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Abstract

Background: Many predictors of morbidity caused by metabolic disease are associated with 

body shape. 3D optical (3DO) scanning captures body shape and has been shown to accurately 

and precisely predict body composition variables associated with mortality risk. 3DO is safer, 

less expensive, and more accessible than criterion body composition assessment methods such 

as dual-energy X-ray absorptiometry (DXA). However, 3DO scanning has not been standardized 

across manufacturers for pose, mesh resolution, and post processing methods.

Purpose: We introduce a scanner-agnostic algorithm that automatically fits a topologically 

consistent human mesh to 3DO scanned point clouds and predicts clinically important body 

metrics using a standardized body shape model. Our models transform raw scans captured by any 

3DO scanner into fixed topology meshes with anatomical consistency, standardizing the outputs 

of 3DO scans across manufacturers and allowing for the use of common prediction models across 

scanning devices.

Methods: A fixed-topology body mesh template was automatically registered to 848 training 

scans from three different 3DO systems. Participants were between 18 and 89 years old with 

body mass index ranging from 14 to 52 kg/m2. Scans were registered by first performing a 

coarse nearest neighbor alignment between the template and the input scan with an anatomically 

constrained principal component analysis (PCA) domain deformation using a device and gender 

specific bootstrap basis trained on 70 seed scans each. The template mesh was then optimized to 

fit the target with a smooth per-vertex surface-to-surface deformation. A combined unified PCA 

model was created from the superset of all automatically fit training scans including all three 
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devices. Body composition predictions to DXA measurements were learned from the training 

mesh PCA coefficients using linear regression. Using this final unified model, we tested the 

accuracy of our body composition models on a withheld sample of 562 scans by fitting a PCA 

parameterized template mesh to each raw scan and predicting the expected body composition 

metrics from the principal components using the learned regression model.

Results: We achieved coefficients of determination (R2) above 0.8 on all nine fat and lean 

predictions except female visceral fat (0.77). R2 was as high as 0.94 (total fat and lean, trunk fat), 

and all root-mean-squared errors were below 3.0 kg. All predicted body composition variables 

were not significantly different from reference DXA measurements except for visceral fat and 

female trunk fat. Repeatability precision as measured by the coefficient of variation (%CV) was 

around 2–3x worse than DXA precision, with visceral fat %CV below 2x DXA %CV and female 

total fat mass at 5x.

Conclusions: Our method provides an accurate, automated, and scanner agnostic framework 

for standardizing 3DO scans and a low cost, radiation-free alternative to criterion radiology 

imaging for body composition analysis. We published a web-app version of this work at https://

shapeup.shepherdresearchlab.org/3do-bodycomp-analyzer/ that accepts mesh file uploads and 

returns templated meshes with body composition predictions for demo purposes.

Keywords

3D scanning; body composition; dual X-ray absorptiometry; fixed topology mesh; linear 
regression; obesity; principal component analysis; regional composition

1 │ INTRODUCTION

Metabolic syndrome is strongly correlated with the leading causes of death in the US and 

the world.1 Many clinical studies have shown the importance of regional body composition 

as a predictor for metabolic disease risk and increased mortality even when controlling 

for total body variables such as weight and body mass index (BMI). Goodpaster et al.2 

showed that males in a normal BMI range with high visceral fat mass were twice as likely 

to have metabolic syndrome that can lead to higher risk of heart attack and stroke. Wilson 

et al.3 showed that high trunk-to-leg volume ratios predict greater diabetes risk, with the 

highest quintile of the population 6.8 times as likely to become diabetic. Zhang et al.4 

demonstrated a correlation between abdominal obesity and death from cancer over a 16-year 

longitudinal study, with a 63% increase in mortality risk in the highest quintile. Although the 

criterion methods for measuring body composition and metabolic risk factors reside mainly 

in radiology facilities, many mortality predicting variables have visually observable external 

effects on body shape.5

3D optical (3DO) scanners capture external body shape and are relatively inexpensive, 

noninvasive tools for gathering data that can predict or prevent metabolic disease.6 However, 

algorithms that estimate body composition and metabolic risk factors from 3D scans are 

often proprietary and unique to a particular scanning system, such as the independent black 

boxed methods of Fit3D, Styku, and Size Stream. Even within data from a single system, the 

order, placement, and number of vertices in the file vary from scan to scan, making unified 

Tian et al. Page 2

Med Phys. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://shapeup.shepherdresearchlab.org/3do-bodycomp-analyzer/
https://shapeup.shepherdresearchlab.org/3do-bodycomp-analyzer/


cross-compatible prediction algorithms based on surface geometry difficult to develop and 

verify. These limitations undermine the accessibility of 3DO scanning as a universal clinical 

tool due to possible inconsistent interpretations depending on the scanning system deployed.

Previous works have attempted to bridge the divide between inconsistent system data and 

consistent translation to medically informative statistics. Ng et al.7 fit a 3D human mesh 

template to raw scans from a single scanning system using the mesh deformation methods of 

Allen et al.8 This work translated unorganized raw scans into topologically and anatomically 

consistent 60 001 vertex meshes (60 k), which abstracted away the specific output format 

of the scanning device and allowed statistical methods such as principal component analysis 

(PCA) to be applied.

While this method in theory was not dependent on the input system, it was only 

benchmarked on a single system and did not scale well to large datasets due to the manual 

effort involved. Point correspondences between the standard template mesh and the raw 

scan required manual annotation on each raw scan to initialize the mesh correspondences 

and deformation. PCA models built on one scanning system did not generalize to scans 

from novel systems due to strict pose constraints inherent in the single scanning device. A 

scalable, device agnostic solution needs to allow for fast automatic mesh template fitting 

across multiple devices while showing high accuracy on body composition prediction in 

held-out test data.

The primary objective of this study was to develop an algorithm for automatically 

standardizing 3DO scans from multiple total body scanning systems captured in standard 

anatomical poses and predicting body composition metrics from the resulting standardized 

body meshes using a unified scanner agnostic model. While Ng et al.7 directly applied the 

per-vertex deformation algorithm detailed in Allen et al.8 with the assistance of labeled 

correspondences between template and raw scan, we first used a global deformation 

constrained by a bootstrap principal component basis created with a subset of manually 

guided template fits (see Supplementary Methods) to enforce anatomical correspondence. 

We refined the surface-to-surface alignment with the same per-vertex deformation but with 

zero manually annotated markers as part of the optimization as anatomical and topological 

consistency were constrained by the principal component domain. We extended the manual 

fitting method of Ng et al. to automatically fit a standard template to 848 training scans from 

Systems 1–3.

We performed a cross-sectional study on a diverse sample of convenience that received 

metabolic status measures and 3DO scans on four different technologies, including one 

unseen technology that was not used in model training. A secondary aim of this study was 

to quantify the test-retest precision of body composition estimates using our automatic mesh 

templating method against DXA.
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2 │ METHODS

2.1 │ Study design

We constructed a parameterized 3D body shape statistical model to both perform the 3D 

geometric surface registration and the subsequent body composition prediction from the 

standardized mesh template. Our method was trained and tested on adult participants from 

the Shape Up! Adults Study (NIH R01 DK109008) and were recruited in the Honolulu, 

HI area at the University of Hawaii at Manoa (UH), in the San Francisco, CA area at 

the University of California, San Francisco (UCSF), and in the Baton Rouge, LA area at 

Pennington Biomedical Research Center (PBRC) as described in Tian et al.9 Recruitment 

was stratified by age (18–40, 40–60, >60 year), ethnicity (non-Hispanic white, non-Hispanic 

black, Hispanic, Asian, and Native Hawaiian or Pacific Islander), gender and BMI (< 20, 

20–25, 25–30, > 30 kg/m2).

Participants were excluded if they could not stand unassisted for 2 min or lie supine 

for 10 min without movement, had metal objects in their body, or had major body-shape-

altering procedures (e.g., liposuction, amputations, etc.). Female participants were excluded 

if pregnant or lactating. Written informed consent was obtained from each participant upon 

arrival, and all procedures were approved by the PBRC Institutional Review Board (IRB# 

2016–053-PBRC), the UH Office of Research Compliance (CHS# 2017–01018), and the 

Human Research Protection Program Institutional Review Board at the UCFS (IRB# 15–

18066). The study is publicly listed on ClinicalTrials.gov as ID NCT03637855.

Ground truth total and compartmental body composition measurements were defined by 

DXA. We acquired duplicate whole-body scans of each participant on either a Hologic 

Horizon/A system (UCSF) or a Discovery/A system (PBRC and UHCC) (Hologic Inc., 

Marlborough, MA, USA). Participants were positioned and scanned according to each 

manufacturer’s guidelines. All scans were analyzed at UHCC by a single certified 

technologist using Hologic Apex version 5.6 with the National Health and Nutrition 

Examination Survey Body Composition Analysis calibration option disabled. DXA systems 

quality control was performed by monitoring the weekly values of the Hologic Whole 

Body Phantom. Cross-calibration was checked between sites using a whole-body phantom 

scanned at each site. No cross-calibration adjustments were needed.7

Each participant was scanned in one or more 3DO systems pending availability at each 

recruiting location. We used four different 3DO system manufacturers across all sites: 

System 1 (Fit3D Proscanner 4.x, Fit3D Inc, Redwood City, CA, USA), System 2 (Styku 

S100 4.1, Styku LLC, Los Angeles, CA, USA), System 3 (Size Stream SS20, Size Stream, 

Cary, NC, USA), and System 4 (Naked Body Scanner, Naked Labs, Redwood City, CA, 

USA). Scans from different systems differed slightly in pose, although all were upright with 

straight elbows and knees in a neutral A-pose, with elbows and knees held in maximum 

extension and arms and legs abducted slightly away from the midline of the body, and 

differed significantly in vertex count, spanning three orders of magnitude from 4000 to 400 

000 points. Participants stood with arms and legs held straight and slightly away from the 

midline of the body, but the exact angles varied with the position of the handrails, foot 

marker placement (if present at all), and height of the subject. System 2 had more extreme 
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arm position variance as there were no fixed handrails. In the case of System 4, the restricted 

field of view of the optical sensor created much more variance in the pose of participants, 

who had to stoop or bend their limbs to fit within the constraints of the system. Participants 

were scanned twice to gather a test-retest precision evaluation data set.

The number of raw scans included in this study was as follows: for males, System 1: 241, 

System 2: 216, System 3: 116, and System 4: 59; for females, System 1: 294, System 2: 

276, System 3: 135, and System 4: 73. Some participants were represented by more than 

one system. These systems spanned a wide range of output resolution, with some System 

3 scans having as few as 4000 vertices and the largest System 1 scans having over 400 

000. Scanner properties are summarized in Table 1. We standardized all scans to System 1 

reference coordinates shown in Figure 1. We trained our PCA model on a subset of the first 

three systems and treated System 4 as a completely unseen validation method with extreme 

pose variation. For each training system, the participants for each gender were split into 

three sets: a 70-member bootstrap set and the remainder split 50/50 into train and test.

3 │ RESOLVING DATA INCONSISTENCIES USING STANDARDIZED MESH 

TEMPLATES

A key advancement on previous work predicting body composition from unorganized 3DO 

scans was substituting the manual annotation of anatomical landmarks for a coarse initial 

deformation in principal component domain.

To fit our 60 k standardized mesh template to the scan point cloud, we iteratively minimized 

closest-point Euclidean distances between vertices in our template and the input scan in 

two phases. First, we constructed six PCA bases using manually fit7 template meshes from 

the bootstrap set to initialize the automatic fitting algorithm. There were three scanning 

systems, and PCA spaces were separated by gender. Each bootstrap set consisted of 70 

fitted meshes. We performed a global mesh deformation of our template body mesh in 

the dimension-reduced bootstrap principal component domain corresponding to the mesh’s 

gender and scanning system to constrain surface smoothness and anatomical consistency as 

described in Tian et al.9 and achieve a coarse shape fit. Closest point pairs were determined 

with a nearest-neighbor algorithm, and pairwise distances were minimized with a linear 

least-squares solver. This process was repeated iteratively until the difference between 

iterations fell below the convergence tolerance hyperparameter. Second, we refined the 

surface alignment between the deformed template and the scan mesh by optimizing for 

per-vertex 3D rigid transformations to minimize surface-to-surface distance as shown in 

Allen et al. to produce the final fit. This step was analogous to the mesh fitting in Ng et 

al. but was fully automatic with no annotated anatomical landmarks, as deformation in the 

principal component domain constrained the coarse fit to be topologically and anatomically 

consistent with a human body shape. We first fit the 420 scans from all bootstrap sets with 

the initial manually bootstrapped PCA models. Mathematical details are provided in the 

Supplementary Materials.
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3.1 │ Verifying anatomical and topological consistency of automatic template fits

We compared our automatic markerless body shape fits to the manually fit equivalents from 

Ng et al. to check for topological and anatomical consistency between the two shape fitting 

methods. The 60 k mesh template had 74 anatomical markers placed at anthropometric 

positions originally defined by the CAESAR study10 by a trained medical professional. 

The original landmarks corresponded to skeletal features determined by palpation on a live 

subject. Our manually annotated landmarks were placed in a 3D model viewer by a trained 

technician to correspond to the physically palpated ones.

We can recover the 3D position of these landmarks in any shape fit with the 60k template 

by querying the coordinates of the neighboring vertices that define the placement of each 

landmark. We compared the landmarks recovered from automatic template fits to the 

equivalent manually clicked landmarks, using the latter as the gold standard, and compared 

their precision with manually annotated equivalents to the benchmarked precision of repeat 

manual point placement on the same scan.

3.2 │ Expansion of body shape model using markerless automated fitting

We repeated building the initial six separate bootstrap PCA models but with the resulting 

automatically fit mesh templates and compared their body composition prediction accuracy 

against the manually fit baselines to ensure there was no loss of accuracy due to dropping 

manual annotation from the pipeline. Each model was incompatible with scans from a 

different system. This incompatibility was due to the strict hand and feet endpoints imposed 

by each system, which introduced minor pose variations but caused meshes scanned with 

one system to be unrepresentable in the PCA domain of another. Figure 2 shows an example 

of a System 2 scan fit using a System 1 PCA male model.

Our goal was to train a single PCA model that could automatically fit templates to raw scans 

from any system and predict accurate body composition from the standardized fit. We used 

the second automatically fit bootstrap model for each gender and system combination to fit 

all the raw scans from their respective training sets. These coarse PCA fits were then refined 

with surface-to-surface alignment as previously described. The refined fits from all systems 

were grouped into one training set per gender.

We constructed the final unified PCA model by merging the refined fits of all training 

data for all scanning systems into one training set per gender. The combined training data 

included the training set and the bootstrap set, which was a specific subset of the training 

data. This system-agnostic model included 391 males and 457 females. The unified model 

was used to fit raw scans from the held-out test set and predict their body composition.

3.3 │ Predicting body composition using scanner agnostic shape space

We solved for a linear mapping between PCA basis coordinates and body composition by 

performing linear regression between the principal components of the automatic template 

fits to training scans and their corresponding criterion body composition measurements 

taken with DXA as described in Tian et al. Linear models for predicting body composition 

as a function of principal component basis weights were solved with least squares regression 
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between the principal components and the ground truth DXA variables. For a regression 

of the form Mx = y, we augmented the vector x with the value 1 to allow for nonzero 

intercepts.

We reported all prediction accuracies on test meshes that were not used in PCA model 

construction or regression training. Statistical significance for body composition prediction 

was computed with a paired two-sided t-test. Body composition prediction from 60k mesh 

templates were paired with the DXA-derived gold standard measurement. The test was 

successful if the null hypothesis could not be rejected, that is, the difference between DXA 

and our prediction was not significantly different from 0. The Bonferroni correction for the 

p-value was 0.004. n = 182 and 248 total test set meshes for males and females, respectively, 

with an additional separate 59 and 73 validation meshes from System 4. Mathematical 

details are written in the Supplementary Materials.

3.4 │ Algorithm workflow summary

Training procedure: START: 70 male and 70 female bootstrap scans from each of 

Systems 1–3. (420 total)

1. Manually assign anatomical correspondences between 60 k template and 

bootstrap scans. Perform marker-guided surface to surface deformation to make 

6 bootstrap template sets.

2. For each device AND gender combination (6 total System # + M/F 

combinations), make an independent 70-member bootstrap basis with PCA.

3. For each bootstrap scan, deform the 60k template to satisfy nearest neighbor 

alignment in its gender and scanner-specific PCA bootstrap domain. See 

Supplementary Materials.

4. Starting with coarse alignments from step 3, smoothly deform each mesh to 

register to target scan with per-vertex surface-to-surface alignment (Allen et al.)

5. Repeat step 2 with the results from step 4. Verify marker alignment with manual 

placements.

6. Repeat step 3–4 using the PCA model from step 5 to fit all training scans.

7. Merge all refined fits from step 6 into a single superset per gender consisting of 

fitted training meshes from all three scanning devices. Perform PCA on this fixed 

topology set to get the unified PCA basis. (1 male, 1 female)

8. Project all refined fits from step 4 onto the PCA basis from step 7 to get PC basis 

coordinates for each training mesh. Learn per gender linear regressions from PC 

coordinates to DXA measurements. (Tian et al.)

Testing procedure: For any NEW test scan (any device):

1. Fit a 60 k mesh template using PCA initialization as described in training step 

3 and 4, using the PCA superset model from training step 7 as the coarse 

deformation prior.
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2. Project the refined test mesh fit onto the unified PCA basis as in training step 8. 

Use regression matrix learned in training step 8 to estimate DXA measurements.

4 │ RESULTS

Participant characteristics for the training and test sets are shown in Table 2. There were 

1278 scans from three scanning devices randomly divided into training and testing. We 

reserved 70 manually fitted scans of each gender from the training set of each of the three 

systems to bootstrap the shape model. There was no significant difference between the 

means of training and test data.

4.1 │ Landmark consistency between automatic and manual fits

To compare the topological consistency of our automatic fitting method to the manually 

guided fitting method of Ng et al.,7 we compared the pairwise Euclidean distances between 

the 74 anatomical landmarks specified in the CAESAR dataset on both sets of template fits. 

The landmarks on the base template mesh were readily mapped to any automatically fit 

mesh as a function of neighboring vertices. Between topologically consistent template fits 

to the same raw scan, vertices and therefore landmarks should be analogous. For the 420 

scans in the bootstrap set that had manually placed markers for reference, mean error was 11 

mm with a standard deviation of 12 mm. By comparison, the precision of a trained analyst 

manually assigning markers on the same mesh for a set of 15 males and 15 females was 8 

mm with a standard deviation of 7 mm.

A subset of test set meshes had manual fit equivalents, although they were not used in 

training. To check the anatomical correspondences for held-out test meshes, we compared 

the markers of 95 male and 135 female test set meshes fit with our automatic template fitting 

across all three scanning systems to their manually placed counterparts. Test set meshes 

were fit with the final unified PCA space, which was composed of automatically template fit 

meshes from the training sets of all three systems. The mean distance between the recovered 

markers and the manually placed equivalents was 21 mm, with a standard deviation of 

23 mm. Figure 3 shows a visual comparison of manually placed markers to the markers 

recovered from the auto-templated fit.

Automatic mesh templating and standardization exhibits greater point placement error 

compared to repeat manual annotations, although surface-to-surface registration was visually 

equivalent. We show below that the slightly varied vertex distribution on a common surface 

did not decrease prediction accuracy of body composition prediction from body shape.

4.2 │ Accuracy of markerless, unified shape models against manual baseline

Figure 4 shows automatic template fitting using the unified superset model for coarse shape 

alignment on the heaviest female and tallest male in the test set. A visualization of our fitting 

method on raw scans of a single participant scanned on four different systems is shown in 

Figure 5.

We recreated the same six manual bootstrap PCA models using automatically templated 

meshes to isolate the effect of automatic template fitting on body composition prediction 
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in the absence of additional training data. Figure 6 shows the difference in R2 prediction 

on test data between automatically and manually fitted PCA models containing the same 

70 bootstrap meshes for training. Most metrics gain predictive accuracy for both genders, 

with small increases in error of <0.1 for some measurements such as arm fat in females. 

R2 values for the auto-templated models increased by an average of 0.054 and 0.023 for 

males and females, respectively, averaged across all three systems and 12 composition 

metrics. Although the training meshes were the same, there was an overall increase in 

predictive performance. This boost can be attributed to the smoothing operation followed by 

markerless nearestsurface smooth alignment. The resulting fits from our method had fewer 

artifacts that were introduced as a byproduct of the manually initialized deformation, where 

the initial template mesh was very misaligned with the target scan and necessitated very 

large nonlinear transformations.

We present the unified superset model consisting of the union of all automatically fit 

template meshes from the training sets of all scanning systems per gender as the benchmark 

model in this work. Figure 7 shows the body composition prediction R2 difference on 

system-specific test scans between predictions learned from the unified superset PCA model 

and the 70 member manually fit bootstrap of each scanning system. Our unified superset 

had many more training examples than the bootstrap model (391 for males and 457 for 

females) but had increased noise introduced by pose variance. Our results show that the 

unified superset model produced good geometric fits to withheld test scans and improved on 

the body composition predictions made by the initial manual model despite the inclusion of 

training scans that exhibited differing pose.

4.3 │ Body composition prediction accuracy and precision on test data from multiple 
systems

We automatically fit standardized mesh templates to test set scans from all three systems and 

used the projected PCA basis coordinates to predict body compositions from our regression 

matrices. Table 3 shows the R2, root-mean-squared errors (RMSE), and p-values of the 

predictions on test scans using the final unified model and all available PCA components 

(d = 391 for males and 457 for females) compared to DXA as reference. Percent fat 

was calculated as fat mass/scale weight, fat mass index (FMI) was calculated as fat mass/

height2, and fat free mass index (FFMI) was calculated as lean mass/height2. Lean mass 

was calculated as weight - fat mass. All masses are reported in kilograms (kg). Scans 

were sourced from three input systems and varied between 4000 and 400 000 vertices. 

All test scans were held out of PCA model training and composition regression. p-values 

were calculated with a paired t-test against respective DXA measurements to determine the 

presence of bias in our method. For 12 simultaneous measures, a p < 0.05/12 = 0.004 was 

considered significant, meaning the mean difference between our predictions, and DXA was 

statistically significantly different from 0. Our bias check passed for every measure except 

visceral fat in both genders, and in trunk lean in females. Our results were comparable to 

the PC-only model of Ng et al. but were reported on completely held out test data, tested 

on scans from two additional scanning systems, and required no manual intervention to 

initialize the fit. A breakdown of the results by input device is displayed in Table S1.
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Table 4 shows our test-retest precision measured with the coefficient of variation (%CV) 

Glüer et al.11 Same-day duplicate scans were taken of the subjects in the test set, and the 

fitting and predictions were repeated using the final unified model. Coefficient of variation 

(%CV) was defined as the ratio of the standard deviation of repeat measurements to the 

mean of repeat measurements averaged across all test subjects. The closer this value was to 

zero, the more precise our predictions for repeat scans of the same participant. Not every 

participant had a duplicate scan, so the test–retest pairs were less than the total test set 

size. We compared test–retest precision against the duplicate DXA measurements for each 

participant to determine precision of our method for predicting the composition of fitted 

scans relative to the gold standard method.

4.4 │ Template fitting and body composition prediction on novel system (System 4) 
input

To test the generalizability of our fitting and prediction method to an unseen scanning 

technology, we performed automatic template fitting and body composition prediction using 

the unified system-agnostic model on 59 males and 73 females scanned with System 4. This 

device had no representation in the training set and presented an additional challenge of 

having the most nonconforming pose of any of the optical systems. The very limited field of 

view of this system necessitated many participants to hold their arms very close to their body 

often in bent positions, and taller individuals had to stoop either by bending at the back, 

waist, or knees to fit into the scanning volume. These meshes were not well conforming to 

the A-pose constraints specified in the meshes of the training set, in which the abduction 

of the arms and legs varied but all subjects stood upright with fully extended knees and 

elbows. R2 and RMSE are reported in Table 5, and test–retest precision is reported in Table 

6. Although the difference between our prediction and DXA was statistically significant 

from zero for more compositional measures relative to the devices that were included in 

the training data, the total body lean mass, fat mass, and percent fat predictions were not 

significantly different from the gold standard despite the unfavorable poses in this validation 

set.

Our method worked well for most scans on this validation system but did not align properly 

to some scans with larger pose differences, such as excessively bent elbows. These scans 

were excluded from our results as they violated the parameters of the model. Our method 

can be used to fit a standardized templated to scans from any system that captures a human 

in an A-pose, which is any pose with fully extended elbows and knees with arms and 

legs abducted around 30 degrees from the midline. Some variation in limb abduction at 

the shoulders and hips is accounted for by the model, but large body part rotations create 

nonlinearities not representable by PCA.

5 │ DISCUSSION

In this work, we developed a scanning system agnostic algorithm for standardizing 

unorganized 3DO body scans with vertex counts spanning three orders of magnitude and 

slight variations in pose. We constructed a PCA model using training data from three 

different systems and validated our shape fitting and body composition prediction accuracy 
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on held out scans from all three systems and an additional fourth unseen system. Our 

resulting prediction models trained on automatically fit training set scans predicted total and 

regional body fat with R2 and RMSE comparable to the principal component only model 

from Ng et al.7 Our model was more accurate in many cases even on the validation system. 

For example, R2 for total fat mass for System 4 was 0.94 and 0.96 for males and females, 

respectively, compared to 0.88 and 0.93 in Ng et al. Our results are even stronger when 

compared to previous work as our fits, and predictions were performed on test scans that 

were not included in the PCA training data. In Ng et al., five-fold cross validation was 

performed to train the linear model mapping principal components to body composition, 

but the PCA domain included all the available data and thus contained no withheld data 

for blinded validation. Furthermore, our scans were sourced from four different systems 

and generalized to a system that was not represented by training data with no manual 

initialization. We demonstrated that our automatic template fitting algorithm can generalize 

to inputs from novel scanning systems exhibiting small variations in pose. Inclusion of these 

system-agnostic template fits into a new expanded PCA domain is likely to further increase 

the predictive accuracy of our regression models.

Our retest precision error on the test set was two to four times that of the criterion 

DXA scans. This was a slightly less precise result than Ng et al. but was reported on 

a greater number of subjects (as opposed to just 119 of each gender) scanned on three 

different systems (as opposed to one). Furthermore, all test scans were held out of the PCA 

construction while Ng et al. made no such distinction. Although our precision is trailing that 

of criterion radiology, this can be mitigated by averaging predictions from repeat scans. The 

least significant change (LSC)12 between the average of multiple measurements sampled at 

baseline and follow-up is defined as:

LSC = Zσ 1
n1

+ 1
n2

for a Z defined by the two sided 95% confidence interval z-score and precision error σ, with 

n1 measurements at baseline and n2 measurements at follow-up. A difference greater than 

this value means there is 95% confidence a true change in body composition has occurred, 

and a lower value implies greater resolution of change over time. Z is constant at 1.96, and 

σ is inherent to the measurement method, but we can set n1 = n1 = 9 scans at baseline 

and follow-up to drop the LSC by a factor of 3. This would account for the difference 

in precision error between our method and a single DXA scan on most metrics. As 3DO 

scanners take a minute or less to complete and can be repeated without threat of radiation 

injury, collecting nine scans is not unreasonably burdensome relative to the gold standard 

radiology. As we have shown the accuracy of our method to increase with larger training 

sets, the precision of our method could potentially be increased with additional data.

Our automated markerless fitting and prediction method generalized well to scans that 

were adjacent to an A-pose. We tested incorporating additional training scans in a T-pose 

stance, with arms held out parallel to the ground and legs straight with feet together, to 

determine how robust our method was to scans with more extreme pose variation. Although 

we were able to achieve good geometric fits to test scans in both the A and T pose, the 
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predictive accuracy of the regression models decreased drastically. Such huge differences 

in the limb positions were not correlated with body composition but had major effects on 

the PCA shape coordinates of the mesh. We decided against recommending inclusion of 

this degree of extreme pose variability in the training set for the results of this paper as the 

variance introduced by the extreme pose difference created excessive amounts of noise in the 

prediction regression. An example of a T-pose fit using our model is shown in Figure 8.

We demonstrated that our method was able to fit to a range of A-poses if there was 

representation of the target pose in the training data. However, these pose differences were 

modeled as linear interpolations of the limbs between example meshes in the training data 

exhibiting pose variation rather than rotational transformations at joints. A body mesh that 

separately models pose and shape using a jointed skeleton, and skinning function may 

provide more accurate fits and predictions for scans that are captured in poses that are 

further from anatomical neutral, that is, the hands-up pose in an airport system. Such 

a model may also produce increased prediction accuracy for body composition even on 

A-pose scans, as the vertex deformations caused by small differences in limb position are 

not discriminated from differences in anatomical body shape and create substantial noise 

in learning the relationship between shape and composition. Although prior work such 

as Skinned Multi Person Linear (SMPL)13 exists in the field of human pose and shape 

estimation using skinned models, these methods were not created with clinical application in 

mind. SMPL learned a linear body shape PCA from the CAESAR database and decoupled 

pose from the model by standardizing all fitted templates to a T-pose with parallel arms and 

vertical legs. This was made possible with an animated model containing a skeleton with 

vertices mapped to a hierarchical tree (known as a skinned model). However, they did not 

collect medical measurements along with shape and pose data for their model construction. 

Subsequent work mainly sought to recreate visually plausible reconstructions of human 

shapes from “in the wild” photos14 and lack correlated clinical variables. Future work may 

merge the flexibility of a skinned posable model with our clinical data.

While our work is not the first to propose templated encoding spaces for human body 

shapes,15 our implementation was the first to include associated body composition data 

with 3DO scanning and also the first to demonstrate a robust pipeline that works with 

limited pose variation across different scanning devices. Due to the logistical challenges 

of collecting multiperson data, CAESAR10 remains the largest fixed pose, multishape 

dataset almost 20 years after its initial publication. Many recent works on human body 

encoding focus on limited person, multipose shape models,16 and do not address the medical 

implications of body shape. Future work could use our method to combine the scans of 

CAESAR and Shape Up! into a singular multi-person shape model and learn the correlations 

to body composition on the subset of training data with associated DXA measurements 

using more robust shape descriptors learned on the entire large dataset.

Certain fine details in 3D scans are not useful in predicting body composition, such as 

the position and shape of the hands and fingers or head shape deformation due to large 

hair volume. Further work could replace these regions with smooth surfaces, effectively 

eliminating the variance in shape caused by these uncorrelated details. Such a reduction in 

noise could potentially increase the accuracy of our prediction models.
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Our algorithms predict analogs for mortality risk due to metabolic disease from 3D body 

shape. The relationship between scalar metrics such as compartmental body fat masses and 

disease has been previously studied in the clinical setting using radiology. Our method 

allows the use of 3DO scanning as an alternative to traditional medical imaging for 

predicting these measurements. It is possible that there are direct relationships between 

3D body shape and disease risk latent in the templated data that can be recovered from 

the parameters of the principal component domain or through deep-learning methods on the 

mesh coordinates directly. The standardization of 3D scans allows for the application of 

these methods, but we cannot yet form such conclusions without a longitudinal dataset that 

directly associates body shape with mortality from metabolic disease. Our algorithm may be 

able to recover higher dimensional relationships between body shape and mortality risk in 

the future, bypassing scalar analogs such as prediction of visceral fat mass, when such data 

becomes available.

Our prediction model was determined with a least-squares linear regression between the 

principal component coordinates of our training data and their associated DXA composition 

metrics. Our method worked well in Tian et al.9 and was the most conservative model 

for relating standardized 60 k mesh templates to body composition. A better performing 

prediction model with nonlinear terms, such as one produced by a graph convolution 

network in Bouritsas et al.,17 may offer better predictions from either the dimension reduced 

PC coordinates or the 60k mesh vertices themselves. As these models required thousands of 

training examples, we relied on linear models that could learn good correlations with only a 

few hundred scans. Creating larger standardized body mesh databases using our method with 

future data collection may facilitate work in this direction.

6 │ CONCLUSIONS

At the conclusion of this study, we automatically fit a common 60 k vertex body template to 

1410 raw scans from four different scanning technologies with an automated PCA initialized 

two-stage deformation process.

We built a device agnostic-unified PCA model from 848 training scans and learned a 

regression from projected PCA basis coordinates to DXA body composition measurements. 

We used the same fitting procedure with this device agnostic model to automatically 

template 562 held-out test scans and derive body composition predictions from PCA 

coordinates. Our model predicted body composition metrics with accuracy comparable to 

or better than previous models built with manually targeted mesh fitting, achieving 0.8 or 

better R2 for all fat and lean mass predictions on test scans except female visceral fat, with 

all RMSEs below 3.0 kg. Processing data at this scale by hand would be prohibitive in 

time and cost. Furthermore, our results were reported on held-out test data, which further 

strengthens our results relative to previous work published on training accuracy only. Our 

work seeks to make 3DO scanning an accurate, automated, and device agnostic tool for body 

shape modeling and composition analysis with many potentials for clinical and diagnostic 

application, such as serial monitoring of changes in body weight and risk for chronic 

disease.
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FIGURE 1. Diagram of rotation/translation relative to the origin and standard basis.
Scale is metric. This reference frame was the factory default for System 1, but in principle 

any common transformation could be used if all scans aligned at the feet
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FIGURE 2. Example of Failure of Single Device Model.
Raw System 2 scan on the left, and fit attempt with System 1 only model on the right. 

The pose difference between the two systems (System 2 has no fixed hand position) makes 

models trained on a single system nongeneralizable to other systems. This demonstrates the 

need for a unified model that can interpolate the pose differences between different systems
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FIGURE 3. Topological consistency of auto template mesh.
Auto fit (red) and manually placed (blue) anthropometric landmarks on a fitted test set mesh. 

Mean difference was 21 mm for 74 landmarks across 230 meshes. The red dot between the 

middle of the feet is the origin of the coordinate system

Tian et al. Page 18

Med Phys. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. Shape fitting progression.
Top: From left to right: The mean shape, the initialization shape, the coarse fit, the final fit, 

and the raw input from System 1. This example represents one of the worst-case scenarios as 

this individual was the heaviest female in our test set at 163.4 kg and is one of the farthest 

shapes from the mean. Bottom: Same progression as above but using the tallest male in the 

test set, at 190.8 cm. Note the large size increase after initializing the body shape with the 

known height and weight of the participant
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FIGURE 5. Examples of auto template fits on a single participant.
One participant was represented in the test set for all four scanning systems. Raw scan input 

on the top and our automatic mesh fit on the bottom. Although visually similar, the raw scan 

had as high as 400 000 (System 1) unorganized vertices and as low as 25 000 (System 3). 

We fit a 60 k anatomically consistent mesh to each scan using d = 391 principal components
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FIGURE 6. R2 difference in body composition predictions between automatic and manual fit 
bootstrap models.
R2 differences between predictions from automatically and manually fit meshes are shown 

on held-out test set. Training set members were the same 70 scans for each system and 

gender combination for both automatic and manual fitting. The only variable changed was 

the method of template fitting to the raw scans. R2 increased by 0.05 and 0.02 on average 

across males and females, respectively, indicating substituting markerless automatic fitting 

for manual fitting did not cause enough topological inconsistency to impact the resulting 

body composition regressions
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FIGURE 7. R2 difference in body composition predictions between final and initial model.
R2 differences are shown on held-out test set, which was the same for both the final and 

initial models. Initial model was composed of 70 manually guided template fits per system 

and gender. Each system and gender combination was a separate principal component 

analysis (PCA) model, resulting in six models. Models could only be tested on the system 

they were trained on. Final models were unified across three scanning systems but split per 

gender. Final male and female models had 391 and 457 training scans, respectively, and all 

were automatically template fit with our method. The same model could be applied to test 

scans from all systems. Overall, prediction accuracy increased on test data despite using no 

manual fits in our final model and injecting noise in the body shape model due to including 

pose variance from multiple scanning systems in our unified model. Per-system composition 

prediction metrics are shown in Table S1
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FIGURE 8. Robustness of fitting algorithm to extreme pose variation.
T-pose example, input scan on the left with 110 k vertices and our 60 k fit on the right
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TABLE 1

File properties and scan times of 3DO scanners in study

Vertices File size Scan time

Fit3D Proscanner (System 1) 300–500 k 40–60 MB 40 s

Styku S100 (System 2) 30–60 k 4–7 MB 20 s

Size Stream SS20 (System 3) 4–25 k 0.5–3 MB 3 s

Naked Body Scanner (System 4) 100 k 12 MB 5 s
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