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Abstract—In the future, the video-enabled camera will be the
most pervasive type of sensor in the Internet of Things. Such cam-
eras will enable continuous surveillance through heterogeneous
camera networks consisting of fixed camera systems as well as
cameras on mobile devices. The challenge in these networks is
to enable efficient video analytics: the ability to process videos
cheaply and quickly to enable searching for specific events or
sequences of events. In this paper, we discuss the design and
implementation of Kestrel, a video analytics system that tracks
the path of vehicles across a heterogeneous camera network. In
Kestrel, fixed camera feeds are processed on the cloud, and mobile
devices are invoked only to resolve ambiguities in vehicle tracks.
Kestrel’s mobile device pipeline detects objects using a deep
neural network, extracts attributes using cheap visual features,
and resolves path ambiguities by careful association of vehicle
visual descriptors, while using several optimizations to conserve
energy and reduce latency. Our evaluations show that Kestrel
can achieve precision and recall comparable to a fixed camera
network of the same size and topology, while reducing energy
usage on mobile devices by more than an order of magnitude.

Index Terms—Cyber-physical Systems, Video Analytics, Vehi-
cle Trajectory Inference, Heterogeneous Camera Network

I. INTRODUCTION

Video cameras will soon be, if they are not already, the

most pervasive type of sensor in the Internet of Things. They

are ubiquitous in public places, available on mobile devices

and drones, in cars as dashcams, and on security personnel as

bodycams. Such cameras are valuable because they provide

rich contextual information, but pose a challenge for the very

same reason: it requires significant manual effort to extract

meaningful semantic information from these videos. To address

this, recent research [20] has started exploring the design of

video analytics systems, which automatically process videos

in order to extract semantic information.
Heterogeneous Camera Networks: Future video analyt-

ics systems will need to operate on heterogeneous camera
networks. These networks consist of fixed camera surveillance

systems which can be engineered such that camera feeds can

be transmitted to a cloud-based processing system [20], but
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also more constrained camera devices (mobile cameras, dash

cams and body cams) that may be wirelessly connected, have

limited processing power, and, in some cases, may be battery

powered.

The advantage of heterogeneous camera networks is that they

can greatly increase accuracy and coverage. This is, by now,

well established even in the public sphere. After the success in

using mobile phone images and videos in the Boston marathon

bombing a few years ago [30], mobile devices are now in

widespread use in police and security work [39]. In particular,

cities like Chicago [11], and New York [34] have already

equipped police officers with body cameras, some of which

are wireless-enabled [44], and police cruisers [45] also have

dash cams for recording traffic stops.

The disadvantage of such networks is that they pose

significant challenges for video analytics. Processing videos

on the cloud is hard enough. Computer vision algorithms

follow a resource-accuracy tradeoff, where more resources can

enable higher accuracy, at higher cost (cloud resources can be
expensive), so finding the right combination of algorithms

to satisfy this tradeoff is an important systems challenge.

This becomes harder with heterogeneous devices, like mobile

cameras or body cams: because of bandwidth constraints, some

processing has to be done locally on the device, but energy

and CPU constraints limit this processing.

Video Analytics for Vehicle Tracking: As a first step

to understanding how to design video analytics systems in

heterogeneous camera networks, we take a specific problem:

to automatically detect a path taken by a vehicle through
a heterogeneous network of non-overlapping cameras. In

our problem setting, each mobile or fixed camera either

continuously or intermittently captures video, together with

associated metadata (camera location, orientation, resolution,

etc.). Conceptually, this creates a large corpus of videos over

which users may pose several kinds of queries either in near
real-time, or after the fact, the most general of which is: What

path did a given car, seen at a given camera, take through the

camera network?

Commercial surveillance systems do not support automated

multi-camera vehicle tracking, nor a heterogeneous camera

network. They either require a centralized collection of videos

[3], or perform object detection on an individual camera,

leaving it to a human operator to perform association of vehicles
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across cameras by manual inspection [1].

Contributions: This paper describes the design of Kestrel1

(§II), a video analytics system for vehicle tracking. Users of

Kestrel provide an image of a vehicle (captured, for example,

by the user inspecting video from a static camera), and the

system returns the sequence of cameras (i.e., the path through

the camera network) at which this vehicle was seen. This

system carefully selects, and appropriately adapts, the right
combination of vision algorithms to enable accurate end-to-
end tracking, even when individual components can have
less than perfect accuracy, while respecting mobile device
constraints. Kestrel addresses the challenge described above

using one key architectural idea (Figure 1). Its cloud pipeline
continuously processes videos streamed from fixed cameras to

extract vehicles and their attributes, and when a query is posed,

computes vehicle trajectories across these fixed cameras. Only
when there is ambiguity in these trajectories, Kestrel queries

one or more mobile devices (which runs a mobile pipeline
optimized for video processing on mobile devices). Thus,

mobile devices are invoked only when absolutely necessary,

significantly reducing resource consumption on mobile devices.

Kestrel uses novel techniques for fast execution of deep

(those with 20 or more layers) Convolutional Neural Networks

(CNNs) on mobile device embedded GPUs (§II-A). These deep

CNNs are more accurate, but mobile GPUs cannot execute these

deep CNNs because of insufficient memory. By quantifying

the memory consumption of each layer, we have designed

a novel approach that offloads the bottleneck layers to the

mobile device’s CPU and pipelines frame processing without

impacting the accuracy. Kestrel leverages these optimizations

as an essential building block to run a deep CNN (YOLO [21])

on mobile GPUs for detecting objects and drawing bounding

boxes around them on a frame.

Kestrel employs an accurate and efficient object tracker for

objects within a single video (§II-B), enabling an order of

magnitude more efficiency than per-frame object detection.

This tracker runs on the mobile device, and we use it to extract

object attributes, like the direction of motion as well as object

features for matching. Existing general purpose trackers (§IV)

are computationally expensive, or can only track single objects.

Kestrel only periodically detects objects (thereby reducing the

energy cost of object detection), say every k video frames, so

that the tracking algorithm has to only be accurate in between

frames at which detection is applied.

Kestrel uses novel sensor fusion to achieve accurate vehicle

association (§II-C). Given an object in a camera’s video,

association can determine which object in a second camera

best matches the given object. Association is performed both

on the cloud and in mobile devices, and uses three ways to

winnow candidate matching objects: the travel time between

cameras, the direction of motion of the object exiting the first

camera and entering the second, and the color distribution of

the vehicle. Association is used by a path inference algorithm

that uses a dynamic programming approach to find the most

1Kestrel video demo: ‘https://youtu.be/vSO7mYUpEhs’
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Fig. 1—Kestrel System Architecture

likely paths through the camera network that a vehicle may

have traversed.

The evaluation (§III) of Kestrel uses a dataset of videos

collected from a heterogeneous camera network. Specifically,

our dataset consists of a total of 4 hours of video footage

collected on a university campus comprising of 11 static and 6

mobile cameras. In this dataset, we have manually annotated a

ground truth dataset of ~120 cars. Kestrel is able to achieve over

90% precision and recall for the path inference problem across

multiple hops in the camera network, with minimal degradation

as the number of hops increases, even though, with each hop,

the number of potential candidates increases exponentially. Its

overall performance on a heterogeneous network is comparable

to an identical fixed camera network: the use of mobile devices

only minimally impacts performance, while reducing energy

usage by an order of magnitude. Finally, the association has

nearly 97% precision and recall with each winnowing approach

contributing to the association performance.

II. KESTREL DESIGN

Figure 1 shows the system architecture of Kestrel, which

consists of a mobile device pipeline and a cloud pipeline. Videos

from fixed cameras are streamed and stored on a cloud. Mobile

devices store videos locally and only send metadata to the
cloud specifying when and where the video is taken. Given a

vehicle to track through the camera network, the cloud detects

cars in each frame (object detection), determines the direction

of motion of each car (tracking) in each single camera view and

extracts visual descriptors for each car (attribute extraction).

Then, across nearby cameras, it tries to match cars (cross-
camera association), and uses these to infer the path the car

took (path inference) only on videos from the fixed cameras.

Only when the cloud determines that it has low confidence in

the result, it uses metadata from the mobile devices to query

relevant mobile devices to increase tracking accuracy. Once

the mobile device receives the query, it performs roughly the

same steps, but only in a small segment of the captured video

(and some of these steps are optimized to save energy). More

specifically, the cloud sends to the mobile device its inferred

candidate paths, and the mobile pipeline re-ranks these paths.

The outcome is increased confidence in the estimated path.

In the following sections, we describe Kestrel’s components:

some components run on the cloud alone, others run on both

the cloud and the mobile device.
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A. Object Detection: Deep CNNs
Kestrel uses GPUs on mobile devices to run Convolutional

Neural Networks (CNNs) for vehicle detection. Many mobile

devices incorporate GPUs (like nVidia’s TK1 and TX1 or

Qualcomm’s Adreno), including mobile phones such as Lenovo

Phab 2 Pro [25] and Asus ZenFone AR [2], as well as tablets

like the Pixel C [16], the Google’s Tango [15].

Unfortunately, the memory requirements of deep CNNs are

outpacing the growth in mobile GPU memory. The trend today

is towards deeper CNNs (e.g., ResNet has 152 layers), with

increasing memory footprint. Kestrel carefully optimizes CNN

memory footprint to enable state-of-the-art object detection on

mobile GPUs.
YOLO: Kestrel uses YOLO [21], a deep CNN for

performing object detection. As shown in Figure 2, YOLO

not only classifies the object but also draws a bounding box

around it. YOLO is structured as a 27 layer CNN, with 24

convolutional layers, followed by 2 fully-connected (FC) layers

and a detection layer. The convolutional layers extract the

features that best suits the vision task, while the FC layers

use these features to predict the output probabilities and the

bounding box coordinates.

Running YOLO on mobile GPUs requires more memory

than is available on these devices. For example, YOLO requires

2.8GB memory on TK1 (which has only 2GB). A normal GPU

programming workflow involves loading the data to be operated

upon (in our case the trained CNN weights) first in CPU RAM,

then copying them to GPU memory and starting the kernel

operation. If we had enough resources to hold the weights

in memory, then multiple video frames can be dispatched

for processing in sequence and the computation is very fast.

However, when we ran YOLO on the TK1 using the workflow

described above, it failed to execute due to insufficient memory

resources. This motivated us to explore several methods to

manage the memory constraint on mobile GPUs, based on the

observation that almost 80% of the memory allocated to the

network parameters is taken by the first fully-connected (FC)

layer [23] of the neural network.
The CPU offload Optimization: Prior work has consid-

ered offloading computation to overcome processor limitations

[8, 18]. We explore offloading only the FC layer computation to

the CPU, because, since the CPU supports virtual memory it can

more effectively manage memory over-subscription required

for the FC layer. With CPU offloading, we observe that when

the CPU is running the FC layer on the first video frame,

the GPU cores are idle. So we adopt a pipelining strategy to

start running the second video frame on the GPU cores rather

than letting them idle. To achieve this kind of pipelining, we

run the FC layers on the CPU on a separate thread, as GPU

computation is managed by the main thread.
Other memory optimizations: In our evaluation (§III-E),

we compare offloading with pipelining with other memory

optimizations that have been proposed in the literature. We

explore reducing the size of the FC layer ([12, 40] has explored

similar techniques in different settings), which can potentially

reduce detection accuracy. To reduce the size of the FC layer,

we reduce the number of filters and the number of outputs in

the network configuration and re-train. To reduce the memory

footprint of the FC layer, we can also split the computation
in some layers [29]. Specifically, in the FC layer, the input

vector of previous layer is multiplied by the weight matrix to

obtain the output vector. Splitting this matrix multiplication and

reading the weight matrix in parts allows us to reuse memory.

However, re-using memory and overwriting the used chunks

incurs additional file access overheads.

B. Attribute Extraction

After detecting objects, Kestrel extracts two attributes of

the object from a video, including its (i) direction of motion,

and (ii) a low-complexity visual descriptor. These attributes are

used to associate objects across cameras (§II-C). To estimate

the direction of motion, it is important to track the object

across successive video frames.

Light-weight Multi-Object Tracking: To be able to track

objects2 in a video captured at a single camera, Kestrel needs to

take objects detected in successive frames and associate them

across multiple frames of the video. Our tracking algorithm

has two functions: (i) it can reduce the number of times YOLO

is invoked, which in turn reduces the latency and conserves

energy, and (ii) it can be used to estimate direction of motion.

The state-of-the-art object tracking techniques [48, 13] take

as input the pre-computed bounding box of the object, then

extract sophisticated features like SIFT [9], SURF [17], etc.
from the bounding box, and then iteratively infer the position of

these key-points in subsequent frames using feature matching

algorithms like RANSAC [28].

However, designing the most robust tracker for a single object

is different from effectively tracking all the objects that appear

within a given time window in a video. In dynamic mobile

camera scenarios, objects (especially fast moving vehicles) can

enter and exit the scene frequently. This means that Kestrel

needs to run expensive object detection algorithms like YOLO

frequently in order not to miss out on tracking new objects. To

avoid this, Kestrel uses two optimizations. First, it performs

optical flow 3 based scene change detection and whenever a

scene change is detected, it runs YOLO to detect new objects.

Second, to avoid running YOLO on every subsequent frame, we

run YOLO every k frames (for small k) and stitch the detected

objects together using a tracker that tracks light-weight features

(Good Features To Track [22]). In §III, we compare our tracker

against other state-of-the-art trackers to quantify the latency

vs. accuracy tradeoffs between the two approaches.

Specifically, given a video stream, Kestrel’s tracker detects

keypoints of each frame and uses a keypoint tracker, Kanade-

Lucas-Tomasi (KLT [5]), to track keypoints across frames. For

every k frames (called YOLO frames), Kestrel runs YOLO

to detect the objects of interest in the frame. Each detected

2While our paper is about tracking vehicles, many of the components we
use are generic and can be used to detect and track objects in general (e.g.,
people). Where a component is specific to vehicles, we will indicate as such.

3An optical flow in a video is the pattern of motion of points, edges, surfaces,
objects in the scene.
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Fig. 2—Object Detection
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object is stored in Kestrel with a series of attributes: object

ID (OID), the bounding box coordinates, the coordinates and

features description of the keypoints in the bounding box,

etc. (Kestrel computes other attributes during this process, as

discussed below). It tries to associate each detected object with

its previous appearance in the last YOLO frame by tracking the

object over k frames. In the new YOLO frame, Kestrel finds

the match by comparing the keypoints of tracked objects with

those in the bounding box of the newly detected one. The new

objects that are successfully associated with a tracked object

will inherit the existing object ID, otherwise a new unique ID is

assigned. Also, for each matching existing box, Kestrel resets

the tracking attributes, i.e., the box coordinates are updated with

the new box coordinates, the feature keypoints are updated with

those from the YOLO frame inside the new box. Between two

YOLO frames, Kestrel tracks the object by updating the box

attributes frame by frame. Specifically, it calculates the average

displacement of all the keypoints associated with one object,

and updates the box coordinates accordingly. By integrating the

optimized YOLO with KLT, we have built a fast and effective

mobile video processing toolkit that achieves real-time robust

object detection, localization and tracking on mobile devices.

Figure 3 shows Kestrel tracking 2 vehicles.

Object State Extraction: An object seen in a single

camera can go through different states: it can enter the scene,

leave the scene, move or be stationary. Determining these states

is important to filter out uninteresting objects like permanently

parked cars, etc. Kestrel differentiates moving objects from

stationary ones by detecting the difference of the optical flow

in the bounding boxes and in the background. For moving

objects, the state of the object changes from entering, moving,

to exit, as it moves through the camera scene. A moving object

can become stationary in the scene, a stationary object can also

start moving at any time. For example, a car may come to a

stop sign or a traffic light at an intersection, or park temporarily

for loading passengers. If the object is detected as exited from

the scene, then the object can be evicted. Kestrel uses fast
eviction: after an object exits the scene, all the feature points

and information for tracking are evicted from memory. This, not

only helps save memory, but also improves accuracy because

evicting the keypoints from previous objects can reduce the

search space for matching candidates (§II-C).

Extracting the Direction of Motion: Kestrel estimates

the direction of motion of a vehicle to on a mobile device

to eliminate ambiguity. Suppose a vehicle is moving towards

camera A as shown in Figure 5, but one of the cloud-supplied

E (0)W(180)

N(+90)

S(-90)

( )

A

B

Fig. 5—Extracting the Direction of Motion and Coordinate Transformation

paths shows that it went through a different camera, say B

located away from the vehicle’s direction of motion. Since it

could not possibly have gone through B, the mobile pipeline

can lower that path’s rank (§II-D). Extracting the direction

poses two challenges: how to deal with the movement of the
mobile device, and how to transform the direction of motion
to a global coordinate frame.

Kestrel addresses the first challenge by compensating for
camera movement. In general, to extract the direction of motion

in the frame coordinates, we can use the difference between

the bounding box positions from consecutive frames. In our

experience, however, using the optical flow in the bounding

box gives us more fine-grained direction estimation that is

robust to the errors in YOLO’s bounding boxes. To compensate

for camera movement, we subtract the optical flow of the

background from the optical flow of the object bounding box.

The result is the direction of the object (Figure 4).

Kestrel needs to transform the direction of motion to a global

coordinate frame in order to reason about, and re-rank, other

vehicle paths provided by the cloud. For an arbitrary camera

orientation, the exact moving direction in global coordinates

can be calculated using a homography transformation [49].

However, in most practical scenarios, cameras have a small

pitch and roll (i.e., no tilt towards ground or sky and no rotation,

videos are often recorded in either portrait or landscape)

especially across a small number of frames. So, we only use the

azimuth of the camera, and infer only the horizontal direction

of moving objects (Figure 5). As per the Android convention

(that we use to obtain our dataset), right (east) is 0◦ and

counterclockwise is positive in camera (global) coordinates.

The transformation is simply θg = γ+(θc −90◦) where θc (θg)

is the direction of motion in the camera (global) coordinates,

and γ is the azimuth of the camera orientation.

To obtain the azimuth for mobile cameras we use the

orientation sensor on off-the-shelf mobile devices. We have

a custom Android application that records meta-data of the

video (GPS, orientation sensor, accelerometer data, etc.) along

with the video. However, to use this information directly is not
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feasible as we cannot align the orientation sensor readings to a

particular frame of the video. The timestamp of the video being

taken on a mobile device may or may not be available. To find

the correct time alignment between frames and mobile sensors,

Kestrel takes the first few seconds optical flow pattern as a

sliding window, and calculates its correlation with orientation

sensors, as it slides through the beginning sequence of the

sensor readings. By selecting the correlation peak, Kestrel can

find the time shift and calibrate the timestamp of each video

frame. Figure 6 demonstrates this for an experiment in which

the camera is horizontally panned towards the left, and then

towards the right.

Extracting Object Descriptors: Kestrel’s pipeline requires

a method to re-identify cars seen in cloud-provided vehicle

paths with vehicles detected by its object detector. For this,

Kestrel extracts descriptors of objects. A good descriptor has

the property that is low-complexity (can be computed easily

and requires minimal network bandwidth to transmit), yet can

effectively distinguish different objects. The simplest descriptor,

a thumbnail image, can distinguish objects but can consume

significant bandwidth (§III).

Kestrel extracts visual features for use as descriptors. Visual

features fall into two groups, local descriptive keypoints (SIFT,

SURF, etc.), and global features (color histogram (CH), color

layout descriptor (CLD), etc.). In multi-camera scenarios, local

features do not work well since objects can be captured in

different angles with varying degrees of occlusion, illumination,

etc. Using SURF features and RANSAC [28] for keypoint

matching (Figure 7) demonstrates how slightly different views

can lead to mismatches: the four matching keypoints (connected

by green lines) are all false positives. In §III, we quantify the

performance tradeoffs of these approaches.

For these reasons, Kestrel extracts the color histogram.

Before doing so, it preprocesses the bounding box to exclude

background pixels. GrabCut [6] efficiently removes the back-

ground in a bounding box, leaving only the pixels of the object

of interest. As we see in Figure 8 (left), with so many gray

background pixels the color histogram can look very different

from the color histogram of the car seen in Figure 8 (right)

after removing the background pixels. Background removal

helps other visual features as well, since keypoints from the

background can confound matching during association.

The choice of color histogram does have drawbacks: vehicles

with similar colors can have high correlation scores. Figure 9

illustrates, in our dataset, both an easy case, where Kestrel

searches for a red sedan among other vehicles of different

colors, and one of the most challenging cases, where three

white SUVs have very similar color layout that would require

careful human inspection. But Kestrel does not rely on color
alone: it uses other filters (direction, travel time estimation)

to further narrow the search space and achieve high object

association accuracy. Indeed, in our experiments, Kestrel was

able to correctly distinguish between the three SUVs.

C. Pair-Wise Instance Association
An instance corresponds to a specific object captured at a

specific camera, together with the associated attributes (§II-B).

Instance association determines if object instances at two

cameras represent the same object or not. A camera network

can be modeled as an arbitrary topology shown in Figure 10.

Assume that each intersection has a camera (Cam c), and

each camera extracts several instances. We define the nth

object instance of Cam c as oc,n. Kestrel infers the association

between any pair of object instances (ox,i, oy,j), using three

key techniques: visual features, travel time estimation and the

direction of motion.

Preprocessing: Before associating instances, Kestrel pre-

processes each instance to narrow the search space. Since

YOLO can detect several types of objects, the preprocessing

stage filters all object types other than vehicles. Also, it filters

all stationary objects, such as parked cars on the side of the

streets. Even so, there could still be hundreds of instances to

search from multiple neighboring cameras. Kestrel estimates

the travel time ET (x, y) between a pair of camera x, y, and

sets a much smaller but coarse time window (which is refined

in the next step) to limit the number of candidate instances at

this preprocessing stage.

Spatio-temporal Association: To associate between two

object instances (ox,i, oy,i), Kestrel uses the timestamp of the

object’s first scene entry TI and its last appearance exiting

the scene TO. Kestrel calculates the total travel time from

Cam x to Cam y as ΔT (ox,i, oy,j) = TIy,j − TOx,i, and

compares this to the estimated time ET (x, y) needed to travel

from Cam x to Cam y. Taking the exit timestamp from the

first camera and the entry timestamp in the second camera

filters out any variance due to a temporary stop (e.g., at a stop

sign) while in the camera view.

One way to estimate travel time between two cameras is

to use the Google Directions API [14]. For dense camera

deployments typical of campuses, travel times between cameras

are small (~30 secs) and can be inflated by noise. To avoid this,
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we estimate the travel time between each pair of cameras using

a small annotated ground truth dataset. Further, since cars have

different travel speeds and may stop in between, there is some

variance in the travel time between cameras. We also estimate

this variance from our training dataset. To filter out unlikely

associations (e.g., a car cannot appear at two cameras that

are one block away from each other within 1 sec), we apply

temporal constraints derived from the dataset: specifically, if

the estimated travel time is x, over 95% of the vehicles take a

travel time of x ± 0.6x.
Visual Similarity: The visual similarity of object instances

is also used in object association. Given two color histograms

H1, H2 from two instances, Kestrel measures their similarity

using a correlation offset, which is 1 minus the correlation

between the two histograms. The lower the offset is, the more

likely the two instances are the same. We find that this metric

can discriminate well between similar and dissimilar objects.

From a sample of 150 images (figure omitted for space reasons),

we find that over 95% of identical objects have an offset of less

than 0.4, while over 90% of different objects have an offset

larger than 0.4. In a more general setting, this threshold can

be learned from data.
Direction Filter: We also use the direction of motion

(§II-B) to prune the search space for association. For example,

in Figure 10, assume that the moving direction of instance o1,1
from Cam 1 is from east to west, then Kestrel ignores Cam
4, and searches over all object instances of Cam 2 within

the temporal window around the expected travel time between

Cam 1 and Cam 2, and considers only those instances exiting

Cam 2 towards Cam 1.
Instance Association in the Mobile Pipeline: The mobile

pipeline also contains some elements of instance association

necessary for re-ranking paths. Specifically, the mobile pipeline

must eliminate stationary objects, but does not need spatio-

temporal filtering and temporal filtering in the preprocessing

stage (because Kestrel selects the mobile device at the relevant

location, and supplies the device a time window over which to

search for associations). The mobile pipeline computes visual

similarity and applies the direction filter.

D. Path Inference
Using its object detection, attributes and association compo-

nents, Kestrel can infer, in the cloud, the path of a target object

through a multi-camera network. Our pair-wise association

simplifies the object instance network and retains only the valid

paths i.e., filters out objects moving in incorrect directions,

those outside the temporal window and those whose visual cor-

relation is too low. In this pruned network, the weight w(ox, oy)
of a link l(ox, oy) is defined as the color histogram correlation

offset (lower the offset, better is the correlation). A path from

a source instance os to destination od in an instance network

is defined as an instance path p(os, od) = os, o1, o2, ..., od .

A physical route in the real world, termed a camera path, is

defined by the sequence of cameras traversed by a vehicle:

multiple instance paths can traverse the same camera path.

Consider one object of interest ox,i, captured by either a

mobile user or a camera operator from Cam x. Kestrel seeks

to infer the instance path it takes and answers this query in

near-real time, generating the path and instances at each camera

as a feedback to the user.

One straightforward approach is to assign the correlation

offset as a weight to the links in the pruned instance network,

and use maximum likelihood estimation (MLE) to find the

minimum weighted path from any given instance. However,

this approach fails to capture the correlation between non-

neighboring instances, as it only relies on the link weight.

Instead, Kestrel takes a hop-by-hop iterative approximation

approach to find the best matching last hop instance each

time. At every hop with multiple candidate paths joining at

one instance, Kestrel evaluates the weight of each path from

the candidate set and uses the Viterbi decoding algorithm [4]

to eliminate paths with heavy weight to keep the algorithm

at polynomial complexity. Given an instance in the instance

network (Figure 10), we define a valid neighbor as an instance

that has a direct link and passes all the filters defined in §II-C.

Every time a new instance is added to a path, the path weight

is multiplied by an amount equal to the average correlation

offset of this instance from every other instance in the path.

The worst case complexity is O(kn2), assuming every camera

is right next to each other, and every instance has a valid link

to any instances. In practice, each camera has an average of

2.2 neighbors, and vehicles usually traverse each node in the

network only once except for looping scenarios.

Re-ranking Paths in the Mobile Pipeline: The output

of path inference can be ambiguous, where multiple instance

paths have high path weights. In this case, the cloud pipeline

attempts to find (from previously uploaded metadata) a set

of mobile devices which might have videos that could help

resolve this ambiguity. The cloud pipeline sends to the mobile

device its set of ranked instance paths. Given this set, the

mobile camera does pair-wise association with the instances
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Fig. 12—Example Ground Truth Instance Paths Across The Heterogeneous Camera Network

from both the last hop and the next hop static cameras of

each instance paths. If the locally extracted instance matches

the path’s direction, a new instance path is generated whose

instance path weight is augmented with a pair-wise association
score. Note that a single instance path could generate multiple

new instance paths with different intermediate mobile instances

and path weights. The mobile pipeline can re-rank the paths

and transmit these to the cloud. For each new mobile instance,

it only needs to transmit the color histogram and the instance’s

direction of motion in case the cloud needs to query another

mobile device.

III. EVALUATION

In this section, we evaluate the end-to-end performance of

Kestrel, and the performance and overhead of each submodule.

A. Methodology

Dataset: We collected a video dataset from 17 distributed

non-overlapping cameras (6 mobile cameras and 11 surveil-

lance cameras) on our campus, deployed in a whole block

of a residential area (Figure 11) adjacent to the campus. The

surveillance cameras (in yellow in the figure) are commercial

Axis Q-6035 and Q-6045 cameras, with a resolution of 1280×
720 at 10 frames per second, and mounted on light poles. The

mobile cameras (in pink in the figure) are from off-the-shelf

smartphones held by human users at street level, and these

capture 1920 × 1080 video at 30fps using a customized app

which also captures inertial sensor readings from the phone.

Users collect video by sweeping the visible area for interesting

events: thus, unlike fixed cameras, the orientation (yaw and

pitch) of the cameras are continuously changing.

Ground Truth: To evaluate the association, we manually
annotate a ground truth list of instances that match across

cameras (Figure 12). Specifically, each instance is labeled with

a camera ID and an object ID, i.e., the first car that appears in

camera 20 would be labeled as 20(1). We visually track each

vehicle from camera to camera, and label their corresponding

instances in each camera with the same global ID. For example,

if a vehicle travels through cameras 101, 20, 106, 19, appearing

as the 8th, 12th, 15th, 4th object of each camera respectively,

will form an instance path {101(8), 20(12), 106(15), 19(4)},

and can be assigned a global ID 2. We also evaluate Kestrel’s

accuracy in detecting the camera path, the sequence of camera

traversed by the car, and represented by the corresponding set

of camera IDs.

From the dataset of 17 cameras, we have annotated, over a

total of 235 minutes of footage, 120 global objects / vehicles.

In most cases, a vehicle going through the camera network can

be seen at three to four cameras. To form as many valid ground

truth paths as possible, we issue a query with each instance of

the path, except the last instance before it disappears from the

camera network. Kestrel runs those queries to infer backwards

as many hops as possible. For example, if one car goes through

3 cameras, a, b, c, Kestrel can infer from the instance at c to

get b and a, or infer from b to get a. That gives both a two-hop

path and a one-hop path for the evaluation. Collectively, we

are able to establish 311 one-hop paths, 197 two-hop paths,

125 three-hop paths, 55 four-hop paths, and 23 five-hop paths.

There are a small number of longer paths, which we ignore

because their number is too small to draw valid conclusions.

Metrics: The primary performance metric for Kestrel is

accuracy. We use recall and precision to evaluate the accuracy

of Kestrel’s association and path inference. Among all the given

paths, recall ( T P
T P +F N ) measures the fraction of the paths for

which Kestrel can make a successful inference, where TP
is the number of true positives and FN the number of false

negatives. Given one instance of an object, precision ( T P
T P +F P )

measures how often Kestrel correctly identifies all the instances

on the path within its top k choices, where FP measures the

number of false positives. Ideally, Kestrel should exhibit high

recall and precision for as small a k as possible.

We explore two aspects of Kestrel’s accuracy. Its camera
path accuracy measures how accurately Kestrel can identify

the sequence of cameras traversed by a vehicle. We measure

this by majority voting across the top five instance paths. We

also measure the accuracy of determining the instance path:

such a path identifies the correct instances at each camera

matching the queried vehicle. For this, we present the top-

k accuracy: how often its top k choices contain the ground

truth path. Specifically, if the annotated ground truth is among

those top k choices, Kestrel is said to generate a true positive

(TP ), otherwise a false positive (FP ). Meanwhile, all the

other unselected choices are considered as negatives (N ). The

negatives are true (TN ) when they belong to different objects,

otherwise false negatives (FN ).

We evaluate several other metrics as well. We measure

mobile pipeline energy consumption in Joules per frame, by

using a current clamp attached to the positive wire of the

TK1’s power supply. By inducing a magnetic field on the

conductor and making use of a Hall effect sensor, we can

compute the current passing through. We use a DataQ DI-149

Data Acquisition Kit [7] that samples at 80 Hz and allows us

to save the readings in a file for post-processing. We measure
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Fig. 13—Augmenting Sparse Camera Network with Mobile Cameras to Achieve Full Performance
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Fig. 14—Feature Size vs Computation Latency

detection latency of the object detector by CPU elapsed time,

and detection accuracy by mean average precision (mAP [10]),

which captures false positives as well as the false negatives.

B. Camera Path and Instance Path Accuracy
In this section, we evaluate Kestrel’s accuracy. Kestrel

supports a heterogeneous camera network, where videos

captured on mobile devices can augment an existing fixed

camera deployment. We would like to understand (a) how

much the mobile cameras improve accuracy over the existing

fixed camera deployment, and (b) how well a heterogeneous

camera network performs relative to a fixed camera deployment

of the same size. To this end, we evaluate accuracy over our 17-

camera dataset by forming three topologies: a Mobile topology

where the mobile cameras run the Kestrel mobile pipeline, a

Full topology where all cameras are treated as fixed and run

the cloud pipeline, and a Partial topology, which consists only

of the 11 fixed cameras.

Figure 13 shows the average camera path inference precision

and recall on these three different networks. To start with, with

a Full topology where every intersection is monitored, Kestrel

achieves a camera path precision of 99.2%, while Partial has

a precision of 65%. Interestingly, the presence of a mobile

camera enables Kestrel to effectively disambiguate path choices,

achieving a precision of 97.7%. Recall results are qualitatively

similar, but average recall numbers are slightly lower (explained

in the next paragraph), with about 80% recall for Mobile

vs. 90% for Full. Recall for partial is significantly lower.

These results suggest that a heterogeneous camera network can

approach the accuracy of an equivalently sized fixed network,

and the addition of mobile devices to an existing fixed camera

network can significantly improve performance.

For instance paths, Kestrel achieves good top-3 precision

and recall for the Mobile topology, whose performance is close

to the Full topology, and significantly better than Partial. In

general, the recall performance for Mobile is lower than the Full

topology (both for camera path and instance path accuracy)

because of Kestrel’s energy optimization to avoid invoking

the object detector sometimes leads to missed detections. We

explore the trade-off between energy and recall below.

Figure 15 shows Kestrel accuracy as a function of path length.

Its top 3 choices (k = 3) almost always (~90% precision and

recall) find the correct paths for up to three camera hops.

Increasing k to 4 or 5 provides marginal improvements, while

reducing it to 1 gives a precision and recall of slightly less than

80% for up to 3 hops. Mobile has comparable performance to

Full with less than 10% degradation. In subsequent sections,

we discuss how much of this performance can be attributed to

object detection, attribute extraction, and association.

This accuracy is significant, considering that, statistically,

for each hop, Kestrel has to find the correct instance among an

average of 20.38 candidates from 2.2 cameras. More important,

the distribution of the number of candidate paths increases

exponentially as the number of hops increases; at 5 hops, the

number of candidate instance paths in our dataset ranges from

10,000 to over a million. In this regime, a human operator

can not manually identify the correct path just by visually

inspecting pictures, but Kestrel can achieve nearly 70% recall

and 80% precision at 5 hops, despite only using the color

histogram descriptor, as a result of our techniques.

At 5 hops, the precision and recall might appear low, but

Kestrel could be practicable even in this range, with a little

operator input. Suppose that a user issues a path inference

query and does not see the right 5-hop answer. If there is a

correct 3-hop instance, she can re-issue a path inference query

using as the starting hop instance the last correct instance, and

stitch together the returned results.

C. Energy and Latency

Kestrel significantly reduces the energy consumption on

the mobile device by only invoking the mobile device when

presented with a query (unlike Kestrel, which processes every

frame), and only when Kestrel has several high-ranked path

candidates which a mobile device can help disambiguate. In

our dataset, 77.0% of the path queries invoke only one mobile

camera, 7.6% invoke two or more mobile cameras. If each

mobile device were to continuously process the videos, instead

of processing them on demand, they would consume 4806

J/min. A modern smartphones with a ~7 Wh/25200 J battery

can only sustain such queries for 30 minutes. At 1 query/min,

Kestrel only requires 82.2 J/m, an over 60× reduction.

When invoked, one particular optimization in the mobile

pipeline is that Kestrel also reduces energy usage by careful

design. The bottleneck of the mobile pipeline is running the

neural net for object detection: on TK1, YOLO alone consumes

2.25 J/Frame whereas attribute extraction only drains 0.42

J/Frame. In terms of latency, YOLO takes an average of 0.259

Sec/Frame, while tracking only takes 0.081 seconds. Therefore,

the fact that the optical flow motion filter can avoid running

YOLO on every frame significantly conserves energy (81.3%

less) and reduces the processing latency on mobile devices.
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Fig. 15—Recall, Precision of Path Inference
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Fig. 16—Energy / Latency and Performance Trade-off

Energy and latency can also be traded-off for higher accuracy

by adjusting the threshold for the optical flow filter. Figure 16

quantifies this tradeoff between energy / latency and the

inference error. Intuitively, the higher the motion filter threshold,

the fewer the YOLO invocations, which result in less energy

and lower latency. Compared to YOLO running on every

frame (motion threshold being 0), a small motion filter of

4 pixels can almost cut the energy usage in half, which can

double mobile battery life, without significantly sacrificing path

inference performance. On the contrary, if the motion filter is

too insensitive (larger than 6 pixels), Kestrel will miss a lot of

vehicles, which results in a much lower recall.

D. Association Performance

Next, we evaluate the performance of one-hop association.

Given one instance at any camera, this component infers

the associated instance among all the instances from all the

neighboring cameras. When conducting this evaluation, we

also evaluate the efficacy of each of the components of the

association algorithm (§II-C). We start with ranking the visual

association score among all candidates without any additional

processing at all (NONE). Then we add each component

one by one in this order: preprocessing (PRE), direction

filter (DIR), spatio-temporal association (ET), background

subtraction (GrabCut). This process is cumulative: for example,

DIR also includes PRE.

Figure 17 shows the precision and recall of each successive

combination. Generally, given an instance at any location at any

time, Kestrel can almost always (> 97%) find the same object

in a neighbor camera, if there were one to be found, within

the top 3 returned instances. Comparing the performance of

each component combination, PRE effectively narrows down

the search space and brings precision and recall to nearly 90%.

DIR further rules out false positives, as cars moving in wrong

direction can confound visual association. Both DIR and ET

increase recall and precision by moving true positives higher

in the rank (which increases Top 1 precision). Grabcut also

increases precision and recall noticeably.

Figure 18 shows an example of how various steps of the

association algorithm can reduce the number of candidates for

the association. In this specific query, Kestrel is able to filter

down to 3 candidates from an initial set of 342, and finds

the correct target vehicle by ranking the histogram correlation

offset from among these three, even though the two cameras

capture the vehicle from completely different perspectives.

When averaged over all associations, each target has an average

of 385 candidates to match, PRE prunes the search space to

about 20, DIR removes about 8 cars on average going in

the wrong direction, ET is able to further narrow down to 6

candidates. Finally, Kestrel ranks the correlation offset of the

remaining candidates.

Choice of Descriptor: To validate our choice of color

histogram, Figure 14 compares different features in terms of the

average data size and computation latency per object. Local

features like SIFT and SURF incur both high computation

overhead and large size (and we have earlier shown that

they are sensitive to perspective differences, and so not a

good choice for Kestrel for that reason), while the lightweight

color histogram incurs minimal latency and small size with

reasonable performance.

E. Object Detection Performance

Performance of CPU offload: In Table I we summarize

the timing results of running the various strategies for GPU

memory optimization. The Original network is already opti-

mized (compared to the original network that runs on server

class GPUs) in that it does not allocate memory for redundant

variables not used in the testing phase. Running the computation

on the CPU takes close to half a minute per frame, which

is extremely slow, so it is imperative to leverage the GPU

cores on the board for accelerated computation. Moreover, we

see that for the original network, memory constraints do not

allow running it on GPU at all; our subsequent optimizations

to reduce the memory footprint make this possible.

CPU offload brings the computation time to under 1s.

Offloading the FC layer allows us to read the weight file only

once for all the frames and store the weights in CPU virtual

memory. Finally, CPU offload along with pipelining gives the

best results; it brings down the computation time to about

0.42s or almost 60 times faster than running it on the CPU.

We see this speed up because although the FC layer is memory

intensive, the running time even on the CPU is not a bottleneck—

in other words, the CPU processing completes within the time

that the GPU is processing the convolutional layers of the

next frame. This is interesting because it is achieved without

compromising accuracy.

Other optimizations: Other optimizations are less effec-

tive. Split allows running the original network on GPUs but it

is still slow as it incurs a weight-file read overhead every frame.

Reducing the size of the network, by reducing the size of the
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Memory
Requirement

FC layer: resulting size of
matrix multiplication

CPU GPU Split CPU Offload Pipeline

Original 2.8 GB 1 × 50176 * 50176 × 4096 25.026524 N/A 10.249577 0.703449 0.416910
Medium 1.6 GB 1 × 25088 * 25088 × 2048 24.315950 0.272191 0.573386 0.400366 0.261985

Small 1.3 GB 1 × 12544 * 12544 × 1024 24.003447 0.259000 0.394960 0.299940 0.261144

TABLE I—Average Time Taken to Run Detection per Image (seconds).

weight matrix in the FC layer to one fourth of the original size

(Medium network) and 1/16 the original size (Small network),

enables YOLO to run faster and follow similar trend as Original
network, with one exception: for Small network the GPU is the

fastest alternative as the FC layer is small enough that overhead

of pipelining negates its benefit. However, these networks incur

accuracy loss. On the Pascal VOC 2012 test dataset [10], we

lose about 2-3% in mAP at each step of the reduction from

Original to Medium to Small.

Power measurement: Interestingly, we found that CPU

offloading based schemes are also the most energy-efficient.

This is because these schemes optimize speed and so the

circuitry is used for much shorter duration. They reduce the

energy requirement by 20× the Original network (107J/frame

for running on CPU, 3.78J with CPU offload, 3.95J with CPU

Offload + Pipelining). Smaller CNNs do save energy (2.25

J/frame on Medium network for CPU Offload + Pipelining)

but at the expense of accuracy.

F. Attribute Extraction

Tracking Accuracy vs Processing Latency: Most exist-

ing state-of-the-art multi-object tracking techniques assume

offline processing for stored video and can incur significant

overhead. To demonstrate this, we pick a representative of this

class, MDP [48], which is regarded as the algorithm with the

best accuracy with reasonable processing overhead. Also, we

extend a robust single-object tracking tool, OpenCMT [13] to

perform multi-object tracking for the comparison with Kestrel.

Method Rcll Prcn FN MOTP TM TD
Kestrel 76.4 88.2 152 76.4 0.081 0.057
MDP 70.1 87.1 192 75.4 N/A 0.146
CMT 75.9 88.6 155 76.3 1.599 0.907

TABLE II—Tracking Accuracy and Latency on TK1 and Desktop

We use a standard multi-object tracking benchmark [24]

to compare our tracker against these approaches. To level

the playing field, we use YOLO for detection for all three

approaches. In addition to precision, recall, and false negatives,

we use a metric called MOTP [24] that measures the tightness

of the bounding boxes generated by the tracking algorithm.

We run the trackers on our vehicle dataset to compare the

tracking performance as well as the average processing latency

per frame, both on the TK1 (TM) and a desktop server (TD).

Table II shows that Kestrel can achieve a slightly higher recall,

comparable precision, lower false negatives and a comparable

MOTP score compared to more sophisticated algorithms, while

incurring an order of magnitude lower processing latency on the

TK1 (one of the algorithms, MDP, cannot even be executed on

TK1). The primary reason for the improved tracker performance

is our design choice to periodically invoke YOLO, which can

refine the box generated by the tracker. Between two YOLO

frames, tracking and association is easier than the kinds of

continuous tracking performed by modern trackers.

We also measure the energy consumption on TK1 using the

same setup, and we find that our tracking requires 0.42 J/frame,

but OpenCMT requires energy as high as 8.4 J/frame.

Period Rcll Prcn TTRK TYOLO TTOT
1 76.4 88.2 0.081 0.259 0.340
3 74.7 82.5 0.081 0.086 0.167
5 64.4 74.2 0.081 0.051 0.132

TABLE III—Tracking Performance and Latency Tradeoff on TK1

Next, we explore the tradeoff between tracking accuracy

and total latency by calling YOLO every 1, 3, 5 frames, and

tracking only on non-YOLO frames. This evaluation uses a

series of consecutive frames that have moving objects and

pass the motion filter. In other words, we try to examine the

best performance when every frame has objects to detect and

track. Intuitively, the more frames between YOLO detection,

the larger chance that the tracker may be led astray. As

shown in Table III, less frequent YOLO detection effectively

reduces the total average processing latency (TTOT) per

frame, while maintaining a reasonable precision and recall

(in some cases, even better than MDP and CMT, not shown)

for attribute extraction. Specifically, when YOLO is invoked

every 3 frames, Kestrel’s mobile pipeline can sustain about

6 fps without noticeable loss in tracking performance. With

further optimization, and on more recent GPUs such as TX1

[33], query latency could be further reduced to achieve 10 fps.

Finally, our camera movement compensation algorithm has

nearly identical tracking precision and recall at walking speeds,

when compared with a stationary camera.

Sensitivity to Camera Motion: To examine the tracking

robustness of Kestrel for mobile cameras, we collected a
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set of videos with a mobile camera while walking, biking,

and driving on our campus. In these videos, we manually

annotated the bounding boxes of vehicles appearing in every

frame over nearly 6000 frames. Then, we ran our camera

motion compensation algorithm, and our tracker, to evaluate its

accuracy. Our results show a similar performance to Table II,

with an average precision of 74.9%, an average recall of 70.9%,

and an MOTP of 78.7%. This indicates Kestrel’s algorithms

can accurately track vehicles even when there is significant

camera motion, with an accuracy comparable to a fixed camera.

Bandwidth: To quantify Kestrel’s bandwidth-efficiency,

in our dataset a typical 10-minute video file recorded at 1920 ×
1080 (30 fps) is around 1.4GB. Streaming every frame in real

time requires ~20Mbps. Instead, Kestrel only sends attributes.

In our dataset, after the cloud pipeline, the average size of a

query sent to the mobile is only 1.52KB. The re-ranked result

and its corresponding instance metadata average 0.92KB.

IV. RELATED WORK

DNNs on mobile devices: Recent work has explored

neural nets on mobile devices for audio sensing activity

detection, emotion recognition and speaker identification [31].

Their networks use only a small number of layers and are much

simpler than the networks required for image recognition tasks.

DeepX [32] is able to achieve reduced memory footprint of the

deep models via using compression, at the cost of a small loss

in accuracy. LEO [36] schedules multiple sensing applications

on mobile platforms efficiently. MCDNN [41] explores cloud

offloading and on-device versus cloud execution tradeoff, but

on models smaller than the ones required for our work. Finally,

DeepMon [26] proposes offloading the FC layers to the GPU

for low power, lower frame rate (1-2 fps) applications, while

using a tensor decomposition technique to reduce the memory

footprint, at the expense of accuracy.

Object Detection: Early object detectors use deformable

part models [35] or cascade classifiers [37], but perform

relatively poorly compared to recent CNN based classification-

only schemes which achieve high accuracy at real-time speeds.

However, top detection systems like Fast R-CNN [38] exhibit

less than real-time performance even on server-class machines.

YOLO is a one-shot CNN-based detection algorithm that

predicts bounding boxes and classifies objects, and we have

used a mobile GPU on a deep CNN like YOLO.

Object Tracking: Prior tracking approaches like blob

tracking [19] work well in static camera networks, but not for

mobile cameras. Many other trackers are targeted to single

object tracking, e.g. OpenCMT [13], and some at multiple

objects [48]. However, most of these trackers are not targeted

at execution on resource-constrained devices. Glimpse [46]

achieves tracking on mobile devices using a combination of

offloading and keeping an active cache of frames to work on,

once a stale result is received from the server. By contrast,

our tracking does not rely on offloading. We have compared

the performance of our tracker with OpenCMT [13] and MDP

[48] and the sensitivity to camera motion in §III.

Video Surveillance Systems and Object Association
across Cameras: Vigil [43] is a wireless surveillance system

that performs simpler vision tasks on powerful edge devices

while offloading more complex computations to the cloud.

However, it does not specifically address the re-identification

problem we consider. Prior work [42] tries to associate people

etc. across different cameras using a query retrieval framework

by ranking nodes in their camera network. Other work [27]

proposes a centralized multi-hypothesis model to track a

vehicle through a multi-camera network. While Kestrel can

support such applications, our focus is to enable mobile camera

based surveillance, so our architectural and design choices are

different from this line of work. [47] optimizes the efficiency

of data storage and object detection queries for multiple videos,

but does not consider multi-camera tracking.

V. CONCLUSION AND FUTURE WORK

This paper explores whether it is possible to perform complex

visual detection and tracking by leveraging recent improve-

ments in mobile device capabilities. Our system, Kestrel,

tracks vehicles across a heterogeneous multi-camera network

by carefully designing a combination of vision and sensor

processing algorithms to detect, track, and associate vehicles

across multiple cameras. Kestrel achieves > 90% precision and

recall on vehicle path inference, while significantly reducing

energy consumption on the mobile device.

Future work includes experimenting with Kestrel at scale

with different traffic densities and camera placement densities

than the ones we have explored in this paper. We anticipate

that our results will be insensitive to camera placement density

(because our approach only detects paths through the camera

network), but may perform differently at different traffic

densities because of inaccuracies in the underlying computer

vision tools. Other future work includes extending Kestrel to

support more queries, and different types of objects, so it can

be used as a general visual analytics platform.
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