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O C E A N O G R A P H Y

Greenhouse warming intensifies north tropical Atlantic 
climate variability
Yun Yang1,2*, Lixin Wu3, Ying Guo1, Bolan Gan3, Wenju Cai3,4, Gang Huang2,5,6, Xichen Li7, 
Tao Geng3, Zhao Jing3, Shujun Li3, Xi Liang8, Shang-Ping Xie9

Variability of North Tropical Atlantic (NTA) sea surface temperature (SST), characterized by a near-uniform warming 
at its positive phase, is a consequential mode of climate variability. Modulated by El Niño–Southern Oscillation 
(ENSO) and the North Atlantic Oscillation, NTA warm anomalies tend to induce La Niña events, droughts in Northeast 
Brazil, increased frequency of extreme hurricanes, and phytoplankton blooms in the Guinea Dome. Future changes 
of NTA variability could have profound socioeconomic impacts yet remain unknown. Here, we reveal a robust inten-
sification of NTA variability under greenhouse warming. This intensification mainly arises from strengthening of 
ENSO-forced Pacific-North American pattern and tropospheric temperature anomalies, as a consequence of an 
eastward shift of ENSO-induced equatorial Pacific convection and of increased ENSO variability, which enhances 
ENSO influence by reinforcing the associated wind and moist convection anomalies. The intensification of NTA 
SST variability suggests increased occurrences of extreme NTA events, with far-reaching ramifications.

INTRODUCTION
Variability of North Tropical Atlantic (NTA) sea surface temperature 
(SST) (hereafter the NTA) typically peaks in boreal spring (March, 
April, and May, MAM1, where “1” refers to the current year) and 
is characterized by basin-wide SST warming at its positive phase 
(1, 2). Coupled with a latitudinal movement of the intertropical 
convergence zone, the NTA profoundly influences precipitation 
in Northeast Brazil and Sahel (3–6). An anomalous NTA warming 
during 1979 to 1981 induced severe drought in Northeast Brazil, 
leading to a more than 70% reduction in production of rice, beans, 
and cotton (7). An intense NTA warming contributed to the 2012 to 
2016 drought in Northeast Brazil, affecting 33.4 million people and 
resulting in losses of U.S. $30 billion (8). By modulating the intensity, 
number, and track pattern of Atlantic tropical cyclones, an NTA 
warm event increases the number of major hurricanes and their 
landfall frequency along the U.S. East Coast (9–12). Moreover, 
the NTA has a prominent influence on the Guinea Dome (13), 
chlorophyll-ɑ concentration, and ecosystems (14, 15). In addition 
to regional influences, the NTA exerts its climatic impacts over 
the globe, including El Niño–Southern Oscillation (ENSO) in the 
Pacific (16), sea ice distribution in the Antarctic (17), and anomalous 
global mean temperature (18). Because of these severe effects, deter-
mining the response of NTA to greenhouse warming is an issue of 
great importance.

The NTA mainly arises from latent heat flux anomalies associated 
with anomalous northeasterly trades (19–21). Specifically, the wind- 
evaporation-SST feedback (22), mainly confined to the deep tropics, 
contributes to the development of anomalous SST (23, 24), but forcings 
outside of the tropical Atlantic are required to reinforce the NTA 
temperature anomaly (2, 25, 26). The North Atlantic Oscillation 
(NAO) is one such forcing (27, 28). During a negative NAO event, 
the northeasterly trades weaken in response to a slackened Subtropical 
High, reducing surface latent heat flux and leading to an anomalous 
NTA warming. Another important forcing comes from ENSO (29, 30), 
which exerts its influence in several pathways. During El Niño, 
tropospheric temperature over the central and eastern equatorial 
Pacific increases and propagates eastward in the form of equatorial 
Kelvin waves, which reduces moist convection over the northern 
tropical Atlantic and gives rise to warm SST anomalies, a process 
referred to as “tropospheric temperature” mechanism (20, 31). 
Furthermore, convective anomalies associated with increased pre-
cipitation in the western and central equatorial Pacific excite the 
Pacific–North American (PNA) pattern (32), a Rossby wave train 
with a ridge over the western North America and troughs over 
the Aleutians and the southeastern United States. In response, the 
northeasterly trades weaken over the northern tropical Atlantic, re-
ducing evaporation and generating warm SST anomalies. In addition, 
El Niño induces a negative diabatic heating over the Amazon basin, 
which, in turn, generates an anomalous Atlantic Hadley circulation 
(33) and a Gill-type response (34), contributing to the weakened 
northeasterly trades.

Despite the advances described above, how the NTA may respond 
to greenhouse warming remains unknown. Below, we show that 
most of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 
models simulate an increase in NTA variability.

RESULTS
Observed NTA SST variability
To identify the observed NTA, we applied empirical orthogonal 
function (EOF) analysis to quadratically detrended SST anomalies 
(see the “EOF analysis” section in Materials and Methods) averaged 
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over boreal spring when the NTA reaches its peak. Here, we take the 
normalized principal component (PC) time series as the NTA index. 
Given that ENSO can trigger NAO events (35, 36), a partial regres-
sion (partial correlation) is conducted to extract the “pure” NAO 
influence on (connection with) the NTA (see the “Partial regression” 
and “Partial correlation” sections in Materials and Methods).

As the leading mode in boreal spring, the observed NTA accounts 
for 64% of the total SST variance (fig. S1). It is tightly related with 
ENSO and the NAO in previous winter (December, January, and 
February, D0JF1, where “0” refers to the previous year), due to their in-
fluence on northeasterly trades and latent heat flux (Fig. 1, A and B). 
The (partial) correlation coefficient between MAM1 NTA and 
D0JF1 ENSO (NAO) reaches 0.59 (−0.5) over the period of 1951 to 
2014 (red star, Fig. 1C).

Model selection
We conducted similar EOF analysis using outputs from 23 CMIP6 
models that are forced with historical forcing during the same period 
(1951 to 2014) as in observations. EOF analysis is useful in extracting 
the pattern of NTA variability, allowing models to have different 
spatial patterns. The NTA emerges as the first EOF mode in each 
model, consistent with the observations. However, several models 
underestimate the NTA connections with ENSO or the NAO (Fig. 1C). 
Among them, 16 models produce reasonable connections, with both 
correlation coefficients exceeding 50% in amplitude of the observed 
values. These models reproduce reasonably well the observed influ-
ences from ENSO and the NAO (Fig. 1, A and B versus D and E), 
with maximum wind and SST anomalies located over the NTA center 
(box in Fig. 1), although in most models, the influence is underesti-
mated for both ENSO and the NAO. By comparison, the remaining 
seven models, featuring a westward (northward) shift of anomalous 
trades, generate weaker SST and wind responses to ENSO (the NAO) 
forcing (Fig. 1, A and B versus F and G). These wind shifts are related 
to a westward-displaced ENSO center (37, 38) and an underestimated 
magnitude of NAO variability simulated in models (2, 39). Never-
theless, the selected models reasonably simulate the amplitude of 
observed NTA variability (0.40°C, defined by SST SD averaged over 
the NTA center), with a range from 0.30° to 0.46°C and an ensemble 
mean of 0.35°C. Therefore, we use the 16 models that realistically 
simulate the connections with ENSO and the NAO to study the re-
sponse of the NTA to greenhouse warming.

Increased NTA variability in the future climate
We performed EOF analysis to quadratically detrended MAM1 SST 
anomalies over the period of 1900 to 2099 in the 16 selected models. 
These models are forced with historical forcing until 2014 and with 
Shared Socioeconomic Pathways (SSP) 2-4.5 emission scenario 
from 2015 onward. We compared the SD of NTA variability between 
the present (1900 to 1999) and future (2000 to 2099) climate. A total 
of 12 of the 16, or 75%, selected models simulate increased NTA 
variability (Fig. 2A). The ensemble mean increase is 8.3%, significant 
above the 95% confidence level according to a bootstrap test (see the 
“Bootstrap test” section in Materials and Methods) (fig. S2A). This 
increase is underpinned by a robust (15 of the 16 selected models) 
enhancement of SST variability averaged over the NTA center (fig. 
S3A), with a significant ensemble mean increase of 10% (fig. S3B).

In association, occurrences of extreme NTA events, defined as 
|PC| greater than 1.75 SD, become more frequent under greenhouse 
warming (Fig. 2B). Aggregated over the 16 models, the frequency 

increases by 38%, from 1 event every 14.7 years (109 events in 
1600 years) in the present period to 1 event every 10.7 years (150 events 
in 1600 years) in the future period. This increase in frequency 
enjoys a strong intermodel consensus (Fig. 2B) and an ensemble 
mean increase significant above the 95% confidence level (fig. S2B). 
In addition, the frequency of extreme events increases by 21 or 57%, 
when using threshold values of 1.5 or 2.0 SD, respectively, further 
supporting our result.

A sensitivity test further reveals that the increase in NTA vari-
ability is not sensitive to model selection. Even when all the 23 models 
are considered, the intermodel consensus on the increased NTA 
variability is still significant, with 16 of the 23 models (70%) pro-
ducing an increase (fig. S4A). Identically, the increased frequency 
of extreme NTA events is still robust when considering all the 
23 models (fig. S4B).

Enhancement in ENSO influence under greenhouse warming
An ensemble mean of the NTA response to NAO forcing barely 
changes in the future climate, indicating a minor role of the NAO in 
driving increased NTA variability (fig. S5). Instead, a change in 
ENSO teleconnection and in ENSO variability under greenhouse 
warming is the key driver of the increase in variability of the NTA.

To describe ENSO, we use Niño3.4 index normalized by the SD 
over the full 200 years to enhance intermodel comparability. Total 
response of the NTA to ENSO forcing in each period is calculated 
by regressing the NTA onto the Niño3.4 index and then multiplying 
the regression coefficient by 1 SD value of the Niño3.4 index. A 
comparison of the total response shows a substantial enhancement 
in a warming climate (Fig. 3A) (see the “Regression analysis” section 
in Materials and Methods). The enhanced response to ENSO is 
found consistently in all the 16 models except one (94% of the models), 
with an ensemble mean enhancement of 20% (from 0.56 in the 
present climate to 0.67 in the future climate) statistically significant 
according to a bootstrap test (Fig. 3B). In association, ENSO influ-
ence strengthens (Fig. 3, C and D), contributing to the increase in 
NTA variability. Specifically, models with a greater enhancement of 
NTA response to ENSO forcing produce a larger increase in NTA 
variability, and the intermodel correlation between changes in NTA 
response to ENSO and in NTA variability reaches 0.83 (Fig. 3E). 
Moreover, the enhanced NTA response to ENSO forcing is related 
to more frequent extreme NTA events, while that to the NAO forcing 
barely contributes (fig. S6).
An eastward intensification of ENSO teleconnection
The enhanced NTA response to ENSO forcing is, in part, induced 
by an eastward shift of ENSO-induced response in convection 
(Fig. 4A). In the present climate, precipitation response to ENSO is 
centered over the western equatorial Pacific (fig. S7A). Under 
greenhouse warming, these anomalies intensify in the central to 
eastern equatorial Pacific (black box, fig. S7B), suggesting an eastward 
shift of convective anomalies (40–44). This shift in convection 
strengthens the sensitivity of PNA teleconnection to ENSO forcing 
(40), especially over the lobe of southeast United States, as seen in 
sensitivity of 200-hPa geopotential height anomalies to the Niño3.4 
index (fig. S8). Specifically, 14 of 16 (88%) models produce a 
deepening of low-pressure anomalies, with an ensemble mean in-
crease of 39%.
Increased ENSO variability
In addition, ENSO variability increases in a warming climate, en-
hancing its remote forcing on NTA variability (Fig. 4B). A total of 
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12 of the 16 (75%) models produce increased Niño3.4 variability, 
with an ensemble mean increase of 11% (fig. S9). When all 23 models 
are considered, an increase in variability is simulated by 16 of the 
23 (70%) models (fig. S4C), consistent with previous findings of 

enhanced variability in both eastern Pacific and central Pacific El Niño 
(45). The enhancement in ENSO variability further strengthens the 
ENSO-forced response in PNA teleconnection. Here, we examine the 
total change in the PNA teleconnection that includes change in PNA 

C
NTA connections with ENSO and NAO
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Fig. 1. NTA connections with ENSO and the NAO in observation and CMIP6 models. (A) Response of MAM1 SST (°C, color shading) and FMA1 wind (meters per sec-
ond, vector) to observed Niño3.4 over the period of 1951 to 2014, calculated by regressing SST and wind anomalies onto Niño3.4 index and then multiplying the regres-
sion coefficients by 1 SD value of Niño3.4 index. (B) Same as (A) except for partial regression against an NAO index (reversed sign) by removing variability associated with 
Niño3.4 index (see the “Partial regression” and “EOF analysis” sections in Materials and Methods for NTA, NAO, and Niño3.4 indices). (C) Correlation coefficients between 
the NTA and Niño3.4 (x axis) and partial correlation coefficients between the NTA and the NAO (y axis; see the “Partial correlation” section in Materials and Methods). The 
large red-filled star indicates the observed value. In seven models, marked by circles, two generate an NTA-ENSO correlation and six produce an NTA-NAO correlation that 
are smaller than 50% in amplitude of the observations. These are referred as nonselected models. The remaining 16 models in blue quadrant are selected models. The 
dashed lines represent 50% of the observed values. (D and E) Same as (A) and (B) but for an ensemble mean of 16 selected models. (F and G) Same as (A) and (B) but for 
an average of the two models that produce a too-weak connection between the NTA and ENSO (correlation coefficients lower than 50% of the observed) (F) and for an 
ensemble mean of the six models that fail to generate the connection with the NAO (G). The boxes represent the NTA center (10°N to 25°N and 60°W to 20°W).
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sensitivity to ENSO and change in ENSO variability itself. Hence, for 
each individual period, we regress geopotential height anomalies onto 
the Niño3.4 index and then multiply the regression coefficients by 
1 SD value of the Niño3.4 index. In this case, a deepening of the 
low- pressure anomalies over the southeast United States is simulated 
by 15 of the 16 models (94%), with an ensemble increase reaching 
53% (Fig. 4, C to E). The strengthening of PNA teleconnection is 
also seen in sea level pressure anomalies (fig. S10).
Consequence of enhanced ENSO teleconnections
As a result of the intensification of the PNA pattern, ENSO-forced 
response in wind is enhanced over the northern tropical Atlantic 
(Fig. 3, C and D), with a maximum increase north of 15°N. The 
enhanced wind speed response, with an ensemble mean increase of 
21%, significantly contributes to the increase in the NTA response to 
ENSO forcing (Fig. 5A). The intermodel correlation between changes 
in the wind response and in the NTA response reaches −0.83.

In addition, SST of the NTA center becomes more sensitive to 
wind forcing, as seen in MAM1 SST anomalies regressed onto un-
normalized February, March, April (FMA1) wind speed anomalies 
(fig. S11A), which measures the sensitivity of SST to 1 m/s of wind 
speed change. In a warming climate, the ocean mixed layer depth 
shoals over the northern tropical Atlantic, a robust feature among 
all models (using all models with available outputs; fig. S11B). This 
shoaling arises from an intensification of oceanic stratification (46–48) 

and from a weakening of climatological northeasterly trades (using 
all models with available outputs; fig. S11, C and D). As a result of 
the shallower mixed layer, SST response to a given wind forcing in-
creases in most of the models. However, its contribution to the 
NTA response to ENSO forcing is not statistically significant and 
therefore plays a minor role (fig. S11E).

Furthermore, under greenhouse warming, tropospheric tempera-
ture anomalies are intensified due to increased ENSO variability 
(fig. S12) and an amplified vapor response to ENSO (49), contributing 
to the enhanced NTA response to ENSO forcing (Fig. 5B). An inter-
model correlation between changes in ENSO-forced response of 
tropospheric temperature and changes in the NTA response to ENSO 
forcing (R = 0.63), although not as high as that between changes in 
ENSO-forced response of wind speed and changes in the NTA re-
sponse to ENSO forcing (R = −0.83; Fig. 5A), indicates a substantial 
contribution from the tropospheric temperature mechanism.

DISCUSSION
ENSO-forced responses in PNA teleconnection and tropospheric 
temperature are important mechanisms in driving the variability of 
NTA (Fig. 6A). Both of these mechanisms enhance under greenhouse 
warming, due to an eastward shift of ENSO-induced response 
in equatorial Pacific convection and an enhancement of ENSO 

A

B

Projected increase in NTA variability

Projected increase in occurrences of NTA extreme events

Fig. 2. Projected increase in NTA variability and occurrences of extreme NTA events. (A) Comparison of the NTA SD over the present (1900 to 1999, blue-edged bars) 
and future (2000 to 2099, red-edged bars) periods in the 16 selected models. (B) Same as (A), but for the number of extreme events (|PC| > 1.75 SD). The multimodel 
ensemble means over the present and future periods are shown in blue-filled and red-filled bars, respectively; error bars are calculated as 1 SD of a total of 10,000 inter- 
realizations of a bootstrap method (see the “Bootstrap test” section in Materials and Methods); models that simulate a reduction are grayed out. Variability of the NTA and 
the frequency of extreme NTA events are projected to increase under greenhouse warming.
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variability. In association, ENSO-forced responses in wind speed and 
tropospheric temperature strengthen under greenhouse warming 
(Fig. 6B), leading to the increase in the amplitude of NTA SST vari-
ability and the frequency of extreme NTA events.

We note that most of the models simulate an overly weak rela-
tionship between NTA and NAO variability. Although the weak 
relationship might represent a source of uncertainty, there is no 
intermodel consensus on a simulated increase in NAO variability 
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Fig. 3. Change in NTA response to ENSO forcing and the projected increase in NTA variability. (A) Comparison of NTA response to ENSO forcing (SD) over the present 
(1900 to 1999, blue-edged bars) and future (2000 to 2099, red-edged bars) periods in the 16 selected models. The multimodel ensemble means over the present and future 
periods are shown in blue-filled and red-filled bars, respectively; error bars are calculated as 1 SD of a total of 10,000 inter-realizations of a bootstrap method (see the 
“Bootstrap test” section in Materials and Methods); models that simulate a reduction are grayed out. (B) Histograms of 10,000 realizations of a bootstrap method for NTA 
response to ENSO forcing in the present (1900 to 1999, blue) and future (2000 to 2099, red) climate. The blue and red lines indicate the mean values of the 10,000 realizations 
for the present and future periods, respectively. The gray shaded areas refer to the respective 1 SD of the 10,000 realizations. (C and D) Response of MAM1 SST (°C, color 
shading) and FMA1 surface winds to ENSO (meters per second, vector), in the present climate (C) and their projected changes (future minus present) (D). Green boxes 
(10°N to 25°N, 60°W to 20°W) represent the NTA center. (E) Intermodel relationship between the change in NTA response to ENSO (SD) and in NTA variability (SD). To 
enhance intermodel comparability, we scale the changes by an increase in global mean SST of each model. Linear fit (black solid line) is shown together with the correlation 
coefficient R, slope, and P value from the regression. The NTA response to ENSO forcing is projected to increase, contributing to enhanced NTA variability.
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Fig. 4. Strengthening of PNA teleconnection. (A and B) Intermodel relationships between change in NTA response to ENSO (SD) and in FMA1 precipitation response to 
ENSO (millimeters per day) averaged over the central to eastern equatorial Pacific [blue boxes in (C) and (D)] (A) and in Niño3.4 variability (SD) (B). To enhance intermodel 
comparability, we scale the changes by an increase in global mean SST of each model. Linear fits (black solid line) are shown together with the correlation coefficients R, 
slopes, and P values from the regression. (C and D) Multimodel ensemble mean of the D0JF1 200-hPa geopotential height response to ENSO (meters), in the present (1900 
to 1999) (C) and future (2000 to 2099) (D) climate. Only values exceeding 1 SD of intermodel spread are shown in color shading. Black and blue boxes represent the PNA 
center over the southeast United States (30°N to 40°N, 110°W to 70°W) and the central to eastern equatorial Pacific (4°S to 4°N, 160°W to 110°W), respectively. (E) Compar-
ison of the D0JF1 200-hPa geopotential height response to ENSO (meters), averaged over the southeast United States [black boxes in (C) and (D)], in the present (1900 to 
1999, blue-edged bars) and future (2000 to 2099, red-edged bars) periods in the 16 selected models. The multimodel ensemble means over the present and future periods 
are shown in blue-filled and red-filled bars, respectively; error bars are calculated as 1 SD of a total of 10,000 inter-realizations of a bootstrap method (see the “Bootstrap 
test” section in Materials and Methods); models that simulate a reduction are grayed out. The ENSO-induced PNA teleconnection is projected to increase, due to an in-
crease in ENSO variability and an eastward shift of ENSO-induced equatorial Pacific convection.



Yang et al., Sci. Adv. 2021; 7 : eabg9690     25 August 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 10

–0.3 –0.2 -0.1 0 0.1 0.2

Change in wind speed response to ENSO

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

  C
ha

ng
e 

in
 N

T
A

 r
es

po
ns

e 
to

 E
N

S
O

 fo
rc

in
g 

R = –0.83

Slope = –0.99

P < 0.01

–0.1 –0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

Change in tropospheric temperature response to ENSO

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

C
ha

ng
e 

in
 N

T
A

 r
es

po
ns

e 
to

 E
N

S
O

 fo
rc

in
g

R = 0.63

Slope = 0.6

P < 0.01

A BWind speed response to ENSO vs. NTA 
response to ENSO

Tropospheric temperature response to ENSO 
vs. NTA response to ENSO

Fig. 5. Mechanism for the projected increase in NTA response to ENSO forcing. Intermodel relationships between change in NTA response to ENSO (SD) and in FMA1 
wind speed response to ENSO (meters per second) averaged over the NTA center (A) and in tropospheric temperature response to ENSO (°C) averaged over the NTA 
center (B). To enhance intermodel comparability, we scale the changes by an increase in global mean SST of each model. Linear fits (black solid line) are shown together 
with the correlation coefficients R, slopes, and P values from the regression. The projected increase in NTA response to ENSO is primarily due to increased ENSO-induced 
wind speed variability and considerably due to increased ENSO-induced tropospheric temperature variability.

A

B

Fig. 6. Schematic diagram of the physical mechanisms responsible for increased NTA variability. ENSO-induced MAM1 SST (color shading), wind (vectors), tropospheric 
temperature (red contour), convection (cloud) anomalies, and the associated PNA (high/low-pressure anomalies) teleconnection seen in the present-day climate (A) intensify 
and undergo an eastward shift (marked by the gray arrow) as greenhouse warming proceeds into the future climate (B), leading to increased NTA variability in the future 
climate. H, high; L, low.
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(39), indicating an inconsequential impact from NAO variability on 
the increase in NTA variability. This result could change if there is 
a forced NAO signal that is currently underestimated (50). Other 
biases are found over the tropical Atlantic and the Pacific, for example, 
a bias of a double intertropical convergence zone over the Atlantic 
and a weaker-than-observed influence of the tropical Atlantic on 
ENSO (51–53). Hence, interactions between NTA variability and 
ENSO, and ENSO properties, may be affected by model biases. 
However, the nature of impacts from tropical biases on the change 
of tropical Atlantic SST variability is not clear, and there is no evi-
dence that these biases may affect the strengthening of ENSO-forced 
responses in PNA teleconnection and tropospheric temperature, the 
main factors that force the increase in NTA variability.

Thus, the consequence of an increase in ENSO variability and its 
teleconnections under greenhouse warming is more severe than 
previously thought, as the increase can energize dominant modes of 
climate variability remote from the Pacific, such as the NTA. Given 
the profound climatic impacts of the NTA in inducing droughts, 
floods, and extreme Atlantic hurricanes in affected regions, which 
are projected to increase (54, 55), our results add to the urgency of 
reducing emissions of greenhouse gases.

MATERIALS AND METHODS
Observed and CMIP6 data
To characterize the NTA connection with ENSO and with the NAO, 
we use monthly SST reanalysis from Hadley Centre Sea Ice and Sea 
Surface Temperature dataset version 1.1 (HadISST v1.1) (56) during 
1951 to 2014 and monthly 200- and 500-hPa geopotential height 
from the National Centers for Environmental Prediction and the 
National Center for Atmospheric Research global reanalysis (57) for 
the period of 1951 to 2014. Also, we analyze outputs from 23 CMIP6 
models, with historical and ssp2-4.5 emission scenario forcings 
over the period of 1900 to 2014 and 2015 to 2099, respectively 
(table S1) (58).

EOF analysis
To capture observed and model-simulated NTA variability, EOF 
analysis (59) is performed on quadratically detrended MAM1 SST 
anomalies over the northern tropical Atlantic (0°N to 30°N and 
80°W to 20°E). The NTA index is referred to as the normalized PC 
time series. To identify the NAO variability, the same approach was 
applied to quadratically detrended 500-hPa geopotential height over 
the North Atlantic (20°N to 70°N and 60°W to 0°E) in D0JF1. ENSO 
is represented by the normalized Niño3.4 index (SST anomalies 
averaged over 5°S to 5°N and 170°W to 120°W) after quadratically 
detrended in D0JF1. All data have been quadratically detrended 
before analysis.

Regression analysis
Regression analysis is conducted to study the influence of B on A.  
When regressing index A onto index B, we are interested in the sen-
sitivity of A to B. When regressing A onto B and multiplying the 
slope by the SD of B, we are interested in the total response of A to B, 
resulting from the sensitivity of A to B and SD of B.

Bootstrap test
Bootstrap test (60) is conducted to examine whether a change is 
statistically significant. A total of 10,000 realizations are conducted 

to obtain the mean from the 16 selected models. Each realization is 
averaged over 16 samples that are independently and randomly re-
sampled from the 16 selected models. In this resampling process, 
any model is allowed to be selected more than once. The SD of the 
10,000 realizations is calculated for each period. If the mean value 
difference between the future and present periods is greater than 
the sum of the two separate 10,000-realization SD values, then the 
change is statistically significant above 95% confidence level.

Partial correlation
To exclude ENSO influence and achieve the “pure” relationship be-
tween the NAO and NTA, a partial correlation analysis is applied

   R  Y(B∣A)   =    R  YB   −  R  YA   *  R  AB    ─────────────  
 √ 
_

 1 −   R  YA     2    *  √ 
_

 1 −   R  AB     2   
     (1)

where Y, B, and A represent the variables (such as the NTA), the 
NAO index, and Niño3.4 index, respectively. R denotes the correla-
tion coefficient, and RY(B∣A) for partial correlation coefficient be-
tween the variable Y and NAO index (B), after the influence of ENSO 
(A) is removed from NAO (B).

Partial regression
To obtain the “pure” influence of NAO, a partial regression analysis 
is applied to exclude the ENSO influence. The partial regression 
coefficient is as

   C  Y(B∣A)   =    R  YB   −  R  YA   *  R  AB    ─ 
 √ 
_

 1 −   R  AB     2   
   *    S  Y   ─  S  B∣A      (2)

where CY(B∣A) is the partial regression coefficient between the target 
variable Y and NAO index (B), after the influence of ENSO (A) is 
removed from NAO (B). SY and SB∣A represent the SD of variable Y 
and NAO (B) after removing the factor Niño3.4 (A).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/35/eabg9690/DC1
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