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Abstract

Background: Early-life exposure to phthalates alters behaviors in animals. However, 

epidemiological evidence on childhood phthalate exposure and attention-deficit/hyperactivity 

disorder (ADHD) behaviors is limited.

Methods: This study included 243 children from the ReCHARGE (Revisiting Childhood Autism 

Risks from Genetics and Environment) study, who were previously classified as having autism 

spectrum disorder (ASD), developmental delay, other early concerns, and typical development 

in the CHARGE case-control study. Twenty phthalate metabolites were measured in spot urine 

samples collected from children aged 2–5 years. Parents reported on children’s ADHD symptoms 

at ages 8–18 years using Conners-3 Parent Rating Scale. Covariate-adjusted negative binomial 

generalized linear models were used to investigate associations between individual phthalate 

metabolite concentrations and raw scores. Weighted quantile sum (WQS) regression with repeated 

holdout validation was used to examine mixture effects of phthalate metabolites on behavioral 

scores. Effect modification by child sex was evaluated.

Results: Among 12 phthalate metabolites detected in >75% of the samples, higher mono-2-

heptyl phthalate (MHPP) was associated with higher scores on Inattentive (β per doubling = 

0.05, 95% confidence interval [CI]: 0.02, 0.08) and Hyperactive/Impulsive scales (β = 0.04, 95% 

CI: 0.00, 0.07), especially among children with ASD. Higher mono-carboxy isooctyl phthalate 

(MCiOP) was associated with higher Hyperactivity/Impulsivity scores (β = 0.07, 95% CI: − 

0.01, 0.15), especially among typically developing children. The associations of the molar sum 

of high molecular weight (HMW) phthalate metabolites and a phthalate metabolite mixture 

with Hyperactivity/Impulsivity scores were modified by sex, showing more pronounced adverse 

associations among females.

Conclusion: Exposure to phthalates during early childhood may impact ADHD behaviors in 

middle childhood and adolescence, particularly among females. Although our findings may not be 

broadly generalizable due to the diverse diagnostic profiles within our study population, our robust 

findings on sex-specific associations warrant further investigations.

Keywords

Phthalates; Mixture effect; ADHD; ASD; Childhood; Adolescence

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a neuro-developmental disorder, 

characterized by a persistent pattern of inattentiveness and/or hyperactivity-impulsivity 

(American Psychiatric Association 2013). ADHD is a significant concern, with prevalence 

rates indicating it to be one of the leading childhood behavioral disorders in the United 

States (U.S.), regardless of the diagnostic approach used. Prevalence within the U.S. varies 
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depending on data ascertainment methods, with parent reports of ADHD diagnosis ranging 

from 5.9% (Willcutt 2012) to 9.4% (Danielson et al., 2018), and symptom impairment 

persists into adulthood in about 70% of ADHD cases (Faraone et al. 2006, 2015). 

Furthermore, the diagnosis of ADHD continues to rise in the U.S. (Cortese et al., 2023; 

Rydell et al., 2018; Song et al., 2019; Xu et al., 2018). Children with autism spectrum 

disorder (ASD) have shown higher prevalence of comorbid ADHD (Rau et al., 2020) 

and more frequent ADHD-related behaviors compared to typically developing children 

(Lyall et al., 2017). The development of ADHD involves a combination of genetic and 

environmental risk factors (Faraone et al., 2021). Environmental risks during pregnancy and 

early-life stages include but are not limited to exposure to lead, acetaminophen, alcohol, 

cigarette smoking, nutrient deficiencies, and maternal and child trauma (Banerjee et al., 

2007; Masarwa et al., 2018; Moore et al., 2022; Schantz et al., 2020; Thapar et al., 2013).

Phthalates are high-production-volume chemicals that have been extensively used in a wide 

range of consumer products, such as food production materials and packaging, flooring, 

wall coverings, building supplies, medicine coatings, medical supplies, cosmetics, and other 

personal care products (Engel et al., 2021; Hauser and Calafat 2005; Heudorf et al., 2007; 

Meeker et al., 2009; Schettler 2006; Wang et al., 2019). Children are exposed to phthalates 

not only through the ingestion of contaminated food and dermal uptake from personal care 

products but also through the ingestion of dust, mouthing, and inhalation of indoor and 

outdoor air (Wormuth et al., 2006). Young children have shown higher phthalate exposure 

levels than adults, potentially due to their higher ingestion rates as well as frequent hand-

to-mouth activity and skin contact with surfaces (Huang et al., 2021; Wang et al., 2019; 

Wittassek et al., 2011). Given the ubiquitous and continuous exposure to phthalates (Buckley 

et al., 2020) and their endocrine disrupting properties (Hauser and Calafat 2005; Wang 

and Qian 2021), the importance of investigating their broad health impacts as well as the 

specific need to evaluate their influence on neurodevelopment have been emphasized (Engel 

et al., 2021; Schantz et al., 2020). While the prenatal period is widely considered the 

most vulnerable window for exposure to environmental neurotoxicants (Lanphear 2015), 

brain development continues in the first few years of life (Stiles and Jernigan 2010). 

Critical processes, such as cell proliferation, migration, myelination, and pruning, continue 

during this time (Brown and Jernigan 2012; Gilmore et al., 2018; Safarpour et al., 2022). 

These processes, especially myelination, are closely regulated by the endocrine system, 

such as thyroid hormones (Bernal 2005; Calza et al., 2015). Animal studies suggest that 

phthalate exposure, especially during pregnancy and early-life stages, has adverse effects 

on the nervous system (Holahan and Smith 2015; Safarpour et al., 2022). Early postnatal 

exposure of laboratory animals to phthalates induced behavioral changes, particularly motor 

hyperactivity (Ishido et al. 2004, 2005; Masuo et al. 2004a, 2004b).

A fairly consistent pattern has emerged across multiple epidemiological studies, showing 

associations of prenatal phthalate exposures with elevated risks of ADHD clinical diagnosis 

(Engel et al., 2018; Kamai et al., 2021; Radke et al., 2020) or greater ADHD-related 

behaviors (Chen et al., 2019; Engel et al., 2010; Huang et al., 2019; Hyland et al., 2019; 

Jedynak et al., 2021; Kobrosly et al., 2014; Ku et al., 2020; Li et al., 2020; Lien et al., 

2015; Philippat et al., 2017; Radke et al., 2020; Watkins et al., 2021; Whyatt et al., 2012). 

Postnatal exposure to phthalates also has shown adverse associations with ADHD diagnosis 
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or related behaviors (Arbuckle et al., 2016; Chopra et al., 2014; Hu et al., 2017; Jankowska 

et al., 2019b; Kim et al. 2009, 2017; Park et al. 2014, 2015; Shoaff et al., 2020; Tsai et 

al., 2020; Watkins et al., 2021; Won et al., 2016), although these findings were based on 

cross-sectional study designs. Only a limited number of prospective studies have examined 

the association between phthalate exposures during early childhood and ADHD behaviors 

in middle childhood or adolescence, reporting adverse (Daniel et al., 2020; Li et al., 2020) 

or null associations (Huang et al., 2019; Jankowska et al., 2019a). The two studies that 

reported adverse associations observed sex-specific patterns, with more pronounced adverse 

associations in females compared to males (Daniel et al., 2020; Li et al., 2020).

The present study aimed to investigate whether exposure to phthalates or their mixtures in 

children at ages 2–5 years was associated with ADHD symptoms at ages 8–18 years within 

a study population including children who had been classified as having autism spectrum 

disorder (ASD), developmental delays (DD), and typical development (TD). We further 

examined if these associations were modified by child sex.

2. Methods

2.1 Study population

The University of California (UC) Davis ReCHARGE study revisits a subset of children 

from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control 

study, which began in 2002. In the CHARGE study, children aged 2–5 years with ASD or 

DD concerns were referred primarily through the California Department of Developmental 

Services/Regional Centers system. General population controls, identified through state birth 

files, were frequency-matched to ASD cases in terms of sex, age, and catchment area, 

with the goal of attaining a 4:1 male-to-female ratio. Other eligibility criteria include: 

a) children living with at least one biological parent who speaks English or Spanish; 

b) children residing in the study catchment areas; and c) children born in California. 

After enrollment, the CHARGE children recruited with ASD or DD concerns were 

administered multiple standardized assessments to confirm their diagnoses, and those with 

DD concerns were screened for ASD. The general population controls were screened 

for ASD and evaluated for DD, and if needed, received further assessments for ASD. 

Children who did not meet the criteria for ASD or DD, respectively, were divided into two 

groups: those with previous concerns for these conditions were classified as other early 

concerns (OEC), while those recruited as general population controls were classified as 

TD. Detailed information regarding the CHARGE study’s design, recruitment, data/sample 

collection, and diagnostic tools is described elsewhere (Hertz-Picciotto et al., 2006). In 

2017, the ReCHARGE study started recruiting the CHARGE children aged 8–19 years 

to explore the environmental factors associated with neurodevelopmental outcomes during 

pre-, mid-, and late-adolescence. The outcomes of interest included longitudinal changes in 

diagnosis, cognitive and adaptive function, and symptoms of ADHD, anxiety, or depression. 

The children enrolled in the ReCHARGE study received additional developmental and 

behavioral assessments, including an evaluation of ADHD at the Medical Investigation 

of Neurodevelopmental Disorders (MIND) Institute. The study protocol was approved by 

the UC Davis Institutional Review Boards and the State of California Committee for 
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the Protection of Human Subjects. The CHARGE/ReCHARGE study obtained children’s 

written consent or parental/guardian permission prior to any data collection.

Among 1287 CHARGE children who were enrolled, had a visit at the MIND Institute, and 

received a final diagnosis during 2006–2017, 656 children provided a sufficient volume 

of spot urine samples at ages 2–5 years for phthalate metabolite quantification. After 

excluding those who were lost to contact, not eligible for, or chose not to participate in the 

ReCHARGE study, and those not assessed for ADHD symptoms during middle childhood or 

adolescence, a total of 243 children participated in the current study (Fig. S1).

2.2 Behavior assessment

The parents of ReCHARGE children, aged 8–18 years, used the Conners-3 Parent Rating 

Scale (Conners 3-P) (Conners 2008) to assess their child’s ADHD-related behaviors. 

This widely used behavior rating scale system assesses behavior problems, particularly 

externalizing behaviors, in children aged 6–18 years (Conners et al., 1998). The parents’ 

responses to 110 items, rated on a 0–3 scale (never/seldom, occasionally, often, very 

often), were aggregated to calculate raw scores for each specific scale, where higher 

scores indicated more behavioral problems. This study focused on two ADHD-related 

Diagnostic and Statistical Manual of Mental Disorders, 5h edition (DSM-5) Symptom 

Scales: ADHD Predominantly Inattentive and Hyperactive-Impulsive Presentation (Conners 

2014). Additionally, outcomes included the Executive Functioning scale, one of the 

empirically derived Content Scales, and the Global Emotional Lability Index, both of which 

are clinically related to ADHD symptoms (Corbett et al., 2009; Sobanski et al., 2010). Raw 

scores were standardized based on sex and age into T-scores, having a mean of 50 and a 

standard deviation (SD) of 10. However, raw scores were analyzed as counts in the primary 

statistical analysis because they reflect all differences among scores, enabling the detection 

of subtle behavioral changes in association with chemical exposures (Kobrosly et al., 2014; 

Quaak et al., 2016).

2.3 Exposure assessment

Urine samples from children collected at ages 2–5 years were stored at − 20 °C. 

Aliquots were transferred and shipped to the New York State Department of Health’s 

Wadsworth Center’s Human Health Exposure Analysis Resource (HHEAR) Targeted 

Analysis Laboratory. Twenty phthalate metabolites were analyzed in the children’s urine 

samples: mono-benzyl phthalate (MBzP), monocyclohexyl phthalate (MCHP), mono(7-

carboxyheptyl)phthalate (MCHPP), mono-carboxy isononyl phthalate (MCiNP), mono-

carboxy isooctyl phthalate (MCiOP), mono-2-(carboxymethyl) hexyl phthalate (MCMHP), 

mono (3-carboxypropyl) phthalate (MCPP), mono-(2-ethyl-5-carboxypentyl) phthalate 

(MECPP), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono (2-ethyl-5-oxohexyl) 

phthalate (MEOHP), monoethyl phthalate (MEP), mono-2-heptyl phthalate (MHPP), 

mono-hexyl phthalate (MHxP), mono-isobutyl phthalate (MiBP), mono-isononyl phthalate 

(MiNP), mono-isopropyl phthalate (MiPP), mono-methyl phthalate (MMP), mono-n-butyl 

phthalate (MnBP), mono-n-octyl phthalate (MOP), and mono-pentyl phthalate (MPeP). The 

urine samples were processed using enzymatic deconjugation and solid-phase extraction, 
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and then analyzed by high-performance liquid chromatography coupled to tandem mass 

spectrometry (HPLC-MS/MS) as previously described (Li et al., 2019; Rocha et al., 2018).

For quality assurance and quality control, three aliquots of two urine pools were analyzed 

per batch, and fifteen duplicate pairs were analyzed across the batches. Median relative 

percentage differences calculated for each valid duplicate pair, in which both sample 

concentrations were above the limit of detection (LOD), ranged from 5% to 38% depending 

on the analyte. The LODs for the urinary phthalate metabolites ranged from 0.01 to 5 

ng/mL. For phthalate metabolite concentrations below the LOD, machine-read values were 

used rather than imputing them with a single value. Zero or negative machine-read values, 

legitimately arisen during the process of blank correction, were replaced with a small value 

(i.e., 0.0001) (Buckley et al., 2022).

2.4 Statistical analysis

Raw scores from two ADHD-related DSM-5 Symptom Scales (i.e., Inattentive and 

Hyperactive/Impulsive) were summarized and compared across participant characteristics 

using the Wilcoxon rank-sum test for binary variables or the Kruskal-Wallis test for 

categorical variables (with >2 levels) and the significance test of Spearman correlation 

coefficient for continuous variables.

Twelve phthalate metabolites detected in >75% of the urine samples were included in the 

statistical analysis (Hornung and Reed 1990). However, due to the common exposure source 

and high correlations among di-2-ethylhexyl phthalate (DEHP) metabolites (i.e., MCMHP, 

MECPP, MEHHP, and MEOHP), their molar sums (∑DEHP; nmol/mL) were calculated 

and included in the analysis instead of individual compounds. In addition, two molar sums 

were computed based on structural similarity, biological activity, and exposure sources: 

low molecular weight phthalate metabolites (∑LMW: MEP, MiBP, and MnBP) and high 

molecular weight phthalate metabolites (∑HMW: MBzP, MCiNP, MCiOP, MCPP, MHPP, 

MCMHP, MECPP, MEHHP, and MEOHP) (Teitelbaum et al., 2012; Wolff et al., 2008). 

To account for urinary dilution, phthalate metabolite concentrations and molar sums were 

corrected for specific gravity (SG) using the Boeniger method: Csg = C × [(SGmedian – 

1)/(SG – 1), where Csg is the SG-corrected concentration, C is the measured concentration, 

SGmedian (1.022) is the median SG values in this study samples, and SG is the SG 

value measured in each sample (Boeniger et al., 1993; Kuiper et al., 2021). Descriptive 

statistics and Spearman correlation coefficients of the SG-corrected concentrations were 

computed. SG-corrected phthalate metabolite concentrations between females and males 

were compared using the Wilcoxon rank-sum test. For regression analysis, the SG-corrected 

concentrations were log 2-transformed due to their skewed distributions.

Negative binomial generalized liner models, adjusted for covariates, were used to examine 

the associations between SG-corrected phthalate metabolite concentrations and raw scores 

of four Conners 3-P scales. Potential covariates were identified a priori from a directed 

acyclic graph, established through a literature review (Textor et al., 2016) (Fig. S2). The 

final adjustment set included CHARGE case-control study frequency matching factors, 

confounders, and risk factors of ADHD: child sex (female, male) and age at behavior 

assessment (in years), recruitment regional center (Alta, North Bay, East Bay, Valley 
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Mountain), preterm birth (<37, ≥37 completed weeks), maternal metabolic conditions 

(healthy weight/overweight and no pregnancy conditions, obese or hypertensive disorder/

gestational diabetes), maternal age at delivery (<30, 30–34, ≥35 years), parity (1, ≥2), 

homeownership (owner, non-owner) as a proxy for socioeconomic status (SES), and 

diagnostic groups (ASD, DD, OEC, TD). Child race/ethnicity as a proxy for structural 

racism (non-Hispanic White or other race/ethnicity, non-Hispanic Black, Hispanic) was 

considered but not included in the models because it was not associated with ADHD 

behaviors in our sample (p-values>0.2) (Table 1). Highest education in household (high 

school or less, some college credit or higher), another proxy for SES, was also excluded to 

minimize multicollinearity and overfitting as homeownership showed the stronger bivariate 

associations with ADHD behaviors. Instead, these two variables were additionally adjusted 

for in the sensitivity analysis. The generalized variance inflation factors for the models 

(range = 1.04–1.37) indicated weak correlations among covariates (Daoud 2017). The 

missing covariates were imputed using multiple imputation by chained equations that 

included all exposures, outcomes, and covariates (White et al., 2011). Twenty imputed 

datasets were generated to estimate pooled regression coefficients (βs) and 95% confidence 

intervals (CIs) (Graham et al., 2007; Rubin 2004). To correct for multiple comparisons, a 

false discovery rate (FDR) was applied to p-values per each scale (Benjamini and Hochberg 

1995). Furthermore, in an exploratory analysis, negative binomial regression analyses were 

restricted to children with ASD (n=94) or TD (n=98). As an additional sensitivity analysis, 

T-scores of Conners 3-P were used in multiple linear regression models, adjusting for 

the same covariate set. To enhance the normality of residuals, T-scores were square root 

transformed prior to the regression analyses.

To investigate the overall mixture effects of 12 phthalate metabolites on Conners 3-P 

raw scores, weighted quantile sum (WQS) regression for negative binomial outcomes 

was conducted across 100 repeated holdout datasets (Tanner et al., 2019). Within each 

iteration, children were randomly divided into training (40%) and testing (60%) sets 

(Carrico et al., 2015), estimating empirical weights for each metabolite and the WQS 

index from 100 bootstrap samples. The WQS index, representing the overall body burden, 

was then used as the exposure variable in the multiple regression models, adjusted for 

the same covariate set as before. After 100 repeated holdouts, weight distributions were 

interpreted only when the regression coefficients within the 2.5th and 97.5th percentile range 

indicated significant associations (i.e., β > 0 or β < 0). Metabolites for which 50% of the 

iterations exceeded a threshold of 0.083 (equivalent to 1/12 metabolites in the mixture) 

were identified as possible contributors (Bennett et al., 2022). Given that higher Conners 

3-P scores indicate greater behavioral problems, the WQS regression was constrained to 

a positive direction. As a complementary approach to estimate the overall mixture effects, 

quantile-based g-computation was used, which is similar to WQS regression in terms of 

simplicity of interpretation while incorporating the flexibility of g-computation (Keil et al., 

2020). While WQS regression estimates associations in only one direction, quantile-based 

g-computation allows the estimation of mixture effects in both directions. The estimated 

effect per simultaneous quartile increase in all phthalate metabolites was presented using psi 

(ψ).
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As previous prospective studies suggested evidence of sex-specific associations between 

phthalate exposures and ADHD-related behaviors (Daniel et al., 2020; Li et al., 2020), 

effect modification by child sex was examined. For individual phthalate metabolites, sex-

stratified estimates in multiple regression models were calculated, and the interaction term 

between each metabolite and sex was evaluated. For metabolite mixtures, the sex-stratified 

interaction WQS regression models were used by additionally including the interaction term 

between the WQS index and sex in the main WQS regression models (Busgang et al., 2022; 

Gennings et al., 2022). The distributions of sex-specific metabolite weights and regression 

coefficients across 100 repeated holdout datasets were generated.

The statistical analyses were performed using R version 4.1.3 (R Foundation for Statistical 

Computing, Vienna, Austria), implementing publicly available packages such as “mice” for 

multiple imputation by chained equations (Van Buuren and Groothuis-Oudshoorn 2011), 

“MASS” for negative binomial generalized linear regression (Ripley et al., 2013), “gWQS” 

for WQS regression with repeated holdout validation (Renzetti et al., 2021), and “qgcomp” 

for quantile-based g-computation (Keil et al., 2020).

3. Results

The 243 ReCHARGE children had diverse diagnostic profiles, with approximately 40% 

classified as TD, 39% as ASD, 12% as DD, and 9% as OEC (Table 1). As children 

with ASD and TD were frequency-matched by sex, the majority of this study population 

were male (74%). Most children were born to mothers without pre-pregnancy obesity, 

hypertensive disorders of pregnancy, or gestational diabetes (67%), in families that owned a 

home (71%), and where the highest education attained in the household was some college 

credit, a bachelor’s, or a higher degree (64%). Many of the participant characteristics in this 

study population were similar to those in the 1044 CHARGE children who were excluded 

from this study (Table S1). However, our study population included fewer Hispanic children 

and more children from families who owned a home, had higher levels of education, and 

were enrolled in later years compared to those excluded from this study.

Conners 3-P raw scores were higher among children classified as ASD, DD, and OEC 

compared to children classified as TD (Table 1 and Fig. S3). Males had higher scores of two 

ADHD-related DSM-5 Symptom Scales than females. Inattentive scores were higher among 

children born to primiparous mothers than those born to multiparous mothers. Furthermore, 

children born to mothers aged 30–34 years at delivery had lower scores on both scales 

compared to those born to mothers either younger or older. Children born to mothers who 

had pre-pregnancy obesity, hypertensive disorder of pregnancy, or gestational diabetes had 

higher scores than those born to mothers without these conditions. Children from families 

that did not own a home or attained lower education had higher scores than those from 

families that owned a home or attained higher education.

Three LMW phthalate metabolites (MEP, MiBP, and MnBP) and eight HMW phthalate 

metabolites (MBzP, MCiNP, MCiOP, MCPP, MCMHP, MECPP, MEHHP, and MEOHP), 

including all DEHP metabolites, were detected in >98% of the samples (Table 2). MHPP 

was less frequently detected (77%) with a median SG-corrected concentration of 1.4 
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ng/mL. The highest median concentration was observed for MEHHP (43 ng/mL), a DEHP 

metabolite, followed by MnBP (42 ng/mL), MEP (40 ng/mL), MECPP (32 ng/mL), and 

MBzP (32 ng/mL). Males had higher SG-corrected concentrations of MnBP, MBzP, MCPP, 

MHPP, ∑ DEHP, and ∑HMW compared to females (Fig. S4). Four DEHP metabolites 

showed strong correlations with each other (Spearman correlation coefficients [rsp] = 0.68–

0.97) (Fig. S5). Other HMW phthalate metabolites were moderately correlated with each 

other (rsp = 0.35–0.65), except for MBzP (rsp = 0.25–0.48), and were relatively weakly 

correlated with LMW phthalate metabolites (rsp = 0.16–0.58).

Most phthalate metabolites and molar sums were not associated with any of the four 

Conners 3-P scales (Fig. 1 and Table S2). Higher MHPP concentrations in early childhood 

urine were associated with higher raw scores on Inattentive (β per doubling = 0.05, 95% CI: 

0.02, 0.08), Hyperactive/Impulsive (β = 0.04, 95% CI: 0.00, 0.07), Executive Functioning 

(β = 0.03, 95% CI: 0.01, 0.06), and Emotional Lability scales (β = 0.09, 95% CI: 0.04, 

0.14). These associations remained statistically significant after FDR correction, except 

for the Hyperactive/Impulsive scale. Higher MCiNP (β = 0.05, 95% CI: 0.00, 0.09) and 

MCiOP (β = 0.07, 95% CI: ‒ 0.01, 0.15) were associated with higher Hyperactive/Impulsive 

scores, although they were not statistically significant after FDR correction. These results 

remained similar when using normalized T-scores (Fig. S6) or additionally adjusting for 

highest education in household and child race/ethnicity (Fig. S7). The adverse associations 

between MHPP and all four scales persisted when restricted to children with ASD or to 

males, respectively (Fig. 2 and Fig. S8). When limited to children with TD, higher MCiOP 

was associated with higher Hyperactive/Impulsive scores (β = 0.21, 95% CI: 0.04, 0.37).

Child sex modified the associations of MCPP with all four scales (p-value for interaction 

[pint]<0.04) with more pronounced adverse associations among females (Fig. 2 and Table 

S3). Similarly, the associations of MCiOP, ΣDEHP, and ΣHMW with the Hyperactive/

Impulsive scale were modified by child sex (pint<0.04), consistently showing associations 

with higher scores among females and non-significant associations with lower scores among 

males. Furthermore, sex-modified associations showed adverse associations among females 

only for MiBP and MnBP with respect to Inattentive and Executive Functioning, whereas 

MCiNP and Emotional Lability showed adverse associations among males only.

The repeated holdout WQS regression revealed null associations between the phthalate 

metabolite WQS index and the four scales (Fig. S9). However, in the sex-stratified 

interaction WQS regression models, the WQS index was associated with higher scores 

of Inattentive (median β = 0.50, 2.5th and 97.5th percentile: 0.20, 1.11) and Hyperactive/

Impulsive (median β = 0.42, 2.5th and 97.5th percentile: 0.05, 0.84) among females only. 

Possible contributors were MiBP, MnBP, and MHPP for the Inattentive scale and MCiNP, 

MCiOP, MCPP, and MHPP for the Hyperactive/Impulsive scale (Fig. S10). Similarly, 

when using quantile-based g-computation, no significant associations were observed in 243 

children (Table S4). When stratified by child sex, the phthalate metabolite mixture was 

associated with higher Hyperactive/Impulsive scores among females (ψ per simultaneous 

quartile increase in all phthalate metabolites = 0.28, 95% CI: − 0.01, 0.58), contributed by 

∑DEHP, MEP, and MiBP for positive scaled effects. In contrast, the phthalate metabolite 
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mixture was associated with lower Hyperactive/Impulsive scores among males (ψ = − 0.16, 

95% CI: − 0.31, 0.00), contributed by MiBP and ∑DEHP for negative scaled effects.

4. Discussion

In the ReCHARGE study of children previously classified as ASD, DD, OEC, and 

TD, urinary concentrations of most phthalate metabolites at ages 2–5 years were not 

associated with ADHD-related behaviors at ages 8–18 years. However, higher urinary 

MHPP was associated with more ADHD behaviors, particularly evident among children 

classified as ASD or among males. MCiOP was associated with more hyperactive/impulsive 

behaviors, notably observed among typically developing children. Furthermore, child 

sex modified associations of MCPP with all the ADHD-related behaviors, those of 

MCiOP, ∑DEHP, and ∑HMW with hyperactivity/impulsivity, and those of MiBP and 

MnBP with inattentiveness and executive functioning problems. Consistently, females 

showed stronger associations with higher scores, whereas males showed relatively null 

associations or in the opposite direction (with lower scores). These trends were also 

observed for phthalate metabolite mixtures in association with hyperactivity/impulsivity, 

confirmed through two mixture approaches. Although both approaches indicated adverse 

associations, the contributors driving the mixture effects differed between WQS regression 

and quantile-based g-computation, possibly due to differences in directional homogeneity 

assumptions. Additionally, given the limited sample size, interpreting these findings requires 

caution because outliers might have influenced the results. However, the consistent adverse 

associations among females underscore the need for further studies investigating sex-specific 

associations.

In our previous cross-sectional study, which examined early childhood phthalate exposures 

and ADHD symptoms assessed using the Aberrant Behavior Checklist in a larger sample of 

CHARGE children (n = 574), we observed associations of greater hyperactivity/impulsivity 

with DEHP metabolites and a phthalate mixture, with DEHP metabolites, MHPP, MCiNP, 

and MnBP possibly contributing to the mixture effect (Oh et al., 2024). Considering both 

studies, MHPP and MCiNP showed adverse associations with hyperactivity/impulsivity in 

both early childhood and middle childhood/adolescence. Di-n-heptyl phthalate (DHPP) and 

di-iso-decyl phthalate (DIDP), the parent compounds of MHPP and MCiNP, respectively, 

are high-production-volume chemicals primarily used as plasticizers in polyvinyl chloride 

(U.S. EPA, 2021). While DIDP and MCiNP have been relatively well-studied for adverse 

health effects, including developmental toxicity (Center for the Evaluation of Risks to 

Human Reproduction, 2003; Kamrin 2009), DHPP and MHPP have received less attention 

regarding their association with neurodevelopment. However, given that DHPP exposure 

led to developmental toxicity and behavior changes in animal models (Poopal et al., 2020; 

Saillenfait et al., 2011), this compound warrants further investigation.

Several prior studies investigated early childhood exposure to phthalates in association with 

ADHD behaviors in prospective study settings. Jankowska et al. did not observe convincing 

associations between phthalate exposures at age 2 years and ADHD-related behavioral 

problems at age 7 years among Polish children (Jankowska et al., 2019a). However, they 

found associations of urinary MEP with lower fluid intelligence and MnBP with lower 
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cognition. Huang et al. observed null associations between urinary phthalate metabolite 

concentrations in Taiwanese children aged 2–8 years and ADHD-related behaviors at ages 

8–14 years, except for an association between MBzP and greater social problems (Huang 

et al., 2019). It is noteworthy that Jankowska et al. and Huang et al. mutually adjusted for 

prenatal maternal and childhood phthalate metabolite concentrations in a single model and 

did not examine prenatal and childhood exposure separately. Although Huang et al. reported 

no correlations between prenatal and childhood concentrations of the same phthalate 

metabolite, our findings cannot be directly compared to those of these two studies. On 

the other hand, Li et al. observed adverse associations for several phthalate metabolites in 

U.S. children: MEP, MnBP, MCiNP, and the phthalate metabolite mixture at ages 1–5 years 

with greater externalizing problems at ages 2–8 years and MEP, MBzP, MCiNP, MCiOP, 

MCPP, and the phthalate metabolite mixture with greater overall behavioral problems (Li et 

al., 2020). These results remained similar after mutually adjusting for prenatal maternal 

phthalate metabolite concentrations. When examining the clinical subscales, childhood 

MCiNP was associated with hyperactivity and inattention. Their wider range of adverse 

associations could be attributed to their more comprehensive approach, capturing phthalate 

exposure and behavioral outcomes through multiple measurements at six age points (i.e., 

1–5 and 8 years) for phthalate metabolite concentrations and at five age points (i.e., 2–5 and 

8 years) for behavioral assessments.

Consistent with our findings, some of these prior studies reported sex-specific associations, 

mostly showing stronger adverse associations between certain phthalate metabolites and 

behavioral problems among females than males. Li et al. reported effect modification by 

sex, with MEP, MiBP, and MBzP showing more pronounced associations with greater 

externalizing problems among females (Li et al., 2020). Furthermore, Daniel et al. examined 

sex-stratified associations of phthalate exposure at ages 3 and 5 years, separately, with 

ADHD-related behaviors at age 7 years (Daniel et al., 2020). They found that urinary 

MBzP concentrations at age 3 years were associated with greater ADHD symptoms only 

in females, whereas MEP was associated with more ADHD symptoms in males only. 

Phthalate metabolite concentrations at age 5 years showed no associations with ADHD-

related behaviors, but DEHP metabolites were associated with greater social problems and 

emotional lability among females only. This is in line with our results for MCiOP, MCPP, 

and MHPP in association with emotional lability observed in females only. Collectively, 

these findings support the increasingly recognized role of emotional lability and irritability 

(a form of negative symptoms of lability) appear in association with ADHD symptoms 

in youth, particularly in females (De Ronda et al., 2023; Elahi et al., 2023; Kahle et al., 

2021). Moreover, these findings underscore the importance of further research to investigate 

a potential relationship between phthalate exposure and the rising prevalence of ADHD 

diagnosis among females (Castle et al., 2007; Fairman et al., 2020; Jensen and Steinhausen 

2015), which has primarily been considered due to improved recognition of ADHD in 

females (Chronis-Tuscano 2022; Hinshaw et al., 2022). On the other hand, Huang et al. did 

not observe any sex-specific associations possibly due to the small sample size (n = 153) 

(Huang et al., 2019). Therefore, further studies in larger populations are needed to confirm 

the sex-specific effects of early childhood exposure to phthalates on child behaviors.
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Although biological mechanisms underlying these associations remain largely unknown, 

disruption of thyroid and sex steroid hormones have been proposed as potential mechanisms 

(Boas et al., 2012; Cowell and Wright 2017; Miodovnik et al., 2014). Thyroid hormones 

play essential roles in both prenatal and early postnatal neurodevelopment (Ahmed et al., 

2008; Porterfield and Hendrich 1993). Disrupted thyroid hormone homeostasis in children 

has been associated with ADHD diagnosis or symptoms (Albrecht et al., 2020; Álvarez-

Pedrerol et al., 2007; Lain et al., 2021; Villanger et al., 2020). Early-life exposure to 

phthalates, as endocrine disrupting chemicals, could perturb thyroid hormone levels in 

young children (Boas et al. 2010, 2012; Huang et al., 2017; Kim et al., 2020; Morgenstern 

et al., 2017; Wu et al., 2017), potentially influencing ADHD behaviors in later childhood 

or adolescence. Sex steroid hormones are also crucial for sexual differentiation of the brain 

and behaviors (Waddell and McCarthy 2012), and children are highly sensitive to the actions 

of these hormones (Aksglaede et al., 2006). Childhood phthalate exposure was associated 

with altered sex steroid hormone levels in sex-dimorphic manners (Hu et al., 2022; Su et al., 

2014; Wen et al. 2017a, 2017b). Among females, increased sex hormone-binding globulin 

levels were associated with a mixture of phthalates and phenols, primarily contributed 

by MBzP, during puberty (Hu et al., 2022) and daily intake of DEHP exposure during 

prepuberty (Wen et al., 2017a). Several phthalate metabolites were associated with increased 

progesterone and follicle-stimulating hormones among prepubertal females only (Su et 

al., 2014; Wen et al., 2017a). In a longitudinal study that repeatedly measured phthalate 

metabolites and sex hormone levels from birth to 11 years, DEHP metabolites were 

associated with decreased estradiol and progesterone levels in females and decreased free 

testosterone levels in males (Wen et al., 2017b). These findings may support sex-specific 

associations between phthalate exposure and ADHD behaviors.

A major strength of this study is the prospective design that allowed us to examine 

associations between early childhood phthalate exposure and ADHD behaviors in middle 

childhood and adolescence. Twelve out of 20 phthalate metabolites were detected in >75% 

the child urine samples, allowing us to investigate the mixture effects on ADHD behaviors. 

However, several limitations should be noted. First, phthalate metabolite concentrations 

were measured in spot urine samples collected at ages 2–5 years. Due to the weak to 

moderate reproducibility of phthalates in young children, attributed to their short half-lives 

and episodic exposure (Sjöström et al., 2023; Teitelbaum et al., 2008; Watkins et al., 2014), 

our findings based on phthalate metabolite concentrations in a single urine sample might 

have caused exposure misclassification. Second, while prenatal phthalate exposure has been 

associated with greater ADHD behaviors, this study could not account for prenatal maternal 

or early postnatal phthalate exposure because the CHARGE case-control study enrolls the 

children aged 2–5 years. Third, our study children had diverse diagnostic profiles, including 

approximately 60% who had ever had neurodevelopmental concerns. Consequently, ADHD-

related behavior scores in our children were higher than those in the general population, 

thereby limiting the generalizability of our findings, while also increasing our ability to 

study the relationship between these comorbid symptoms and phthalate exposure. Fourth, 

although Conners 3-P is a valid and reliable instrument for assessing children’s behaviors, 

assessment based only on the questionnaire completed by the parents may have introduced 

reporting bias (Gianarris et al., 2001). Fifth, this study assessed the behavior of children 
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over a wide age range. Despite adjusting for age at behavior assessment in our models, the 

results should be interpreted cautiously. Lastly, the sex distribution in our study consisted 

of approximately three times as many males as females, due to the recruitment strategy 

aiming for a 4:1 male-to-female ratio among children in the general population to match the 

ratio observed in the children with ASD. Although our overall sample size was not small, 

the limited number of females might have constrained the statistical power in analyses of 

modification by sex. Moreover, this could potentially limit future replication because outliers 

might have driven the associations.

5. Conclusion

In the ReCHARGE study that followed up children having been classified as ASD, DD, 

OEC, TD, early childhood exposure to several phthalates may be associated with more 

ADHD behaviors in middle childhood and adolescence. This study also provided evidence 

of sex-specific associations of exposure to HMW phthalates and a phthalate mixture with 

higher hyperactivity/impulsivity scores, with stronger associations among females. These 

findings should be interpreted cautiously and not generalized due to the diverse diagnostic 

profiles and the small number of female children. Given the growing evidence associating 

early childhood phthalate exposure with ADHD behaviors in later life, further studies 

with repeated measurements of both phthalate exposure and behaviors are needed to better 

elucidate the exposure-outcome relationship.
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Fig. 1. 
Adjusted associations between log2-transformed SG-corrected phthalate metabolite 

concentrations in early childhood urine samples and Conners 3-P raw scores in middle 

childhood and adolescence in 243 ReCHARGE children. Point estimates indicate regression 

coefficients, and error bars indicate their 95% CIs. Red color indicates associations with 

an unadjusted p < 0.05 and an FDR-corrected p < 0.10, and orange color indicates 

associations with an unadjusted p < 0.05 but an FDR-corrected p ≥ 0.10. Negative binomial 

regression models were adjusted for CHARGE case-control study frequency matching 

factors (child sex, age at behavior assessment, and recruitment regional center), preterm 

birth, maternal metabolic conditions, maternal age at delivery, parity, homeownership, and 

diagnostic groups. CHARGE, Childhood Autism Risks from Genetics and Environment; CI, 

confidence interval; Conners 3-P, Conners-3 Parent Rating Scale; DEHP, di-2-ethylhexyl 

phthalate; HMW, high molecular weight; LMW, low molecular weight; MBzP, mono-benzyl 

phthalate; MCiNP, mono-carboxy isononyl phthalate; MCiOP, mono-carboxy isooctyl 

phthalate; MCPP, mono (3-carboxypropyl) phthalate; MEP, monoethyl phthalate; MHPP, 

mono-2-heptyl phthalate; MiBP, mono-isobutyl phthalate; MnBP, mono-n-butyl phthalate; 

ReCHARGE, Revisiting Childhood Autism Risks from Genetics and Environment; SG, 

specific gravity. (For interpretation of the references to color in this figure legend, the reader 

is referred to the Web version of this article.)
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Fig. 2. 
Adjusted associations between log2-transformed SG-corrected phthalate metabolite 

concentrations in early childhood urine samples and Conners 3-P raw scores in middle 

childhood and adolescence, stratified by child sex. Point estimates indicate regression 

coefficients, and error bars indicate their 95% confidence intervals. Shaded areas 

indicate p-value for interaction term for phthalate metabolites and sex is less than 0.10. 

Negative binomial regression models were adjusted for CHARGE case-control study 

frequency matching factors (child age at behavior assessment, and recruitment regional 

center), preterm birth, maternal metabolic conditions, maternal age at delivery, parity, 

homeownership, and diagnostic groups. The interaction term model was additionally 

adjusted for the main effect for child sex and the interaction term for phthalate metabolites 

and sex. CHARGE, Childhood Autism Risks from Genetics and Environment; CI, 

confidence interval; Conners 3-P, Conners-3 Parent Rating Scale; DEHP, di-2-ethylhexyl 

phthalate; HMW, high molecular weight; LMW, low molecular weight; MBzP, mono-benzyl 

phthalate; MCiNP, mono-carboxy isononyl phthalate; MCiOP, mono-carboxy isooctyl 

phthalate; MCPP, mono (3-carboxypropyl) phthalate; MEP, monoethyl phthalate; MHPP, 

mono-2-heptyl phthalate; MiBP, mono-isobutyl phthalate; MnBP, mono-n-butyl phthalate; 

SG, specific gravity.
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Table 2

Distribution of SG-corrected phthalate metabolite concentrations in early childhood urine samples of 243 

ReCHARGE children.

Phthalate metabolites a LOD %>LOD Percentiles

5th 25th 50th 75th 95th

MEP 0.10 100 13.7 24.2 39.0 79.0 299.6

MiBP 0.01 100 6.0 11.7 20.7 35.2 115.9

MnBP 0.20 100 11.6 25.4 43.0 68.7 201.6

MMP 5.00 40 <LOD <LOD <LOD 7.8 24.3

∑LMW b 0.2 0.4 0.6 1.1 2.4

MBzP 0.02 99 3.6 15.4 32.1 70.6 236.8

MCiNP 0.01 98 1.7 3.6 6.0 10.0 24.3

MCiOP 0.01 100 4.9 12.0 20.3 40.4 112.8

MCPP 0.05 100 1.4 3.1 5.8 9.7 24.0

MCHPP 0.10 27 <LOD <LOD <LOD 0.1 19.6

MHPP 0.50 77 <LOD 0.6 1.4 3.7 16.1

MHxP 0.50 56 <LOD <LOD 0.8 19.7 149.9

MCMHP 0.02 98 3.0 9.0 15.5 32.2 84.4

MECPP 0.02 100 8.2 19.1 32.3 74.5 197.8

MEHHP 0.20 100 10.5 23.1 43.0 91.0 249.1

MEOHP 0.01 100 3.6 9.7 18.0 41.9 98.2

∑DEHP c 0.1 0.2 0.4 0.8 2.1

∑HMW d 0.2 0.4 0.7 1.5 3.5

Abbreviations: DEHP, di-2-ethylhexyl phthalate; HMW, high molecular weight; LMW, low molecular weight; LOD, limit of detection; MBzP, 
mono-benzyl phthalate; MCHP, monocyclohexyl phthalate; MCHPP, mono(7-carboxyheptyl) phthalate; MCiNP, mono-carboxy isononyl phthalate; 
MCiOP, mono-carboxy isooctyl phthalate; MCMHP, mono-2-(carboxymethyl) hexyl phthalate; MCPP, mono (3-carboxypropyl) phthalate; MECPP, 
mono-(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono (2-ethyl-5-oxohexyl) phthalate; 
MEP, monoethyl phthalate; MHPP, mono-2-heptyl phthalate; MHxP, mono-hexyl phthalate; MiBP, mono-isobutyl phthalate; MiNP, mono-isononyl 
phthalate; MiPP, mono-isopropyl phthalate; MMP, mono-methyl phthalate; MnBP, mono-n-butyl phthalate; MOP, mono-n-octyl phthalate; MPeP, 
mono-pentyl phthalate; ReCHARGE, Revisiting Childhood Autism Risks from Genetics and Environment; SG, specific gravity.

a
Units are ng/mL for phthalate metabolites and nmol/mL for molar sum of phthalate metabolites (∑LMW, ∑DEHP, ∑HMW). Phthalate metabolites 

detected in <10% of samples (i.e., MCHP, MPeP, MiNP, MiPP, and MOP) were not presented.

b
Molar sum of LMW phthalate metabolites detected in >75% of samples (MEP, MiBP, MnBP).

c
Molar sum of DEHP metabolites detected in >75% of samples (MCMHP, MECPP, MEHHP, MEOHP).

d
Molar sum of HMW phthalate metabolites detected in >75% of samples (MBzP, MCiNP, MCiOP, MCPP, MHPP, MCMHP, MECPP, MEHHP, 

MEOHP).
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