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3D/4D reconstruction and quantitative total body imaging

Jinyi Qi*,1, Samuel Matej*,2, Guobao Wang*,3, Xuezhu Zhang1

1Department of Biomedical Engineering, University of California, Davis, CA, USA

2Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA

3Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA

Synopsis

This chapter describes methods for image formation from raw measurements in total-body PET.

Challenges and opportunities in total-body PET image reconstruction are discussed.

Keywords

PET reconstruction; direct parametric reconstruction; time of flight; long axial FOV; kernel
reconstruction; data corrections

1. Introduction

Image reconstruction takes the measured coincidence events as the input and estimates the

spatial and temporal distribution of the radioactive tracers within the scanned object. Total-

body PET image reconstruction follows a similar procedure to the image reconstruction

process for standard whole-body PET scanners. Both analytical and iterative reconstruction

methods can be applied. Special considerations need to be taken for the extended axial field

of view (AFOV) and large amount of data. Some issues related to the long AFOV include

the axial point spread function (PSF) and estimation of correction factors, such as detector

normalization factors and those for scattered coincidence events. The large amount of data

also requires attention with respect to the computational efficiency of reconstruction

algorithms. One unique aspect of total-body imaging is the simultaneous coverage of the

entire human body, which makes it very convenient to perform total-body dynamic PET

scans. Therefore, 4D dynamic PET reconstruction and parametric imaging are of great

interest in total-body imaging. This chapter covers some basics of PET image reconstruction

and then focuses on 3D and 4D PET reconstruction for total-body imaging.

2. List-mode 3D image reconstruction

2.1 Basics

Total-body PET scanners have a huge number of lines of response (LORs). For example, the

uEXPLORER scanner (United Imaging Healthcare, Shanghai, China) has more than half a
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million individual crystals, forming over 90 billion LORs 1,2. With time-of-flight (TOF)

information, the number of elements in a TOF sinogram can be more than one trillion, which

is far greater than the number of coincidence events that could be detected in a regular scan.

For example, a one-hour dynamic scan following a 256 MBq 18F-FDG injection acquired 61

billion prompt (true + scattered + random) coincidences 2. Therefore, list-mode based

iterative reconstruction is a natural choice to avoid handling large sinograms.

The data model for total-body image reconstruction is the same as that derived for standard

PET image reconstruction3–5. The expectation of the ith LOR measurement is related to the

radioactivity distribution image x ∈ R
Nυ × 1

 by

yi = Px + s + r i

where P ∈ R
Nl × Nυ is the system matrix with the (i, j)th element representing the probability

of detecting an event originated from the jth voxel in the ith LOR, s ∈ R
Nl × 1

 and r ∈ R
Nl × 1

denote the expectation of the scattered and random coincidences, respectively 6. Nv and Nl

are the total numbers of voxels and LORs, respectively. The list-mode log likelihood

function can be written as

L x = ∑
k = 1

Nk
ln(Px + s + r)ik

− ∑
j = 1

Nυ
∈ j x j

∈ j = ∑
i = 1

Nl
Pi j

where Nk is the total number of list-mode events, ik is the LOR index of the kth event, and ϵj

is the overall efficiency of detecting events from the jth voxel3.

The maximum likelihood (ML) estimation can be obtained by the ML expectation

maximization (EM) algorithm 3

x̂ j
n + 1 =

x̂ j
n

∈ j
∑

k = 1

Nk Pik j

(Px + s + r)ik

with x0 starting from a uniform image.

One of the key components in iterative image reconstruction is the system matrix P. By

using a more accurate data-generation model than ideal line integrals used in the filtered

backprojection reconstruction method, iterative methods can improve both the spatial

resolution and the noise properties of reconstructed images. At the same time, however, an

accurate model also means higher computation cost and prolonged image reconstruction
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time. To address this challenge, a factored system matrix is often used 7,8. While a complete

factored model includes blurring components in both image and sinogram domains 9, list-

mode reconstruction often uses an image domain resolution model 10, where the system

matrix P is factored into

P = NAGR

where N and A are diagonal matrices containing the normalization factors and object

attenuation factors, respectively, for each LOR, G is the geometric projection matrix that is

calculated by a ray-tracing algorithm with a TOF kernel, and R is a point spread function

(PSF) matrix that models the resolution degradation effects, such as the positron range,

photon acollinearity, and detector responses including inter-crystal penetration and inter-

crystal scatter effects.

Many components in the above model can be estimated in the same way as for standard PET

reconstruction. For example, attenuation factors are estimated using a co-registered CT scan

with bi-linear transformation 11,12. Random coincidences can be estimated using either a

delayed window technique or based on singles rates 13–15. However, other components

require special considerations for total-body image reconstruction. In the following sections,

we will discuss a few unique aspects in the total-body reconstruction with a long AFOV

scanner.

2.2 Point spread function modeling

The major component in the PSF model is the parallax error caused by annihilation photon

crystal penetration. In a standard clinical PET scanner with ~20-cm AFOV, the parallax error

mostly occurs in the radial direction. For a long AFOV scanner, the parallax error also

occurs in the axial direction for the LORs formed between crystals with a large ring

difference. As illustrated in Figure 1, a more oblique LOR (red color) penetrates more

adjacent crystals than a less oblique LOR (blue color). Using the uEXPLORER scanner as

an example, the axial width of a direct LOR with ring difference of zero is 2.85 mm, which

is equal to the crystal pitch, whereas the axial width of an oblique LOR formed by two

crystals 180 degree apart transversely with a polar angle of 57 degree (the maximum

acceptance angle) is 27.6 mm, almost 10 times of that of a direct LOR. Such axial parallax

error is not noticeable in standard clinical PET scanner with a 20-cm AFOV. As a result, the

point spread function in long AFOV scanner is dependent on both the radial and axial

positions.16

To model the spatially variant PSF, point source reconstructions can be used. Point source

projections are either simulated 17 or measured 7,8 at different radial and axial positions and

the data are reconstructed to obtain the PSF models. Figure 2 shows reconstructions of a set

of simulated point sources inside a simulated 2-m long scanner 17 at different axial positions

on the center axis of the scanner. Clearly, we can observe the degradation in the axial

resolution as the point source moves from the axial boundary to the axial center. The

resolution degradation effect is less dramatic than the change of the axial width of oblique

LORs because the effect of oblique LORs is mitigated by direct LORs passing through the
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same point. The major effect of the parallax error is still in the radial direction. Figure 3

shows the transaxial profile of a reconstructed point source at 17.2 cm radial offset. Radial

elongation is apparent even at this modest radial offset. The FWHM (Full Width at Half

Maximum) and FWTM (Full Width at Tenth Maximum) values of the point spread function

at selected radial locations are listed in Table 1 for comparison. (See also Figure 10 in

Section 3.4.)

2.3 Normalization

Normalization is used in reconstruction to compensate for the variations in detector

efficiencies and hardware related interference patterns 18. It can also include any geometric

factors that are not modeled in the system matrix P. Normalization factors are computed by

comparing measured projections of a physical phantom with known activity distribution and

the prediction using the system model. Due to simplifications in the calculation of the

system matrix, normalization is often required even for simulated PET scanners with

uniform detector response 17. Figure 4 shows a sinogram of a simulated uniform cylinder in

a total-body scanner. While the simulated detectors have uniform response, we can clearly

observe pronounced block patterns, which are caused by the combination of inter-crystal

scatters and the energy weighted centroid positioning algorithm used in the Monte Carlo

simulation. The energy weighted centroid effectively shifts detected events away from the

edge crystals inside a detector block and hence reduces the apparent detection efficiency of

edge crystals. In simulations, a number of geometric symmetries can be used to reduce the

noise in the normalization sinogram so that a direct normalization based on the ratio

between the measurement and prediction in each LOR can be used 17. For a real scanner,

direct normalization can be noisy, so component-based normalization is often preferred to

decompose the normalization factors into several components with fewer number of

unknowns. The parameters can be estimated using either direct calculation 18 or maximum

likelihood estimation19.

Regardless whether direct normalization or component-based normalization is used, we need

sufficient true coincidence events in each sinogram for normalization factor estimation. In a

long AFOV scanner, oblique LORs with a large ring difference have low efficiency in

detecting true coincidences due to reduced solid angle and high attenuation of the phantom.

As a result, both scatter fraction and random fraction increase with increasing oblique angle

of the LOR. The combination of these effects makes it very difficult to accurately estimate

the normalization factors for LORs with extremely large ring differences. Therefore, to

avoid noise propagation from the normalization factors into reconstructed images, it is

beneficial to exclude the LORs with very large oblique angles in the reconstruction, even

though this means we are not using all detected events. This practical limitation on the

maximum acceptance angle is separate from the NECR calculation20 or hardware limitations
1.

2.4 Scatter estimation and correction

In total-body imaging with a long axial FOV scanner, photons can have longer paths through

the object, resulting in greater chance for multiple-scattering events than that in conventional

PET scanners. While the single scatter simulation (SSS) or its variant can still be used to
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estimate the scatter mean 21, Monte Carlo simulation can model multiple scatters more

accurately. The major challenge in Monte Carlo based scatter estimation is the high

computation cost. One way to reduce the simulation time is to compute the scatter sinogram

on the detector block level by assuming that the scatter sinogram is relatively smooth after

correction for detector efficiencies 17. Another approach is to use parallel computation with

GPU acceleration. An example of the scatter mean sinogram estimated by the Monte Carlo

simulation of an XCAT phantom is shown in Figure 5. Apart from the block boundary

effects, the scatter sinograms are fairly smooth in all selected TOF bins.

3. Efficient reconstruction using DIRECT framework (Direct Image

Reconstruction for TOF data)

While list-mode reconstruction has the advantage of facilitating straightforward and accurate

modeling (in forward projection) for each acquired event, this is at the cost of having to

separately calculate forward and back-projection operations for each individual event,

leading to high computational demands. DIRECT22 represents an alternative, very efficient,

reconstruction approach taking advantage of the considerably decreased angular sampling

requirement for TOF data. This allows a dramatic decrease in the number of views compared

to the classical TOF-sinogram data and thus the ability to process many events together. It

also permits the utilization of image-like partitioning of the TOF data into histo-images,

which in turn allows very efficient and highly parallelizable reconstruction operations.

Although both uExplorer1 and PennPET Explorer21 scanners use list-mode reconstruction as

their default tool providing practical reconstruction times, high computational efficiency of

DIRECT reconstruction approach will be especially beneficial for 3D/4D studies using wide

acceptance angles and many dynamic or temporal frames.

3.1 DIRECT data partitioning

The DIRECT framework is based on two key steps: the acquired list-mode events are first

sorted into a relatively small set of (transverse and co-polar) angular “views” according to

the TOF angular sampling requirements 23,24 and then they are histogrammed into a set of

“histo-images” (one histo-image per view; see Figure 6). Traditionally, binned TOF events

are histogrammed into TOF-sinograms or “histo-projections,” which are projections

extended in the TOF direction (with their sampling intervals relating to the projection

geometry and TOF resolution). Although the histo-projections use also only a limited

number of views similarly to DIRECT, the histo-projection data are in a different geometry/

space from the reconstructed images. On the other hand, in the DIRECT approach the

acquired events are histogrammed directly to the “most-likely” voxels of the histo-images.

Histo-images are defined by the geometry and desired resolution units - reconstructed image

voxels of the desired size. Acquired events and all correction factors are directly placed into

the voxels of their respective histo-images, which have a one-to-one correspondence with the

reconstructed image voxels, which allows efficient implementation of data correction and

reconstruction operations, without the need of any ray-tracing or interpolations within the

forward/back-projections.
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3.2 Forward- and back-projection operations in DIRECT framework

Modeling of the acquired data (forward-projection) within the histo-image format can be

simply implemented via a 3D convolution-like operation applied to the current estimate of

the image using a specific kernel for each view. Each kernel has an ellipsoidal shape

elongated along the view direction, as given by the TOF, detector (LOR), and other

resolution effects. Back-projection is simply the transpose of forward-projection. For

spatially invariant detector resolution kernels, very fast forward/back-projection operations

can be implemented within DIRECT using Fourier-based approaches 22. For spatially

variant and asymmetric kernels, a parallel implementation of the forward- and back-

projection operations can be efficiently implemented on a graphical processing unit (GPU)

with comparable speeds for practical kernel and image sizes to the Fourier-based

implementation with invariant kernels 25. Correction data (attenuation and normalization

factors, and scatter and randoms estimates) are efficiently generated directly in the histo-

image geometry 22,26. Attenuation and sensitivity factors, including gap effects (between

detector modules) can be accurately and efficiently calculated using Fourier-based

approaches 27.

3.3 DIRECT framework reconstruction

In the classical sinogram-based or histo-projection-based reconstruction approaches the

reconstruction operations need to operate between data and image spaces with different

geometries, requiring tracing and interpolation operations between the two spaces or

different spectral grids in Fourier-based approaches, affecting both speed and accuracy of the

reconstruction operations. On the other hand, in DIRECT approach all operations are voxel-

wise multiplications or additions on/between two image structures with the same

geometries, without the need of any spatial or spectral interpolations.

In statistical iterative reconstruction algorithms, the corrections, which are generated in the

histoimage format, are applied (added or multiplied in) during the forward projection

operation, and both the discrepancy and update operations of the algorithm are performed on

the image structures. An additional advantage is that the attenuation factors can be easily

and more accurately applied here before the forward projection and detector blurring

operations, thus avoiding an approximation often done in conjunction with the image-based

resolution modeling where the attenuation factors are usually applied only after the blurring

(and geometric projection) operations. Iterative-DIRECT was shown to provide comparable

quality and contrast-vs.-noise curves to the list-mode reconstruction for matched resolution

models, but with substantially - an order of magnitude - shorter reconstruction times (see

Figures 7 and 8) 26.

In the analytic algorithm the reconstruction operations are performed again very efficiently

on the consistent spatial (or spectral) image structures. The analytic reconstruction filter

takes into account also the data resolution models (in addition to the TOF resolution). For

the analytic algorithm data have to be pre-corrected before the reconstruction for all of the

data imperfections (normalization sensitivity, attenuation, scatter, randoms, dead-time). Gaps

in the data inbetween the detector modules create decreased values in the histo-images,

which are however non-zero (due to the view grouping), and can be therefore
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straightforwardly corrected by the correspondingly generated geometric sensitivity. On the

other hand, missing regions in the oblique data (due to the finite detector extent) need to be

estimated from the available data, for example, by reprojection of a first-pass reconstruction

from the complete non-oblique data, as in the 3D-RP and 3D-FRP reprojection algorithms
28,29. For typical clinical data (with typical number of acquired prompts) analytic-DIRECT

has been shown to provide similar contrast performance to iterative-DIRECT when applying

the same resolution models 30.

3.4 Special considerations for long axial FOV data

Similar to the list-mode reconstruction, there are important considerations to be taken into

account in DIRECT reconstruction due to the large increase of the axial acceptance angle.

For example, many practical approximations related to the oblique data (such as axial

binning/mashing, scatter estimations, etc.) have to be revisited and carefully treated.

Additionally, there is a large variation in the sensitivity and attenuation factors as function of

the oblique angles (with up to an order of magnitude changes) and large variation of the

axial resolution. Combination of such data without proper modeling will create

inconsistencies in the reconstruction model and will also affect the convergence rates.

An example of the variations of the counts (i.e., sensitivity) in the data with and without

attenuation as a function of the oblique angle is shown in Figure 9. Figure 10 illustrates

variations of the axial PSF resolution in the data space (as a function of the oblique angle)

and in the reconstructed image (as a function of the axial acceptance angle) in iterative-

DIRECT reconstruction without and with modeling of the axially varying resolution.

4. 4D reconstruction for total-body dynamic PET

4.1 Frame-by-frame reconstruction using the kernel method

In the setting of dynamic PET imaging, the expectation of the ith LOR measurement in the

mth time frame is described by

yi, m = Pxm + sm + rm i

for m = 1, …, Nm with Nm the total number of time frames1. Similar to the kernel method

for standard dynamic PET image reconstruction 31-33, we can use a kernel representation to

describe the tracer activity in the jth voxel in the mth frame of a total-body dynamic scan,

x j, m = Kαm j

where K is the sparse kernel matrix built from the image prior and α is the unknown kernel

coefficient image.

1Here in the forward projection model, a frame-independent system matrix P is used for conceptual simplicity. In practice, frame-
dependent Pm can be used to account for time-dependent factors when appropriate, such as deadtime correction and decay correction.
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Using the kernel-based image representation leads to the following kernelized forward

projection model for dynamic PET reconstruction:

yi, m = PKαm + sm + rm i

Based on this model, the ML estimate of α can be obtained from the list-mode raw data

using the kernelized expectation maximization (KEM) algorithm 31,

α j, m
n + 1 =

α j, m
n

ϵ j
∑

k = 1

K Pik j

PKαm
n + sm + rm ik

with α0 starting from a uniform image.

The most common way for building the kernel matrix K is by use of composite frames

derived from the dynamic data prior to the frame-by-frame reconstruction 31. For example, a

one-hour dynamic 18F-FDG PET scan can be first rebinned into three composite frames,

e.g., 10 minutes, 20 minutes and 30 minutes 2. From the reconstructed composite images

xm
reb

m = 1
3

 (e.g., by standard EM reconstruction), three time-activity points are obtained for

the jth voxel and form a feature vector f j = x j, 1
reb, x j, 2

reb, x j, 3
reb T

 The (j, l)th element of the kernel

matrix K is then calculated by

K j, l = k f j, f l

where κ(·,·) denotes the kernel function. One example is the radial Gaussian kernel function

κ f j, f l = exp − f j − f l
2/2σ2

with σ the kernel parameter, e.g., σ = 1.

A total-body image has a very large image size (e.g., 256 × 256 × 828; with high count –

density, it is possible for images to be larger still). For practical use, K is commonly built to

be sparse. This is achieved by restricting the voxel l to be in a neighborhood of the voxel j. A
typical example is through the k-nearest neighbor (kNN) search within a 7 × 7 × 7

neighborhood window with k set to be 50.

The KEM reconstruction approach can improve total-body dynamic image significantly as

compared to conventional 3D MLEM reconstruction 2. Figure 11 shows a comparison of

standard EM reconstruction and the KEM reconstruction for two short frames. Compared

with other potential 4D reconstruction approaches, one big advantage of the KEM algorithm

is that the reconstruction of a frame is implemented independently from other frames

without any direct temporal interaction from each other during the reconstruction. This is
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particularly beneficial in total-body dynamic PET because a fully 4D reconstruction has a

much bigger data size to handle and hence is more computationally intensive than frame-by-

frame 3D reconstruction. The kernel method can achieve a balance to bring a significant

improvement in image quality while maintaining computational efficiency. For further

improved performance, temporal correlations can be also incorporated into the kernel

framework to form a spatiotemporal kernel method which can be particularly beneficial to

high-temporal resolution dynamic PET imaging 34.

4.2 Direct estimation of kinetic parameters

One of the important purposes of dynamic PET imaging is quantification of tracer kinetics.

The conventional framework is to first perform dynamic PET reconstruction and then follow

with tracer kinetic modeling in a region of interest or at voxel level 35,36. This “indirect

method” may be suboptimal because information loss can occur in the two separate steps.

Alternatively, direct estimation of kinetic parameters can be performed by combining the

underlying temporal kinetic model and the reconstruction into a single formula, which has

the potential to better exploit the available dynamic data 37–40.

The forward projection model for direct reconstruction can be formulated as

yi, m = Pxm θ + sm + rm i

where the dynamic image of the mth frame, xm, is explicitly expressed as a function of the

kinetic parametric images θ,

xm θ j = ∫tm, s

tm, e
CT τ; θ j e−λτdτ

where tm,s and tm,e are the start and end times of time frame m, and λ is the decay constant

of the radiotracer. CT(t; θj) is the tracer concentration in voxel j at time t and is determined

by a linear or nonlinear model with the kinetic parameter vector θj. Examples include B-

splines, spectral analysis, Patlak model, one-tissue compartmental model, irreversible and

reversible two-tissue compartmental models. 37,41

One major challenge for direct reconstruction, in particular for total-body dynamic PET, is

the optimization algorithm becomes very complicated and not trivial to implement because

the 4D dataset is spatiotemporally coupled. This challenge can be overcome by using the

optimization transfer methods 40,42. The optimization transfer method with the separable

paraboloidal (SP) surrogate function 40 can transfer the 4D reconstruction problem into a

voxel-wise 1D nonlinear least-square fitting problem at each voxel j as defined by

θ j
n + 1 = argmin

θ j
∑m = 1

Nm W j, m
n x j, m

n − xm θ j
2
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where x j, m
n

m = 1

Nm
 denotes the intermediate time activity curve (TAC) estimated from the

projection data for the jth voxel based on the SP surrogate at reconstruction iteration n. W j, m
n

are the corresponding weights resulting from the optimization transfer 40. xm θ j  represents

the model TAC based on the kinetic parameter set θj. This 1D fitting problem can be easily

solved by many existing optimization algorithms (e.g. the Levenberg-Marquardt algorithm)

in tracer kinetic modeling.

Alternatively, the optimization transfer method with the EM surrogate function 42 can also

transfer the 4D reconstruction into the following equivalent voxel-wise Poisson likelihood-

like 1D fitting problem:

θ j
n + 1 = argmax

θ j
∑m = 1

Nm x j, m
n lnxm θ j − xm θ j

where x j
n ≜ x j, m

n
m = 1

Nm
 now represents the intermediate TAC estimated from the project data

using one-iteration of the standard EM reconstruction update. Such 1D fitting can be also

solved by different fitting algorithms, including the popular Levenberg-Marquardt algorithm.

One special case of the EM-based optimization transfer method is the Nested EM algorithm
43 developed for linear kinetic models. Assume a linear kinetic model,

xm θ j = Bθ j m
,

where B denotes the temporal basis matrix following a specific kinetic model. Then the

estimation of θj can be obtained from the intermediate TAC x j
n, using the following EM

update with Nq sub iterations 43,

θ j
n, q + 1 =

θ j
q

BT1
⋅ BT x j

n

Bθ j
n, q

m

,    q=0,⋯,Nq − 1

where the vector division is operated element-wise. θ j
n + 1 is finally obtained as

θ j
n + 1 = θ j

n, Nq.

Figure 12 shows the application of the direct estimation to parametric imaging of the slope

(reflecting FDG influx rate) of the Patlak plot for a dynamic 18F-FDG PET scan on the

uEXPLORER scanner. As compared to the conventional indirect method, the direct

reconstruction demonstrated substantial noise suppression. More quantitative comparisons

can be found in the recent work of Zhang et al. 2.
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5. Summary and future prospects

Total-body PET provides both challenges and opportunities for 3D/4D PET image

reconstruction. On the one hand, the large dataset size presents a daunting challenge in

computation. Incorporation of the long oblique LORs in reconstruction also requires an

accurate model of the response function and proper handling of the correction factors, such

as normalization and scatter correction. On the other hand, the high photon-detection

sensitivity of total-body PET provides sufficient count density to take advantage of more

sophisticated resolution models. Examples include modeling of positron range and photon

acollinearity, two factors that put a fundamental limit on PET spatial resolution. While

methods for modeling these two effects have been studied before44–46, standard scans on

existing whole-body PET scanners are too noisy to exploit these models to enhance the

spatial resolution of PET. Total-body PET brings the opportunities to utilize these models to

push the PET resolution beyond these limits. Another opportunity is the combination of

total-body PET with machine learning techniques. While direct reconstruction by neural

network47 for total-body PET may not be feasible with current computing hardware,

machine learning can be used to improve the image quality and/or reduce radiation

dose47–56. For example, combining the kernel reconstruction with the EXPLORER scanner,

researchers have obtained high-quality blood flow images at 100-ms temporal resolution57.

With the help of deep neural network, it may be possible to generate motion-freeze total-

body PET images under a single breath hold. As more total-body PET scanners become

operational, we expect to see many new advances in total-body PET image reconstruction.
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Key Points

• Long axial FOV data bring new imaging opportunities and potentials of

improved reconstruction quality, but also challenges dues to dramatic increase

of data sizes and challenges given by the change and variations of data

characteristics with increased acceptance angles

• Good TOF resolution and considerably increased sensitivity of total-body

imaging scanners allow novel and improved modeling and ways of processing

their data

• Total-body PET enables simultaneous dynamic imaging of the entire body.

4D reconstruction using the kernel method and/or direct estimation of kinetic

parameters can further improve image quality for total-body parametric

imaging
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Figure 1.
Illustration of the difference in axial resolution between an LOR with a small ring difference

(blue) and an LOR with a large ring difference (purple).
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Figure 2.
Sagittal slices of reconstructed point source images on the center axis at different axial

positions: (left to right) 13 cm, 26 cm, 39 cm, 52 cm, 65 cm, 78 cm, and 91 cm, from the

axial edge of the scanner. Vertical axis is the axial direction and horizontal axis is the radial

direction.
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Figure 3.
The transaxial profile of a reconstructed point source at a radial offset of 17.2 cm from the

center.
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Figure 4.
Sinogram of a uniform cylinder for normalization factor estimation. (a) transaxial view; (b)

axial view. Gaps between detector blocks are skipped and only valid LORs shown.
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Figure 5.
Estimated scatter Mean Sinogram in four selected TOF Bins.
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Figure 6.
Illustration of the hist-image partitioning; acquired data are histogrammed into the (most-

likely) histo-image voxels having 1-to-1 correspondence with the reconstructed image

voxels.
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Figure 7.
Relative comparison of processing times for iterative- and analytic-DIRECT to traditional

list-mode TOF reconstructions at comparable image quality; times are shown for a single

CPU reconstruction of one bed position of a typical patient scan.
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Figure 8.
Comparison of list-mode reconstruction (default tool on PennPET Explorer scanner),

iterative-DIRECT (RAMLA), and analytic-DIRECT reconstructions of simulated XCAT

phantom data for 70cm PennPET Explorer scanner.
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Figure 9.
Recorded coincidence events for a single row of crystals along the axial extent of the

simulated scanner 198cm long (plotted as a function of the LOR oblique angle). Results are

shown for a single point source at the center of the imaging FOV with and without

attenuation of water filled cylinder, 30 cm in diameter and 2 m long. The counts are

normalized to the angular bin with the largest number of counts. (From [Jeffrey P Schmall et

al 2016 Phys. Med. Biol. 61 5443] 16 © Institute of Physics and Engineering in Medicine.
Reproduced by permission of IOP Publishing. All rights reserved.)
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Figure 10.
Axial resolutions of the simulated point-sources for long axial FOV scanner in data and

reconstruction spaces. Left: Axial FWHMs of PSFs in the histo-image data as a function of

oblique angle, Right: Axial FWHMs of the point-sources reconstructed with (red) and

without (black) axial tilt-dependent resolution models for gradually increasing maximum

acceptance angle of used data.
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Figure 11.
Comparison of standard maximum-likelihood (ML) expectation-maximization (EM)

reconstruction with kernelized EM (KEM) reconstruction for (A) a 1-s frame at 29-30 s post

injection and (B) a 2-s frame at 60-62 s post injection. The dynamic data were acquired with
18F-FDG for a human subject on the uEXPLORER total-body PET/CT scanner.
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Figure 12:
Comparison of the direct method and indirect method for parametric imaging of the slope of

the Patlak plot for a human subject 18F-FDG scan on the uEXPLORER scanner. (A) a

transverse plane; (B) a coronal plane.
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Table 1.

Radial FWHM and FWTM of the point spread function at various radial positions of a simulated 2-m long

EXPLORER (data from 17).

Radial Offset 0 cm 10 cm 20 cm 30 cm

Radial FWHM 3.0 mm 3.9 mm 5.6 mm 6.8 mm

Radial FWTM 5.4 mm 7.1 mm 10.2 mm 12.3 mm
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