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ABSTRACT	

Aim			Plant	distributions	and	vegetation	dynamics	underpin	key	global	phenomena	
including	biogeochemical	cycling,	ecosystem	productivity	and	terrestrial	biodiversity	
patterns.	Aggregated	and	remotely	collected	‘big’	data	are	required	to	forecast	global	
change	effects	on	plant	communities.	We	synthesize	advances	in	developing	and	exploiting	
big	data	in	global	change	plant	ecology,	and	identify	challenges	to	their	effective	use	in	
global	change	studies.	

Location		Global.	

Methods		We	explored	databases,	catalogs	and	registries	with	respect	to	their	accessibility,	
geographical	and	taxonomic	extent,	sample	bias,	and	other	types	of	uncertainty,	from	both	
a	user	and	contributor	perspective.	We	identified	four	kinds	of	big	data	needed	to	predict	
global	change	impacts	on	plant	populations	and	communities	using	spatially	explicit	
models:	remotely	sensed	and	other	environmental	maps,	species	occurrence	records,	
community	composition	(plots),	and	species	traits,	especially	demographic.	

Results			Digital	environmental	maps,	including	remotely	sensed	data,	is	the	most	mature	
class	of	big	data	discussed	herein	whereby	protocols	for	archiving,	discovering,	and	
analyzing	them	have	developed	over	three	decades.		Species	locality	records	are	being	
aggregated	into	databases	that	are	easy	to	search	and	access,	and	while	methods	for	
addressing	uncertainties	are	a	major	research	focus,	better	spatial	representation	is	still	
needed.	Plot	data	from	inventories	have	tremendous	potential	for	monitoring	and	
modeling	global	change	impacts	on	plant	communities	but	tend	to	be	restricted	to	forests	
or	concentrated	in	certain	geographical	areas.	Ongoing	efforts	to	aggregate	plot	and	trait	
data	from	multiple	sources	are	challenged	by	their	heterogeneous	coverage,	attributes	and	
protocols,	and	lack	of	data	standards.	

Main	Conclusions		Future	goals	include	developing	systematic	frameworks	for	selecting	
geospatial	data,	improving	tools	for	assessing	the	quality	of	species	occurrence	records,	
and,	increased	aggregation	and	discoverability	of	plot	and	trait	data.	Aggregated	data	
collected	by	scientists,	not	sensors,	provide	more	meaningful	insights	when	data	collectors	
are	involved	in	analysis.	 	
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INTRODUCTION	

Big	data	refers	to	data	sets	so	large	or	complex	that	they	challenge	established	methods	for	
data	capture,	curation,	storage,	analysis,	and	transfer	(Lynch,	2008).	Big	data	have	been	
used	to	study	vegetation	distributions	and	dynamics	for	more	than	three	decades,	but	
recent	and	rapid	global	change,	as	well	as	new	avenues	for	interdisciplinary	research,	
increase	dependence	on	them.	Remotely	sensed	data	have	been	large	in	volume	since	the	
dawn	of	the	earth	resources	remote	sensing	era	in	the	1970s.	In	the	1980s,	geographers	
coped	with	the	challenges	of	developing	nascent	Geographic	Information	Systems	that	
could	handle	NASA’s	MODIS-mission	with	its	terabyte	streams	of	data	(Smith	et	al.,	1987),	
and	by	the	2000’s,	terabytes	had	become	petabytes.	

In	addition	to	data	that	are	big	in	volume,	big	data	also	refers	to	a	type	of	data	
analysis,	called	predictive	analytics,	often	applied	to	data	derived	from	modern	digital	
technology,	such	as	internet	searches	and	social	media	(Lazer	et	al.,	2014).	Predictive	
analytics	encompasses	approaches	used	for	decades	in	environmental	and	geographical	
sciences	such	as	machine	learning,	statistical	learning	and	data	mining	(Skidmore	et	al.,	
2011).	With	the	field	of	biodiversity	informatics	now	well	established	(Soberon	&	Peterson,	
2004),	new	directions	in	data	analytics,	and	a	culture	of	bringing	multiple	disciplines	and	
approaches	to	bear	on	‘wicked’	problems,	the	time	is	ripe	for	plant	ecologists	to	adopt	
evolving	techniques	that	will	go	far	beyond	computer	science	departments	in	order	to	
address	pressing	global	change	research	problems.	

Understanding	plant	distributions	and	vegetation	dynamics	driven	by	global	change	
requires	multiple	lines	of	evidence	and	integrated	frameworks	that	link	environmental	
variables	to	ecological	processes	and	it	relies	on	data	from	many	sources	(Franklin	et	al.,	
2016):	1)	environmental	maps,	2)	biodiversity	(species	occurrence)	records	and	maps,	3)	
plant	community	composition	data	(vegetation	plots),	and	4)	species	demographic	
parameters,	as	well	as	other	species	traits.	As	we	have	confronted	in	our	own	work,	all	of	
these	data	types	are	necessary	to	predict	separate	and	combined	impacts	of	major	global	
change	drivers	–	climate	change,	land	use	change,	altered	disturbance	regimes	and	invasive	
species	–	on	plant	communities	at	large	spatial	extents	(Franklin,	2010b;	Regan	et	al.,	2012;	
Syphard	et	al.,	2013;	Franklin	et	al.,	2014).	Not	all	big	data	used	in	plant	ecology—sourced	
from	pixels	vs.	polygons	vs.	plots	vs.	pressed	plants—are	the	same;	different	data	are	
subject	to	different	pre-	and	post-processing	techniques	and	uncertainties	(Regan	et	al.,	
2002).	We	highlight	the	challenges	faced	when	producing,	using	and	integrating	big	data	
sets	to	monitor	and	forecast	global	change	impacts	on	vegetation.	

In	the	following	sections	we	outline	these	four	types	of	big	data	needed	to	address	
global	change	questions	in	plant	ecology,	identify	key	uncertainties,	discuss	challenges	
associated	with	contributing	to	big	data,	and	suggest	ways	to	improve	the	discovery,	
screening	and	use	of	big	data	to	inform	conservation	and	planning	in	a	rapidly	changing	
world.	
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BIG	PLANT	DATA	FOR	GLOBAL	CHANGE	ECOLOGY	

Digital	Environmental	Maps		

We	highlight	selected	types	of	environmental	maps	that	are	needed	to	monitor	or	forecast	
global	change	effects	on	vegetation.	These	include	satellite-measured	vegetation	
properties,	thematic	maps	of	vegetation,	soils	and	land	cover,	digital	terrain	data,	and	
climate	maps.	A	comprehensive	discussion	of	geospatial	data	and	analytics	used	in	plant	
ecology	is	beyond	the	scope	of	this	paper	and	reviewed	elsewhere	(Wilson	&	Gallant,	2000;	
Kerr	&	Ostrovsky,	2003;	Franklin,	2010a;	Skidmore	et	al.,	2011;	Thrasher	et	al.,	2013).	

Global	products	from	the	National	Aeronautics	and	Space	Administration’s	(NASA)	
Moderate	Resolution	(250	m	or	coarser)	Imaging	Spectrometer	(MODIS)	data	(Justice	et	al.,	
1998),	available	beginning	in	1999,	include	maps	of	land	cover	(Friedl	et	al.,	2010),	leaf	
area	index,	and	vegetation	indices.	A	global	map	of	forest	cover	change	(2000-2013)	has	
recently	developed	from	high-resolution	30-m	Landsat	imagery	(Hansen	et	al.,	2013).	New	
developments	in	remote	sensing	show	great	promise	for	filling	information	gaps	in	
understanding	vegetation	properties	and	processes	including	biodiversity,	biogeochemical	
cycling	and	community	dynamics	(Schimel	et	al.,	2013;	Schimel	et	al.,	2015;	Shugart	et	al.,	
2015).	

Although	these	data	products	support	monitoring	of	earth	system	properties,	
studies	forecasting	global	change	effects	on	plant	communities	are	often	carried	out	at	
regional	scales	and	rely	on	topographic,	soil,	vegetation	type,	and	land	cover	maps	to	
characterize	baseline	conditions.	For	example,	a	landscape	simulation	model	of	vegetation	
disturbance	and	succession	(Franklin	et	al.,	2005),	relying	on	statistical	models	of	baseline	
distributions	for	focal	species	(Franklin,	2002),	required	digital	soil	maps,	vegetation	type	
maps,	elevation	models,	interpolated	climate	and	modeled	potential	solar	radiation	and	
topographic	moisture	(Franklin,	1998).	Mapped	projections	of	future	land	use	change	
(Syphard	et	al.,	2005)	and	climate	change	(Scheller	&	Mladenoff,	2005)	are	also	needed	to	
forecast	vegetation	dynamics	under	global	change	scenarios.		

Use	of	climate	maps	for	projecting	the	effects	of	climate	change	on	ecosystems	has	
been	growing.		Historical	climate,	e.g.,	monthly	temperature	and	precipitation,	has	been	
mapped	by	spatial	interpolation	of	weather	station	records	at	continental	and	global	scales	
(Hijmans	et	al.,	2005;	Daly,	2006),	and	these	datasets	are	widely	used	in	ecological	
modeling.	Earth’s	future	climate	is	modeled	using	general	circulation	models	of	the	oceans	
and	atmosphere,	also	called	global	climate	models	(GCMs).	These	global	simulations	are	
conducted	at	a	spatial	resolution	(1	degree	cells	or	larger)	that	is	too	coarse	for	most	
studies	of	plant	community	response	(a	case	of	underspecification;	Table	1),	and	are	thus	
spatially	downscaled	to	incorporate	regional	and	local	scale	climate	variability	(Beaumont	
et	al.,	2008).		Statistical	downscaling	uses	either	the	delta	method	(calculating	the	
difference	between	a	future	and	baseline	modeled	climate	and	adding	that	difference	to	a	
high	resolution	current	climate	map)	or	pattern	scaling	(also	called	weather	typing)	which	
yields	more	accurate	climate	maps	than	the	delta	method	(Flint	&	Flint,	2012).	
Nevertheless,	dynamical	downscaling	through	nesting	a	regional	climate	model	within	the	
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simulations	from	a	global	model	may	be	required	to	capture	regional	processes	affecting	
vegetation	patterns	(Hall,	2014).	Uncertainty	in	climate	models	has	been	scrutinized	in	
detail	because	of	the	profound	implications	of	their	forecasts.	Gridded	data	from	
downscaled	climate	models	can	include	hourly,	daily	or	monthly	raster	maps	of	
temperature,	precipitation,	humidity,	and	wind	speed,	and	can	quickly	grow	to	hundreds	of	
gigabytes.	

Digital	environmental	maps	are	the	big	data	with	which	the	global	change	research	
community	has	the	most	experience	(30-40	years).	A	fundamental	difference	between	
digital	environmental	maps	and	species,	plot	or	trait	data	aggregated	from	multiple	sources	
(discussed	in	the	following	sections)	is	that	environmental	maps	are	usually	produced	‘top	
down’	from	a	uniform	data	source	and	modeling	procedure.		Remotely	sensed	imagery,	the	
raw	data	used	for	many	environmental	maps,	may	have	a	large	number	of	bands	(of	the	
electromagnetic	spectrum)	and	pixels,	but	each	observation	has	well	characterized	
properties.	All	spatial	data	are	subject	to	uncertainty	(Table	1),	but	characterizing	this	
uncertainty	may	be	more	feasible	for	remotely	sensed	data	than	it	is	for	aggregated	
datasets.	Indeed,	great	effort	has	been	put	into	validation	and	error	assessment	of	
geospatial	data	(Hunter	&	Goodchild,	1997;	Pontius,	2000;	Tian	et	al.,	2002),	which	also	
have	well-established	standards	for	metadata	(e.g.,	ISO	19115-2:2009)	and	data	exchange	
(http://www.opengeospatial.org/docs/is).	

The	challenge	to	ecologists	requiring	digital	environmental	maps	for	evaluating	
global	change	impacts	on	plant	communities	is	not	screening	individual	observations	but	
rather	determining	whether	the	maps	are	fit	for	purpose	in	terms	of	the	variable	
represented	(proximal	versus	distal	to	the	response	–	for	example,	interpolated	
temperature	versus	elevation),	spatial	resolution,	and	temporal	resolution.	Analyses	of	
vegetation	patterns	and	dynamics	are	sensitive	to	the	spatial	and	temporal	scale	of	the	
input	data	(Syphard	&	Franklin,	2004;	Franklin	et	al.,	2013;	Serra-Diaz	et	al.,	in	press).	
Selecting	the	many	types	of	geospatial	data	required	for	ecological	research	is	generally	
done	on	a	case-by-case	basis,	as	part	of	the	research	design	process.	Frameworks	(Phinn	et	
al.,	2003)	and	guidelines	(Kennedy	et	al.,	2009)	for	systematically	identifying	remotely	
sensed	and	other	geospatial	data	and	processing	methods	to	address	a	particular	problem	
can	improve	the	performance	of	environmental	models	(Bennett	et	al.,	2013).		

An	example	of	a	federated	database	designed	to	provide	a	single	access	point	to	
many	types	of	Earth	observational	data	is	DataOne	(see	also	Michener,	2015),	a	recently	
developed	“distributed	cyberinfrastructure”	(Appendix	S1	in	Supporting	Information	lists	
information	about	databases).	Data	are	submitted	to	DataOne	via	nodes	that	include	
existing	data	warehouses	such	as	the	US	Geological	Survey	(USGS)	and	Oak	Ridge	National	
Laboratory	Distributed	Archive	(ORNL	DAAC;	data	produced	by	NASA's	Terrestrial	Ecology	
Program).		We	have	found	that	environmental	data	can	be	challenging	to	discover	in	
DataOne,	and	in	some	cases	it	might	be	easier	for	analysts	to	go	directly	to	familiar	data	
providers	(USGS,	DAAC).			
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Species	Occurrence	Data	

Species	occurrence	data,	along	with	digital	environmental	maps,	are	required	for	species	
distribution	modeling	(SDM)	to	forecast	species	range	shifts	(Thuiller,	2004;	Franklin	et	al.,	
2013;	Serra-Diaz	et	al.,	2014)	under	global	change	scenarios.	Furthermore,	when	moving	
beyond	correlative	models	to	forecast	ecological	responses	to	global	change	(Franklin,	
2010b)	SDM	is	still	required	to	set	baseline	conditions	for	process-based	simulation	models	
of	plant	population	(Keith	et	al.,	2008)	and	community	dynamics	(Syphard	et	al.,	2007).	
Biodiversity	records	of	species	localities	and	ranges	are	digitized	and	georeferenced	by	
natural	history	museums	and	herbaria	(Graham	et	al.,	2004),	as	well	as	conservation	
organizations,	research	agencies,	and	citizen	science	projects,	and	aggregated	into	regional	
and	global	databases	(Guralnick	et	al.,	2007).	An	extensive	research	methodology	has	
developed,	initially	focused	on	specimen	collection	records,	to	address	widespread	
uncertainty	problems	of	locational	underspecification,	geocoding	errors,	and	taxonomic	
changes,	errors	or	ambiguity	(Table	1),	and	to	develop	data	standards	(Thessen	&	
Patterson,	2011).		

Specimen	locality	records	are	particularly	prone	to	errors	in	spatial	coordinates	
(Belbin	et	al.,	2013)	and	analyses	that	use	them	are	sensitive	to	these	errors	(Guisan	&	
Rahbek,	2011).	Tools	have	been	developed	for	georeferencing	(e.g.,	Guralnick	et	al.,	2006)	
and	error	screening	(Hijmans	et	al.,	2012).	Taxonomic	misidentification	and	changes	in	
nomenclature	as	well	as	changes	in	the	concepts	represented	by	species	names	(Franz	&	
Peet,	2009;	Wiser,	2016)	also	lead	to	data	uncertainty	for	ecologists	using	aggregated	
species	occurrence	data	(Graham	et	al.,	2004;	Boyle	et	al.,	2013).	The	Plant	List	
(http://www.theplantlist.org/)	and	Tropicos	(http://www.tropicos.org/)	are	key	sources	
of	taxonomic	information,	and	Taxonomic	Name	Resolution	Service	(TNRS;	
tnrs.iplantcollaborative.org/)	is	a	widely	used	web-based	tool	for	resolving	plant	names.	

In	the	biodiversity	informatics	community,	data	aggregators	are	assembling	and	
maintaining	these	archives,	focusing	on	interoperability,	workflows,	licensing,	engaging,	
discoverability,	and	exposing	biological	data.	In	response	to	a	critique	of	taxonomic	errors	
found	in	a	biodiversity	database	(Mesibov,	2013),	Belbin	et	al.	(2013)	asserted	that	
publishing	digital	data	reveals	inherent	problems;	nevertheless,	data	aggregators	would	
rather	flag	potential	errors	and	expose	the	flag	than	delete	data.	

There	are	several	sources	of	aggregated	species	occurrence	data	particularly	
relevant	to	plant	ecology.	The	Global	Biodiversity	Information	Facility	(GBIF;	Table	2,	
Appendix	S1)	is	the	largest	and	most	widely	known	source	of	species	records	(Costello	et	
al.,	2013).	GBIF	makes	globally	distributed	databases	of	biological	specimens	and	other	
species	observations	interoperable,	with	an	emphasis	on	a	comprehensive	catalog	of	
scientific	names	(Edwards	et	al.,	2000).	Information	systems	are	interoperable	when	they	
can	communicate	and	exchange	data.	Institutions	and	organizations	can	publish	their	
biodiversity	databases	through	GBIF	and	thereby	become	part	of	a	distributed	data	
network	(Guralnick	et	al.,	2007).	Participants	use	the	same	data	standards	(Wieczorek	et	
al.,	2012),	and	therefore	searches	yield	results	in	a	common	format.	The	development	of	
the	Darwin	Core	data	exchange	standards	(http://rs.tdwg.org/dwc/)	was	essential	for	the	
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large-scale	aggregation	and	exchange	of	specimen	data,	enabling	the	development	of	GBIF	
and	similar	initiatives.	

The	total	number	of	species	records	grew	from	about	550	to	640	million	just	
between	Jun	2015	and	Jan	2016.	At	recent	check	(29	Jan	2016),	there	are	almost	133	
million	observations	of	719	thousand	species	in	the	Kingdom	Plantae.	GBIF	includes	
growing	numbers	of	direct	observations	(for	plants	these	are	often	from	plots,	relevés	or	
checklists)	and	fossil	localities	(see	Table	2	for	example).	With	growing	heterogeneity	of	
data	sources,	screening	with	respect	to	source	is	increasingly	important	to	confirm	that	the	
observations	are	fit	for	purpose.	

Other	aggregators	of	plant	occurrences	include	regional	networks	from	which	
specimen	locality	data	can	be	downloaded	(see	examples	in	Appendix	S1).	These	consortia	
are	often	among	those	institutions	feeding	data	to	GBIF,	and	yet	we	have	found	that	
regional	networks	may	include	records	that	are	not	in	GBIF	(Fig.	1).	Regional	scale	analyses	
should	therefore	be	based	on	thorough	exploration	and	screening	of	all	available	sources	of	
species	data.	

Research-oriented	organizations	also	aggregate	and	provide	information	about	
species	distributions	limited	to	certain	taxonomic	groups,	ecosystems,	or	geographical	
regions	to	address	specific	research	questions.	For	example,	the	Botanical	Information	and	
Ecology	Network	(BIEN)	is	a	data	portal	for	information	about	species	occurrence	records,	
plant	traits,	and	phylogeny	for	all	plant	species	in	the	New	World	(Appendix	S1),	with	many	
specimen	observations	carefully	screened	from	GBIF	(http://bien.nceas.ucsb.edu)	and	
others	from	well	vetted	sources.	Discrete	BIEN	databases	(version	2	and	3)	were	
established	at	different	time	periods.	BIEN	data	have	been	used	to	evaluate	the	effect	of	
sampling	bias	on	analyzing	diversity	patterns	and	their	drivers	from	aggregated	species	
data	(Engemann	et	al.,	2015)	and	support	the	finding	that	lack	of	sampling	in	a	region	(Fig.	
1)	could	not	be	completely	overcome	by	bias	correction	methods.		

Some	conservation	organizations	and	consortia	provide	web-based	information	
about	species	distributions	(Appendix	S1).	For	example,	the	IUCN	Red	List	of	Threatened	
Species	documents	the	conservation	status	of	many	species,	and	Encyclopedia	of	Life	
(eol.org)	is	rich	in	information	about	taxa;	both	can	display	distribution	maps	for	some	
species,	which	are	drawn	from	GBIF	and	other	sources.	The	Group	on	Earth	Observations	
Biodiversity	Observation	Network	(GEO-BON)	is	a	“global	partnership	to	help	collect,	
manage,	analyze,	and	report	data	relating	to	the	status	of	the	world’s	biodiversity”	(Scholes	
et	al.,	2008).	GEO-BON	is	developing	Essential	Biodiversity	Variables	(EBV)	for	monitoring,	
including	species	distributions	and	community	composition	(Pereira	et	al.,	2013).	The	
members	of	GEO-BON,	governments	and	organizations,	are	establishing	a	Global	Earth	
Observing	System	of	Systems	(GEOSS),	whose	web-based	data	portal	(geoportal.org)	has	
links	to	GBIF	as	a	source	of	species	occurrence	records.	In	summary,	a	growing	number	of	
regional	and	global	biodiversity	research	and	monitoring	initiatives	link	to	GBIF	to	
populate	their	species	occurrence	data.	
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Plant	Community	Data	

Plant	community	plot	data	(relevés,	forest	inventory)	are	used	in	large	scale	assessments	of	
vegetation	dynamics	(reviewed	in	Franklin	et	al.,	2016;	Wiser,	2016)	because	they	often	
include	information	on	species	distribution	(presence	and	absence),	abundance	(cover,	
basal	area,	density)	and	vegetation	structure	(height	of	strata).			When	sampling	is	repeated	
(e.g.,	forest	inventory)	these	data	also	provide	information	about	establishment,	growth,	
survival	and	mortality.	This	structure	and	demographic	information	is	required	to	identify	
large-scale	trends	in	plant	communities,	including	the	effects	of	global	change	(Thomas	et	
al.,	2010;	Zhu	et	al.,	2014;	Serra-Diaz	et	al.,	2015),	and	to	establish	parameters	and	initial	
conditions	for	simulating	community	dynamics	under	global	change	scenarios	
(Schumacher	et	al.,	2006;	Scheller	et	al.,	2007;	Keane	et	al.,	2013).	Plot	databases	can	be	
rich	in	information	required	for	detecting	and	forecasting	global	change	effects	on	
vegetation,	and	so	we	discuss	this	data	type	in	some	detail.	

Plant	community	data	can	be	roughly	divided	into	two	types,	databases	collected	
using	standard	protocols,	often	by	a	single	institution,	versus	those	aggregated	from	
multiple	sources,	often	collected	using	non-standardized	protocols.	Examples	of	the	former	
are	forest	inventories	conducted	by	state	and	national	agencies	(Appendix	S1).	While	
historically	established	to	inventory	timber	resources,	forest	inventory	programs	offer	
repeated	monitoring,	often	on	a	decadal	cycle.	Plot	locations	are	typically	determined	with	
a	probability-designed	sample,	e.g.,	stratified	systematic,	and	so	these	data	do	not	suffer	
from	the	sampling	bias	common	in	opportunistic	and	aggregated	observations.	Plot	data	
provide	information	on	species	presence,	absence	and	co-occurrence.	However,	inventories	
are	usually	only	conducted	for	forest	vegetation,	and	data	for	non-tree	plant	species	may	be	
lacking.	Another	characteristic	of	these	long-term	inventory	databases	is	that	protocols	
tend	to	change	through	time.	At	each	resurvey	new	measurements	may	be	incorporated	
and	others	may	be	dropped,	and	users	must	be	cognizant	of	the	lineage	of	the	database	
they	are	using.		

Aggregating	plot	data	from	multiple	sources	raises	a	number	of	challenges,	
including	measurement	protocol	and	plot	size	differences	(Otypková	&	Chytry,	2006),	
taxonomic	name	resolution	(Cayuela	et	al.,	2012),	and	data	ownership	agreements	
(Zimmerman,	2008).	Furthermore,	plot	datasets	often	have	different	data	structures	and	
component	elements	with	different	names	and	different	meanings	to	these	names.	The	
need	for	a	data	exchange	standard	is	a	major	impediment	to	establishing	large	vegetation	
data	repositories.	Wiser	et	al.	(2011)	proposed	Veg-X	as	an	exchange	standard	for	plot-
based	plant	community	data	that,	if	adopted,	will	facilitate	truly	big	data	analysis	of	
vegetation	in	support	of	global	change	research.	

Aggregated	plot	data	can	be	described	in	three	categories	–	those	that	support	an	
administrative	purpose,	those	that	have	been	assembled	to	address	a	particular	research	
objective,	and	data	registries	that	contain	information	about	datasets.	An	example	of	the	
first	type	is	VegBank,	(Appendix	S1),	an	archive	of	plot	data	for	quantitative	classification	in	
support	of	the	US	National	Vegetation	Classification	System	(Franklin	et	al.,	2012).	The	
purpose	of	VegBank		“is	to	allow	plant	ecologists	to	submit	and	share	data[…]	which	will	
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provide	a	permanent	record	of	plots	which	define	communities.”	Because	these	data	are	
accessible	to	anyone,	they	can	yield	information	on	community	composition	and	vegetation	
structure	needed	for	global	change	research	on	plant	community	dynamics.	Individuals	can	
contribute	plot	data	but	this	requires	some	experience	with	database	informatics;	thus,	
most	contributors	have	been	agencies	with	a	mandate	to	archive	large	sets	of	publically	
funded	data.	The	European	Vegetation	Archive	(EVA,	Chytrý	et	al.,	2016)	is	a	centralized	
database	with	more	than	1	million	vegetation	plots	and	serves	a	similar	purpose	to	
VegBank,	to	support	quantitative	vegetation	classification.	EVA	data	can	be	requested	for	
other	research	objectives	(Appendix	S1)	and	therefore	is	an	important	source	of	plant	
community	data	for	global	change	studies.	

A	number	of	research	networks	host	vegetation	plot	data	focused	on	a	particular	
region	or	question	(Appendix	S1).	For	example,	there	are	several	with	overlapping	
objectives	and	complex	history	of	data	inheritance	in	the	western	hemisphere.	SALVIAS	
aggregates	local	vegetation	inventories,	mainly	for	the	New	World	tropics	(Enquist	&	Boyle,	
2012).	BIEN	2	has	aggregated	species	occurrence	information	from	more	than	300,000	
New	World	vegetation	plots	(the	vast	majority	from	FIA,	VegBank	and	SALVIAS);	however,	
abundance	data	are	not	yet	included	(but	are	planned	for	the	future).	SALVIAS	plots	are	
openly	available,	while	BIEN	will	become	publically	available	once	the	research	consortium	
has	addressed	its	research	objectives.	Also	in	the	western	hemisphere,	but	more	narrowly	
focused	on	Neotropical	seasonally	dry	forests,	DryFlor	(Appendix	S1)	is	a	research	and	
conservation	network	that	has	recently	released	an	open-access	database	assembled	from	
vegetation	plots	and	inventories,	with	taxonomic	ambiguities	resolved,	providing	
information	of	species	presence	and	absence	throughout	this	threatened	biome	(e.g.,	Fig.	
1).	

There	are	other	significant	efforts	to	assemble	vegetation	plot	data	to	address	large-
scale	research	questions.	sPlot	is	a	research	consortium	compiling	global	vegetation	plot	
data,	linked	to	the	plant	trait	database	TRY	(next	section)	in	support	of	a	global	analysis	of	
plant	traits	(Appendix	S1).	sPlot	data	can	only	be	used	by	members	of	the	consortium	to	
address	the	global-scale	research	questions	defined	by	the	group.	The	Center	for	Tropical	
Forest	Science–Forest	Global	Earth	Observatory	(CTFS-ForestGEO),	is	a	global	research	
network	of	large	(10-50	ha)	forest	plots,	where	all	trees	are	measured	every	5	years,	
starting	as	early	as	1981,	using	a	standard	protocol.	Network-wide	comparisons	address	
global	change	effects	on	plant	population	and	ecosystem	processes	(Anderson-Teixeira	et	
al.,	2015).		

As	an	alternative	to	an	aggregated	database,	the	Global	Index	of	Vegetation-Plot	
Databases	(GIVD)	(Dengler	et	al.,	2011)	is	a	data	registry	for	vegetation	plot	data.		Two	
hundred	and	thirty	seven	databases	are	registered	(Appendix	S1);	only	18	are	available	
online	(and	these	include	SALVIAS	and	FIA),	but	more	are	available	on	request	(accessed	
21	Feb	2016).	Registered	datasets	range	in	size	from	very	large,	including	the	Dutch	
National	Vegetation	Database	and	US	FIA	(each	more	than	a	half	a	million	plots),	to	very	
small,	for	example,	13	plots	from	Papua	New	Guinea.		It	is	not	possible	to	search	by	
vegetation	type	(for	example	‘dry	forest’).		
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Species	Traits	

Monitoring	and	modeling	plant	communities	under	global	change	requires	information	
about	plant	traits,	including	morphological	(e.g.	life	form),	physiological	(e.g.	shade	
tolerance)	and	demographic	(e.g.	survival	rates).	A	rapidly	expanding	area	of	plant	ecology	
relying	on	big	trait	data	is	functional	biogeography	(Violle	et	al.,	2014).	The	largest	and	
most	widely	used	trait	database	available	is	TRY	(Kattge	et	al.,	2011),	assembled	as	part	of	
an	international	effort	to	integrate	plant	trait	data,	including	anatomical,	morphological,	
biochemical,	physiological	and	phenological	characteristics	of	plants.	We	counted	1,103	
traits	and	103,829	species	as	of	1	Sep	2015	(Appendix	S1).	These	large	numbers	may	hide	
gaps	—	not	all	species	are	equally	sampled	in	trait	space	or	in	geographical	space.	Sandel	et	
al.	(2015)	reported	that	as	of	4	Jun	2014	“about	a	quarter	of	the	world’s	plant	species	are	
represented,	and	for	those,	the	trait	matrix	is	1.5%	filled.	A	well-studied	trait,	specific	leaf	
area	(SLA),	has	[information	for]	roughly	3.5%	of	global	plant	diversity.”	

	 It	may	not	be	coincidental	that	the	name	of	the	database	–	TRY,	“not	an	acronym,	
rather	an	expression	of	sentiment”	(Kattge	et	al.,	2011)	–	reflects	key	challenges	of	big	data	
in	plant	ecology.		Sparse	and	biased	data	are	typical;	beyond	big,	coverage	and	depth	are	
needed.	The	community	is	implementing	methods	to	resolve	biases	(Sandel	et	al.,	2015)	
and	improve	coverage	via	data	imputation	and	machine	learning	techniques	tailored	to	the	
characteristics	of	trait	databases,	such	as	trait	correlations	and	phylogenetic	signals	
(Schrodt	et	al.,	2015).		

Furthermore,	while	TRY	strives	to	assemble	information	on	plant	traits	in	support	
of	functional	ecology	and	biogeography,	demographic	parameters	are	not	included	among	
those	traits,	but	are	nonetheless	crucial	for	projecting	population	dynamics	under	global	
change	scenarios	(e.g.,	Regan	et	al.,	2012).		Although	complete	sets	of	demographic	data	for	
parameterizing	population	models	are	notoriously	difficult	to	find	for	many	plant	species,	a	
couple	of	databases	exist	that	provide	pre-constructed	matrix	population	models	or	
compile	data	useful	for	population	model	construction.	COMPADRE	version	3.0	(Salguero-
Gómez	et	al.,	2015)	is	an	open	repository	for	plant	demographic	data	collated	into	matrix	
population	models	(MPMs)	in	a	standardized	format	(Appendix	S1).	MPMs	are	the	most	
widely	used	population	model	structures	for	plant	species	as	they	can	accommodate	
distinct	growth	stages	and	complex	life	histories	(Crone	et	al.,	2011).	The	database	contains	
the	demographic	and	associated	data	available	(as	of	25	Sep	2015),	regularly	compiled	
from	the	literature	by	a	dedicated	digitization	team	following	strict,	documented	protocols	
to	ensure	consistency	and	standardization.	Individual	MPMs	are	included	for	each	season,	
year,	study	population	and	treatment.	Extensive	ancillary	data	are	organized	into	seven	
general	categories:	taxonomy,	plant	architecture,	source,	details	of	the	study,	geolocation,	
and	population	model.	Studies	span	six	continents,	the	bulk	of	them	from	North	America	
and	Europe,	with	the	vast	majority	focusing	on	herbaceous	perennials.	Limitations	of	the	
database	for	population	modeling	include	the	absence	of	information	regarding	density	
dependence	and	seed	dispersal,	plant	responses	to	disturbances	such	as	fire,	and	the	lack	of	
stochastic	models	(however	the	latter	could	be	derived	from	individual	matrices	if	multiple	
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years	are	included	in	the	database).	Hence,	supplemental	demographic	and	life	history	data	
from	the	literature	or	field	studies	are	necessary	in	many	cases	to	construct	useful	
population	models	that	can	project	impacts	of	global	change.	

	 The	Global	Population	Dynamics	Database	(GPDD,	NERC	Centre	for	Population	
Biology,	2010)	is	a	collection	of	population	time	series	data	for	more	than	5000	animal	and	
plant	species	(Appendix	S1);	ninety	percent	of	the	data	pertain	to	animals.	Population	data	
range	from	counts	of	population	abundance	to	estimates	of	density	or	temporal	coverage	
from	annual	to	weekly	to	relative	periods.	Data	are	compiled	from	journal	articles,	books,	
online	repositories,	and	unpublished	datasets.	The	GPDD	contains	only	time	series	that	
include	at	least	10	records,	usually	annual	population	counts	from	unmanipulated	studies.	
The	GPDD	scores	data	quality	through	a	qualitative	ranking	ranging	from	1	(low)	to	5	
(high).	As	with	COMPADRE,	consistency	of	data	entry	and	interpretation	is	achieved	via	a	
dedicated	data	entry	team.	Extensive	life	history	and	demographic	data	are	not	included,	
which	limits	this	database’s	utility	for	population	modeling;	however,	stage-based	time	
series	are	presented	for	some	species	from	which	demographic	parameters	for	structured	
population	models	could	be	calculated,	and	trends	of	populations	and	growth	rates	can	be	
derived	from	the	time	series	data.	Density	dependence	is	not	explicitly	included,	nor	is	
dispersal	or	response	to	disturbance.	Hence,	the	time	series	extracted	from	the	GPDD	
would	also	need	to	be	supplemented	with	published	or	field	data	to	construct	models	
representing	complex	life	histories.	For	these	reasons,	population	models	of	herbaceous	
perennial	plants	may	be	the	most	amenable	to	population	model	construction	with	the	
time	series	extracted	from	the	GPDD.		

	

CONTRIBUTING	BIG	PLANT	ECOLOGY	DATA	

In	addition	to	‘consuming’	big	data,	ecologists	are	also	increasingly	encouraged	or	required	
to	publish,	register	or	archive	original	data	used	in	scientific	publications	in	support	of	
reproducible	science	and	data	synthesis	(Thessen	&	Patterson,	2011;	Michener,	2015).	For	
individual	researchers	with	small	datasets,	however,	it	can	be	challenging	to	contribute	
data	to	aggregated	archives	because	of	the	time	involved	in	formatting	data	to	meet	
specified	standards	(although	this	challenge	has	been	overcome	by	COMPADRE,	DryFlor	
and	other	initiatives	that	dedicate	personnel	for	data	discovery	and	entry).	

Online	appendices	have	become	a	common	way	to	include	data	and	other	
supplemental	material	in	support	of	published	research,	but	they	are	not	subjected	to	the	
same	peer	review	or	editorial	scrutiny	as	the	paper	itself.	Nor	are	they	permanently	
archived	or	openly	available,	but	rather	are	subjected	to	the	journal	publishers’	access	
restrictions	(Costello	et	al.,	2013).	As	one	example	of	the	problems	that	can	arise	when	
supplemental	data	are	not	rigorously	evaluated,	a	global	database	of	physical	and	climate	
characteristics	of	~18,000	islands	was	published	as	supplementary	material	(Weigelt	et	al.,	
2013),	but	these	data	contained	numerous	errors	of	island	names,	rendering	them	
unusable	for	the	kinds	of	analyses	they	intended	to	support.	
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Alternatives	to	online	supplemental	material	are	repositories	like	Dryad	and	
Pangaea	(Appendix	S1)	that	accept	datasets	associated	with	particular	published	papers.	
Dryad	originated	from	the	efforts	of	journals	and	scholarly	societies	in	ecology	and	
evolutionary	biology	to	develop	common	policy	for	data	archiving.	The	dataset	is	assigned	
a	Digital	Object	Identifier	(DOI),	making	the	data	citable.	Dryad	has	a	modest	fee	for	
submitting	small	datasets	(Appendix	S1)	and	is	not	suitable	for	very	large	datasets.	
Pangaea	is	another	data	publisher	with	an	emphasis	on	Earth	science.	A	search	for	‘pollen	
assemblage,’	for	example,	yielded	5459	datasets	(accessed	1	Jul	2015).	While	Dryad	will	
publish	data	in	any	format,	Pangaea	converts	data	to	a	machine-independent	format.	Dryad	
and	Pangaea	are	easy	to	use	for	depositing	small	data	sets,	but	the	very	diverse	kinds	of	
data	deposited,	while	they	support	reproducible	science,	do	not	support	data	synthesis.	
They	do	not	integrate	disparate	datasets	of	a	similar	type	into	common	formats.	

Data	Basin	is	an	example	of	an	online	data	sharing	website	that	explicitly	archives	
spatial	datasets	in	addition	to	other	types	of	ecological	and	environmental	data	(Appendix	
S1).		Data	Basin	also	supports	a	web-based	mapping	and	collaboration	platform	with	
visualization,	mapping,	and	analysis	tools	to	support	networks	of	scientists.	All	uploaded	
data	require	standard	geographical	metadata	information,	and	the	website	rates	the	quality	
of	the	data	based	on	whether	they	were	peer-reviewed.			

Kervin	et	al.	(2013)	conducted	a	case	study	of	53	data	papers	published	in	
Ecological	Society	of	America’s	Ecological	Archives	from	2004-2012;	almost	three	quarters	
of	the	papers	lacked	sufficient	descriptions	of	data	collection	methods,	and	half	did	not	
describe	data	checking	and	screening	(quality	control	and	assurance)	procedures	in	detail.	
They	concluded	that	these	common	errors	make	it	difficult	for	data	re-users	to	discover	the	
data	or	judge	their	usefulness	for	analysis,	thereby	recommending	additional	archiving	of	
scientific	workflows	and	scripts	(R,	Python)	with	the	metadata	to	provide	a	record	of	data	
transformations.	We	anticipate	that	effective	data	publishing	and	sharing	will	become	
universal	in	plant	ecology	as	it	becomes	easier	to	do	(Tenopir	et	al.,	2011).	

Peters	et	al.	(2014)	propose	a	knowledge,	learning,	analysis	system	(KLAS)	for	
ecology	that	borrows	cyber-infrastructure	(CI)	concepts	from	other	fields	such	as	
genomics.	The	proposed	system	would,	in	a	Google-like	fashion,	learn	from	queries	to	the	
system,	and	become	smarter	over	time	at	suggesting	which	data	(from	federated	
databases)	and	analytical	tools	the	user	needs	to	answer	their	question.		They	too	
recommend	that	analytical	tools	and	derived	data	products	should	be	archived	by	
researchers	and	“discoverable”	to	future	researchers.	While	many	fields,	including	
bioinformatics,	economics,	and	geocomputation	are	clamoring	for	reproducible	science	
(Lazer	et	al.,	2014),	Peters	et	al.	emphasize	supporting	subsequent	research	and	
collaboration	over	reproducibility	(verification)	of	published	work,	and	did	not	address	the	
thorny	issues	of	attribution,	authorship	and	ownership.		

	

BIG	CHALLENGES	
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Environmental	maps	represent	diverse	and	complex	types	of	big	data	needed	to	detect	and	
predict	global	change	effects	on	plant	communities,	but	fortunately	this	data	type	is	also	
the	furthest	along	in	terms	of	standards,	metadata,	and	error	models.	Given	the	enormous	
volume	and	complexity	of	these	data,	a	systematic	framework	for	selecting	geospatial	data	
that	are	most	appropriate	for	global	change	studies	would	be	very	useful.		

Although	it	can	be	tempting	to	fully	exploit	the	millions	of	biodiversity	records	from	
federated	databases,	ignorance	of	their	limitations	can	lead	to	wrong	conclusions	about,	
e.g.,	patterns	of	species	diversity.	For	example,	range	maps	with	erroneous	records,	or	
diversity	maps	based	on	stacked	species	models,	overestimate	richness	(Dubuis	et	al.,	
2011).	Species	occurrence	data	are	particularly	prone	to	observation	error,	sampling	bias,	
and	underspecification	(Table	1,	Regan	et	al.,	2002).	Careful	data	screening	is	required	to	
select	data	that	are	fit	for	purpose	(e.g.,	Fig.	1,	Table	2)	and	appropriate	analytic	tools	for	
the	types	of	uncertainty	in	the	data.	Data	screening	and	cleaning	(or	scrubbing)	of	large	and	
heterogeneous	datasets	is	not	trivial	or	for	the	feint	of	heart.	

Vegetation	plot	data	are	prone	to	uncertainties	due	to	vague	concepts,	ambiguity	and	
measurement	error	(Table	1).		However,	vegetation	inventories	based	on	probability-
designed	samples	overcome	problems	of	spatial	bias,	and	repeated	measurements	may	
provide	demographic	data	in	addition	to	data	depicting	structure	and	composition.	
Inventories	are	typically	restricted	to	forest	vegetation.	Data	registries	or	aggregated	
databases	that	are	devoted	to	a	particular	data	type	help	scientists	narrow	down	and	
discover	the	data	they	need.	Wide	adoption	of	data	exchange	standards	for	vegetation	plot	
data	will	allow	community	data	to	be	more	comprehensively	aggregated	and	better	serve	
global	change	research	(Wiser,	2016).	

Issues	of	attribution,	authorship	and	ownership	of	contributed	data	are	still	being	
worked	out	by	the	ecological	research	community	(Michener,	2015).		Publishing	
biodiversity	data	would	rewards	data	contributors	and	could	improve	data	accuracy	and	
usefulness	(Costello	et	al.,	2013).	A	code	of	conduct	protecting	data	and	those	who	collect	it	
will	allow	long-term	ecological	research	to	thrive	in	a	new	era	of	public	data	archiving	
(Mills	et	al.,	2015).	Data	attribution,	along	with	continued	improvements	in	biodiversity	
informatics	infrastructure,	may	lead	to	more	enthusiastic	data	sharing	and	data-driven	
discovery	(Thessen	&	Patterson,	2011).	

We	encourage	skepticism	about	the	claim	that,	for	big	data	analyses	in	ecology,	the	size	
of	the	dataset	can	overcome	problems	in	individual	data	points	that	represent	noise.	If	
errors	are	not	random	but	rather	systematic,	the	data	are	biased,	undermining	the	
conclusions.	Strategies	are	being	developed	for	reducing	the	effect	of	bias	on	analyses	using	
aggregated	species	occurrence	(Phillips	et	al.,	2009;	Beck	et	al.,	2014)	and	vegetation	plot	
data	(Lengyel	et	al.,	2011;	Wiser	&	De	Cáceres,	2013).	Furthermore,	revealing	the	data,	in	
addition	to	supporting	reproducible	science,	allows	the	community	to	identify	and	correct	
errors.	

Research	in	plant	ecology	and	other	fields	is	still	often	carried	out	by	small	groups	of	
collaborators	using	original	data,	and	a	lot	of	insightful	research	gets	done	in	the	context	of	
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this	framework.	The	pressing	need	for	global	change	research	on	plant	community	
dynamics	necessitates	interactions	among	interdisciplinary	collaborators,	using	a	mixture	
of	original	and	mined	data	and	models.		Research	networks,	working	groups,	and	data	
aggregators	have	developed	to	address	this	need.	But	legacy	datasets	still	abound	in	plant	
ecology	and	have	not	yet	been	captured	to	their	full	potential	in	service	of	global	change	
science.	Research	networks	will	promote	solid	science	when	those	who	designed	the	
studies	and	collected	the	data,	and	are	therefore	familiar	with	nuances	of	the	data,	are	
involved	in	analyzing	them	and	interpreting	the	results	when	they	are	aggregated	into	
larger	datasets.	
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Table	1.	Types	of	uncertainty	affecting	ecological	data	and	models	(from	Elith	et	al.,	2002;	
Regan	et	al.,	2002).	

Type	of	Uncertainty	 Examples	 Potential	Solution	

Measurement	/	
observation	error	

Incorrect	species	
identifications;	Incorrect	
coordinates	of	species	or	
plot;	Unbiased	error	in	
population	counts,	
estimation	of	cover,	size,	
growth;	Inaccuracies	in	
digital	environmental	maps	

Repeated	measurements;	Data	
screening	and	scrubbing;	
Intervals;	Statistical	analysis;	
Develop	new	maps 

Bias/Systematic	error	 Roadless	areas	are	
undersampled;	Public	land	
oversampled;	Subjectively	
located	observations;	Sensor	
miscalibration	

Bias	correction;	Modeling	
methods	robust	to	bias;	
Minimizing	bias	in	sampling	
design	

Model	uncertainty	 Different	image	processing	
algorithms,	terrain	analyses,	
climate,	species	distribution,	
population,	or	community	
models,	yield	different	
results	with	same	inputs	

Ensemble	modeling;	Use	models	
best	suited	for	available	data;	
Model	validation;	Revision	of	
theory	based	on	observation	

Subjective	judgment	 Expert	opinion	of	
demographic	and	life	history	
parameters	in	a	population	
or	community	model	

Collect	more	data;	Use	more	
experts;	Degrees	of	belief;	
Subjective	probabilities	

Ambiguity	 Taxonomic	ambiguity;	
Canopy	cover	could	refer	to	
projected	foliar	cover	or	
projected	canopy	outline;	
Definitions	of	canopy	strata	
may	vary	

Standardize	meaning	of	terms	

Vague	concepts	 Seedling	versus	sapling;	
Habitat	suitability;	Forest	
types;	Ecotone;	Vegetation	
classification	

Sharp	delineation,	fuzzy	sets	
and	logic,	and	other	non-
classical	or	alternative	logics	
(see	Regan	et	al.,	2002	for	
details)	
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Type	of	Uncertainty	 Examples	 Potential	Solution	

Underspecification	 Digital	environmental	maps	
available	at	resolution	too	
coarse	to	capture	ecological	
processes;	Historical	species	
occurrences	reported	with	
large	positional	uncertainty	

Conduct	analysis	at	coarser	
spatial	scale;	Specify	all	
available	data	
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Table	2.	Example	of	sources	(“Basis	of	Record”)	of	plant	species	occurrence	records	in	a	

Global	Biodiversity	Information	Facility	(GBIF)	based	on	species	searches	for	five	tree	

species	in	the	family	Pinaceae	that	are	endemic	to	the	California	Floristic	Province.	While	

natural	history	collections	(PRESERVED_SPECIMEN)	make	up	the	majority,	a	growing	

number	of	human	observations	(including	citizen	science)	and	fossil	records	are	being	

incorporated.	LIVING_SPECIMEN	records	may	refer	to	individuals	in	botanical	gardens	or	

plantations	well	outside	the	species’	native	range.	For	these	species,	some	preserved	

specimen	records	(shown	in	parentheses)	were	actually	found	to	be	living	specimens	(or	

preserved	records	from	those	specimens)	cultivated	far	outside	the	native	ranges	

(determined	from	“countrycode”).	This	is	especially	apparent	for	the	widely	cultivated	and,	

in	some	places,	invasive	P.	radiata.	

Basis	of	Record	 Pinus	
coulteri	
D.	Don1	

Pinus	
sabiniana	
Douglas	ex	

D.	Don2	

Pinus	
balfouriana	
Balf.	3	

Pinus	
muricata	
D.	Don4	

Pinus	
radiata	
D.	Don5	

FOSSIL_SPECIMEN 16 21 17 28 9 

HUMAN_OBSERVATION 
+ OBSERVATION 

42 101 

 

5 11 6846 

LIVING_SPECIMEN 3 (9) 0 (16) 0 (1) 4 (2) 3 (320) 

PRESERVED_SPECIMEN 424 600  6 12 535 

UNKNOWN 24 20 367 645 47 

Total 509 742 395 86 6965 

	

1	GBIF.org (28th January 2016) GBIF Occurrence Download http://doi.org/10.15468/dl.iou7qq  

2 GBIF.org (28th January 2016) GBIF Occurrence Download http://doi.org/10.15468/dl.7s6cd2 

3 GBIF.org (28th January 2016) GBIF Occurrence Download http://doi.org/10.15468/dl.gwjevc 

4 GBIF.org (28th January 2016) GBIF Occurrence Download http://doi.org/10.15468/dl.skzrzg 

5 GBIF.org (28th January 2016) GBIF Occurrence Download http://doi.org/10.15468/dl.znqbsw 
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FIGURE	LEGEND	

	

Figure	1.	Search	of	occurrence	records	conducted	for	Bursera	simaruba	(L.)	Sarg.	
(Burseraceae),	a	widespread	tree	of	Neotropical	dry	forest;	752	records	from	BIEN	2	in	

gold,	primarily	from	Mexico	and	Central	America,	and	3042	records	from	GBIF	(both	

accessed	3	Jun	2015)	in	red	that	include	many	more	records	for	Florida,	The	Bahamas,	

Hispaniola,	Puerto	Rico,	and	Columbia;	123	records	from	DryFlor	(blue;	accessed	2	Feb	

2016)	fill	gaps	in	northern	South	America	and	the	Lesser	Antilles.	Note	that	2965	

occurrences	in	BIEN	3	(bien3.org)	now	include	many	records	for	Florida,	but	still	few	or	

none	in	the	Bahamas,	Greater	and	Lesser	Antilles,	and	northern	South	America	(accessed	

14	Apr	2016).	
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Table	S1.	Databases,	registries,	repositories	and	archives	containing	spatially	explicit	plant	species,	community,	trait	and	
environmental	information.	
	

Database Organization URL Geography Taxa, Entities Description  Availability Notes 
Environmental maps 
DataOne www.dataone.org  Global Many kinds of 

environmental 
data, including 
maps, imagery, 
plots 

Distributed 
cyberinfrastructure 
supporting open, persistent, 
robust, and secure access to 
easily discovered Earth 
observational data 

Anyone can 
search; 
access varies 
by dataset 

Contribute data only via 
nodes 

Data Basin http://databasin.org/ Global to local Environmental 
maps 

A mapping and analysis 
platform supporting 
environmental stewardship 

Open. Sign 
up for user 
account. 

Can download spatial data 
and maps 

Species Occurrence Data +/- Range Maps 
The Global Biodiversity 
Information Facility (GBIF) 
http://gbif.org 

Global Animals and 
plants; 
occurrences 

International open data 
infrastructure, funded by 
governments 

Open. Sign 
up for user 
account. 

Widely used federated 
database for species 
occurrence records 

California Consortium of 
Herbaria 
http://ucjeps.berkeley.edu/cons
ortium/  

California Plants; 
occurrences 

Gateway to California 
vascular plant specimens 
housed in participant 
herbaria 

Open. Sign 
up for user 
account. 

Specimen records 

 Southwest Environmental 
Information Network (SEINet) 
http://swbiodiversity.org/  

Southwestern 
USA 

Plants; 
occurrences 

Gateway to distributed data 
resources of interest to the 
environmental research 
community  

Open. Sign 
up for user 
account. 

Specimen records and other 
species observations 

South African National 
Biodiversity Institute SANBI 
http://www.sanbi.org/  

South Africa Plants and 
animals; 
occurrences, 
maps 

Coordinates research, and 
monitors and reports on the 
state of biodiversity in South 
Africa 

Open Species occurrences, 
checklists, species atlases, 
vegetation map 

Atlas of Living Australia 
https://www.ala.org.au/  

Australia Plants and 
animals; 
occurrences, 
maps 

Includes web mapping tools; 
for research, environmental 
monitoring, conservation 
planning, education, and 
biosecurity 

Open >55m records, >12,000 
users; includes photographs, 
sound recordings, molecular 
data, links to literature 
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Database Organization URL Geography Taxa, Entities Description  Availability Notes 
REMIB 
http://www.conabio.gob.mx/rem
ib_ingles/doctos/remib_ing.html  
 

Mexico Animals and 
plants 

One of the first aggregated 
specimen databases 

Open access 
once accept 
data use 
agreement  
 

Specimen records. Contains 
many small collections not in 
GBIF 

SpeciesLink 
http://splink.cria.org.br/ 

Brazil Animals and 
plants 

Integrate species and 
specimen data available in 
natural history museums, 
herbaria and culture 
collections, making it openly 
and freely available on the 
Internet 

Open access  
 

Specimen records. ~3.5 m 
georeferenced records, 
450,000 species (accessed 
14 April 2016) 

Botanical Information and 
Ecology Network (BIEN) 
http://bien.nceas.ucsb.edu  
http://bien3.org    

New World Plants; 
occurrences, 
plots, traits 

Research network for the 
integration, access, and 
discovery of botanical 
information for all plants in 
the New World 

Currently by 
permission; 
scheduled to 
open late 
2016 

Occurrences primarily from 
GBIF; Plot data include 
SALVIAS (including Gentry 
plots), CTFS (Panama only) 
and VegBank (public data 
only), plus several smaller 
datasets. Trait database 
partially overlapping with 
TRY. Synonymized taxonomy 

Vegetation Plots 
Forest Inventory and Analysis 
http://www.fia.fs.fed.us/  

USA Plots; repeated 
surveys 

Provides information needed 
to assess America's forests 

Open  Plot location accuracy 
degraded to protect privacy 

VegBank http://vegbank.org  USA plus 
other 
contributed 
data 

Plots The vegetation plot database 
of the Ecological Society of 
America’s Panel on 
Vegetation Classification 

Open About 75,000 plots (accessed 
14 Jul 2015) including from 
state natural heritage 
programs and some federal 
agencies 

LandCare National Vegetation 
Survey (NVS) Data Bank 
http://www.landcareresearch.co
.nz/resources/data/national-
vegetation-survey-nvs 

New Zealand  
 

Plots Exceptional due to high 
density coverage for most of 
New Zealand 

By request Plots collected using standard 
protocols therefore sampling 
methods and format�highly 
uniform 

SALVIAS http://salvias.net/  
Synthesis and Analysis of Local 
Vegetation Inventories Across 
Scales 

Primarily New 
World tropics 

Plots Web-based utility for 
compiling data on diverse 
aspects of plant organismal 
biology 

Open. Sign 
up for user 
account 

Database of vegetation 
inventories from around the 
world, with emphasis on the 
New World tropics, including 
Gentry plots 
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Database Organization URL Geography Taxa, Entities Description  Availability Notes 
Alwyn H. Gentry Forest 
Transect Dataset  
http://www.mobot.org/MOBOT/
Research/gentry/transect.shtml 

Global Plots Data from individual 
transects available to the 
research and conservation 
communities 

Open 226 plots collected by Alwyn 
H. Gentry (held by Missouri 
Botanical Garden) 

DryFlor  
http://elmer.rbge.org.uk/dryflor/  

New World P/A, derived 
from plots, 
inventories 

First comprehensive dataset 
of the flora of neotropical dry 
forests across their full range 

Open Neotropical dry forest floristic 
data for woody plants 
compiled in an open-access 
database 

European Vegetation Archive 
http://euroveg.org/eva-database  
[European vegetation archive, 2016] 

Europe Plots centralized database 
developed by the IAVS 
Working Group European 
Vegetation Survey 

By 
permission, 
depending on 
data 
provide(s) 

 

sPlot  
http://www.idiv-
biodiversity.de/en/sdiv/worksho
ps/workshops-2013/splot/splot-
database  

Global Plots Vegetation-plot database 
covering all biomes of the 
world; can only be used to 
address the sPlot Working 
Group’s research questions  

Members 
approved by 
Steering 
Committee 

Uses versioning system for 
releases of database to 
members 

Center for Tropical Forest 
Science – Forest Global Earth 
Observatory (CTFS-
ForestGEO) 
http://www.forestgeo.si.edu/  

Global Plots Repeated tree censuses in 
large forest plots, some since 
1981, 59 sites 

Members; 
other 
researchers 
can request 
data 

Tree demographic data; 
Common measurement 
protocols 

Global Index of Vegetation Plot 
Databases http://www.givd.info/  

Global Plot registry Metadatabase providing 
overview of vegetation data 
worldwide, allow researchers 
to retrieve data  

Members 237 databases with ~3.6m 
vegetation plots registered 

Traits 
TRY https://www.try-db.org/  Global Plants; traits a global archive of curated 

plant traits; > 5 million trait 
records for >1,100 traits of 
2.2 million individual plants; 
>100,000 species 

Largely open Accessible through a portal 
that can be queried; users 
can upload or e-mailing 
contributed data 

Botanical Information and 
Ecology Network (BIEN)  
http://bien3.org    

New World Plants; 
occurrences, 
plots, traits 

See above Currently by 
permission 

Trait database partially 
overlapping with TRY 

COMPADRE 
http://www.compadre-
db.org/Compadre/Home  

Global Plants; 
Demographic 
data that can 

A curated database of matrix 
population models describing 
population dynamics of a 

Open Does not include density 
dependence, dispersal, 
stochasticity or disturbance 
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Database Organization URL Geography Taxa, Entities Description  Availability Notes 
be structure 
into a matrix 
population 
model (MPM) 

given study x species x 
population x period x 
treatment combination. Mean 
MPMs also provided. 

response usually included in 
plant population models 

Global Population Dynamics 
Database (GPPD) 
https://www.imperial.ac.uk/cpb/
gpdd2/gpdd.aspx 

Global Animals, 
plants; 
Population 
counts for over 
5000 species, 
mostly animals 

Time series data for at least 
10 years 

Open. Sign 
up for user 
account. 

Does not include density 
dependence, dispersal, 
stochasticity or disturbance 
response usually included in 
plant population models 

Data Repositories  
Dryad Digital Repository  
http://datadryad.org/  

Global Any type of 
data 
associated with 
published 
paper 

A curated resource that 
makes the data underlying 
scientific publications 
discoverable, freely 
reusable, and citable 

Open. Sign 
up for user 
account. 

Does not impose file format 
restrictions; encourages 
ASCII or HTML; $80-90 to 
submit data <10 GB 

Pangaea www.pangaea.de Global Any type of 
earth or life 
science data 

Data publisher for earth and 
environmental science 

Open. User 
account for 
data under 
moratorium. 

Converts data to a uniform 
machine-independent format; 
donations accepted 

	
Plots = vegetation plots, typically consisting of records of species abundance within fixed areas. P/A indicates only species presence/absence 
are provided.  
GB = Gigabyte
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