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ON THE MICROSCOPIC AND MACROSCOPIC ASPECTS 

OF NUCLEAR STRUCTURE WITH APPLICATIONS TO 

SUPERHEAVY NUCLEI 

Chin-Fu Tsang 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

May 22, 1969 

ABSTRACT 

UCRL-18899 

The thesis is concerned with Ule relation. between 

a microscopic approach and a macroscopic approach to the 

study of the nuclear binding energy as a function of neutron 

number, proton number and nuclear deformati6ns. 

First of all we give a generaL discussion of .the 

potential energy of a system which can be divided into 

a bulk region and a thin skin layer. We find that this 

energy can be written down in the usual liquid drop type of 

expression, i.e., in terms of the volume, the surface area 

and other macroscopic properties of the system. The discus-

sian is illustrated by a study of noninteracting particles 

in an orthorhombic potential well with zero potential inside 

and infinite potential outside.· The total energy is calcul-

ated both exactly (a microscopic approach) and also from a 
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liquid drop type of expression (a macroscopic approach). 

It turns out that the latter approach reproduces the 

smooth average of the exact results very well. 

We next make a digression to study the saddle 

:point shapes o~ a charged conducting drop on a :pure liquid 

drop model. We compare the :properties of a conducting 

drop with those of a drop whose charges are distributed 

uniformly throughout its volume. The latter is the usual 

model employed in the study of nuclear fission. We also 

determined some of the more important symmetric saddle 

:point shapes. 

In the last :part of the thesis we generalize a 

method due to Strutinski to synthesize a microscopic 
. 

approach (the Nilsson model) and a macroscopic approach 

(the liquid drop model). The results are applied to 

realistic nuclei. The :possible occurrence of shape isomers 

comes as a natural consequence of the present calculation. 

Their trends as a function of neutron and :proton members 

are discussed and the results are tabulated. We also work 

out the stabilities of the :predicted su:perheavy nuclei. with 

:proton number around 114 and neutron number around 184 and 

196. Some of these nuclei appear to have extremely long 

life times. The :possible experimental :production of these •• 

superheavy nuclei are also discussed. 
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l. General Introduction 

Of central importance in the physics of the nucleus is a study 

of the nuclear binding energy as a function of its deformation and mass 

number A. Such a study is not only relevant for the ground state 

masses and deformations, but is also essential in the theory of alpha 

decay, beta decay as well as the spontaneous fission of the nucleus. 

It also provides a possible explanation for the so-called shape or 

fission isomers which have recently induced extensive experimental 

efforts. 

For the last thirty-five years both a microscopic and a macro-

scopic approach for the calculation of the nuclear binding energy have 

been developed in parallel. By the macroscopic approach we are thinking 

of an approach iri which one expresses the binding energy as a function 

of macroscopic properties such as the volume, surface area, and the 

integrated curvature over the surface of the nucleus. The approach is 

usually associated with the liquid drop modell) of a nucleus, although 

in some aspects it is considerably more general than the representation 

of a nucleus as a fluid droplet. We shall discuss this in detail in · 

the next part of the thesis. By the microscopic approach w~ are 

referring to an independent particle model, where one considers the 
,. 

nucleons to move around in an average nuclear field. Residual inter-

actions such as pairing effects can be included. This model is commonly 

applied with great success to correlate nuclear spectroscopi~ ,data and 

to explain the occurrence of magic numbers. Its .successful application 

to a quantitative description2 '3) of nuclear masses and deformabilities 

is a development of the last few years. 



-2-

The microscopic approach is more fundamental _than the macro-

scopic approach in the sense that all results of the latter should be 

derivable in principle as some sort of an average of the results of the 

former. However in its present state, it turns out that the independent 

particle model does not give correctly the absolute values of the experi­

mental binding energies2 ,3); though it is very successful in reproducing 

the relative values for neighbouring nuclei. On the other hand the 

macroscopic approach looks at the nucleus as a whole and considers the 

binding energy as a sum of the volume, surface, curvature as well as 

coulomb energy terms. The coefficients in these terms are fitted to 

experimental values and the approach is able to reproduce the absolute 

values of the binding energy correctly. 

It is important to study the relation between the two approaches 

and to try to synthesize them in some way so that we may have the useful 

results of both in a unified approach. The basic idea advocated by 

My-ers ~nd Swiatecki4) and Strutinski5) among others is that one should 

replace the smooth average trends of the results of' the independent 

particle model, which do not reproduce experimental trends adequately 

by those from the liquid drop model. The resulting unified model will 

then represent the real nucleus more closely than is possible with 

either the microscopic or the macroscopic model. 

In the next part of the thesis we will discuss the justification 

of a macroscopic approach. We are going to look specifically at a 

.. , 

., 
l 

VI 
I 
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system with a thiri skin (of constant thi~kness), which we will call a 

leptodermous t system. A liquid drop is a. special example. of such a 

system. 0 By considering just the geometry of this system we can write 

down its energy as a sum of a volume term, a surface term, and an 

integrated curvature term. 

The third part is a st1.1dy of the energy of noninteracting 

nucleons in an orthorhombic potential _well with infinite potential walls, 
. . . 6) 

which will be referred to as a ,Hill-Wheeler box . . The total energy as 

a funCtion of the relative lengths of the sides can be calculated 

exactly as-well as· from a macroscopic point of view. A comparison shows 

that the macroscopic;: approach does indeed give very closely the smooth 

. trends of the energy calculated exactly. 

The fourth part is a study of apure collective phenomenon. It 

is a digression from our main theme of studying the relation between the 

microscopic and macroscopic approaches, to which we shall return in 

the fifth and last part. It· deals with the theory of fission of a 

charged drop which is electrically conducting so that the charges reside 

on the surface of the drop. The usual liquid drop model of nuclear 

fission assumes a charged nonconducting drop with a uniform distribution 

of charges. Ho·wever there are sufficient siinilari ties and rather inter-

esting differences to make a study of a charged conducting drerp prefi t,-

able. This is coupled with the great advantage that a macroscopic 

t The word "leptos" in Greek means "thin" and the word "derma" means 

''skinrr. A leptodermous system is then a system having a thin skin. 
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charged conducting liquid drop can actually be investigated experi­

mentally. We have looked at the statics of the fission of such a drop 

and have been able to determine some of the more important equilibrium 

shapes of the drop. 

The fifth partt of the thesis tries to combine the microscopic 

and macroscopic approaches. Specifically we study the synthesis of the 

Nilsson model2 ) and the liquid drop modell). Such a unified model is 

then applied to realistic nuclei from the rare earth elements up to the 

yet unknown superheavy elements. Besides £ccounting for many known 

nuclear properties, we have been able to predict the stabilities of 

superheavy nuclei and to discuss features in our results which we 

believe to be associated with the shape or fission isomers. A 

t This part of the thesis was done with the guidance and collaboration 

of Professor s. G. Nilsson of Lund Institute of Technology, Lund, 

Sweden. The Nilsson Model calculations3) were developed by C. 

Gustafson, I. L. Lamm, B. Nilsson, and S. G. Nilsson of Lund Institute 

of Technology, Sweden. The initial version of the computer problem 

employing the Strutinski PrescriptionS) was written by J. R. Nix of 

Los Alamos Scientific Laboratory, University of California. 

A. Sobiczewski, z. Szymanski, and S. Wycech of the Institute of 

Nuclear Research, Warsaw, Poland, performed the microscopic calcula­

tion of the inertial parameter associated with spontaneous fission?) 

that is used in the present work. 

... 
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discussion is also given on the prospect of the experimental production 

of superheavy elements as well as on the possibility that they might 

occur in nature. 

The various parts of the thesis are presented schematically in 

Table 1. 

'. ( 
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2. A Discussion of Leptodermous (Thin-skinned) Systems 

2.A. Leptodermous Systems and the Liquid Drop Model 

In this part of the thesis we shall discuss the nature of the 

potential energy expression for a class of physical systems that may be 

considered as consisting of a bulk region and a thin surface region. 

(We shall refer to such systems as leptodermous. ) In some cases_, when 

the bulk region is uniform, the potential energy expression reduces to 

that usually associated with the Liquid Drop Model of a nucleus. The 

principal energy terms are then a volume energy and a surface energy. 

For historical reasons, however, the Liquid Drop Model of the 

nucleus is often understood to imply more than just the presence of a 

bulk region and a surface region. Thus it is .often taken to· imply the 

existence of strong correlations between the particles constituting the 

system, and, in dynamical problems, it is frequently taken to be synon­

ymous with the assumption of an irrotational flow of fluid. When 

understood in this sense the Liquid Drop Model is an extremely poor 

representation of the nucleus. This seems to have led to an unjustified 

skepticism as regards the relevance of the Liquid Drop Model for the 

description of even the purely static aspects of the nuclear binding 

energies and deformabilities. 

To clarify this confusion we would like to stress two points. 

First, the validity of the Liouid Drop type of expressions for the 

description of static properties has of course nothing to do with 

further possible assumptions concerning dynamics, such as the assumption 



'w' 

I 

of irrotational flow. Secondly, as we hope to demonstrate, it has also 

nothing to do with the assumption of strong correlations between the 

particles constitutin:g the system. In fact the basic condition for the 

validity of a Licuid Drop type of expression for the potential energy is 

the possibility of dividing the system into a bulk region and a thin 

surface region. We have thought it worthwhile to introduce a name :.. 

· leptodermous - to describe systems satisfying this specific assumption 

regarding their constitution, in order to avoid confusion with the less 

well defined phrase "Liquid Drop Model". 

Examples of leptodermous systems are 

1) A drop of water (made up of strongly interacting molecules). 

2) A classical gas of noninteracting point particles in a 

container. 

3) A degenerate gas of noninteracting fermions in an external. 

potential well. 

4) A system of particles interacting by short-ranged saturating 

forces treated in the statistical Thomas-Fermi approximationS)_ 

5) Same as (4), but with nonsaturating electrostatic forces 

8) also present .. 

6) Amorphous solids. 

7) Nuclei. 

In example 1, the constituent particles interact strongly and 

are highly correlated. Example 2 is a trivial special case of 

noninteracting particles where the skin thickness is zero. Example 3, 

which is the subjeCt of Part 3 of this thesis, is a case of noninteracting 
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particles treated quantum mechanically and is a prototype of a nuclear 

shell model. The skin thickness turns out to be of the order of the 

wavelength of the fastest particle present. In example 4 there are 

(saturating) forces between the particles but no correlations and the 

cuantum nature of individual particles is disregarded. The skin 

thickness turns out to be of the order of the range of the forces 

between the particles. In example 5 the presence of electrostatic 

forces results in a nonuniform bulk density but the thickness of the 

surface region remains as in 4. In the case of an amorphous solid 

(example 6) the potential energy would, we presume, also be a sum of a 

volume and a surface term provided any deformations of the system were 

sufficiently slow so that internal stresses would be relievedby plastic 

flow. Example 7, a nucleus, is known from electron scattering experi­

ments9) to satisfy moderately well the condition of being thin-skinned. 

The nuclear potential energy also appears to be well represented by a 

bulk term and a surface term. 

Examples of nonleptodermous systems are atoms and stars, for 

which it is not possible to make a distinction between a bulk region 

and a thin surface region. 

2.B, The Potential Energy of a Leptodermous System 

Let us write down the potential energy of a leptodermous system 

with a uniform bulk particle densityt p • c The density p falls to 

t The more general case where the bulk density is smoothly varying 

(Example 5 above) can be treated as a straightforward generalisationS) 

of the present calculation. 
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zero in a thin surface layer. The total number of particles. is given 

by 

N Jp d'I 

The total en:ergy·is 

E e d1: (l) 

where e is the energy per particle at every point. In general e 

is a functional of the density distribution p. It is the purpose of 

the present section to write down the potential energy E as a sum of 

terms proportional to the volume, surface area, and integrated curvature 

of the system. 

Let us assume that in the bulk region every point is just like 

any other point in the sense that a constant value ec can be wri tt.en 

for the energy per particle in the bulk. Then Eq. (l) may be written 

Let us define an "equivalent system" as one with the same bulk density 

oc but having a sharp surface; the original leptoderni.ous system 

results when the sharp surface i9 diffused into·a skin layer ef cc::>nstant 

thickness. Thus the volume of the equivalent system is 

v 

Hence we may write 

I 

fp d'l: 

p . 
c 
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The integrand in the second term is nonzero only in the thin skin layer 

because p tends to zero outside the skin and inside. Now we 

define a normal n to any point in the surface with n = 0 at the sharp 

surface of the equivalent system. Then the integrand as a function of 

n is zero for large positive or negative values of n. We may denote 

this integrand by 

where we have indicated that the integrand is also.a function of the 

curvature K at the point on the surfacet. Let us write down an 

t In general one would think that F is a function of l/R1 

where R
1 

and R2 are. the principal radii of curvature in two per­

pendicular planes through the point. If one makes an expansion about 

a plane, for which l/R1 = 0 = l/R2, then 

F(O, 0) + R 1 1 Q dF) 
1 d -

Rl 0 

+ ••• 

Since all directions in a plane are equivalent, the two derivatives 

of F with respect to l/R1 and l/R2 are equal . 

F(~l' ~2) . C lJ("F) F(O, 0) + Rl + R2 (J !_ . + ... 

· Rl. 0 

Hence to the first order in the deviations from a plane w:e have, 

F(K) = F(O) + K(~) 
OK 0 

where 
' 

F is then a function 

of K rather than of the separate components l/R1 and l/R2 . 
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expansion of F in K to the first order: 

F(n, K) = F(n, 0) + K F' (n, 0) 
' 

where the prime indicates differentiation with ,respect to·· K. We also 

write the volume element d-r in terms of the co-ordinate, n, and the 

curvature, K, to the first order, 

( 1 · + tm) dn dcr, 
' 

where dcr is the area element at the point on the equivalent sharp 

surface. Hence we have 

E e c p c V + J da J dn ( 1 + Kn )[ F ( n, 0) + K F' ( n, 0) ] 

ec pc V + Jdcr J dn F(n, 0) + Jdcr K Jdn[nF(n, 0) + F' (n, 0)] 

Since F(n, 0) and F' (n, 0). are evaluated for K = 0, ·i.e., for a 

plane surface, they are independent of the position on the surface and 

the surface integrations in the second and third terms may be earried 

out at once. If we define the surface area S and the integrated 

curvature L of the equivalent sharp surface by 

s J dcr 

L ::: J K dcr ., 

we have the result 

E aV + bS + cL + · • · (2) 
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where 

a 

b Jdn F(n, 0) (3) 

c I dn [ F' ( n, 0) + nF ( n, 0) ] 

Equation (2) shows how the energy of a leptodermous system may be 

decomposed, under the stated assumptions, into volume, surface and 

curvature terms. Equations (3) shows explicitly how the relevant 

coefficients can be calculated from the properties of the system. The 

coefficient a is the volume energy density. The coefficient b is 

the surface tension coefficient which gives the difference per unit 

area of a plane surface, between the energy of a number of particles 

touching the surface and the energy of the same number of particles in 

the bulk. 

The coefficient c is the curvature coefficient which describes 

the modification in the effective surface energy resulting from the 

curvature of the surface. Note that both b and c are integrals over 

functions localized in the surface layer and may therefore be regarded 

as intrinsic properties of the surface region. As discussed in Ref. 8 

(pp. 69 and 126) the coefficient c consists of two parts. The first 

part is associated with the modified conditions (i.e., increased 

exposure or "fewer neighbours") for particles in a curved surface. The 

modification is expressed in terms of F' describing the response of 

the surface energy function F to a bending of the surface. The second 
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part is associated with the :purely geometrical fact that a given surface 

layer contains fewer :particles when (convexly) curved than when flat. 

(The two effects are usually of o:p:posi te sign and may even cancel 

exactly. See Ref. 8) 

It should be noted that the simple structure of Eq. (2) and the 

above interpretation of the coefficients of S and 1 is intimately 

related to our definition of an equivalent sharp volume V (~nd the 

associated area S and integrated curvature 1) of the originally 

diffused le:ptoderm()us system. The fact that for a system with a diffused 

surface there appears at first sight to be a degree of arbitrariness in 

the definition of its volume, surface a:rea, and integrated curvature, 

has led in tlie past to some confusion and even to serious misinterpreta­

tions of the surface tension coefficient6). 

We denote the remainder of this section to a discussion of these 

:problems. ·we shall give below a detailed demonstration of the sometimes 

subtle effects involved, but we would like to state at the outset what 

the root of the problem is: if.the volume, surface area, etc. of the 

diffuse system is defined in any other way than the above (i.e., by 

means of the equivalent system with a sharp surface which contains the 

total number of particles at the bulk density) then in general the 

associated volume energy differs from the true bulk energy by terms 

which may have the appearance of surface and curvature terms (even 

though their origin is in the bulk). The result is in fact a host of 

spurious terms parading as contributions to the surface tension and 

curvature correction coefficients and creating·confusion in the 

identification of correct values of these coefficients. 
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To illustrate this let us consider what would happen to Eq. (2) 

if instead of the equivalent sharp volume V (and its area and integrated 

curvature) we choose to express the energy in terms of another volume 

n and its area 2:: and the integrated curvature !\.. The cases of most 

relevance and which have caused confusion in the past are those in 

which n is related to V by a (small) normal shift of the surface by 

an amount t; say, of the order of the diffuseness of the surface. The 

relations between V, s, L and D, 2::, 1\. are easily derived by 

noting that the element of area on a normally displaced surface is 

related to an element of area on the original surface by 

dcrdisplaced (1 + Kt) dcr 

Hence 

J (1 + Kt) da S + tL 

Also 

Inverting these relations we may write 

v 

s 2:: - tA + · · • (4) 

L 1\. + ... 



(For our purposes, it suffices to ~rite.the three relations to 

successively lower orders in t.) We may·now insert the above relations 

in Eq. (2), which may first be rewritten as 

E e(p)N + b(p)S + c(p)L 

We have displayed explicitly the dependence of the coefficients on the 

bulk density p. (We have drqpp~d the suffix c on p as well as e, 

the 

eN 

11, 

p -

bulk energy per particle. We have also written the 

instead of 

2::, and A. 

N/D. through 

p 
N 
v 

av.) Our objective 

The density p .is 

Eq. ( 4). Thus 

is to write E as a 

given by N/V, which 

2::. 2 . 2 ] 
+ (n) t + .... · 

leading term as 

function of 

is related to 

If we insert his expression for p in the argument of e(p),· say,. and 

make a Taylor expansion about the value e = e(p), we find 

where 

e' ( de 
\p c;p)~ 

p 

e" -2) d e 
-:--2 
Op ~ 

p 
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Dealing similarly with b(p) and c(p) and using Eqs. (4), we find 

E = ' 
(5) 

where 

b = b + e' pt 

,.... 
bt l "' 2 c = c - - - e' pt 

2 

d b't (e' 
1 e ") 

,.... 2 
= + +- pt 

2 

Suppose now we assume the volume · n to be proportional to N and 

independent of the shape of the system (i.e., we take p to be 

constant). The coefficients e, a, b, "' c, d are then constants and 

Eq. (5) gives the total energy as a function of N (0r n), ~, and 

A, i.e., as a function of volume, area,_ and integrated curvature 0f a 

surface obtained from the standard equivalent sharp surface by a small 

normal shift t. 

To the relevant order this equation is equivalent to Eq. (2), but 

note the following features. First, in addition to terms proportional 

to N (or n), ~, and A, there is a new term proportional to 2 z jll. 

Second, the values of the coefficients of Z and A are different 

from the previous values and if one were to identify b with the surface 

tension coefficient and 
,.... 
c with the curvature correction coefficient 

one would deduce values quite different from those given by Eq. (2). 

Thus the coefficient of Z has an additional term e'pt which comes 

' from the bulk energy and the coefficient of A has two additional terms, 

•.'; 
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-bt, which comes from tpe surface energy, and 1 . "' 2 -2 e'p t , which comes 

fromthe bulk energy. In Eq. (5) there are altogether six spurious 

terms e' ptL., -btA, 1 "' 2 -2 e'pt A, and 1 "~t2"2/" ~ p. L. Ho 

Note that of these, the first, third, and fifth vanish if e' = 0 

(i.e . , if ( p de/ op) P = 0) . 
f 

This means that for a system whose bulk 

energy is stationary with respect to density deviations from p (i.e.,. 

a saturating system) these terms do not appear. It has recently been 

shown8) that for a saturating system the surface tension coefficient is 

also stationary, i.e., b' = 0, and the fourth term would also be 

absent for such a system. The second and sixth terms are, however, 

present even for a saturating system. For a nonsaturating system (like 

a Fermi gas or a nuclear individual particle model in an external 

potential well) all six terms are present, and great care must be 

exercised in interpreting the results of the energy calculations of such 

systems, unless the proper choice of the equivalent sharp surface has 

been made to begin with. 
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3. On the Total Energy of Noninteracting 

Particles in a Hill-Wheeler Box 

3.A. Introduction 

It is the purpose of this part of the thesis to demonstrate the 

relation between a microscopic approach and a macr,escopic approach on 

as simple a model as possible. One such model is furnished by non-

interacting spinless Fermi-Dirac particles in an orthorhombic box with 

infinite repulsive potential outside and zero potential inside. Such 

a box will be referred to as a Hill-Wheeler box~ It was first intro­

duced by Hill and Wheel~r6 ) who applied it in an attempt to obtain the 

coefficients of the nuclear surface and curvature energies. Due to a 

misinterpretation of their equations they did not get the correct 

. results which had been given by Swiatecki 10 ) in a semi-infinite model. 

The correct interpretation for the surface energy was given by Knaak 

et a111 ) .. Hilf12 ) considered also the cases of cylindrical and 

spherical boxes. 

The Hill-Wheeler box is a particularly simple model because all 

the wavefunctions in the box can be easily written down in terms of 

trigonometric functions. The total energy as a function of the particle 

number and the deformation of the box can be exactly written down. On 

the other hand we can also take a macroscopic point of view and approxi-

mate the total energy by a function of macroscopic quantities such as 

the volume and surface area of the Hill-Wheeler box. We shall demon-

strate that this macroscopic approach gives the smooth trends of the 

exact results very well. 
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).B. The Microscopic Approach 

. .; The solution of the problem of noninteracting spinless Fermi-

Dirac particles in an orthorhombic infinite potential well is well-
• 

known. It suffices that we indicate the main results below. 

Let the three sides of the box be. specified by 

a .R exp [a cos (r ~n)] 

b Rexp [a cos (r + ~n)] 
...... 

c R exp [a cos y] 

where a and y are two deformation parameters. We have chosen the 

definition such that the volume of the box is equal to R3 independent 

of a and y. When a= o and Y= o, the box is simple cubic. When 

y = 0 and a> o, we have a b < c and the box is "prolate" . When 

Y = rr/3 a:nd a > o, we have a c >b and the box is "oblate". 
.. 

All the wave functions in the box have to gc to zer0 at the 

walls. This requires the single particle energy levels to be given by 

E 

where M is the mass of the particle. The quanturri numbers n, m, 

and £ are integers greater than or equal to one; The single particie 

energies as a function of the deformation parameter a (with y = 0) 

are shown in Fig. 1, which is essentially the familiar Nilsson 
. 2) 
diagram 
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for the present case of spinless fermions in a Hill-Wheeler box. The 

above calculation is in effect a prototype of the Nilsson model 

calculations
2

). We have indicated in the figure the positions at a: = 0, 

where large gaps among the levels are found. These correspond to magic 

numbers where special binding occurs. For a particular shape of the box, 

a given number of particles fills the energy levels up to a level whose 

energy is referred to as the Fermi energy EF. 

are filled and all levels above EF are empty. 

All levels below 

We can associate each particle with a momentum vector k. 
"-'l 

tllat tbe particle's energy is given by 

E. 
l 

sucb 

Let us look at the momentum space with the coordinate axes along the 

three axes of the Hill-Wheeler box. Then an octant of a sphere is 

drawn with its center at the origin and having positive values of 
k ' X 

k , and k 
y z The radius of the octant ~ is given by 

A lattice is constructed in this space by choosing the units in k ' X 

k , and k directions to be r;/a, n/b, and n/c respectively. The y z 

designation of the lattice points in (k , k , k ) would be just the 
X y Z 

set of quantum numbers n, m, .e of the energy levels. In particular the 

lattice point (1, 1, 1) corresponds to the lowest energy state with 

n = 1, m = 1 and .e = 1. Since the particles fill the energy levels up 

it 

'·' 
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to EF' all the lattice points in the momentum space within the octant 

of radius ~ are occupied by particles, and those without are not. 

The number of lattice points inside the octant is equal to the number 

of particles in the box. The energy of the system, E, is given by 

E lk.l 2 
~l 

(6) 

i 

where the summation is carried over all the. lattice points inside the 

octant. 
. . 

3.C. The Macroscopic Approach 

By the macroscopic approach we hope to write down the total 

energy of the particles in a Hill-Wheeler box in terms of some macro-

scopic ·quanti ties. One way to do this is to imagine each lattice point 

in k space inside the octant of radius kF to be smeared out into an 

orthorhombic box centered at the lattice point and with sides equal to 

rr/a, rr/b, and rr/c. Such orthorhombic boxes build up into an octant 

with slabs of thickness w1 = rr/2a, w2 = rr/2b, and w
3 

~ rr/2c .cut 

away from the planes k = o, 
X 

k - o, y 
and k 

z 

(See Fig. 2, which shows only the k k plane.) 
X y 

0 respectively. 

Also on the .curved 

surface of the octant, bumps and dips occur that correspond to parts of 

the boxes sticking out and parts missing from the smooth curved surface. 

We can adjust the position of this curved surface to an effective Fermi 

radius q (see Fig. 2) such that the volumes of the bumps and dips 

cancel. The volume F of the resulting "incomplete o.ctant" with slabs 
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cut away is then related to N, the number of particles in the Hill-

Wheeler box, by 

F 
3· 

_E._ N 
abc 

since the unit box around each lattice point has the volume 

v 

A straightforward calculation gives F as a function of q: 

F l J1 3 l q3 tan -1 wlw2 
3bq 3 2 2 w 2)2 q(q - wl 2 

(~ 2 1 3)(· -1 
w2 

sin -1 w3 ) + q wl - b w1 sln 
( 2 2)2 

+ 
(q2 - w 2)2 q - w l l . 

l - -
3 

w1w2w
3 

+ Permutations with respect to w w w 
l J 2' 3 

(including the first term) 

If we assume w1 , w2 , w
3 

<< q, which is the case corresponding to a 

large number of particles, we can make an expansion in w
1
/q, w

2
/q, 

and w
3
/q. 
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+ n ·(w 3 + w 3 + w 3) - w w w + ··~ 
12 1 2 3 1 2 3 

The first three terms are equivalent to the results obtained by Hill 

and Wheeler6). The first term corresponds to the volume of the whole 

octant in k space .. The second term corresponds to the slabs that are 

to be cut away from the octant at the k = o, 
X 

k y 
o, and k = 0 

z 

planes. Where the slabs intersect we subtract too much by the columns 

along the k , k · and k 
X y' Z 

axes. This is the origin of the third term~ 

The fourth and fifth terms represent even higher corrections to the 

geometry of the volume F o:f the incomplete octant. Given .F, one can 

calculate the particle number N. Conversely if we are given N, we 

can find the effective Fermi momentum q. 

We next proceed to calculate the energy in terms of macroscopic 

quantities. The exact energy E calculated in the last section is 

given by Eq. (6), which is a summation of the functi()n 

the lattice points. For the sake of clarity, we.make twe provisional 

simplification.;>. First we assume each lattice point to be smeared out 

into an orthorhombic box around this point with sides rr/a, n/b, and· 

n/c. Thus instead of k. 2 in the equation, we use an integral of k2 
l 

over the box. Second, near the Fermi surface we smooth out the bumps and 

dips by means of a smooth curved surface o:f radius q as defined before. 

In other words we replace the integration of k2 over a bump by that 

over a dip of equal volume.· We shall discuss the consequences of these 
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two simplifications in the next section. What these si;n:plifications 

amount to is that one can now get an approximate energy E' by inte-

where 

I 
l 
15 

E' 

over the volume F 

2 
== 1i.._ abc I 

2M 3 
J( 

2)2 w2 

- tan 
-1 

( -1 
\in 

Q4 + 8 q w2 1 2 3 1 5) c. -1 12 q w2 + 40 w2 ~ln 

Q2 
w 3 1 5) 0 -1 

w2 
+ b q l 10 wl s.w (q2 - w 

l 

2 2 
+ (q - wl 

w3 .. -1 
w

1 0 
(q2 2- + sln 

(q2 w22)? -w )2 2 

. -1 w3 
2 

) 
2r, 

+ sln 2 
(q - w )2 

l 

(Equation continued on next :page) 

., 
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(Equation continued) 

+ 

+ 

+ Permutations with respect to w
1

, w
2

, w
3 

If we again make an expansion in w1/q, w2/q, and w/q, we get 

I + • • • • 

We can expressthe energy E' in terms of N by substituting for q. 

Remembering that n = abc, we get after some algebra, 

2ME' 
11.2 

' 
(7) 
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wheret 

.\2 abc 

2(ab + be + ca) (8) 

A ~ 4(a + b + c) 

If we assume that N is proportional to .12, we find that the terms in 

the energy are proportional to N, N2/3, and ~/3. We shall refer to 

these terms as the N-term, N2/3_term, and Nl/3_term respectively. 

To bring out the shape dependence, we may make a simple 

rearrangement in the equation, giving 

t It is found that i\ is just the integrated curvature of a Hill-

Wheeler box. The plane surfaces of the box have zero curvature. At 

the edges of the box, we have an infinitely large curvature on an 

infinitesimal surface area. The integrated curvature may be calcul-

ated by first rounding off the edge and then taking the appropriate 

limit of the integrated curvature of this rounded edge. In general 

at the edge formed by two plane surfaces at an angle a, the integrated 

curvature turns out to be just a per unit length. For the Hill­

Wheeler box, the integrated curvature is thus rr/2 per unit edge 

length. 
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N [ 3i r.
2 

l ] + •.. +D b"4 Q- 2 A (9) 

This equation has the same form as Eq.(5) in Part II of this 

thesis, where we discussed the potential energy ofa leptodermous 

.system. The system of particles in a Hill-Wheeler box is in fact an 

example of a leptodermous system. SwiateckilO) has shown that its 

skin thickness is of the order of the wavelength of the fastest 

particle in the box. More specifically, with reference to the volume 

V, surface area s, and integrated c.urvature L of an "equivalent 

system". (with zero skin thickness, containing the same total number of 

particles at the bulk density), one may express the volume n and 

area L. of the Hill-Wheeler box to the first order as follows: 

· n v + ts + 
(10) 

r.· s + 
' 

where t is the skin thickness. (SwiateckilO) used the symbol b) given 

bylO) 

1 

t 3:n: 1 3:n: ( ..L_ )3 
8 .~ 8 6:n:2N 

This is to be compared with a characteristic dimension of the box given 

Thus the skin thickness is smaller by one order in ~/3. 

Hence particles in the Hill-Wheeler box form a leptodermous system. 
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Let us write the energy Eq. (9) in terms of the V, S, and 

1 of the equivalent system, which is the reference system we should 

use, as explained in Part II. Then one has to write Eqs. (10) up to 

the curvature term (see Eq. (4)). Here a difficulty appears, associated 

with the singular nature of the boundaries of a Hill-Wheeler box (the 

occurrence of infinite curvatures over infinitesimal areas of the 

boundary). For a smooth leptodermous system the additional terms can 

be found by expanding about a plane surface (seep. 14). The result is 

two extra terms: ~ t 2
11. in the expression for V and -til. in the 

expression for s. (see Eq. 4) These terms are thus both determined 

once t is known. It turns out that for a Hill-Wheeler box the 

additional terms are still proportional to II. but the constants of 

proportionality are not, in general, ~ t 2 and t. They are unknown 

coefficients which could only be determined from a closer study of the 

properties of a Fermi gas in the neighbourhood of a right-angled edge 

in a potential well. In considering the relations between SL, Z:, A 

and V, S, 1 we are thus force to write 

st v + ts + gL + • · · 

Z: S+hL+··· 

1 + ••. 
' 

instead of Eq. (4). Using these relations, one finds 
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2 

1 2_ (6 ..... 2)3 v + 5 lb 11 J'. 
8 

+ o. _82 ! -[~ + L(6n2)~ c·· .!)·~ g -
v v 2 5 . v 

+ ... (11) 

As expected the term proportional to 82/v drops out, demonstrating the 

discussion in Part II (Eq. (5)) that such a term is spurious, and arises 

from an inappropriate choice of a reference system. The surface tension 

coefficient is given by the coefficient of 8 and this confirms the 

value obtained by 8wiatecki by a different method10 ). if we had taken 

the coefficient of E 'in Eq. (9) to be the surface tension coefficient 

we would have obtained a value which is five times too large. Thus 

four-fifth of this term is spurious, coming from the bulk term 

proportional to h. These conclusions are independent of the values of 

g and h and do not require their knowledge. However, in order to 

deduce the true curvature correction coefficient for a Hill-Wheeler 

box (i.e., the co:efficient of 1 in Eq. (11) rather thari the. coefficient 

of A in Eq. (9)) a knowledge of g and h would be required~ These 

numbers, characte
1
ristic of the properties of fermions in the neighbour­

hood of a right-angled edge, are unknown at the present time. 

3.D. The Meaning of the Approximate Energy Expression 

The approximate energy expression E' in terms of macroscopic 

quantities has been obtained by making use of two simplifications in 

our calculation of I (p. 23). We have studied the corrections that 
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should be applied to account for these simplifications. It will be 

shown below that both these correctioQs enter the energy Eq. (9) 

through the Nl/3 and higher order terms, and these two corrections 

miraculously turn out to cancel each other to this order. Thus it will 

turn out that E' is correct up to and including the ~/3 term. 

The first simplification was made when we smeared each lattice 

point into an orthorhombic box. Thus instead of taking the energy as 

proportional to at the lattice point, we integrated k2 over 

the box (kix ± w1 , kiy ± w2 , kiz ± w
3

). This overestimates the true 

energy. The energy we calculated is 

J ' 
box 

where r is measured from the center of the box so that ~d r = 0. 1 3 

(The term j~ · rd3r vanishes by symmetry.) The volume of the box 

is v = n3/abc. The first term gives the correct energy. Thus the 

correction to our calculated value is 

n
2 

l J 2 3 --- r dr 
2M v (12) 

Let us define a function w(r) such that the portion of the box that 

is in the shell between r and r + dr is given by w(r) dr. Then the 

correction may be written as 

112 l 100 2 
- 2M v r w(r) dr 

0 

•' 
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The function w(r) is zero when r is greater than the distance from 

the center of the box to its farthest corner. The total correction 

~l is just the above quantity multiplied by the number of lattice 

points which, to the lowest order, is given by 

Jl 3 l 
b q v 

Jl 3 l 11
2 
;· 2 - 6 q ,,2 2M . r w ( r) dr (13) 

The second simplification was made when we smoothed out the 

bumps and dips py assuming a smooth effective Fermi surface of radius 

q (Fig. 2) this amounts to re~oving the bumps and filling up the dips. 

Since the bumps are associated with a higher energy than the dips, we 

have underestimated the true energy. To calculate the correction to 

be denoted by ~ 2 , we proceed as follows. First we note that the 

bumps are portions of the orthorhombic boxes that stick out of the 

curved Fermi surface. For boxes that are at a fixed distance from the 

Fermi surface, we consider all the possible shapes of the bumps over 

the Fermi surface. Taking an average of such shapes, i:t turns out (see 

below) that we can represent an.average typical blimp by a series of 

portions of spherical shells centered at the center of the orthorhombic 

box with radius from zero up to the value equal to the distance from 

the center tothe farthest corner of the box. Then we calculate the 

change in average energy when we remove the portion. of a shell above 

the Fermi surface and fill up a similar portion below. Lastly we 
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average this change of energy with respect to the position of the box 

relative to the Fermi surface. The correction is shown as an 

integral over the series of spherical shells. 

Since w
1 

(w2 , w
3

) is m:uch smaller than q, we may consider a bump 

to be the portion of an orthorhombic box left when one cuts it by a 

plane Fermi surface at a distance d, say, from the center of the box. 

Over the Fermi surface the boxes are found to be cut in all orientations 

(Fig. 2). Let us assume that all orientations are equally probable, 

ther1 one may describe the box averaged over orientatj_ons by specifying 

the amount of matter in the shell between r and r + & where r 

is measured from the center of the box. This quantity is given by 

l 
- w(r) 6r v 

where w(r) has been defined before in connection with the Eq. (13) for 

l The factor 
v bas been included for normalisation since 

/w(r) dr v n 3 
abc 

For a shell between r and r + &, consider the portion 

outside the Fermi surface when the center of the box is at a momentum 

value k. (See Fig. 3) This is related to d, the distance of the 

center to the Fermi surface: 

d q - k 

.~ i 
I 
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The volume of the portion of the shell outside the Fermi surface is 

o 2nr(r - d) t:;r 

Its energy is given by 

l _lgo 
- t:;r 
0 . 

2 -n2 
rdG 2nr sin G(~ + ~) 2M 

0 

where eo is given by 

After some algebra one gets 

2M E 

11
2 B 

2 2 
k + r + k(r + d) 

Now consider a dip on the Fermi surface to be a similar portion of a 
-

shell below the surface (see Fig. 3), we would be looking at a box 

with its centre at a momentum of value k + 2d. Its energy is given by 

= 
2 112 

t:;r ·rdG · 2nr sin G(~ + ~) 2M 

A similar calculation gives 

2M E 

11
2 D = k2 + r

2 
+ 4d(k +d) - (k + 2d)(r +d) 

Thus the change in energy of the shell when we replace the bump by the 

dip J.s .• after simplification, 
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112 
2(k + d)(r - d) 2M 

112 
= 2q(r - d) 2M , 

where we h\ive made use of the relation, q = k + d. 

Now we average this change in energy over all possible values of 

k between q - r and q. This may be done by writing the total energy 

change, L'E, for such a shell over all the boxes on the Fermi surface 

(which is in the form of the curved surface of an octant) as follows: 

l
·r 

= q-r 

Carrying through the integral, we get to the lowest order, 

This corresponds to one of the shells of radius r. The total correction 

is then 

~ 2 ; J.6E w(r) dr 

:n: 3 1 {12 J 2 b q 2 2M r (J.J ( r) dr 
v . 

Hence we arrive at the result that to the lowest order the two correc-

tions ~l and ~ 2 add up to zero: 
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It is most remarkable tha~ the lowest order effects from two apparently 

unrelated sources (the replacing of lattice points by boxes in the 

volume of the octant, and the smoothing of bumps and dips on its surface) 

should cancel each other. 

Let us now look at the order of the energy correction ~l and 

s2 . We find that we can actually calculate ~l explicitly. Equation 

(12) gives the correction due to the replacing of a lattice point by 

a box: 

11
2 

l ---
2M v 

where have been defined in the last section to be half 

of the lengths of sides. The integration can be carried out trivially. 

The total correction ~l in just the number of lattice points N 

multiplied by the correction due to one such case. Remembering that 

v = 8w1w2w
3 

= n:3 /abc, we get, 

~l 

Expressing this in terms of the volume, n, surface area I: and 

integrated curvature !1. of the Hill-Wheeler box we finally obtain after 

some algebra, 
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This shows explicitly that the lowest order correction enters into the 

~/3 term in the energy Eq. (9). 

The above completes the proof that E' should be able to 

reproduce the true energy E up to the Nl/3 term. We show the 

numerical comparison of E and E' in the next section. 

3.E. Results and Comparisons of the Microscopic and Macroscopic 

Approaches 

We exhibit results from the microscopic and macroscopic 

approaches in this section. From the former, we obtain the exact total 

energy E (Eq. (6)). By the latter, the approximate total energy E' 

is calculated by successively including terms of order N, N2/3, and 

Nl/3 (Eq. (7)). In both these calculations we have assumed that N 

is proportional to n. 

In Figs. 4a-d, we show the energies as a function of the 

particle number N for a cubic box, an oblate box, a prolate box, and 

a box with three unequal sides. We display the energies also as a 

function of the deformation parameter a: (putting y = 0) in Figs. 

5a,b, which is on a somewhat larger scalet. In the latter case two 

t The exact results E as a function of deformation are the lowest 

possible energies at each deformation. They correspond to 1an adia-

baticprocess of deforming the Hill-Wheeler box. 
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systems are studied, one with N = 60 when a shell occurs at zero 

deformation, and one with N = 68 where no shell occurs at zero 

deformation. 

When we calculate E' only up to the volume term, i.e., the 

N-term, we find that the results give (at N = 60) about 70% of E. 

\<le can .make a correspondence between our calculated energies with the 

realistic nuclear energies, by requiring the density of particles in 

the box to be given by nuclear matter density (corresponding to a radius 

constant r 
0 

= 1. 2 fm ) . We remember also that we are filling every 

energy level with one particle whereas in the nuclear ·case there are two 

protons and two neutrons in each level. It then turns out that the 

calculated total.energy for N = 60 in the case of zero deformation, 

corresponds to 6914 MeV. in a nucleus of A= 240; the energy correspon-. 

ding to the N-term is 4830 MeV. The figures also shows that the difference 

increases with increasing l\J. As a function of deformation a, E' is 

a constant (not shown in the figures),.whereas E increases with 

deformation. 

The inclusion of the N2/3 term in the calculation of E' 

improves the picture substantially. Values of. E' are still smaller 

than E but the difference is less. At N = 60, E' is 6675 MeV 

which accounts for 97% of the true value. The difference is a less 

rapidly varying function of N. Also as a function of deformation, 

I I 



E' now represents the trend of E fairly wellt, though there is a 

difference in absolute values. In Figs. 6a-d and 7a,b we plot the 

differences between E and E' both as a functionof N and as a 

function of a on a much expanded scale. The differences are shown 

to be increasing slightly with N or a. 

The further inclusion of ~/3 term in the calculation of E' 

seems to be capable of reproducing the exact energy E very well. In 

Figs. 4 and 5 there appears to be no difference at all on the scale 

used. In the Figs. 6 and 7 where the differences of E and E' are 

plotted on a much expanded scale we find that E' is still slightly 

below E. The mean difference over N values is only about 14 MeV 

putting E' within 99.8% of the exact value. The difference is 

expected tobe in the N° term, and we find indeed that it does 

appear to be constant as a function of N. It also appears to be 

fairly constant as a function of a, apart from local fluctuations. 

The strong convergence of the various terms in the macroscopic 

result E' to the exact result E is illustrated by listing below the 

contributions from these terms for the case of N = 60: 

t Hill and Wheeler6 ) in their work show a graph which appears to 

indicate that the trend of E' to order N2/3 is quite different 

from that of E. However as was pointed out by My-ers and Swiatecki4), 

there seems to be a mistake in their plot though their -equations are 

correct. 

It/ 
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N-term 4830 MeV 
2/ . 

N .3_term 1845 Mev· 

~/3_term 225 MeV 

0 . 
N -term + Rest 14 MeV 

Exact result E 6914 MeV 

It thus appears that by including enough terms in E', the exact 

result E may be reproduced very closely by the macroscopic calculation. 

Let us study further the difference between the true result E 

and the result E' · where terms up to the ~ /3 term have been 

included. In Figs. 6 and 7 we see a wiggly structure in the differences 

both as a function of N and as a function of a. A dip in energy 

occurs where there is a shell. Thus the difference between E and E' 

furnishes a convenient way of studying the shell effects. For zero 

deformation (Fig. 4a) we find'shells at N = 1, 4, 17,35:. 38, 60,··· .. 

These correspond to gaps in the single particle level diagram (Fig. 1). 

We note that the occurrence of shells is associated with a given 

deformation. For instance, the N = 60 shell for zero deformatiem is 

completely removed when the shape becomes prolate (a = 0. 25, y = 0) 

as shown in Fig. 4c. In this prolate ease shells appear at N = 7, 14, 

27, 54,···, bearing little resemblance to the positions of shells ~t 

zero deformation . 
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3.F. Summ&ry and Conclusions 

In this part of the thesis we have considered the model of 

noninteracting spinless Fermions in a Hill-Wheeler box. The exact 

values of the total energy as a function of the particle number N and 

the shape of the box were calculated. This is a prototype of the 

microscopic Nilsson model calculation
2

). In the macroscopic approach 

the energy is found as a liquid drop type of expression, i.e., as an 

expansion in -1/3 N with terms dependent on the volume, surface area, 

and integrated curvature of the system. It is found that as one 

successively includes terms of orders N, 2/3 113 . N , and N · · , the results 

converge very quickly to the smooth average of the exact results. 

Hence we see that the liquid drop type of expression for the 

energy is applicable even in the present case which assumes no inter-

actions between particles and is in fact a pure shell model. The 

applicability is based only on the fact that the system we are consider-

ing is leptodermous. 

In application to nuclear problems the liquid drop type of 

expression is usually truncated at the leading volume, surface, (and 

curvature) terms. A question may be asked how bad is such a truncation. 

This has been discussed by Swiateckil3). The main point is that in 

practice the coefficients of these leading terms are adjustable para-

meters chosen so that the masses of all nuclei in the periodic table 

as well as the known fission barriers are approximately reproduced. This 

means that any smoothly varying higher order terms are partly absorbed 

in the leading terms. Although this compensationcannot be perfect, 
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only a fraction of these smooth higher order terms wiil not be .accounted 
0 

for. On the other hand, rapidly oscillating terms, such as the single 

... particle shell corrections neither remain constant throughout a nuclear 

deformatinn, nor can they be absorbed in the smooth leading term. 

All these discussions lead one to a hypothesis that for a 

nucleus (which is a leptodermous system: See Part II), the liquid drop 

type of energy expression with the first few terms gives correctly the 

smooth average trends both as a function of the nucleon number and as 

a function of the deformation. The single particle shell effects may 

be considered as local wiggles superimposed on these smooth trends. 

This is the basic philosophy behind the method of the synthesis of a 

microscopic model and a macroscopic model that will be presented in 

Part V of this thesis. 

'; 
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4. On the Symmetric Saddle Point Configurations 

of a Charged Conducting Drop 

4.A. Introduction 

In this part of the thesis, we turn. to a pure liquid drop model 

study of fission of a charged conducting drop whose charges reside on 

its surface. Such a model is in contrast to the usual liquid drop model 

of nuclear fission which assumes a liquid drop with charges uniformly 

distributed throughout its volume. Nevertheless it is interesting to 

carry out a theoretical and an experimental investigation on a charged 

conducting drop as a parallel to the theoretical and experimental study 

of nuclear fission. Beginnings in this direction have been made14 ). 

Furthermore the charged conducting drop is also interesting for its own 

sake and for its role in the cloud physics and other fields15 ). 

In 1882 Lord Rayleigh published a paper on the stability of a 

charged conducting sphere16). If one had combined the results of this 

work with the semi-empirical nuclear mass formula due to Weizsacker17) 

in 1935, one would have been led to expect nuclear fission. It even 

turns out that the criterion for the stability of a charged conducting 

drop is identical with the criterion for the stability of the nucleus 

against fission. Ryce and collaborators14 ) in 1964, 1965, and 1966 

considered some simple aspects in the splitting of a conducting drop. 

They looked at only the initial and final stages of the fission and 

speculated on features that could possibly be applied to nuclear fission. 

Very recently at the International Symposium on Electrohydrodynamics 

(192~9) more studies 15 ) on the charged conducti~g drop were reported. 

., 
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It is the purpose of this present work to study the first stage 

of the theory of fission of a conducting drop, i.e. , its statics. In 

particular we have determined approximately, the most important symmetric 

equilibrium configurations .·of the drop. The· similarities and differences 

of the conducting drop and a volume charged drop are also discussed. 

4.B. Basic Concepts in Fission Theory 

In this section we shall review some basic concepts and results 

' th th f 1 f' . lS) F ' 'bl l 1n · e eory o nuc ear 1ss1on . or an 1ncompress1 e vo ume 

charged drop, two forces are acting: a Coulomb force which tends to 

break up the drop and a surface tension which tends to keep it together. 

A quantity of importance is then the ratio of the Coulomb energy and 

the surface energy. One may define what is called the fissility para-

meter, x, as 

where E (o) 
c 

E .c 
X 

2E 

and E (o) 
s 

( 0) 
Q,2/R Q,2 

(o) 
~· cc 

R2 v ' 
s 

are Coulomb and surface energies of a sphere 

with charge Q,, radius H, and volume V. For x < 1, the spherical 

drop is stable with respect to deformations and for x > 1, the Coulomb 

force is greater than the surface tension and the drop is unstable. 

Let us write down the energy excess of a deformed drop over the original 

spherical drop as 

E - E (o) + E 
s s c 

- E (0) 
c. 

E (o)(B - l) + E (o)(B - l) 
s s c c 

E (o){(B - l) + 2x(B - l)} s s c . 
,. 
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where Es and Ec are the surface and Coulomb energies of the drop 

and the superscript (o) implies that the quantity is evaluated for the 

case of a sphere. Also B = E /E ( 0 ) and 
s s s B = E jE ( 0) 

If we . c c c 

(o) E then s is just the 
s define s as the energy excess in units of 

above expression divided by E (o) 
s 

B - l + 2x(B - l) s c 

In Fig. 8, we sketch the behavior of s as a function of 

deformation for a particular value of x < l. Tbe configuration at 

zero deformation, i.e., a sphere, is a potential energy minimum. The 

energy is increased as one deforms the drop until a point is reached 

where the disruptive Coulomb force is dominant and the drop undergoes 

fission. The configuration corresponding to the point where the drop 

will start dividing of its own accord is called the saddle point shape. 

It is unstable with respect to the deformation leading to fission. 

Obviously the curve will be different for different values of charge 

on the drop, i.e., different values of x (see Fig. 9). Tbus for 

x > 1, the sphere is at a potential maximum. 

Let sR denote the difference in energy between the 

initial sphere and the final fragments at infinity in units of E ( o). 
s 

For division into two equal spheres which is illustrated in the figure, 

sR 0 at x = 0.35. For x > 0.35, sR < 0, and for x < 0.35, 

~R > 0. In the general case of division into n equal spheres, a 

general formula19) may be written for sR. The charge on each sphere 

'" 



is Q/n and its radius is (R3 jn)l/3 = R n -l/3 , so that the Coulomb 

energy of the n spheres is ·n multiplied by the Coulomb energy of 

each sphere: 

E c 

B c 

= n d. (gj.~n 2 
5 :-:::-=IT3 ·. R n ·. 

d. .9: n-2/3 
5 R 

n-2/3 

Total surface energy of the n spheres is 

E s 
-'l/3 2 

Y n • 4rr(R n ) = 

B s 
n l/3 

Hence the.energy excessl9) over the sphere in units of 

= (nl/3 - l) + 2x(n-2/ 3 - l) 

E (o) is 
s 

This· is shown in Fig. ·10, where ~he energy release ~R· is plotted 

against x for division into two, three, four, up to eight equal 

spheres. For each value of n, the plot is a straight line. The 

(15) 

straight line for n = 2 goes through zero at x = 0.35. For .x < 0.35, 

the sphere has the lowest energy. For 0.35 < x < 0.61, the division 

into t.wo spheres gives the lowest energy. For 0.61 < x < 0.87, the 

,I. 
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division into three equal spheres gives the lowest energy. Finally, 

for 0.87 < x < 1.12, the division into four equal spheres gives the 

lowest energy. 

In fig. 11, we present the shapes of a volume charged drop at 

the saddle point as found by Nix20 ), so that we can compare it with the 

results we are going to obtain for a surface charged drop. The 

abscissa gives the fissility parameter x from 0 to l. The ordinate 

gives RMIN/R and RMAX/R as a measure of the shape, where for an 

asymmetric shape radius RMIN is the minimum radius of the neck of the 

drop and the two maximum radii RMAX are the distances from the center 

of the neck (at its minimum radius) to the two ends of the drop. For 

a symmetric shape the two maximum radii are equal. 

Along RMAX/R 1 is the sphere which is at a potential energy 

minimum for all x < 1. The rest of the curves represent a family of 

reflection symmetric saddle point shapes and a family of reflection 

asymmetric saddle point shapes. The two families cross each other at 

x = 0.396. Their shapes are schematically indicated in the figure. 

A point to notice is that along the symmetric family there is a fairly 

rapid change in the trendof ~x/R0 at x values around 0.7. It 

is found below (Sec. F) that for a conducting drop a similar change 

occurs at a larger value of x. 

4.c. Comparison of a Conducting Drop and a Volume Charged Drop 

In the last section we have reviewed some basic properties of 

a volume charged drop. In this section we shall point out some simil-

arities and differences in the properties of a conducting drop and of a 



.. 

volume charged c'l.rop. For a conducting drop the fissility parameter x 

can be similarly defined as the ratio of the Coulomb energy to twice 

the surface energy evaluated for a conducting sphere. T_he equation (14) 

for the energy,excess s will be the same as for tbe volume charged 

drop case except that the Coulomb energies will now be evaluated on the 

assumption that the drop is conducting. 

Let us first consider the similarities. 

(l) For x = 0, there is no charge on the drop so that the 

equilibrium shapes are the same whether the drop is conducting or not. 

For x = 1, it turns out nontrivially that as in the case of a volume 

21) charged drop· , the Coulomb. force is just balanced by the surface 

tension for a spherical conducting drop. 

(2) A second similarity is apparent if we look at the energy 

difference s' from the initial to the final state when the drop is 
R 

divided into equal spheres. We have described this in detail for a 

volume charged drop in reference to Fig. 10. When we make a similar 

study for a conducting drop, we get completely identical straight lines 

and conclusions. The reasion is that only spherical shapes are involved 

in both the initial and final states, and the Coulomb energy of a 

volume charged sphere (which is ~ Q,
2 /R) and that of a conducting 

Sphere (whl. ch l. s -12 Q.
2./R) a· ff b 1 · 1 f t . l er y on y a numerlca ac or, 6/s, 

that is the same for both states. Hence B and B are the same for 
s c 

both cases and the same energy Eq. (15) holds good. 

(3) It also turns out that the Coulomb energy of a volume 

charged ellipsoid and that of a conducting ellipsoid differ also by the 
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same numerical factor. Thus the Coulomb energy of a conducting ellipsoid 

. . b 22) 1s g1ven y 

so that 

B c 

l 2 2 2 2 _l 

f
oo 

~ Q 

0 

[(a + ~)(b + ~)(c + ~)] ? d~ 

f
oo 

l 2 2 2 _l 
2 R [ (a + /<.) ( b + ~ )( c + ~) ] 2 d~ 

0 . 

where a, b, and c are the lengths of the axes of an ellipsoid. The 

B for a volume charged case turns out to be the same
23). Tn the case 

c 

of a prolate spheroid b = c we get on integration 

where 2 
e 

B c 

2 2' 
l - a /c . 

l 
R .en 2ae (~) l - e 

Since R3 2 ac we get 

For an oblate spheroid, we can just set e to 

and find 

ie and 2 
e to 2 

-e ' 

These expressions for Be hold good for both a volume charged drop and 

a conducting drop. Hence if we make the drop to take on only ellipsoidal 

shapes, then any conclusions about the statics of the volume charged 

drop will be true for the conducting drop. 
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Now let us look at some differences between the two cases. 

The first difference between the volume charged drop and a conducting 

drop can be found if we consider the division of the drop into two unequal 

spheres at an infinite distance apa.rt, one with volume f3V and the other 

with volume (l - f3)V. In Fig. 12 is plotted the energy change ~R 

between the initial and final states24 ) as a function of f3 for various 

values of the fissility parameter x. For f3 = 0 and f3 l we get 

a sphere with volume V which is just the initial state. For f3 = 0.5, 

we get two equal spheres. The energy change is zero at x = 0.35 for 

f3 ·= 0.5, as was pointed. out above in connection with Fig. 10. For a 

conduction drop Fig. 13 is found24). We note that here again the energy 

is zero at x = 0.35 for f3 "" 0.5 consistent with our previous statement 

that Fig. 10 also applies to a conducting drop. Except for the points 

at f3 = 0, 0.5, andl.O the curves in the two figures are very different. 

A potential minimum for a volume charged drop occurs at f3 = 0.5 for 

x > 0.2, but a potential maximum for a conducting drop occurs at f3 = 0.5 

for all x values less than one. In the latter case minima occur at 

points where the fragments are unequal. 

The major reason for the above difference is that the charge 

to mass ratio for the volume charged drops is a constant, butfor the 

conducting drops it is not required to be a constant. This is also the 

underlying cause for the second difference that appears when we try to 

find the configuration with the absolute lowest energy for a drop with 

a given fissility parameter x. For a volume charged drop, this 

configuration is n equal droplets at infinityl9) and the number n 
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depends on the x value of the drop [Eq. (15)]. One would at first 

expect that the same conclusion might hold for a conducting drop. But, 

as we shall show, for a conducting drop, the configuration at the lowest 

energy is one with all the charges Q on the drop taken off and 

distributed among many infinitesimal droplets at infinity. It turns 

out that the total energy of the droplets lnay be made to vanish and we 

are just left with the surface energy of the original drop. The possi-

bility of such a configuration is shown as follows. Let 
1 of the 
n 

original drop of radius R be taken off carrying all the charge Q,. 

This is then divided into m equal spheres, each with a charge Q/m. 

Thus for each sphere the sum of the Coulomb and surface· energy is 

Hence the total energy of the small spheres is m times this quantity: 

4 R2 l/3 -2/3 n y m n 

Now let us choose -s m cc n 

to 
I 

s 

3 + 

-2 
m · m 

1 Q,
2 

1/3 -2/3 +-- n m 
2 R 

The energy of the droplets is now equal 

' 

which is zero when n goes to infinity provided 

l 
-2 < s < -2 
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and we obtain the proposed configuration. In other words, we have made 

the Coulomb energy of the given drop zero by dispersing the charges onto 

an infinite number of infinitesimal droplets without increasing the 

surface energy by a finite amount. 

4.D. Parameterization of a Conducting Drop 

In the remainder of this part of the thesis we shall try to 

determine the equilibrium shapes of a charged conducting drop. 

The calculation of the Coulomb energy of a conducting drop 

with an arbitrary shape is in general a difficult problem. We have 

side-stepped this difficulty by requiring the drop to assume a pres-

cribed family of shapes, and have in fact made the calculation of its 

Coulomb energy a trivial matter. It is well-known from the theory of 

electrostatics25) that the electric potential of any system of charges 

is the same at every point outside any equipotential which surrounds 

all the charges, as that of the same total charge spread over a 

conductor that has the shape of this equipotential. Hence we require the 

drop to assume the shape of an equipotential of potential a: due to a 

system of point charges with total charge Q.. Then if we put the 

charge Q on this conducting drop, its potential is equal to a:, and 

its Coulomb energy is just 1 2 a:Q .. 

Consider an example of two equal point charges. The shapes of 

equipotentials that enclose the point charges are shown in Fig. 14, 

where the volumes of the shapes have been,normalised to the same value. 

vJe shall refer to these shapes as the symmetric N = 2 family since 



they are generated with two point charges and are reflection symmetric. 

Each of these equipotentials is associated with a potential a:. Then 

the Coulomb energy of a drop with this shape is 1 2' o:Q where Q is 

the charge on the drop. If R is the radius of a sphere that has the 

same volume as the drop and possesses the same amount of charge, its 

C l b . ~ Q.2/· R . ou om energy ls , ,_ Hence we get 

(16) 

The surface energy relative to that of the sphere B 
s 

can simply be 

found by calculating its area numerically. Hence for a given fissility · 

x the energy of the drop is calculated [Eq. (14)]. Eouilibrium shapes 

a.re then the shapes whose energy is stationary. 

The symmetric N -= 2 family has only a very restricted series 

of shapes. However it is easy to increase the possible shapes by 

looking instead at the shapes that correspond to the eguipotentials of 

a larger number of point charges. We have put the charges on a straight 

line so that all our shapes remain axially symmetric. The reflection 

symmetric N = 3 family is generated with two equal charges situated 

at equal distances on opposite sides of a third point charge. The 

shapes are shown in Fig. 15. They include the symmetric N 2 family. 

Similarly we can go on to N = 4,5,··· family of shapes. 

Let us consider in general the N-family of axially symmetric 

shapes. To specify the situation we need to give the magnitudes of the 

N voint charges and their positions as well as the value of the poten-

t.ial ,,n the equipotential we are looking at. These are 2N + l numbers. 

• i 

! 
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·However not all these numbers are required to specify a shape. Three 

numbers may be arbitrary: (1) The center of' mass of all the point 

charges may be at any point in space; (2) The total charge may be fixed 

beforehand; (3) We can also preset a scale by which the distances 

between the point charges are measured. The first point just puts the 

drop at any place in space, while the last two points just introduce a 

scaling factor into the volume of the shape, which will be taken care of 

when we calculate B and B eventually. Hence we set the sum of all s c 

the point charges to be unity: 

We also place the charges on a horizontal axis with the end charges at 

positions -0.5 and +0.5 with respect to the origin, and specify the 

relative positions of the other charges in units of the distance between 

the end charges. 

-o.s < .e. < o.s 
l-. 

Thus we are left with 2N - 2 parameters. (For reflection symmetric 

shapes, the distribution of point charges and their magnitudes are 

reflection symmetric with respect to the origin and we have only N - 1 

para1neters.) 
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Let u. be the distance from the point charge i to any point 
l 

on the equipotential surface. Then a point on this surface may be 

specified by the symmetric and antisymmetric variables v and w given 

by 

v 

The surface of the drop cuts its axis at w = ±l and cuts the plane 

through the origin perpendicular to its axis at w = 0. The distance, 

y, of this point from the axis and its position along the axis z, as 

well as u. and the value of the electric potential a can be found 
l 

to be given in terms of v and w as follows: 

1 
z 2vw 

2 y 1 2 2 4 (1 - w )(v - 1) 

2 1 2 2 (f - t/) u. 4 (v + w ) - vw £. -
l l 

N 

~ 
q. 

l 
0: 

u. 
i:=l l 

or 

N 

I qi 
0: 

(1 2 w2) (f - t/)] 2 i=l 4(v + - vw£. -
l 
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Since a is given as one of the parameters, we can use the last equation 

to solve for v when· w is given. 
--· 

The.total volume v and surface area s can be written down 

·v .. ·j· nY2. dz dw dw _ 

r .. 2 21__ 
. · 2n y( dz + dy ) 2 

I 2" (iC~~f + ~ Gw lY)f dw 

Then we can find R from. 

4 3 v 
3 

:n:R = 

and 

B 
s 

4rrR2
> 

'· s 

B - aR c 

We sha:ll .find later that we require the curvature K and the electric 

field -€ at any point on the surface, which may be shoWn to be give!) 

by 

c 2y2 + -(c z - c)2 
0 -0 . 1 

K 



where the prime superscripts denote derivatives with respect to z. 

The coefficients C
0 

and c
1 

as well as the derivatives that enter 

into these equations are listed below: 

where 

dv 
dw 

dz 
dw 

d(y2) 
dw 

d(y2) 
dz 

~ (v + w ~:) 

1 
2 

-2 + .§_~D - ClDl) - 6Cl ~· - ClDo) 
c 2 c c 2 1 c 

0 0 0 
0 

l: q.ju.3 
l l 

L: qit)ui3 

r q./u.s ....., 
l l 

I q.£./u.5 
l l l 

L: 2 s q.£. ju. 
l l l 

• 
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4.E. The Determination of Equilibrium Shapes 

In our numerical calculations, we have restricted the drop to 

assume only reflection symmetric shapes. Thus we have chosen the 

magnitudes and positions of the point charges such that they are 

reflection symmetric with respect to the origin. As discussed in the 

last section, a total of N - 1 parameters will specify the shape. 

Let us denote them by p (P1 P2 • · · PN_1 ). The energy of a conducting 

drop with fissility x in units of the surface energy of a sphere of 

equal volume is then 

~(p) - Bs - 1 + 2x(Bc - 1) 

Let fi be the derivative of ~ with respect to p .. 
1 

Then f. (p) = 0 
1 

if p represents the equilibrium shape. Expanding f. (p) 
1 

about the 

parameters p, we have, 

fi(p) = 

to the first order; Since the left-hand-side is zero,. 

[6p. 
of. 

f. (p) 1 
= 1 J dpj 

j 

(17) 

The factors 6p. are the differences of the parameters p from the 
J 

equilibrium values p. Thus for a given fissilH.y x, a first guess of 

the parameters p close to the equilibrium values is made, and f. 
1 

and its first derivatives are calculated numerically. Then solving the 
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system of simultaneous linear Eqs. (17), (i = 1,2, · · · ,N-1), we obtain 

corrections 6p. to the guessed values. Corrections to successive 
J 

guesses are found until they are less than a prescribed accuracy. Then 

the parameters finally obtained are assumed to describe an equilibrium 

shape and the energy of the drop is calculated. By calculating and 

diagonalising the second derivatives of the energy with respect to all 

the parameters, we find the number of co-ordinates with respect to which 

the equilibrium point is a maximum and the number of co-ordinates with 

respect to which it is a minimum. 

The shapes generated even by a large number of point charges 

are not general enough to represent an arbitrary shape. Thus an 

oblate shape cannot be found in our scheme. This raises the question 

whether the equilibrium shapes we have determined are indeed true 

equilibrium configurations when the drop is free to take on any arbitrary 

shape. To answer this question a criterion will be developed to test a 

given shape for equilibrium. (A similar criterion exists for a volume 

charged drop21 ).) 

If we deform a conducting drop at equilibrium by specifying a 

normal displacement · 6n of the surface element dS without affecting 

its total charge, the Coulomb energy change is found to be25) 

6E c - J ~ cr C 6n dS 

The change in surface energy may also be found: 

.. 
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~ ; y . J· K on dS 

where y is the surface tension coefficient. The total energy change 

is 

oE == 5E +5E 
c s 

Subtracting ondS . t:lmes a Lagrange multiplier k to ensure .conserva.:. 

tion. of volume and equating the- integr,and to zero (for equilibrium 

shap\=s) gives 

k 

By Gauss' Theorem, 

. . . k 

YK-
1 ae. 2 

2 
£.__ 

YK- 8rr 

Q 
•. 2 2) . c &__ .. 

y Ko ~0 -:- :::-8 __ rr_Y.:.,
0

_Ko_;. e 2 · ... 
. 0 

where wehave introduced .K as the curvature on a sphere with the saine 
0 

volume as the drop and £:
0 

· to be the electric field on· the sphere~ 

Since 

.1 •• : \., 
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E (o) 
c l 

X 
2E (o) 

s 

= 
~0 

k (18) 

The Lagrange multiplier k is determined by considering the 

effect of a uniform change of scale (while keeping Q, constant) on the 

shape satisfying Eq. (18). If 5m is the nonvolume-preserving dis-

placement of the surface associated with the change of scale and 5V 

is the corresponding volume change, Then 

5E = J ( YK - ~ a e ) 5m dS = k f 5mdS 

On the other hand by dimensional considerations, 

E s 

E c 

cc 

cc 

E(V + 5V) 

5E ! E 5V + ~ E 5V 
3 c v 3 s v 

Comparing with Eq. (19), 

k ! E l 2 l 
3 c V + 3 Es V 

k5V (19) 
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Expressing all quantities in units of their values for a sphere we get 

after some algebra, 

k y K (B 
0 s 

xB ) c 

Comparing Eqs. ( 18) and ( 20); we get 

2 
K E:. 
K X [) 2 

0 
0 

l 
B - xB 

s c 

(20) 

Thus for an equilibrium shape, any point on its surface should satisfy 

6 = 0, ·where 6 is given by 

2 
K L -.-

X £, 2 K 
0 

6 
0 

l -
B - xB s c 

As a measure of the deviation from equilibrium we can define a root-

mean-square value of 6· over the surface of the drop: 

RMS ( r 161 2 dS)~ 
... 

If RMS << 1, the drop is close to equilibrium. If RMS > 1, the shape 

is far from equilibrium. This quantity will be used as a measure of how 

close tbe shapes we have determined are to the true equilibrium. 
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4.F. Results 

The results for symmetric equilibrium shapes of a charged 

conducting drop based on a·family of shapes generated by two, three 

up to six point charges are shown in Fig. 16 as a series of curves. 

The figure is equivalent to Fig. 11 for a volume charged drop. The 

series of curves with different N values are just successive orders 

of approximation of the true equilibrium shapes. One would hope that 

for a high enough order of approximation, the results may be very 

close to the true ones, so that an even higher order will change the 

results very little. Typically, for successive orders the RMS values 

improve by a factor of two. For N = 6 parameterization, RMS ~ 0.01 

for x close to 1 and x < 0.8, and RMS ~ 0.1 for x ~ 0.9. This 

indicates that for x < 0.8 and x rv 1.0, the shapes we obtain are 

close to true equilibrium shapes, but for x rv 0.9, there are more 

uncertainties. By studying the change of RMS values at x rv 0.9 for 

successive approximations, we find that the RMS values decrease very 

·slowly in this region, much less than factors of two. This indicates 

that our model of a conducting drop using the equipotential surfaces of 

point charges is probably not good enough for x rv 0.9. A more general 

or appropriate family of shapes appears to be in demand here. Hence 

one should regard the calculated results in this region with great 

reservations. 

Let. us take the N = 6 curve at its face value and examine its 

main features. As we follow the curve from x = 1 toward small x 

values, the equilibrium shape elongates from a sphere, i.e., RMAX/R 
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increases with decreasing x in the region near x = 1. This is in 

contrast to cases of small x values (x ~0.7) where RMAX/R is 

slowly decreasing with decreasing values of x.. The shape's in the 

latter cases are long and look like a dumbbell. (see also Fig. 17) 

Similar to a volume charged drop there is a rapid change of shape, but 

occurring at x-;:, 0.9 in the preserit case. Actually the curve for 

RMAX/R even turns back at s = 0. 887 and again at x == 0. 906. However 

it is in exactly this region that our results become unreliable and the 

double turn might be spurious (see Refs. 26 and 27 for a similar 

uncertainty which once existed in the volume charged case). 

Let us now consider the nature of these equilibrium shapes by 

looking at the signs of the second derivatives of their energy with 

respect to ail the parameters. The following results are found when we 

restrict the shapes to only the degrees of freedom that allow reflection 

symmetric shapes. For 1 > x > 0.887 the energy of the drop is a 

maximum in one degree of freedom, but a minimum in the other N - 2. 

Between the bends, for 0.887 < x < 0.906, the energy is a minimum. 

For values of x smaller than 0.906, it is again a maximum in one 

degree of freedom. With respect to the degrees of freedom that describe 

reflection asymmetric deformation, the energy of the drop is a minimum 

from x = 1 to x = 0.892. From x = 0.892 to x = 0.68 it is a 

maximum in one degree of freedom. Below x = 0.68 it appears to be a 

maximum in, two degrees of freedom. The implication of the change of the 

number of degrees of freedom with respect to which an equilibrium shape 

has a maximum energy is part of a general problem of the trend of 
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equilibrium shapes as a function of a parameter x, which has been 

discussed by various authors26, 28, 29). One may classify the equilibrium 

shapes into three types. The first is a minimum, i.e., the system is 

stable in all directions. Tbe second is a saddle point, at which the 

system is unstable in only one direction, i.e., it is a maximum in this 

direction. Physically this corresponds to a pass in a mountain range. 

The system has to go over the saddle point to get from one side of the 

range to the other. The third is what we shall call a "mountain top", 

at which the system is unstable in two or more directions. Thus in a 

subspace containing these directions this equilibrium point appears as 

a mountain top. Looking at the equilibrium shapes we have obtained with 

reference to both the symmetric and asymmetric degrees of freedom, we 

can distinguish the various types. The equilibrium point is a saddle 

from x = 1 to x = 0.892. From x = 0.892 to x = 0.887 it is- a 

mountain top. Between the bends at x = 0.887 and x = 0.906 it is 

again a saddle. For x smaller than 0.906, it turns out to be a 

mountain top. As discussed before the saddle point close to x = 1 i-s 

fairly well determined, but at the bends the results are no longer 

reliable. 

In Fig. 18 we show the energy of the symmetric equilibrium 

shapes above that of a spherical liquid drop. It has an overall trend 

of an increase with a decrease of x, but it also exhibits kinks cor-

responding to the region of a bend shown in Fig. 16. In Fig. 17 we 

display several shapes along the N = 6 curve. Their RMS values are 

also indicated. 

•.. 
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4.G. Summary and Conclusions 

We have looked at the static properties of a charged conducting 
\ 

drop and compared them with a volume charged drop. We have- discussed 

the similarities as well·as some of the differences. The symmetric 

equilibrium shapes of a conducting drop are determined with reasonable 

confidence for x values not in the neighbourhood of x = 0.9. At x 

close to 0.9 the shapes found may not approximate the true equilibrium 

shapes adequately. The next step would be to try to use another param­

eterisation (e.g. that introduced by Nix18) )· so that ~quilibrium shapes 

at these values of x are determined with greater reliability. This is 

important because it is in this region that we find interesting stability 

features, such as the occurrence of a bend in the family of equilibrium 

shapes and of points at which there is a_change in the number of degrees 

of freedom with respect to which the shape has a maximum energy. 

It is interesting to note that even some eighty years after 

Lord Rayleigh's study of a charged conducting drop, the whole problem 

is still a very open subject. We have been able to determine the saddle 

points of a charged conducting drop for values of x between l and 

0.892. But for the region of x from zero up to 0.892, one is still 

very ignorant of the saddle point shapes and energies of a charged 

conducting drop. 

' I 
t 
j 

r 
! 
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5. On the Synthesis of the Liquid Drop Model 

and the Nilsson Single Particle Model 

With Applications to the Study of Shape Isomers 

and the Stability of Superheavy Nuclei 

5.A. Introduction 

In the first three parts of the thesis we have referred, from 

several angles, to the idea of synthesizing a macroscopic and a micro-

scopic model. In this part, which represents joint work with the authors 

quoted on p. 4, we shall attack the problem directly and study in 

detail the synthesis of the liquid drop model1 '
4) and the Nilsson single 

particle model2'3). 

We shall begin by describing the Nilsson model on which the 

microscopic calculatio~ is based, and also a calculation of the most 

important re:sidual interaction that is not included in the model. This 

residual interaction is the pairing force30) which is responsible for 

the familiar odd-even mass differences. The description will be very 

brief both because it is not directly relevant to the main theme of this 

work and also because the materials have already been published3l). 

Details of the single particle calculations may be found in these 

references. In a similar manner the liquid drop mass formula due to 

Myers and Swiatecki4) is briefly described. Then the method of the 

synthesis of these two models is discussed in detail. The unified 

model is applied to give nuclear masses and deformations with very 

good agreement 1d th experimental values. The calculations suggest the 

existence of metastable states of nuclei that correspond to nuclear 

I, 

...... \ 
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shapes different from the ground state shapes. These shape isomers3
2

) 

are believed to be associated with the experimentally studied spontaneous 

fission isomers that occur in the actinide region. Some comparisons 

between theory and experiments are made. We next turn to the study of 

superheavy nuclei in the neighbourhood of Z = 114 

which are predicted.to be relatively stable33,34). 

i. 

and N = 184 - 196 

Half-lives of alpha 

decay and spontaneous fission as well as stability against beta decay 

are calculated for the actinide elements as well as for these superheavy 

nuclei. By these quantitative studies we find that these superheavy 

nuclei could have very long total half lives. Several of them might 

even have life times comparable to the age of the solar system. A 

discussion is given of their possible production and of the most 

favorable candidate for survival in earthly matter and in primary 

cosmic d
. t .. 34) ra la lon . ' 

5.B. Single Particle Calculations 

The single particle calculations3l) ar.e based on the Nilsson 

model which assumes that the neutrons or protons move in a harmonic 

oscillator potential whose shape is described by two deformation para-

meters E and E4. The parameter E describes a spheroidal deforma-

tion and the parameter E4 describes a necking-in or bulgiag-out l'lear 

the waist of the spheroids. Only axially symmetric and reflectiem 

symmetric shapes have been considered. The shapes+ in the ( E, · E4) 

plane are shown in Fig. 19. The relation of E and with the 

commonly employed deformation parameters, a:
2 

and a:4 given by 

t It is seen in the figure that the shapes for E4 f. 0 is too "rec-

tangular" and is probably not good enough a description of the real 

nucleus. 
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R = R
0
(l + a

2
P

2 
+ a4P4 +···)is shown in Fig. 20. ·The usual modifica­

tion of the harmonic oscillator potential by the addition of a spin-orbit 

coupling (~ · ?) is employed. A further modification is made such that 

effectively the central part of the harmonic oscillator, which is 

originally a parabolic shape, is flattened to some extent. Two para-

meters K and fl are associated with these two modifications and they 

are adjusted to reproduce experimental energy level spectra. 

The Nilsson model has been applied with great success to the 

known nuclei. However one may question its reliability when one tries 

to apply it, in extrapolation, to very heavy nuclei far beyond the 

presently known region. One may suggest that a Hartree-Fock calculation based 

on detailed knowledge of nuclear forces may be more reliable. But the 

large number of matrix elements associated with the interactions among 

the great number of particles involved makes such a calculation imprac-

tical with presently available computers. A more realistic one-body-

central potential than the Nilsson potential described above is the 

Woods-Saxon potential36) shape with a constant surface diffuseness. 

Several groups are currently studying this potential. So far this 

problem has not yet been adequately solved for strong deformations. On 

the other hand the Nilsson model has been studied for rather large 

deformations and is fairly well understood. Thus we consider the Nilsson 

model to be the be·st available microscopic approach for our purpose 

of calculating the nuclear binding energy. 

The two shell parametes K and fl have been adjusted by 

Gustafson et.al.3) to approximately reproduce the experimental level 

,.., 
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schemes for the rare earth nuclei (A ~ 165) and the actinides 

(A ~- 242). We take these values and for the other regions we assume 

K and fl to vary linearly with A. The parameters used are tabulated 

in Table 2. The .. results of the calculations reproduce the known magic 

numbers. For the A ---: 300 region, we find the proton number 114 to be 

a fairly good magic number, confirming previous results33). In this 

region we find, besides the magic neutron number 181J. that is generally 

expected, also the magic neutron numbel196. These results are shown 

in Figs. 21 and 22, which also shows the level schemes obtained by 

Rost35) who used a spherical Woods-Saxon potential36 ). Although in 

detail considerable differences are found, there is an overall agreement 

in the prediction of low level density for spherical shapes for 
f 

Z = 114 - 126 and for N = 178 - 184. We show for illustration in 

Fig. 23 the Nilsson diagram for protons in the A ~ 298 region. A gap 

exists in the level density for the spherical nucleus at Z = 114 which 

is a proton shell. At each particular deformation, the potential energy 

can be found by filling upthe levelswith nucleons. The energy of 

the highest level that is filled is called the Fermi energy. 

5 .C. The Pairing Force 

The average interaction among the nucleons ha·s been represented 

by the Nilsson potential. The most important residual interaction is 

the pairing force, which is responsible for the occurrence of odd-even 

mass differences. This force was originally introduced by Bohr, 

Mottelson, and Pines3°) and may be basically thought of as being a 

simplified representation of a o-force interaction. It is limited ·to 

t See also p. 103 for a further comment on this neutron magic number. 
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act only between pairs of time reversed states, which have complete 

orbital overlap. Since protons and neutrons have different orbitals in 

general, the pairing force is assumed not to act between them. It is 

also assumed not to act in levels far below the Fermi energy, since 

interactions in these levels are much hindered because of the exclusion 

principle and the fact that neighbouring levels are all occupied. This 

latter point is discussed in detail in Ref. 37. 

The effect of the presence of neutrons (or protons) on the 

pairing interaction of the other kind of nucleons is represented by 

assuming a (N - Z)/A dependence of the pairing strengths. Furthermore 

there are indications in both theory38, 40 ) and experiments39) that the 

pairing effect increases with increasing surface area of the nucleus. 

We thus follow Stepien and Szymanski40 ) in assuming that the pairing 

strengths are proportional to the surface area. The choice of these 

strengths and the number of levels near the Fermi surface where the 

pairing force is assumed to act, is made so that the odd-even mass 

differences of the rare earth and actinide nuclei and their general 

A-~ dependence are approximately reproduced3l)_ 

The effect of the inclusion of the pairing interaction relative 

to a simple summation of single-particle energies is exhibited in Fig. 

24 for the case of 254Fm. The pairing effect increases the binding 

for all deformation. Though the increase in binding is in general not 

independent of E, it does not significantly change the equilibrium 

deformations from the values given by the Nilsson calculations without 

pairing. 

\ 
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5.D. The Liquid Drop Formula. 

• We have discussed in some detail in Part II of this thesis the 

potential energy formula of a leptodermous system, which is usually 

referred to. as the liquid drop formula. · . We shall not repeat the 

discussions here but merely state below the liquid drop formula due to 

Myers and Swiatecki4). We have chosen this particular formula, because 

it involves only a few parameters which have been chosen to reproduce 

both the ground state masses and the qpontaneous fission barriers. Thus 

the formula has been adjusted for. large deformations that correspond to 

these fission barriers. This is most important for our purpose of 

calculating binding energies as a function of deformations. 

The formula is given by 

( 2 2 2/3 ' ELD -a1 1 - K'I )A + a2(l - K'I )A . · f(shape) + Ec , 

where I = (N - Z)/A and f(shape) is proportional to the nuclear 

surface area, having the value of l when the nucleus is sphericaL 

The Coulomb energy E c 
is calculated by assuming the charge to be 

uniformly distributed in the nuclear volume. Surface diffuseness and 

exchange energy corrections to the Coulomb energy are also considered. 

The parameters in the above formula are given by Ref. 41. Note in 

particular that the same coefficient K' is assumed.for both the 

volume and the surface symmetry ene~gies. 

5.E. Generalised Strutinski Prescription and the Synthesis of the 

Liquid Drop Model and the Nilsson Model 

In this section we shall st~dy the prescription by which the 

synthesis of a microscopic and a macroscopic model is effected. As a 
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preliminary, we shall give a discussion of the basis for such a synthesis. 

Though we have commented on it in the previous parts in some general 

terms, we shall now discuss the basis more specifically with reference 

to the Nilsson model and the liquid drop model. 

5.E.l. The basis for the synthesis 

In the Nilsson model, the nuclear potential energy may be 

written as the sum of single particle energies of nucleons filling up 

the Nilsson energy levels. It is well known that such a simple summa-

tion of single particle energies of the Nilsson potential is inadequate 

in the study of binding energies. In particular one is unable to 

account for the observation that the separation energy and the average 

binding energy are equa1
42

). In Fig. 25 we display a potential energy 

surface for the nucleus 
2
52Fm as a function of deformation parameters 

E and E4 based on the simple summation procedure. It is seen that 

the energy gets larger and larger for large E and large E4 . This 

is in disagreement with experiment since we know that the fission 

barrier of 252Fm is only three or four MeV. This is not unexpected 

since we do not expect the Nilsson model to give correctly the absolute 

values of the binding energy as a function of deformation and mass 

number. However we find that it gives the relative values for 

neighbouring nuclei very well. On the other hand we have discussed in 

Part II that a liquid drop formula should reproduce the smooth trends 

and absolute values. The success of the liquid drop model as applied 

to fission phenomenon, where large deformations are involved and to the 

calculation of nuclear masses, where large number of nucleons are 
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considered seems to confirm this. All this leads to the basic idea 

advocated by, .l'{yers and Swiatecki 4), Strutinski5) among others that if we 

take away the average trend from the single particle and pairing energies 

. and replace it by the liquid drop formula, we would get a much improved 
. I 

potential energy surface, where the local wiggles are given by the Nilsson 

model calculations and the smooth trends are given by the liquid drop 

formula. In other words in the formula of the potential energy FE given 

by the sum of the single particle energies ~SF 

we replace the average single particle energy sum ESP by the liquid 

drop energy E1D: 

We may write out ESP in terms of the shell energy and the pairing 

energy of the neutrons and protons. Then, 

where EShell and Ep . · a:z.r are the shell and paidng corrections obtained 

by subtracting from the shell energy an~ pairing energy their average 

values. 
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The smooth trend of the pa1r1ng energy turns out to be approxi­

mately a constant independent of A and is equal to3l) -2.3 MeV which 

is conveniently subtracted off from the pairing energies. The smooth 

trend of the shell energy is however not a constant as a function of the 

mass number or of deformations. Its extraction is the key to the 

synthesis of the liquid drop and the Nilsson model. Once the smooth 

average of the shell energy is found, we can obtain the shell correction 

by subtracting it from the shell energy. The shell correction and the 

pairing correction are then added to the liquid drop energy to give the 

total potential energy, which has the useful features of both the micro-

scopic and macroscopic approaches. The crucial problem of the extrac-

tion of the smooth average trend of the shell energy is discussed in 

the next subsection. 

S·E:-2. Generalised Strutinski prescription 

In this subsection we shall study and generalise a prescription 

due to Strutinski for finding the smooth trend of the shell energy. 

The method is very similar to the method of data smoothing where one 

tries to obtain the average value at a point by evaluating a weighted 

mean of a region around that point. 

StrutinskiS) introduced a method to average over the energy levels 

rather than over the total energy itself. Given a level density G(e) 

we may write the total shell energy as 

J
EF 

E(G) = 2e G(e) de 
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where EF is the Fermi energy. The factor 2 comes from the fact 

that there are two nucleons per level. The function G( e) has the 

characteristic that it has both a smooth trend with a"characteristic 

length 1 which should be of the order of the Fermi energy and also 

short range fluctuations whose wavelengths are less than or equal to the 

energy spacing A. between shells. The problem is to find a smooth 

level density g(e) which retains the long range variations but removes 

the short range oscillations (the shells). 

One may formulate the problem by writing G as· follows 

· G( e) 

is the slowly varying part and G·· is the rapidly s 
fluctuating' part. Strutinski suggested that to smooth out G8 (e) one· 

could find an average by weighting the points by a Gaussian of suitable 

width. As already recognized by Strutinski, a simple Gaussian weighting, 

turns out·to be inadequate because while it smooths out the rapidly 

fluctuating part, it also'distorts the slowly varying part. In order 

to preserve the latter (i.e., G1 (e)) one introduces a correction 

factor F. Then the weighting is.given by 

1 
2 

e -:u F ( u ) ; u = e - e' 

y(rr)3" y 

where y is the width of the Gaussian.'- The requirement on F may be· 

written as 



Loo l 
2 

-u F(u) G(e) de GL ( e I) e ' y( rr) 2 

which is equivalent to the two relations 

Loo l 
2 

-u F ( u) G1 (e) de GL ( e I) e 
y( rr) 2 

(21) 

and 

Loo l 2 
-u F(u) G

8
(e) de 0 e 

Y(n )2 
(22) 

In the case that G
1 

is a finite polynomial of order p, F 

can be found explicitly. Equation (21) gives 

2 
e-u F(u) du 5 0; n, 

Setting F(u) to be a polynomial 

F(u) ) 
i c. u 

'-- l 

i 

we find, after some work, from the last equation 

c. 
l 

0 

0 

for all i > p 

for all odd i 

• 



and 

c. 
l 
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(n+i-l)~t 

2-(n+i)/2 5 n,O 

which can be solved for the coefficients Ci. In other words, if G1 

is a polynomial of order p, we find a polynomial for F(u) also of 

order of p with only terms of even orders, such that with our 

weighting function, G
1 

is retained in the smoothing procedure. \-,Then 

the polynomial for F(u) .is of order m < p, denoted by F (u) 
m . 

we do 

not retain G
1 

completely and the error made can be written down in 

general. The error ~L made when m = p ~ 2 and the coefficient of 

the th 
:p 

where 

order term in 

I m+2 
m 

= 

~L 

(-)m/2 
m 

E 
i=m/2 

m 

is 

+ i 
2i+l 

a 
p 

turns out to be 

2 
-u e 

-f' 1 

F (u) du m 

i! 

(i - ~)· 2 . 

(23) 

When m is given, ~L would be small when Y is small compared with 

L. 

The prescription is also supposed tb smooth out the short-

range fluctuating part of the level density, G8 (e). ·Let us represent 
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the term in G8 (e) with the longest wavelength A by 

b exp(ie/A) 

If this term is smoothed away, terms of shorter wavelength are also 

smoothed away (see below Eq. 24). The error introduced by our prescrip-

tion with Fm(u) of the order m is then given by 

l 
2 

e-u Fm(u) G8 (e) de 
y( J1)? 

After some manipulation, we find 

G (e) e-(Y/2 t-.) 
s 

2Lm 
( 

Y\k l 

2A ) (~)~ 
(24) 

k=O,even 

When we put m to infinity the summation is just exp ( Y/2t-.) 2 and 

s S = G8, i.e., we do not smooth away G8 at all. It is also clear that 

the smoothing is more effective when y is large compared with A• 

We sketch in Fig. 26 the total error l s1 l + ls 8 l as a function 

of y for the cases of m = o, 6, and co. The term sL dominates at 

large y values and decreases as m is increased. The term ss 

dominates at small y values. When y = o, ss is maximum, i.e.' ho 

smoothing has been done, but as y increases ss decreases. The 

spread of ss is dependent on the values of m. It is larger for larger 

m and in the limit when m is infinite, s
8 

has an infinite spread 

and no smoothing is made for any value of y. From the figure we see 



.. 

-79-

two points. First that we should use an ·m value which is not too 

large (for which cases s
8 

is spread over all values of y), and also, 

which is not too small (for which cases .sL is large even for y 

values close to 2/\). Second, one should choose a y value between 

2A. and L such that the total error is a minimum. For an appropriately 

chosen m value (m = 6 in the figure) there actually exists a flat 

region inside these limits where the total error is small and is 

independent of y. This is the case one should choose. 

Now we apply the smoothing prescription to the results of the 

Nilsson calculation. The Nilsson calculation gives a series of sharp 

energy levels e , so that 
v 

G(e) 5(e - e ). 
v 

v 

Then for a prescription .with given values of m and y 1 the smoothed 

level density g is given by 

g(e') l 
---:-:r 
Y(n);;-

l 

v 

2 -u e F (u) G(e) de m. 

2 
e-u F (u) 

m 
v 

F (u ) exp(-u 2
) 

m v v 

(e - e ) de 
v 
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where 

u 
v 

e' - e 
v 

y 

For the order + m to be seven 

F (u ) 
m v 

Then g(e) will have the same smooth polynomial behavior as G(e) up 

to the seventh order. Any error will be in the eighth order. 

The smooth total single particle energy i.s then 

E(g) 2e g(e) de 

with the Fermi energy EF given by 

+ R. A. Miller43) has done calculations along similar lines and 

written down F as derivatives of g(e). He has tried to study 

the convergence of the results of smoothing as a function of m. 

However he used only one value of y close to 2A. (see Fig. 26) 

and so reached the wrong conclusion that the results of the 

prescription do not converge. 
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N J
EF 

2 g( e) de 
' 

where N is the neutron number. Similar equations can be written down 

for the protons. The shell correction EShell .is then given by 

E(G) - E(g) 

In Figs. 27 and 28, we show this quantity as a function of the 

Gaussian width y for the neutrons in the case of 
242

Pu and 

respectively. Similar figures are valid for the.protons. It is 

obvious t.hat if we use F. ·with 
m 

m = 2, we have a serious folding error 

and the result is strongly dependent on Y, but when we use m = 6, the 

result is rather Y-independent except when Y is too large or too 

small. For a fixed value of y (say y = 0.8 .flw 
0 

in the figure, where 

w
0 

is the oscillator frequency in the Nilsson potential), the change 

from the zeroth (m 0) to the second .order (m = 2) is about 

60 MeV; from second to fourth is "'1 MeV, and from fourth to sixth 

only +a MeV. It is interesting to note that (Y/1) 2 turns out to be 

just of this order 1 bo and the above rate of convergence is indeed 

to be expected when the main error comes from s
1 

(Eq. 23). 

In our calculation we have used m = 6 and y = 1. 2 -1'lw and we 
0 

find that our results converge very well to a unique value for the shell 

correction. It is these shell wiggles that are added to the smooth 

liquid drop energy. 

,. <.! • 
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In summary, we have thus a unified model obtained by replacing 

the smooth part of the total potential energy surface of the Nilsson 

model by the results of the liquid drop model. All local shell structure 

variations (the local wiggles of the energy surface) have, however, been 

retained. 

5. F. Comparison with Experiments 

To study the behavior of a nucleus at various deformations we 

have applied the unified model to calculate the total potential energy 

surface for the range of E between -o.s and 0.9s and between 

-0.08 and 0.16. Smaller ranges of E and are taken for some 

nuclei whose physically interesting features appear to be in a smaller 

region. 

The lowest minimum in this potential energy surface corresponds 

to the ground state of the nucleus. Hence the ground state mass (or 

binding energy) and distortion can be read off from the energy surface 

and compared with experimental values. 

• ! 

' 
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5 .F.l. Nuclear massest 

In Fig. 29, we compare empirical and theoretical masses with 

reference to the liquid drop masses at.zero deformation. Thus the top 

curve gives the experimental values minus the respective spherical 

·liquid drop masses in MeV. Immediately below, the theoretical values 

at ground state equilibrium deformations are plotted. These contain all 

the effects of distortions and-shell structure. The differences between 

the theoretical and experimental values are exhibited as the third and 

lowermost graph in the figure. They reflect on the appropriateness 

both of the liquid drop parameters chosen and of the nuclear shell and 

pairing fields employed. The comparison shows very good agreements. 

Discrepancies are only around 1.5 MeV. Three points of deviation may 

be pointed out: 

t Our calculations of masses are similar to those reported by P. A. 

Seeger and R. C. Perisho, Los Alamos Scientific Laboratory Report, 

LA;...3751, 1967, which provided part of the original stimulus for 

undertaking calculations described in this section. These authors 

neglected the P4 degree of freedom and in their fission calcula­

tions represented the liquid drop barrier by a cubic in E. (There is 

an error in the coefficient of their cubic term.) However, they allow 

for an adjustment of liquid drop parameters. · Our inclusion of the 

P6 degree of freedom appears to improve the mass fit considerably. 

No adjustment of liquid drop parameters is made in the present work. 
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(i) The overall trend seems to be toward too small theoretical 

masses at large A values. 

(ii) There appear to be relatively large discrepancies connected 

with the doubly closed shell of 208Pb. The theoretical binding energy 

is underestimated by about 2 MeV around A = 208. 

(iii) For large A values there is a marked discrepancy in the 

isospin dependence within each band of isotopic masses. 

First of all, it would be desirable to readjust the Myers-

Swiatecki liquid drop parameters using our shell corrections. Masses 

of spherical and deformed nuclei could be affected differently. If we 

further assume different isospin dependence (symmetry energy coefficients) 

for the volume and surface energy terms, we would probably be able to 

improve on the theoretical results. 

On the other hand the underestimate of binding near the doubly 

closed shell may reflect on the details of the single particle calcula-

tions. The pairing energy calculation described in Section 5.C 

collapses near closed shells, whereas in fact there should still remain 

some pairing energy of the order of one MeV as can be brought out by a. 

random-phase-approximation calculation
44

). The underestimate in binding 

for A between 190 and 200 may be associated with the neglect of the 

rotational asymmetry degree of freedom which is believed to play a role 

in this region. 

The masses for the superheavy nuclei beyond the present experi-

mental region show a broad shell structure at Z = 114 and N = 184 to 
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196. This shell effect is not as strong as for the 
208

Pb shell, but 

it may be a bit underestimated as in the Pb region. As shown below, 

this shell is the main reason to believe that there may exist in this 

region an island of relative stability which might be explored 

experimentally. 

5.F .2. Ground state distortions 

In Figs. 30 and 31 we exhibit theoretical deformation parameters 

E:~ and E4 associated with nuclei in the rare earth and actinide 

regions. We should note that there is·a general trend of the nuclear 

deformation to go from the spherical at one magic nucleus to a deformed 

nucleus with large E but zero E4, and then back ~o the spherical at 

the next magic nucleus. Nuclei in the intermediate region have nonzero 

values of E4. 

Let us coriunent here that if we look at the equilibrium E 

calculated45) ·.on the Nilsson model without renormalisation to the liquid 

drop smooth trends, we find the. differences from our results to be 

small: in most cases less than five per cent. This is not unexpected 

because we know that the liquid drop part of the total potential energy 

is a smoothly varying func~ion, always predicting ground states to be at 

zero deformation. Any deformed ground state would be due to the local 

fluctuations from the part connected with the sir:tgle particle calcula-

tion, that have been retained. Hence both calculations are equally 

SUCCessful in giving the E deformation .. -

In the case of E4 deformations, let us look at the experimental 

results obtained by Hendrie et al. 46), who did a detailed optical 
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potential analysis of inelastic alpha scattering data on the rare earth 

nuclei. They assume the nuclear equipotential surfaces to be given byt 

The differential cross-section involving populations of rotational 

6+ bands of even-even deformed nuclei up to ( 8+) in some cases state 

are fitted by a combination of (32, (34, and (3 6. The experimental 

values of (34 are compared with the theoretical values obtained from 

a transformation by means of Fig. 20. Thistt may be seen in Fig. 32. 

The agreement appears remarkable. 

t The relation between and the conventional co-ordinate is 

given by 

tt The theoretical results in Fig. 32 represent an older calculation 

on a Nilsson model without renormalisation to the liquid drop 

smooth trends, but, as.mentioned earlier, the new results are 

essentially the same within an accuracy of 5%. 
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5.G. Potential Energy Surfaces 

From the minimum of a potential energy surface we can obtain 

the ground state mass and deformation which are discussed above. A 

further study of the potential energy surfaces .will bring out more 

features of physical interest, in particular those connected with 

spontaneous fission barriers and shape isomers. 

In Figs. 33a-.e we exhibit the barriers obtained for isotopes 

of Z == 92 to Z == 114 as a function of E with minimization of 

energy with respect ot for each value of E. This type of plot 

-represents a cut through the two-dimensional topographical map in the 

(E, E4) plane along the potential energy minimum path with the energies 

projected onto the E axis. 

In the following we shall study the structures found in the 

barriers with reference to these figures. The possible -errors in these 

potential barriers are discussed at the end of this section. 

5. G.l. The structure of spontaneous fission barriers of 

heavy and superheavy nuclei 

The conventional liquid drop barrier has·the ordinary one peak 

shape, but because of secondary shell effects, structures can be found 

in the potential energy barrier. By the secondary shell effects, one . 

refers to the extra shell binding that occurs at some moderate deforma-

tion as comparedwith the usually understood shell effects that appear 

for the spherical shapes. They were first pointed out by Geilikman 47) 

and studied by Myers and Swiatecki4) and Strutinski5). It was 

~'"') 
StrutinskiJc. who first emphasized that they will cause a two-peaked 

fission barrier. 
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As a general rule, for a nucleus with its proton or neutron 

number near a magic number, the ground state is spherical and the 

secondary shell effect occurs at E ~ 0.4. For a nucleus with its 

proton or neutron number away from a magic number, the ground state is 

at E ~ 0.2 and the secondary shell effect occurs at E ~ 0.6. In 

Fig. 34 we show the effect of shell corrections to the liquid drop 

barrier. It is seen that the fission barrier is basically that of the 

liquid drop with indentations due to shell effects. For the actinide 

region (A -~ 242), even though the liquid drop would like to have a 

spherical ground state minimum, the nucleus has deformation E ~ 0. 2 

because of shell effects. A secondary minimum occurs at E ~ 0.6 due 

to the secondary shell effect. For a nucleus near a closed shell, tbe 

shell correction makes the liquid drop minimum at the spherical shape 

even stronger and a secondary minimum is found at E ~ 0.4. For the 

actinides (and also the rare earth nuclei) another minimum corresponding 

to an oblate shape occurs (see Fig. 33). This minimum, for the actinide 

case, is usually more than 5 MeV higher than the ground state. When 

the rotation asymmetric (r) degree of freedom is included, the nucleus 

corresponding to this minimum is found to be unstable in the y 

d . t• 48 ) l d" d t th d ~rec ~on , ea. ~ng own o e lower groun state through a path 

provided by this extra degree of freedom. For the lighter nuclei in 

the rare earth region, this minimum is not much higher than the ground 

state minimum. In some cases it may actually be lower and should be 

taken as the ground state. This oblate shape will then have important 
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physical significance, especially as regards the N and Z values 

where a transition from a prolate to an oblate ground state takes place. 

As we have seen in Fig. 34, the existence of the two.:..peak 

structure of the potential energy barrier is due to the secondary shell 

effect. If the secondary shell effect occurs at or near the liquid drop 

saddle 'point, the two;..peaked structure will be most prominent and the 

peaks will be of about equal height. If the secondary shell effect is 

to one side of the liquid drop barrier, the peak on this side will be 

smaller than on the other. In the extreme case when it is far off from 

the liquid drop saddle point we see a big peak and a very small second 

peak in the barrier. This is then essentially just the ordinary one 

peak barrier structure. 

For the actinides the secondary shell effect occurs at 

E ""'0.60-0.70. As we go from lighter to heavier actinides, the 

fissility parametert x increases and the liquid drop saddle points 

will move from large E to small E. Thus the liquid drop saddle 

points for 238u, 242Pu, 248cm, ' 25°cf, and 254Fm ,are at values 

of E about 0.85, 0.74, 0.65, 0.59, and o.s4, respectively. Then it 

appears that in the region around Cm the saddle points are at about 

t The fissility parameter x ma.y be defined as 

X == z2
/A 

so.88(1 - 1~7826 I
2

) 
I 

N - Z 
== A 

1+1) 
using the Myers-Swiatecki liquid drop parameters . 
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the position of the secondary shell effect so that the two•peaked 

character of the barrier would be most prominentt with peaks of about 

equal height. As we go away from Cm to nuclei with higher or lower 

values of x, one of the peaks will become smaller than the other and 

eventually it will be mostly washed out. Detailed results of actual 

calculations in our model may be found iri Table 3 where we tabulate the 

heights of the two peaks as well as the secondary minimum in between, 

relative to the g.round state. ·.Because of the inaccuracy in the deter-

mination of the energy surface which will be discussed at the end of 

this section, as well as uncertainties in the assumptions explicitly 

and implicitly made in the present calculations, the table should be 

looked upon as an indication of trends rather than as a quantitative 

prediction. The trends are also illustrated in Fig. 35· 

For the superheavy nuclei (Z "" 114 and N ,...., 184) . Arguments 

similar to those above apply. Since there is practically no lio.uid 

drop barrier in this region, the two peak effect is apparent for 
294

110 

where the secondary shell occurs at the flat part of the deformation 

curve, but is not apparent for cases where the secondary shell occurs 

at the rapidly dropping part (see Fig. 34). 

It should be pointed out that for a particular element, a 

change in the number of neutrons may change the picture significantly. 

t This however does not .mean that Cm isomers will have the longest 

spontaneous fission half lives, since th~se depend also on excitation 

energies of the isomeric state and the competition of gamma transition 

back into the ground state. 
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Not only does N affect the value of x, but shell structure effects 

associated with .N. may have important consequences. An example is 

the following result from the present preliminary investigations. For 

Z between 102 and 114 and for N less than 176, the nuclei have 

ground states near E = 0.3, and secondary shell effects at E ~ 0.70. 

Since these nuclei have very large x values the fission barriers 

exhibit only one peak. There is also a minimum at zero deformation 

which lies higher thaB the ground state. ·But as N is increased, this 

minimum is getting lower until at N ""'176-178, it is actually lower 

than the minimum at E ""'0.3 and so it has to be taken as the ground 

state. Hence for N ~ 176 we have a deformed ground state with a one­

peaked barrier. But for N :;=:: 178, we have a spherical ground state 

with a two-peaked barrier with the secondary minimum at E ""'0.3. 

Obviously this latter case has a much thicker fission barrier and 

should be much more stable against spontaneous fission. 

5.G.2. Spontaneous fission isomers in the actinide region 

The existence of the two-peaked structure with a secondary 

minimum in between may be associated with the spontaneous fissiofi 

isomers that have been studied experimentally for some years. An 

isomeric state that corresponds to the secondary minimum has a 

different shape from the ground state and is higher than the ground 

state by several MeV. The isomeric state may decay by gamma emission 

to the ground state or by spontaneous fission through the second 

barrier49 ). The transition to the ground state is hindered by the 

presence of the fir.st peak. For the actinides the first peak is large 
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so that gamma transition is greatly hindered and it is more likely for 

the isomeric state to penetrate through the second peak and undergo 

fission. Obviously the ground state has a much thicker barrier against 

fission. Thus though the ground state of 242Pu has a spontaneous 

fission half life of the order of 105 years, one expects that the 

isomeric state has a half life of the order of 100 nano-seconds only. 

Experimentally this kind of isomeric state is found in nuclei 

with 236 <A < 246. The first fission isomer, in 
'V 'V 

242A m, was 

discovered by Polikanov et al.50) and by Flerov et al.5l) with a 

fission half life of 14 ms. Since then a number of other cases have 

been found5 2 .• 53) with half life ranging from milliseconds to nanoseconds. 

The isotope 242Am seems to have an extraordinary long isomeric fission 

half life. This has been studied to some extent by Nix and Walker49) 

who also speculated about the possible explanations. The excitation 

energies of these isomeric states appear to lie between 2 and 4 MeV. 

Relevant data are shown in Table 4 together with our theoretical 

results taken from Table 3. As pointed out before, our theoretical 

values are not expected to be quantitative predictions, but rather an 

indication of the trends. Thus the discussion of trends in the last 

subsection is applicable here and can be used in a qualitative way to 

see where we expect to find these shape isomers. 

Additional evidence that appears to support the existence of the 

secondary minimum is based on the study of the energy dependence of 

the thermal neutron fission cross sections for elements in the region 

231 :::A < 242. An example is the thermal neutron fission cross-section 
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of 235u. Superposed on the fine structure of a few eV, occurring at 

about 6-7 MeV of excitation, there appears a sequence of resonances 

with a spacing of about 100 eV and a width of a few eV. The ratio of 

the spacing of the resonance type states to the spacing of the usual 

type of states is about 500. It is about 50 for the case of 
241

Pu. If 

one interprets the resonance states as the states of the secondary 

minimum as suggested by Lynn54), then, using the standard level density 

formula, one may estimate the secondary minimum to lie 

the ground state for the various nuclei between 

1.5-3 MeV above 

242 
and Am. 

These results appear to be in qualitative agreement with the predictions 

of the present calculations. 

5.G.3. Shape isomers for the neutron deficient heavy 

nuclei (A·""' 206) · 

Let us first make a comment about the shape isomers for the 

rare earth nuclei along the beta-stability line. ·These nuclei have their 

ground states situated at about E = 0.2 and the secondary shell effect 

is expected to cause an indentation of the liquid drop barrier at 

E ""' 0.6. But since the liquid drop saddle point is at a much greater 

deformation_than this value, what we expect to see is a two peak 

structure with the second peak much greater than the first pea'k. 

Actually the first peak is on tbe rising part of the liquid drop barrier 

so that its effect is further reduced. Then if the nucleus is at the 

isomeric state, it would probably prefer a gamma transition to the 

ground state rather than spontaneous fission through the second barrier. 
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Recently Bj¢rnholm55) suggested that one might look for fission 

isomers in some neutron deficient heavy nuclei .such as 204R 118 
86 n This may 

be argued as follows. The proton and neutron numbers are close to the 

magic numbers 82 and 126 respectively. One thus expects the ground 

state to be spherical and the secondary shell effect to occur at E = 0.4. 

Compared with the rare earth nuclei, this secondary shell effect occurs 

at a smaller deformation than for the rare earths so that its effect 

.will be stronger. For the neutron deficient case the liquid drop 

fissility.parameter is increased so that the liquid drop saddle point 

will be moved toward the point of secondary shell effect. As discussed 

in the subsection G.l. this would enhance the two-peak effect. 

We have calculated the barriers for the neutron deficient heavy 

nuclei centered round Z = 86, A = 202. The results are displayed in 

Figs. 36 a-e. They seem to indicate that while the above discussion is 

true, the suggested enhancement of the two-peak effect on the fission 

barrier is not enough. Even though the fissility parameter is increased 

somewhat, the liquid drop saddle point is still at a very large deforma-

tion. Thus the shell effects will occur at the rising part of this 

liquid drop barrier with the result that the isomeric state is at a 

very high excitation energy above the ground state (rv5 MeV). For the 

same reason the second peak is much broader than the first peak. Hence 

for these cases one expects the same conclusions as in the rare earths 

case, namely that if the nucleus is in the isomeric state, it would more 

likely undergo penetration through the first barrier and gamma decay· 

to the ground stat~ than spontaneous .fission through the second barrier. 
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In this study one realises an important point that when one is 

looking for regions of fission isomers, one should look at the shell 

effects on the background of the liquid drop fission barrier. Just 

looking at the shell corrections by themselves may be misleading. 

5 .G.4. Uncertainties in the potential energy surfaces 

Two representative energy surfaces are exhibited in Figs. 37a,b. 

·The separate contributions from the liquid drop terms and the shell plus 

pairing energies are exhibited in Figs. 38 and 39. For small distortions 

from the spherical shape we expect the ( E·, E4) parameterization as 

used to be adequate. However at large distortions higher multipoles 

will be important in the calculations of saddle point energies27). 

Since for larger values of the fissility parameter x, the liquid drop 

saddle points occur at smaller distortions and vice versa, we expect 

that higher multipoles to be important for lighter nuclei whose values 

of x are small, a.nd that the ( E, E~_) parameterization should be 

sufficient for heavier nuclei which have large values of x. Thus when 

we compare the liquid drop saddle point energies on our (E, E4) scheme 

with the more general parameterization used by Cohen and Swiatecki27) 

we find that for U, with its saddle point at E ~ 0.85, our value is 

too high by 0.6 MeV; for Pu whose saddle point is at E ~ 0.75, 

our result is too high by 0.3 MeV; and for nuclei heav~er than Cm 

(Z = 96) the error is less than 0.1 MeV. In particular for superheavy 

·nuclei (Z :::::< 114, A :::::< 298), the error due to the restricted parameteri-

zation should be small. 
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The potential energy surface plots show the importance of the 

E4 degree of freedom as E is increased. Although in the ground 

states both positive and negative values of E4 occur, the saddle 

point always occurs for a positive E4, representing a smaller waistline 

relative to the spheroid. In, Fig. 24, one may study the effect of the 

degree of freedom on the barrier of 254Fm. 

The further considerations of deviations from axial symmetry of 

the nuclear shapes appear to reduce the saddle point energies. Thus 

as reported by v. v. Pashkevich56) the energies of the saddle points 

closest to the ground state for nuclei between and are 

reduced by amounts ranging from 0.4 MeV to 2.1 MeV. 

On the whole we would say that we have over-estimated the 

potential surfaces somewhat at large deformations. At small deforma-

tions, they should be reasonably reliable. 

5.H. Barrier Penetration and Spontaneous Fission Half Lives 

For the purpose of calculating spontaneous fission half lives, 

we use the simple WKB theory for the penetration of a barrier. 

Let us assume that the problem is one-dimensional and that E 

is the relevant fission co-ordinate. According to the WKB approximation, 

the probability for the penetration of a barrier is given by the 

expression 

exp p I
E" 

-2 

E' 
(

. 1 

2B )? 
112

(W(E) - E) dE exp(-K) 
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where B is the inertial mass associated with fission assumed to be 

independent of E, · E is the initial excitation energy of the nucleus 

towards fission, and W(E) represents the barrier as obtained from a 

potential energy surface considered in the previous section. There 

exists an improved expression, as shown by P. 0. Froman and N. Froman57): 

P (l + exp Kf
1 

This differs from the one above mainly for small K values, i.e., for 

energies E near the top of the fission barrier. In particular, when 

E is equal to the top of the barrier, the probability for penetration 

is 0.5. In our calculations below we consider only very small. E 

values for spontaneous fission, so we use the previous expression, 

which should be adequate. Since E is dimensionless, B will have 

the dimensions of a moment of inertia. Thus if we scale the nuclear 

system simply according to its mass number, the B will be propor-

tional to 

Let n be the frequency of beta vibrational inotion that is 

associated with the fission mode. Setting n = 1020 ·38 corresponding 

to a nominal vibrational energy of one MeV, we have the half life 

·given by 

T 
.en 2 l = ---n p 

-20 54 10 · exp K (seconds) 

or 

·T l0-28 · 04 exp K (years) (26) 
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Three main sources of error enter into the half life estimation. 

(l) We have made a simplification of the problem so that it is reduced 

to a one dimensional barrier penetration. We construct a path in the 

energy surface by minimizing the potential energy with respect to E4 

for each E and then projecting this path onto the E axis. (2) With 

the barrier, W( E)' thus obtained, there are errors for large E since 

we consider only E and deformations whereas higher orders of 

deformations are important at large distortions. This effect will be 

especially large for light actinides whose barriers extend to rather 

large distortions. (3) Furthermore, shell effects will have their main 

impact near the ground states and will be washed out at large distortions. 

Thus any error in shell calculations will distort the potential barrier 

and hence affect the life time estimates. All these errors will be very 

crudely accounted for when we treat BA-5/3 as a parameter to be 

adjusted so that the experimental half lives are reproduced. We have 

BA-5/3 estimated this parameter by applying Eqs. 25 and 26 to the 

potential barriers we have calculated for the actinides z 92-102 

and their experimental spontaneous fission half lives. We have attempted 

to see the dependence of this parameter on saddle point shapes by 

plotting it against the fissility parameter x and also against the 

mean deformation of their barriers. In both cases, no simple trends 

are di-seerned. Thus as an· as•sumption, we have taken BA-5/3. to be a 

constant for all heavy and superheavy nuclei. This is the simplest 

procedure one can take in lieu of anything definitely better, but one 

is not at all clear how valid this assumption is. 
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Several methods are used to estimate -5/3 BA . The first is 

taken froma microscopic calculation due to Sobiczewski et al.7). The 

inertial parameters for the heavy nuclei are found to cluster within 

30% of a mean value. 

A second estimate of is the empirical values obtained 

by using the barriers for the actinides which we found from our calcula-

tions and requiring these to give the correct experimental half lives. 

These are also found to cluster within ~30% about a mean value. A 

third estimate is also empirical and is due to Moretto and Swiatecki5B). 

They used liquid drop barriers modified by a Myers-Swiatecki shell 

correction term41 ) and with the. ground state masses and fissionbarriers 

adjusted to experimental values. They are able to estimate the mean 

value of for the actinides with only a 10% spread. It was found 

that all of these three estimates lie within 30% of each other. 

These estimates of the mean value of BA -5/3 are shown in 

Fig. 40, where we have plotted 

.en T against 

for Z - 110 and 114. The slope in this plot is 

' 

where the excitation energy E is taken as half an MeV, corresponding 

to the zero point vibrational energy in the fission mode. From this 

figure the half lives can be read off. We have taken among the three .. 
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estimates, the Moretto-Swiatecki value which is the lowest of the three. 

The reason for the choice is that this estimate incorporates the experi­

mental ground state masses and fission barriers, whereas the other 

estimates have uncertainties in both these quantities. If we had taken 

the other estimates, some of our values for spontaneous fission half 

lives would be larger by one or two orders of magnitude while others 

are increased by a factor less than 10. 

It is to be commented here that this inertial parameter which 1ve 

adopt is more than seven times the value obtained by the assumption 

of a pure liquid drop with irrotational flow, which of course cannot be 

considered to be anything more than an extreme lower limit. This ratio, 

seven, turns out to be somewhat larger than the corresponding ratio for 

the rotational moment of inertia for deformed nuclei and also the ratio 

for the quadrupole vibration. 

The spontaneous fission half lives of the superheavy nuclei are 

discussed in the next subsection. The half lives for the actinides are 

represented in Table 5 as the ratio in powers of ten of the experimental 

to theoretical values. There seems to be a systematic underestimate of 

half lives on the neutron-poor side and an overestimation on the neutron­

rich side. A readjustment of the liquid drop parameters with indepen­

dent volume and surface symmetry energy coefficients might be able to 

take care of this systematic discrepancy. 

5.1. Stability of Superheavy Nuclei 

There are three main mechanisms for the decay of a nucleus: 

sponta.,neous fission, alpha decay, and beta decay (or electron capture). 

·~ 
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Alpha decay half lives can. be estimated from the Q,-values of the process, 

which are directly found from the masses of parent and daughter nuclei. 

Similarly by comparing masses of adjacent isobars, beta stability can be 

determined. Since these processes involve only mass differences between 

nuclei one or two units of N or Z from each other their half life 

estimations will be relatively li t.tle affected by any errors that occur 

in these nuclei to a similar degree. Hence the alpha and beta stabilities 

can be determined with reasonable reliability. For the actinide region 

(Table 5) we are able to reproduce the experimental Q,-values of alpha 

decay to within ±0.2 MeV and beta stable nuclei are usually verified. 

The results for the lead region are not so satisfactory. In this region 

the differences between experimental and theoretical Q,-values for alpha 

decay could be about 0. 6 MeV. This is partly due to the inadequacy 

of our calculations in reproducing the trends of the nuclear masses 

near the lead region ~see Section F.l.). 

The estimation of spontaneous fission half lives involves 

larger uncertainties as discussed in the last section. 

5.1.1. Island of stability in the neighbourhood of 

Z = 114 and N = 184-196 

The stability against alpha and beta decay as well as spon­

taneous fission has been worked out for nuclei with proton number from ~ 

106 to 128 and neutron numbers from 178 to 204. In this region are 

the magic numbers Z = 114, N = 184, and N 196 (see Figs. 21 and 

22). The 1·esults are tabulated in Tables 6-8, which are summarised in 

the half life contours of Fig. 41. 
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Some general features of this figure may be pointed out. The 

longest fission half-lives center rather symmetrically around (Z = 114, 

N = 184-196). It must be emphasized here that any stability against 

spontaneous fission in this region is due to the extra binding resulting 

from the shell effect so that as one goes away from Z = 114 and 

N = 184-196, the fission half-lives decrease rapidly. Without the shell 

effect, the alpha half-lives depend on the inclination of the L'N = t!l 

line (which is the direction of alpha decay) with respect to the 

direction of the beta stability valley. The shell effect essentially 

increases the alpha half-lives for nuclei with Z < 114 and N < 184 

and decreases those for nuclei Z > 114 and N > 184 and also 

Z > 114 and N > 196. The kinks in the curves occur when either the 

parent or the daughter nucleus experiences a maximum shell binding 

effect. 

The great uncertainty associated with the numbers obtained must 

be emphasized. First of all there is the uncertainty of the extrapola-

tion of the shell model potential to an unknown mass region. Further-

more, a deviation of 30% in the estimate of the inertia parameter B 

corresponds roughly to a factor of 106 in the spontaneous fission half-

lives, while a l MeV deviation in alpha energy corresponds to a factor 

difference in alpha half-lives. An underestimate of a given 

nuclear mass due to a local shell effect leads normally to an over· 

estimate of the fissi~:m half-life. On the other hand, the error in 

alpha energy is comparatively small. For the actinide region (where 

we do not have the uncertainty due to the extrapolation of parameters, 
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Table 5, our alpha energies are within 5% of the experimental values 

corresponding to half-lives agreeing within a factor of ten, but our 

fission half-lives for some isotopes can be wrong by a factor as large 

106 either. way. · as 

All these uncertainties may move.the contours of half-liv:es in 

Fig. 41, but the general pattern should remain the same so long as 

Z = 114, N = 184, and N = 196 are good magic numbers. The magic 

numbers z = 114 and N = 184 have been confirmed by various calcula-

tions33) so that the part of the figure around the nucleus 

can be used with reasonable confidence. The magic number N = 196, 

however, has not yet been verified by other cal·culations. At the 

moment one is not sure whether this number will remain magic when a 

more realistic calculation .than ours is made.+ . 

The use of this figure as a guide in the search for relatively 

long-lived superheavy nuclei will be illustrated in Section J below. 

5.1.2. Possibility of the occurrence of surviving 

superheavy elements in nature 

Applying a "survival-of-the-fittest" test with respect to 

fission, alpha decay, and beta decay in the above region and taking the 

calculated numbers at their face value, one ends up with ~ probabl.e 

+ Recently Bolsterli, Fiset, and Nix59) calculated the single particle 

energies by a.scheme in which no extrapolation of parameters is 

necessary. Their preliminary results indicate that there is no gap 

in the levels at N = 196. 



-104-

candidate for survival in earthly matter, namely 
294

110, which has a 

total half life of about 108 years. However, the uncertainty of our 

numbers as discussed above may indicate that, instead, a nucleus closeby 

may have a better chance of survival. 

Self-consistent field calculations of the electronic configura­

tions60,61) indicate that the elements with even Z from 106 up to 

116 have chemical properties similar to those of W, Os, Pt, Hg, Pb, 

and Po, respectively (Fig. 42). So these superheavy elements, if they 

occur in nature, may be found in ores of their respective chemical 

homologues. However if the total half-life falls below ~ 2 X 108 

years, its detection in earthly matter is beyond the capabilities of 

our present techniques.t 

Even if the longest half life in this region of elements is 

less than 2 X 108 years, it may be possible to obtain information 

concerning superheavy nuclei existing at some time in the past by 

searching for neutron-rich products of spontaneous fission in meteorites 

or in natural ores of platinum and its neighbouring elements. 

A question may be asked whether such a long-lived superheavy 

element may be produced in nature in the first place. This is sttll an 

open Cj_Uestion. However, it may bett that such a superheavy element 

could be formed by the so-called r-process62 ) in which a nucleus absorbs 

t We would like to thank Dr. Luciano Moretto for drawing our attention 

to this point. 

t1· We are grateful to Dr. P. A. Seeger _for helpful discussions of the 

r-process. 

.. 
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a. large number of neutrons very rapidly and then undergoes successive 

beta. decays, ending up as much heavier rel~tively stable nuclei.t Most 

very neutron rich isotopes' seem to be sufficiently fission stable for 

this process, which also requires a condition of huge neutron flux and 

very high temperatures. This condition may have prevailed at some point 

in the history of the universe and may also exist in some massive stars 

and quasi-stellar radio objects at this present time. This. at once 

raises the possibility of detecting·superheavy nuclei in the primary 

cosmic radiation. According to the most optimistic estimates, the 

nuclei of interest in the primary cosmic radiation may have been 

produced 105 years ago, while elements in the solar system have an 

age of ~5 109 years. If we take., Fig. 41 at its face value, we see 

that in the study of the primary cosmic rays, one might be able to find 

a few more nuclei which live longer than 105 ·years. 

t Our estimate of masses along the prospective r-process path is, 

however, sensitive to the value assumed for the coefficient of the 

surface symmetry energy. Conceivably the value of this coefficient, 

after readjustment of all the liquid drop parameters, might be such 

as to make the generation of superheavy elements impossible. The 

isotopic trends of actinide fission half-lives, which we fail to 

reproduce adequately (Table 5), may be indicative of this. 
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A recent preliminary search of element 110 in a platinum ore 

6 64) 
at Berkeley and Livermore has yielded negative results 3' . A study 

of very heavy nuclei in the primary cosmic rays has recently been carried 

out by P. H. Fowler, P. B. Price,and R. W. Walker in a balloon experiment. 

The data are still under analysis. 

5.J. Possible Experimental Production of Superheavy Nuclei 

The heaviest elements presently produced (Z > 100) are all 

synthesized by the bombardment of target elements of sufficiently high 

atomic number with beams of heavy ions. The heaviest ion presently 

available is 40 
Ar, but in the future ions as heavy as 92u may be 18 

accelerated,. On the other hand there is also a possiblity of producing 

these superheavy nuclei by bombarding a target with an intense flux of 

neutrons in a reactor. These will be discussed belowt. 

5.J.l. Heavy ion reactions by available projectiles 

By heavy ion reactions one tends to reach nuclei on the neutron 

deficient side of the beta stability line. This is so because the 

stability line bends more and more towards the neutron-rich side relative 

to its initial 45° direction in the N-Z plane. Both target and projec-

tile are therefore less neutron-rich than the center of the superbeavy 

region (Z = 114, N = 184), near to which the stability line happens 

to pass. 

t The reader is also referred to the extensive review given in Ref. 65. 
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One of the most neutron-rich targets is 248c 
96 m and the most 

neutron-rich projectile that is presently available 
40 is 18 Ar. In 

. 66) 
the experiments by Thompson et al. and Ghiorso et 

following reaction was attempted: 

+ 40Ar 4 
284

114 
18 

+ 4n 

67) al. , the 

One obtains only the relatively light isotope 284114, whose half life 

we estimate to be much less than 10-l5 seconds. This is beyond the 

sensitivity of the present experimental techniques .. The unfortunate 

loss of four neutrons is necessary to take away the e·xcess energy of 

the compound nucleus which results from the high energy requiredto 

overcome the Coulomb barrier between the heavy ion and the target 

nucleus. Even with a 

+ 

48 
20ca projectile, 

244Pu 
94 

288114 · + 4n 
' 

the product 288114 has a half life less thart 10-lO seconds. At the 

moment it appears from Fig. 41 that one.has to obtain an isoteJ:>e of 

114 with mass number equal to or greater. than 290 before the half life 

becomes long enough to make detection possible. For this a ··heavy 

projectile like 86 
36

Kr is required. 
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5.J.2. Heavy ion reactions by future projectiles 

When heavier and hence more neutron-rich ions than can 

be accelerated the prospect is much better for the production of the 

superheavy nuclei. In general one has to overshoot the 114298 

nucleus and let various decay mechanisms take one to its neighbourhood. 

An extreme example is the reaction if38 + u238 . Either a transfer 

reaction takes place where the target takes off a part of the projectile 

or a compound nucleus is formed which then undergoes fission. One 

hopes to findproducts that are close enough to the center of the island 

of stability so that they have long enough life times to make detection 

possible. 

An example that is not so extreme is furnished by reactions 

induced by the ~~Kr ion. In Table 9, we show the compound nuclei 

that might be formed by bombarding various neutron rich targets from 

Pb to Cm with 86Kr. The question whether such a compound nucleus 

would be formed will be discussed below. At the moment, let us assume 

that by emitting four neutrons we get a cold compound nucleus in the 

ground state. If we look at Fig. 41, we see that for 208Pb and 

210Po targets, the compound nucleus undergoes spontaneous fission at 

once and we do not expect to produce any superheavy nuclei. With targets 

heavier than 226Ra, it appears that the alpha half life is always less 

than the spontaneous fission half life (Fig. 41). Indeed if we let the 

compound nucleus decay by emitting alpha particles all the way we end 

up in each case with a long-lived superheavy nucleus. 
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The above discussion assumes that the compound nucleus was 

formed in the first place. This assumption is very questionable for 

the following reasons. (1) There are indications ·that for the same 

products, the cross-section of a reaction with a heavy projectile is 

cut. down by several orders of magnitude compared with a reaction in 

which a lighter projectile is used. (2) The large angular momentum 

introduced with the heavy projectile may cause the compound nucleus to 

fission at once. (3) F~rthermore we know that any binding of a super-

heavy nucleus is due to a shell effect. At the excitation energy of 

the compound nucleus when it is first formed, the shell effect might be 

greatly reduced so that little binding would be present and the compound 

nucleus would break up (or would simply not be formed) before any 

de-excitation can take place by neutron or charged particle emission. 

The first two points are illustrated by the fact that the production68 ) 

of 260104 by bombardment of 
242

Pu with 22Ne has a cross-section 

of only lo-34 cm2 The last point is a difficulty characteristic of 

the production of superheavy nuclei. 

These effects have not yet been understood and no definite 

opinion can be expressed as to their importance in any future attempts 

to produce superheavy nuclei by heavy ion reactions. Further studies 

of these problems are essential not only for the production of super-

heavy nuclei but also for an understanding of heavy ion. reactions in 

general. 
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5.J.3. Neutron capture reactions 

An a:lternative way to attempt the production of superheavy nuclei 

is by exposing heavy nuclei to a high flux of neutrons. There is a 

competition' between (n, y) and ( Y, n) reactions. Under suitable 

conditions of extremely intense neutron flux and very high temperatures, 

the nuclei will capture a large number of neutrons and then beta decay, 

ending up as heavy nuclei of much higher proton number, which in turn 

undergo the same process. Eventually they would, hopefully, reach the 

superheavy region. An intense neutron flux can be found in a nuclear 

reactor and also in nuclear explosions65). By the former, one can 

achieve a neutron flux of 1015jcm2 - sec. By the latter the neutron 

flux is much larger, of the order of 1031/ cm2 - sec, but the exposure 

time is less than 1 [-LSec. The advantage of both these methods is that 

comparatively large masses of target material can be used. However 

these methods have produced fewer heavy elements than expected. Indeed 

2
57Fm is the nucleus with the largest Z and A numbers that has 

been made65). On our model we do not expect 258Fm to possess very 

much shorter life time than 257Fm or 256Fm. There are presently no 

satisfactory explanations as to why heavier nuclei are not produced. 

5.K. Summary 

In this part of the thesis we have tried to make use of the 

ideas advanced in the previous parts in a practical application in the 

synthesis of the Myers-Swiatecki liquid drop formula and the Nilsson 

single particle calculations. By means of a generalised Strutinski 
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prescription we have been able to replace the smooth average of the 

Nilsson calculations by the liquid drop (or leptodermous) model. The 

resulting unified model is expected to be good in accounting for not 

only single particle effects but also the absolute values and trends of 

the binding energies. 

There are two important consequences that come out of this 

study. First of all is the occurrence of single particle structure 

fission barrier. In particular, one finds in the energy barrier a 

two-peak structure with a secondary minimum between the two peaks; This 

secondary minimum may be associated with spontaneous fission isomers 

found in the actinide region. We have given a discussion of the trends 

and the regions where one would expect to find observable shape isomers. 

The secondconsequence are the predictions about superheavy 

elements. We have confirmed previous calculations that Z = 114 and 

N = 184 are magic numbers, but the present work suggests that N = 196 

may also be magic. We have been able to make quantitative predictions 

on masses, deformations, as well as half lives for the various decay 

mechanisms for these superheavy nuclei. It is found that some ef the 

half lives might be extremely long, even of the order of the age of the 

solar system. Though great uncertainties are involved in the numbers as 

discussed, one can still use these predictions as an indication of 

trends and as a general guide in attempts to produce superheavy nuclei 

or in.a search for them in nature. 
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Table Captions 

Table l. Summary of topics studied in the thesis. 

Table 2. Values of K and ~ employed in the single-particle calcula­

tion corresponding to different regions of mass along the beta­

stability line. The first column denotes the mass of the center 

of each region. 

Table 3. Calculated properties of the two-peak spontaneous fission 

barriers and shape isomers from potential energy surfaces of 

the actinides. The deformations of the ground state and 

isomeric state are listed. The heights of the two peaks and 

the excitation energy of the isomeric state are given in MeV 

above the ground state. It is assumed that the zero-point 

vibrational energies of the ground state and isomeric state 

are equal. 

Table 4. Experimental properties of shape isomeric states. The first 

group of columns identifies the nucleus. The second group 

gives the experimental fission barriers based on the erroneous 

assumption of a one-peak structure. The excitation energy of 

the isomeric state is shown in the next group, estimated from 

threshold measurement and from (n,f) resonance experiments. 

The next entry gives the ratio of distances between resonances 

in the isomeric state to those in the ground state. The last column 

indicates the experimental spontaneous fission half-lives of 

the isomers. Theoretical values are taken from Table 3. We 

are grateful to Dr. S. Bj¢rnholm and Dr. J. R. Nix for their 

help in supplying us with the experimental data. 



'-II 

i .,J 

1 ..... 

-121-

Table 5. Beta stability, alpha decay energies and spontaneous fission 

characteristics of the actinides. In each square classified 

by Z and N, the uppermost figure gives the mass excess on 

12 C scale in MeV. If the nucleus is found to be beta-stable, 

this number is underlined. The two numbers below give the 

theoretical and experimental alpha decay Q-values respectively. 

The integer to the right is the ratio of the experimental 

spontaneous fission half life to the theoretical.value. 

Table 6. Table of masses, spontaneous-fission and alpha half-lives 

for 106 < Z < 116 and i78 < N < 189. The upper number 

in each square gives the mass excess in 12c scale (see 

Ref. 41) in MeV. In t):le line below is listed the spontaneous-

fission half-life .and in parenthesis the barrier height in 

MeV. The bottom line in each square gives the alpha half-

life and the alpha Q-value (in parenthesis). Beta-stable 

nuclei are underlined. 

Table 7· Same as Table 6, but for the region 116 < Z < 128 and 

176 < N < 190. 

Table 8. Same as Table 6, but for the region 116< z < 128 alilel 

Table 9. 

190 < N < 204. 

86 Production of superheavy nuclei b~ 
36

Kr
50 

beam. The first 

column identifies the target nucleus. The second column 

·indicates the compound nucleus that is formed by the fusion of 

the target and the projectile. Assuming that all the excita-

tion energy might be carried away by the emission of four 
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neutrons one.gets the nucleus shown in the third column. Now 

assuming that beta decays were extremely slow compared with 

spontaneous fission and alpha decay one finds the longest lived 

superheavy nucleus that can be reached as indicated in the 

fourth column with its major mode of decay. If we let the 

nucleus.in column 4 undergo beta decay one gets the super-

heavy nucleus shown in the fifth column with its major mode 

of decay. 
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Table 2 . 

PROTONS NEUTRONS , .. 
' . 

A value K J.l .K J.l 

165 0.0637 0.600 0.0637 0.420 

187 0.0620 0.614 0.0636 0.393 

208 0.0604 0.628 0.0636 0.367 
' I 225 0.0590 0.639 0.0635 0.346 

I 242 

I 0.0577 0.650 0.0635 0.325 

265 0.0559 0.665 0.0635 0.296 l 
285 0.0534 0.678 0.0634 0.272 

298 0.0534 0.686 0.0634 0.256 

308 0.0526 0.693 0.0633 0.244 

320 0.0516 0.701 0.0633 0.229 
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Table 3. 

Isomeric State 
First Peak Second Peak 

Ground State Height Excitation Height 
I z N A Deformation. above g.s. Deformation. above g.s. above g.s. 

E E4 MeV E E4 MeV MeV 

92 136 228 0.15 -0.06 3.4 flat region 5·3 

138 230 0.17 -0.06 3.6 flat region 6.1 

140 232 0.18 -0.06 4.0 0.59 0.06 2.9 7·5 

142 234 0.195 -0.05 4.9 0.585 o.os 2.5 8.1 

144 236 0.20 -0.05 5.6 0.605 0.06 2.4 8.9 

146 238 0.21 -0.04 6.1 0.60 0.07 2.7 9·5 

148 240 0.23 -0.03 6.8 0.64 0.06 3.2 10.0 

94 138 232 0.18 -0.06 3·5 o.65 0.08 1.9 4.2 

140 234 0.19 -0.05 4.2 0.64 0.08 2.1 s.2 

142 236 0.20 -0.05 5·0 0.61 0.06 2.1 6.2 

144 238 0.215 -0.04 5.8 0.60 0.06 2.2 7·0 

146 240 0.22 -0.03 6.5 0.61 0.07 2.5 7.6 

148 242 0.225 -0.03 6 9 0.61 0.07 3.0 7·95 

150 244 0.23 -0.02 7 2 0.62 0.07 3.6 8.3 

' 152 246 0.23 -0.01 7·3 0.64 0.06 3.8. 8.3 
._; 

96 142 238 0.21 -0.04 5·1 0.63 0.07 1.5 4.0 

144 240 0.22 -0.04 6.05 o.6i 0.07 1.65 4.9 

146 242 0.225 ·. -0.03 6.7 0.60 0.07 2.2 5·5 

148 244 0.23 -0.02 7·4 0.615 0.07 2.8 6.0 

150 246 0.23 -0.01 7·6 0.625 0.07 3.1 6.2 

152 248 0.23 -0.01 7·7 o.65 0.07 3·5 6.4 



-126-

Table 3. (Continued). 

Isomeric State 
First Peak Second Peak 

I Ground State Height Excitation Height 

I z N A Deformation above g.s. Deformation above g.s. above g.s. 

E E4 MeV E- E4 MeV MeV 

. 

98 146 244 0.22 -0.03 6.7 o:615 0.07 1.4 3f) .c. 

148 246 0.23 -0.02 7-45 0.625 0.07 2.0 3-75 

150 248 0.23 -0.01 7·8 0.68 0.07 2.5 4.1 

152 250 0.23 0.00 8.0 0.695 0.08 2.7 4.4 

154 252 0,235 0.01 7-9 0.705 0.08 2.6 4.0 

100 148 -.248 0.23 -0,.01 7·7 0.73 0.08 1.2 1.8 

150 250 0.235 .,..0.01 7-9 0.72 0.08 1.5 2.1 

152 252 0.24 0.00 8.2 0.72 0.09 1.7 2.3 

154 254 0.24 o.o1 8.1 0.73 0.09 1.6 2.1 

156 25,6 0.235 0.02 7-9 0.73 0.09 1.5 1.9 
.. ·- .. ~·. ~--- .... ' 
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·Table 4. 

__ 
1

.. ·l Height of Barrier j Exc. Energy of Sec. Min. 
:.uc E:US • (MeV) j (MeV) 

z N A :E;Xl)t 

92 11.•3 235 i 
2361 

i 
. l 

5-75 

5.8 

6.04 

144 

-93 145 

9h 142 

llt3 . 

238 l 
' j 

236 l 
t 

237 j 

144 238 5-3 
l 

145 239 i 5-5 

146 240 4.7 

147 241 6.3 
.~ 

i 

148 242 1 s.2 
i 

149 24}! 5:8 

e 

Theoretical 
1st Peak 2nd Peak 

5·6 8.9' 

5·0 6.2 

5·8 7·0 

6.~ 7·6 

6.<) 7-95 

i 

~ -

r 
. ~ 

I 
-i 

I 
l 

From 
DII/DI 

3 

2.4 

2.5 

2.1 

3-2 

From 
thresh. 
meas. 

Theory 

2.4 

2.1 

2.2 

2.5 

3.0 

DII/DI 

540 

260 

100 

43 

1900 

Fission 
Isomer 

SF 

Tl/2 
(sec) 

.. • 

Ref. 

I a 
i 

1.1 X 10~7 I b 

! 
! l <2.10-9 
l 
1 ·1o-7 
i""' 

I . 9 I <2.10-
l 
' i 
; 
' i·· 

3.10-7 

4 .io'-9 i 
l 
i 
j 3 -8 ' .. 10 
l i 5.10-8 

.1 6.10-8 
l 

l c 
I 

i 
c 

c 

i c 

i d, c 

e, b 

1

- b 

. a, b 

I 
1-' 
1\) 

-.J 
I 



Table 4 (Continued). 

Height of Barrier I Exc. Energy of Sec. Min. i I (MEV) i (MeV) I 
. . I 

Z N A E t Theoretlcal 

1 

From From Theor I 
l xp lst Peak 2nd Peak Dn/D1 thresh. Y jr 

meas. 

I 

I 
DII/DI 1 

i 
i 
I 
i 
I 

Fission 
Isomer 

SF 

'fl/2 
(sec) 

95 143 238 . ' I I I I 
144 239 ! l 2.9 I I 2.10-7 . 

145 24o 1 3.2 ! 1 9.1o-
4 

l I I j. -6 
' 146 241 5-9 2.5 i ! 1.10 \ . ; . i f 

Ref. 

b 

b 

b 

\ r 1 -2 
1 147 242 6.4 3.1 2.9 ! 900 l.4.lo 1 f, b 
I i i l 
l 148 243 i ! 1 
I ·• I ' , . I 1 -3 t . I 149 244 ( 6. 2) :1: ~ I 1.10 l b i 

I ~ l -8 I I 98 148 246 7-45 3-75 I (2.5) 2.0 ! ! (4.5.10 ) ! gt ! 
· · \ i · I 1 

a. Harwell Group 

b. Copenhagen Group 

c. Seattle Group 

d. Saclay Group 

e. Euratom Group 

.... L 

f. 

g. 

t 

Los Alamos Group 

Dubna Group 

This result is doubtful. 

Expt. Barriers quoted from 

Myers and Swiateckill) 

Recent experiments by the Berkeley 

Group (Bowman, Cheifetz and Gatti) did not confirm the result. 

~ • 

I 
!-' 
[\) 
()) 
I 
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Table 5. 

138 1"0 142 144 146 148 100 1"2 1~)· 

·183·''1 

102 ,. 8.3''16 
13 8.23 

70-34 72.64 7'·'7 79-18--1----

100 7-621 7.48 7-251 7.091
0 . 1 

7-16 ° . 8.00 7-'6 7-~2 

60.29 62.73 ~ 69.66 7l·,06 

98 7-17 6.6712 6.421 6.241 6.021 
-3 _,, .(, 

7-30 6.87 6.37 6.13 ( .. 22 

59.,3 62.65 66.56 

48.34 50.69 5}.61' 2lJl2 ~ 65.61 

96 6.74 6.6ol 6.2910 5-901 5-591 5-391 

6 .• 0 
4 -2 ·5 -6 

6.62 6.22 5-91 5-48 5.16 

48.32 51.52 58.27 62.96 

I 
·--·--·· ··-- ···---·-- ···-··· - -·----·-· ·---

37-21 39-17 "1.66 ~ !!§.:.19. 52-97 57-79 63.23 i 
94 6.60 6.17 5-8214 5-7413 5-3812 4.951 4.661 

i 
-2 -6 

6.71 6.31 5-87 5-59 5-26 4.98 4.66 

46.66 51-17 I 
i 

'\ 

! 30.57 ;;.41 36-72 4d.93 45-59 50-70 

9::2 ·; 
16 16 15 14 

·-



.178 179 180 181 182 

187 .8? 190.}6 19~.111 

llh (lms) (5.8) ld (?.1) 105y (8.}) 

ls (10.11,) 1adn (9.92) lOs (9. 71) 

18}.02 185-75 188.85 

ll5 

lOOlin (8.89) 10h (8.')8) 

178.01 100.09 181.00 18}.17 184.41 

ll4 ladn (5.4) 102y (?.0) 109y (8.}) 

lOd (7-97) ly (?-71) ly (7-55) 

1?4.43 177.84 181.57 
ll} 

lOy (7-33) lO}y (6.80) 

ll2 

170.60 17}.0} 1?4.4} 1?6.93 ll5l 
ls (4.1) lOd "(5. 7) .10 y (6.9) 

ly (7 .46) 102y (7 .1?) lo3y (6.8}) 

168.08 172-34 176.83 

lll 

lOy (7-05) lo5y (6.}8) 
z 

110 

164.54 ~ ~ ~ 17k·ll, 
(lms) (}.2) lOOlin (4.}) 10 y (5-5) 

lOy (?.20) 
2 . 

10 y (6.85) 10\ (6.40) l06y (6.14) 

162.86 168.02 171.10 17}·29 

109 

1";9-97 16} .21 165-57 168.81 171.20 

108 lOs ·(}.2) l02y (l•.}) 
lO}y (6.}8) 10

4
y (6.2}) 108y (5.57) 

171.20 

107 

169.79 

lOh lOd (3.9) 

1011y (4 -97) 
-··-

.. L 

Table 6. 

N 

183 184 185 1{\(, 

196.1•2 20i. }0 

lOlly (9.4) lOlly (9.1•) 

;\min (9.58) O.ls (10.';') 

192.1•5 197.66 

ld (8.45) lOs (9. }9) 

186.56 1886}4 ~ 19,.88 
1' 10 y (9.6) ·1o ·y (9.1•) 

102y (?.20) lOy (?.40) lOOd (?.87) ld (8.}l1) 

185.84 191.71 

lo5y (6.58) . ly (7-53) 

180.99 183.11 186.40 189-32 

1013y (8.1) 101\ (8.1) 

104y (6.52) 10
4
y (6.54) .102y (7 .10) ly (?-50) 

179.47 181.75 188.28 

107y (6.03) 102y (6.98) 

176.87 !12:.22 18}.01 186.27 

1010y (6.8) l010y (5. 7) 

109y (5.6}) 108y (5. 76) 105y (6.24) 102y (6. 73) 

176.18 178.87 182.66 186.08 

lOlly (5.24) 105y (6.21) 

174. }4 177-11 18l.07 184.66 

1rA (5.8) l08y. (5-9) 

101}y (4.89) 109y (.5·39) l06y (5.86) 

174:49 177.1,4 

17}.25 176:37 

107y (5.3) 

187 188 

206.55 

ls (10.24) 

20}.25 

lOOlin (9.ll) 

~ ~ 
101 y (9.4) 

'jh (8.1•9) lOd (8.09) 

198 •. 00 

lOy (?.29) 

19}-09 195-94 
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lOOd (?.65) lOy (?.24) 

195.2} 

103y (6. 72) 

190-36 19}-54 

109y (6.8) 

102y (6.86) 
4 . 

10 y (6.45) 

19}.68 

189.10" 192.60 

107y (5.8) 

I 
I 
j 

., 
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20}.52 

lOd (8.00) 

199-95 

lOy (?.16) 

197.88 

104y (6.35) 

! . 

! 

I 
I-' 

\..N 
0 
I 
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Table 7· 
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•o"! (t!.B~l '''"'·'·J 10·~ (IS. H. 10 of\.1.741 

• T.'t0,-0,•41 7.84,·0.M 7.+-'I,O.ll 

U.'I.U 170.U I 1, .. 
I 

Z60.54 160.6'1 hi. IS 161.11• lU.Il 

·• 101(5.5) O.h(7.ZI to·f,T.zt 10 -~ (7 .13 10-!(t..Et 
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}------- .. 
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uo·:.,s.Q ao·l,t..ZI 10~ (7.~ 101 (I.Q ''''·'~~ O.h (7.9 

to"t u~-'111 ao'lul.U:I ,10-~ (1),0" 
_, 

\01(14,\Z) to"touSl ao·tu.J.t.lt 

,+o.n '·"· ~o.u I.U, ~-M T.z ... o.•e '·"· J.Z9 
7.05,1:61 ---

Uf>.'IZ Z)7,61 HQ.U H6.50 

1:11.10 U8.t4 zu.zo ZU .• 6· UI.'M lU.87 lJ6.14 

(10-~ (5.~ ao'l1u~ ao·f,T.Q tolta ... . 
\OoUI.ij aol ''-~ \Oo(!.Z) 

ao·l,u.oaa to·i,u.o'll to'"!(U.41l ICI~~ Ul.IS) lo·tuu'll ,o·im.~ •o"loz.nJ 

.• +0.5) t:ot,tO.H t.O't,tl.OZ 1.80,\.U 1>.90,\,U .... , ... , e..;z.z.n 

zn.u 

Zll.b9 l\!.1>8 zt.I.04 U4.b0 U8.<>0 

no"lJfl.'ll uo·L !5.11 to"~ II>.JJ lo(T.]J ,, ('J.~ 10,(9.Q IO~(I.'It •o·:l8.a 

to":(lt.o•J to·: {11.5JJ lo·fm.ZZI ··o·:,u..nl 1o·: nz.1u 1o·! fl\.8~ 
8.0l,t\.17 7.IO,tl,45 T.77,tl.76 7.4?,tl.08 &.51,2.71 

r--
JO&.H 209.'HI ZI5.T9 Z\1.15 
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Table 8. 
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Ta.ble 9. 

Production of Superheavy Nuclei by 86 
36Kr50 

I ------ ·-----

Projectile 

r-- ' 
'r ~~ Longest-lived 
I Aft nuclei reached 

T t Compound "tte: after competition After S-decay arge eml lng · 
Nucleus 4 between s.f. and 

n . j successl ve 
i a-decay 
i l 

i ·--r-:. Major Ma,jor 
l A Z N . Z N l Z N z N Decay . Z N Decay 
! i 

Pb 208 82 126 ] 118 176 l 118 172 I ( s; f) I 
Po · 210 84 126 i 120 176 I 120 172 i (s .f) I 

I 

! I • l 
Rn ; l 

l 
4 

188 I 184 I a(lo-3s) I Ra 226 88 138 I 124 124 118 178 112 184 a(lO y) 

142 I 126 

I 
126 188 ; 116 178 -1 ) 182 

2 
Th 232' 90 192 a(lO s 112 a(lo y) 

! ' ' 
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2
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- ~ t 
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i 2 -

Cm 2~8 96 i52 I 132 202 ! 132 198 I 114 180 I 112 182 a(lo-y) _ I 

,, 

I 
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\.).1 
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Fig. l. 

Fig. 2. 

Fig. 3· 
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Figure Captions 

Single particle energies for a Hill-Wheeler box as a function 

of the deformation co-ordinate o:. The other deformation 

co-ordinat'e y has been set to zero. A large gap in the 

energy levels is indicated by a number which gives the number 

of levels below the gap. 

The configuration in momentum space for the Hill-Wheeler box. 

Only the (k , k ) plane is shown. The positions of the dot~; 
X y 

in units of kx = n/a = 2w1 , ky = n/b = 2w2 , and 

k
2 

= rr/c = 2w
3 

give the quantumnumbers of the levels. The 

fermi momentum ~ is the momentum of the highest level that 

is filled. The effective Fermi momentum q is defined such 

that the volumes of the bumps and dips cancel. 

A bump and a dip on the effective Fermi surface after averaging 

with respect to orientation. 

Fig. 4a. The energy of particles in a cubic Hill-Wheeler box as a 

function of particle number calculated in four different ways: 

(l) Using the approximate expression E' with only the N-term, 

E'(N); (2) E' with theN-term and the N2/3_term, E'(N2/3); 

(3) E' up to the Nl/3 term, E' (Nl/3); (4) The exact 

calculation E. The volume of the box is assumed proportional 

to N. The unit of the ordinate is in 1/h
2 
/2113

2 
where r3 

is given by 3 V = [3 N. 

·~ S"'eme e.s Fig. 4a for an oblate Hill-Wheeler box. 
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Fig. 4c. Same as Fig.·4a for a prolate Hill-Wheeler box . 

4d. Same as Fig. 4a for a Hill-WheeJ_er box with three 

unequal sides. 

Fig. 5a. The energy of N = 60 particles in a Hill-Wheeler box as a 

function of the deformation parameter a (Y = 0) calculated 

in three different ways: (1) Using the approximate expression 

E 1 up to N2/3 -term, E 1 (N2/3) ; ( 2) E 1 up to Nl/3 term, 

E 1 (~/3); (3) The exact calculation,' E. The results for E 1 

with only the N -term is independent of . a and is not shown. 

The ordinate has a different unit from that of Figs. 4. It 

is converted to the latter by multiplying by N-2/3. 

5b. Same as Fig. 5a for the case of N = 68. 

Fig. 6a. The energy differences between E and E 1 (N2/3) and between 

E and E 1 (Nl/3) as a function of the particle number N 

for a cubic Hill:..Wheeler box. See Figures 4. 

6b. Same as Fig. 6a for an oblate Hill-Wheeler box. 

6c. Same as Fig. 6a for a prolate Hill-Wheeler box. 

6d. Same as Fig. 6a for a Hill-Wheeler box with three 

unequal sides. 

Fig. 7a. The energy differences between E and E 1 (~/3) and between 

E and E 1 (N2/3) as a function of the deformation parameter 

a, (y = 0) for the case of N = 60 particles in a Hill-

Wneeler box. ·See Figures 5· 

7b. Same as Fig. 7a for the case of N 68. 

:' 



Fig. 8. 

Fig. 9. 

Fig. 10. 

Fig. 11. 

Fig. 12. 

Fig. 13. 

Fig. 14. 

Fig. 15. 

Fig. 16. 

Energy excess ~ over a spherical drop as a function of 

deformation. 

Energy excess ~ over a spherical drop as a function of 

deformation for different values of the fissility parameter x:. 

The energy change in the division of a volume-charged drop 

into n ecual parts, as a function of the fissility parameter 

x. The ordinate is just sR. Taken .from Ref. 19. 

The maximum and minimum radii of saddle point shapes of a 

volume-charged drop as a function of the fissility parameter x. 

The results for the symmetrical saddle point shapes are given 

by the solid curves, and the results for the asymmetric saddle 

point shapes by the dashed curve. Adapted from Ref. 20. 

The energy change in the division of a volume-charged drop 

into two spheres as a function of the fractional volume of one 

of the spheres for various values of x. Taken from Ref. 24. 

Same as Fig. 12 for the case of a conducting drop. 

Shapes in the symmetry N 

Shapes in the symmetry N 

2 family of equipotential surfaces. 

3 family of equipotential surfaces. 

The maximum and minimum radii of the symmetric saddle point 

shapes of a conducting drop as a function of the fissility 

parameter x. Different curves correspond to the restriction 

to different families of shapes indicated by the values of N. 

Fig. 17. Saddle point shapes within the symmetric N = 6 family for 

various values of x. The RMS values are also indicated. 
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Fig. 18. 

Fig. 19. 

Fig. 20. 
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The energy excess ~ . (in units of ES ( 0 )) over a sphere of 

·the symmetric saddle point shapes as a function of the fissility 

parameter x is 'Shown in solid curves. It is calculated on the 

N = 6 parameterization. 
I 

The broken curve indicates the results 

for a volume-charged drop taken from Ref. 27. 

Shapes described by the plane of the deformation parameters 

E and E4. A sphere corresponds to E = 0 and 

Spheroids have their E4 ~· 0. 

Relation between deformation co-'ordinates E' 
' 

E = 0. J, ' 

and 

a 4 . Note that the spheroid contains some a4 (as well as a6 
etc. not shown in the figure). 

Fig. 21. . Single-proton level diagram for spherical potential. Parameters 

are fitted3) to reproduce observed,deformed single-particle 

Fig. 22. 

Fig. 23. 

Fig. 24~ 

level order at A ~ 165 and 242, and are extrapolated linearly 

to the other regions. E. Rost's predicted level order35) for 

A = 298 is exhibited for comparison 

Analogous to Fig. 21, valid for neutrons. 

S;!.ngle-proton levels 
•;.;§.' ~:;'· -~':I 

A~ 298; K.= 0.0534; ~ 0.686, .. 

Effect of various terms in total energy as a fU:nctiem of defor-

mation. Long-dashed curve marks simple sum of single-particle 

energies, for dotted curve Coulomb energy is added, for dot-

dashed curve also pairing (G c:cS) is included, for short-

dashed curve the Strutinsky normalisation is applied. In aLl,. 

these cases it is assumed that E4 = 0. In the last case 



Fig. 25. 

Fig. 26. 

Fig. 27. 

Fig. 28. 

Fig. 29. 
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(solid curve) also the effect of the e4-degree of freedom 

is included. 

Sum of single-particle, pairing and Coulomb energies without 

Strutinski normalization as function of e, e4. At large 

distortions the energy ultimately rises beyond + 15 MeV 

(limit for the plot). 

A sketch of the errors ~~sl and ~~J in the Strutinski 

Prescription as a function of the smearing width r, for 

various order m of the correction factor F . 
m 

Shell corrections evaluated by the Strutinski method as a 

function of the shell-smearing parameter Y' for case of 

neutrons of 242Pu. Energies corresponding to three different 

distortions are considered. 

Same as Fig. 27, but for neutrons of 
208

Pb. 

Experimental and theoretical mass values for 150 < A < 340 

plotted relative to the spherical liquid drop value as of 

Ref. 41. 

Fig. 30. Theoretical deformations, (e, e4), of ground state nuclei in 

the rare earth region. 

Fig. 31. 

Fig. 32. 

Theoretical deformations, (e, e4), of ground state nuclei 

in the actinide region. 

Empirical rare earth 134-values (filled circles) obtained 

through the analysis of Ref. 46 compared to the present 

calculations before the inclusion of the Strutinski normalisa-

tion. The effect of the latter is less than 0.01 in magnitude. 
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·Fig. 33a. Total energy minimized w.r.t. for each E as function 

of E for iso-topes of 
92

u. Dashed curve corresponds to 

G set constant while the solid line is based on assumption 

that G is proportional to the nuclear surface area. 

3 3b. Same as Fig. 3 3a for isotopes of 94 Pu .. 
I . 

33c. Same as Fig. 33a for isotopes of 
96cm. 

33d. Same as Fig. 33a for isotopes of 
98

cf. 

33e. Same as Fig. 33a for isotopes of 100Fm. The extra dot-

dashed curve added for 256 Fm represents the new total energy 

for the case G oc S when the nuclear potential parameters 

are modified from those relevant for A = 242 to those for 

A= 265. As cari·be seen the barrier change is very small. 

33f. Same as Fig. 33a for isotopes of 102No. 

33g. Same as Fig. 33a for isotopes.of Z 104. 

33h. Same as Fig. 33a for isotopes of Z 106 .. 

33i. Same as Fig. 33a for isotopes of Z 108. 

33j. Same as Fig. 33a for isotopes of Z 110. 

33k. Same as Fig. 33a. fpr isotopes of Z 112. 
I 

33£. Same as Fig. 33a fbr isotopes of Z 114. 

Fig. 34. Potential energy minimized with respect to € 4 as a function 

of -E for various nuclei to illustrate the effect of shell 

structure of a liquid drop background. The broken curves 

correspond to liquid drop fission barriers. The selid curves 

are the bar!ier ~fter inclusion of shell and pairing effects. 

·; 
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Fig. 35· The two-peak barrier as a function of mass number for 

z = 92-100. 

Fig. 36a. Same as Fig. 33a for isotopes of 82Pb. 

36b, Same as Fig. 33a for isotopes of 84Po. 

36c. Same as Fig. 33a for isotopes of 86Rn. 

36d. Same as Fig. 33a for isotopes of 88Ra . 

.36e. Same as Fig. 33a for isotopes of 
90

Th. 

Fig. 37a. Total-energy surface in (e, e4 ) plane for 

application of the Strutinski normalisation. This figure 

corresponds to a somewhat earlier calculation and employs 

G = canst and a different pairing cut-off than described in 

the present paper. More recent calculations are exhibited in 

Fig. 33· 

37b. Same as Fig. 37a valid. for 29°114. 

Fig. 38a. Liquid:..drop energy surface for 252Fm. 

38b. Liquid-drop energy surface for 29°114. 

Fig. 39a. Shell and pairing energy contributions for 
2

52Fm. For 

further details see Fig. 37a. 

39b. Same as Fig. 39a for 29°114. 

Fig. 4o. Spontaneous fission half lives of Z = 114 and 110 isotopes 

as functions of the inertial parameter B for barrier 

penetration. ·Three estimates of B are given. For further 

explanations, see text. 

Contours of theoretical half-lives for 106 < Z < 128 and 

176 < N < 204. The thick dark lines a're contours of 
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Fig .. 42. 

-141-

spontaneous fission half-lives. The broken lines are 

contours of alpha half-lives. Beta stable nuclei are shaded . 

Periodic- Table exhibiting predicted locations of new elements. 
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XBL693- 2263 

Fig. l 
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Fig. 2 
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Bump 

d 

Dip 

k 

q 
XBL 695-580 

Fig. 3 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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