decay
A Z N 7z N A 7z oy Mador Z Major
‘ . Decay Decay -
Po 208 82 126 | 118 176 | 118 172 | (s:f)
Po 210 8k 126 120 176 120 172 (s.f)
Rn A
Ra 226 88 138 124 188 12h 18h 118 178 a(10'5s) 112 - 184 -a(lohy)
Th 232 90 1h2 | 126 192 | 126. 188 ; 116 178 «(107¥s)| 112 182 a(10%y)
U 238 92 146 | 128 196 | 128 192 i 11k 178 o(10°s) | 110 182 a(10°%)
Pu 24k Ok 150 130 200 130 196 ¢ 11h 180 Va(lbus) 112 182 a(logy)~
248 96 152 132 202 | 132 198 i 11k 180 a(lous) 112 182 a(lOgy) 
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Fig. 2.
Fig. 3.
Fig. La.
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»kz = ﬁ/C = 2w
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Figure Captions
Single particle energies for a Hill-Wheeler box as a function

of the deformation co-ordinate «a. The other deformation

- co-ordinate Y has been set to zero. A large gap in the

energy levels is indicated by a number which gives the number
of levels below the gaﬁ.

The configuration in momentum sbace for the Hill-Wheeler box.
Only the (kx? ky) -plane is shown. The positions of the dots

in units of k= x/a = 2w = n/b = 2w, and

1’ ky

give the gquantumnumbers of the levels. The

5

fermi momentum kF is the momentum of the highest level that

is filled. The effective Fermi momentum ¢ 1is defined such’

that the volumes of the bumps and dips cancel.

A bump and a dip on the effective Fermi surface after averaging
with’resfect to orientation.

The energy of particles in a cubic Hill-Wheeler box as a
function of particle number calculated in four different ways:

(1) Using the approximate expression E' with only the N-term,

"E'(N); (2) E' with the N-term and the N2/5-term, E'(N2/5);

" (3) E'  up to the Nl/5 term, E'(Nl/B); (4) The exact

calculation E. The volume of the box is assumed proportional
to N. The unit -of the ordinate is in ﬂ2h2/2M62 where
is given by V = B5N.

Came 2s Fig. LYa for an oblate Hill-Wheeler box.




Fig. kc.

Fig. Ha.

Fig.

Fig,

4.

5b.
6.

bc.
éd.

78
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Same as Fig. ha for a prolate Hill-Wheeler box.

Same as Fig. ba for a Hill-Wheeler box with three

unegual sides. : ‘

The energy ef' N = 60 paftieles in avHill-Wheeler box 85 &
functioh'of the deforma%ioh parameter o '(Y‘: 0) calculated‘
in three different ﬁays:‘ (1) Using the approximate expression
E' up to .Ng/Beterm; E'(N2/5)51(2) E' ‘up to Nl/5 ter@,
E’(Nl/B); (3) The exact calculation, E. The results for ‘B
with only the N—termvis iﬁdependent_of, o] and is not shown..
The ordinate has a different unit from that ef Figs. L. 1t

is converted to the.iatter by multiblying by N-e/j.

Same as Fié. 5@ for the case of .N - 68.

The energy differences between E and E'(NQ/B) and eetween

E and E'(N;/B) as a function of the particle number N

for a cubic Hill-Wheeler box. See Figures I,

Same as Fig. 6a for an oblate Hill-Wheeler box.

Same as Fig. 6a for a prolate Hill—Wheeler box.

Seme as Fig. 6a for a Hill-Wheeler box with three.

unequal sides. . _ .

The energy differences between E eﬁd E’(Nl/B) and between
E and E‘(ﬁg/B) Vas a function of the deformation ﬁarameter‘
a, (r=0) ‘for the case of N = 6C particles in a Hill-
Wheeler box. ' See Figures 5. | |

Same as Fig. 7a for the case of N = 68.
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Energy excess £ over a spherical drop as a function of
deformation.

Energy excess ' £ over a spherical drop as a function of
deformation for different values of the fissility parameter .
The energy change in the division of a Volumefcharged.arop
into n egual parts, ee a function of the‘fissility parameter
'X. The ordinate is just ER' Takehvffom Ref;‘l9.

The maximum and minimum radii of saddle point shapes of a

volume-charged drop as a function of the fissility parameter - x.

The results.for the sy@metrical saddle point shapes=are given
bykthe solid curves, and.the results for thelasymmetric saddle
poiht shapes by thevdashed eurve. Adapted from Ref. 20.

The energy change iﬁ the division of a volume-charged drop
into two spheres as a function of the fractional volume of one
of the spheres for various values of x. Taken from Ref. 2k.
Same as Fig. 12 for the case of a conducting drop.

Shapes in the symmetry N

Shapes in the symmetry N = 3 family of equipotential surfaces.

The maximum and minimum radii of the symmetrie saddle point
shapes of a conducting drop as a functioﬁ of the fissility
bparameter x. Different curves correspond to the restriction
to different-families of shapes indicated by the values of N.
Saddle point shapes within the symmetric N = 6. family for

various values of x. The RMS values are also indicated.

2 family of eguipotential surfaces.




Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21
Fig. 22.
Fig. 23."
Fig. 2k,

-

&

Single-proton levels A ~ 298; k = 0.053L; p = 0.686,

€, = 0.
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The énergy'excess 3 '(in units of E (o)) over a sphere of

S

the symmetric Saddle point shapes as a function of the fissility

parameter x 1is shown in solid curves. It is calculated on the
. . » )
N = 6 parameterization. The broken curve indicates the results

for a volume-charged drop taken from Ref. 27.

~ Shapes described by the plane of the deformatioh'paraméters

e and €), - A sphere correspdnds to € =0 vand €), ¥ 0.
Spheroids have their ea : O.ﬂ
Relation between deformation co-=ordinates e€;. eu,rgand Ops

o, - Note that the.spheroidvcontaihs some du (as well as a6

‘etc. not shown in the figure).
~Single-proton level diégram'for sphericai potential. Parameters

“are fittedi)-to'reprdduée'obsérved,deférmed single-particle

level order at A =~ 165 and 22, and are extrapolated linearly
| 35)

to the other regions.. E. Rost's pfedieted levél order for

A = 298 is exhibited for comparison

Analogous. to Fig. élz valid for neutrons.

Effect of various terms in total energy as a functien of defor-

mation. Long-dashed curve marks simple'sum'of single-particle

energies, for dotted curve Coulomb energy is added, for dot-

‘dashed curve also pairing (G ¢ 8) 1is included, for short-

dashed curve the Struﬁinskyvnormalisation is applied. 1In alll

these cases it is assumed that eh = 0. 1In the last case



Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

6.

27.

30.

21,

32,
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(solid curve) also the effect of the eu—degree of freedom
is included.

Sum of single-particle, pairing and Coulomb energies without

Strﬁfinski normalization as function of ¢, €), At large

distortions the energy ultimately rises beyond + 15 MeV

(1imit for the plot).

A sketch of the errors in the Strutinski

Esi and !EL
Prescription as a function of the smearing width v, for
Variousvorder m of the correction factor Fm.

Shell corrections evaluated by the Strutinski method as a
function of the shell-smearing parameter v for case of
neutréns of 2ugPu.‘ Energies corresponding to three different
distortions are considered. »

Same as Fig. 27, but for neutrons of 208Pb.

Experimental and ﬁheoretical mass values for 150 < A < 340
plotted relative to the spherical liquid drop value as of

Ref. L1. |

Theoretical deformations, (e, eu), of ground state nuclei in
the rare earth region. |
Theoretical defdfmations, (e, eh), of ground state nuclei
in the actinide region.

Empirical rare earth Bu-values (filled circles) obtained

through the analysis of Ref. 46 compared to the present

calculations before the inclusion of the Strutinski normalisa-

tion. The effect of the latter is less than 0.0l in magnitude.
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-Fig. 335, Total energy minimized w.r.t. €) for each ¢ as function
of e for iSOtbpes of - 92U; -Dashed curve corresponds to
G . set constant while the solid line is based on assumption

that G 1is proportibnal to the nucléar surface area.

.55b; Same'aé Fig. 33a»for‘isotopes'of 9uPu.v.

/

33c. - Same as Fig. 33a for isotopes of 96cm}‘
33d. Same as Fig. 33a for isotopes of 98CfL
536.‘ Same as Fig. 33a for isotopes of lOOFm’ The extra dot-

| dashed curve added;fOr .256Fm fepresents_thé new total energy
for.the c;se' G oS when the'nuclear potential parameters
.are modified from_ﬁhose relevant for A = 242 +to those for '
A = 265. As éan'be seen the_Barrier changé is Very‘small.‘
23f, ~Same. as Fig. 33a fér isotobes of _lOENO'
3%g. Same ds Fig. 33a fbr isotopes . of .Z,: 10k,

33h. Same as Fig. 33a for isotopes of Z = 106.
33i. - Same as Fig. 3%a for isotopes of Z = 108.
33]. vSame[és Fig. 35& fpr isotopes of Z = 110.

33k. Same as Fig. 33a f@r isotopes of Z :_ilEf
334.  Same as Fig. 33a fgr.isotopes of Z = 11k,
',Fiéf 5&; POtéﬁtial'energy ﬁinimized with respeétftov ;h és a functi&n
| .of ‘g' fo% various nuclei to illustrate the effect of shell
 struCtﬁrevof a liquid.drop backgfound. 'The bfokén cUrvés_
, éofrespondito_liquid drop fission barriers. The solid curves

are the bar;ier after inclusion of shell and pairing effects.
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Fig.

35.
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36b.
36¢.
36d.
3be.

37a.

3.
38a.
38b.
392

Lo.

-140-

The twoépeak barrier as a function of mass'number for
Z = 92-100.

Same as Fig. 3%3a for isotopes of 82Pb'

‘Same as Fig. 33a for isotopes of SMPO'

Same as Fig. 33a for isotopes of ggRa-

Same as Fig; 33a for isotopes of 88Ra.

Same as Fig. 33%a for isotopes of 90Th.'
(s;f)
Total-energy surface in. (e, eu) plane for E)LFm after

application of the Strutinski normalisation. This figure

corfGSponds to a somewhat éarlier calculation'and employs
G = const and a different pairing cut-off than described in

the present paper. More recent calculations are exhibited in

Fig. 33.

Same as Fig. 37a valid for 29011M.
R 252

Licuid-drop energy surface for . Fm.

Liquid-drop energy surface for 29Oll_h.

252

Shell and pairing energy contributions for Fm. For

further details see Fig. 37a.

290

Same as Fig. 39a for 11k,

Spontaneous fission half lives of Z = llh_and 110 isotdpeé‘

‘as fuhctions of the inertial parameter B for barrier

penetration. - Three estimates of B are given. For further
explanations, see text.
Contours of theoretical half-lives for 106 < Z < 128 and

70 < N < 204. The thick dark lines are contours of




a.\..l‘

Fig.

-1k41-

spontaneousvfiSSion half-lives. The broken lines are-

coﬁtours of alpha half-lives. Beta stable nuclei are shaded.

L2, Periodic‘Table exhibiting predicted locatidnsvof new elements.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission: '

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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