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ABSTRACT OF THE DISSERTATION

Formal Verification of Neural Networks: Algorithms and Applications

By

Haitham Khedr

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2023

Associate Professor Yasser Shoukry, Chair

Neural networks (NNs) have become the backbone of intelligent systems, with applications

ranging from sensing modules to learning-based controllers. Their deployment in safety-

critical domains such as healthcare and transportation underscores their significance. However,

the fragility of NNs and their potential for dangerous mistakes, whether unintentional or

adversarial, necessitates rigorous checks on their behavior. This thesis delves into the Formal

Verification of NNs, a process that can provides formal guarantees on their behavior and

ensures the reliability and robustness of these systems.

The cornerstone of this work is a novel algorithm, PeregriNN, that has advanced the Formal

Verification of NNs. This algorithm has been used to verify various NN properties such as

Adversarial Robustness, safety of autonomous systems, and in demonstrating the fairness of

NNs by innovatively formulating the fairness property into a Formal Verification problem.

Further, this thesis explores a new type of activation function that simplifies the formal

verification process, albeit at the cost of increased training time. This exploration, coupled

with a collaborative effort that led to the proposal of a polynomial approximation method

for ReLU NNs to formally verify them, provides valuable insights into the balance between

verification ease and computational efficiency. These methods offer promising approaches to

the formal verification of neural networks, further enhancing the robustness and reliability of

xiii



these systems. The thesis also extends the application of these theories and algorithms to

the safety of autonomous systems with neural network controllers. This practical application

underscores the real-world implications of formal verification in ensuring the safety and

reliability of autonomous systems.

In summary, this thesis provides a comprehensive understanding of the formal verification of

neural networks, underscoring the importance of algorithm development and its real-world

applications. The findings from this study contribute significantly to this critical field of

study, with implications for the fairness, safety, and robustness of NNs.
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Chapter 1

Introduction

Neural networks (NNs) have revolutionized numerous fields, from healthcare to transportation,

due to their ability to learn complex patterns and make accurate predictions. However, despite

their widespread adoption and impressive capabilities, NNs are not without their challenges.

This thesis delves into three critical issues associated with NNs: lack of robustness, fairness,

and safety. Robustness in NNs refers to their ability to maintain performance when faced

with adversarial inputs or slight modifications to the input data. Despite their sophisticated

learning capabilities, NNs have shown to be surprisingly fragile. They can make dangerous

mistakes when confronted with adversarial attacks or unexpected inputs, leading to significant

concerns about their reliability. Fairness in NNs is another critical issue. As NNs are

increasingly used in decision-making processes affecting individuals and communities, it is

crucial that they do not perpetuate or amplify existing biases. However, ensuring fairness

in NNs is a complex task due to the opaque nature of their decision-making process and

the potential biases in the training data. Another crucial property of NN is safety which

is particularly important when NNs are deployed in safety-critical domains. An unsafe NN

can lead to catastrophic consequences, especially in applications like autonomous vehicles or

healthcare systems. Ensuring the safety of NNs requires rigorous checks on their behavior
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and the ability to provide safety guarantees. This thesis focuses on the formal verification

of neural networks as a means to address these challenges. Formal verification is a process

that provides formal guarantees by mathematically proving the correctness of a system with

respect to its specifications. In the context of neural networks, formal verification ensures

that the network behaves as intended, even under unexpected inputs or adversarial attacks.

To that end, this thesis proposes a novel solver, PeregriNN, for verifying feed-forward and

convolutional NNs. PeregriNN is primarily designed to verify robustness properties of NNs.

However, we have extended it to reason about more complex properties such as fairness by

first formalizing the fairness property as a formal verification property and introducing the

algorithmic changes needed to verify such a property. Additionally, this thesis introduces

a novel NN activation function and studies its impact on the efficiency of NN verification,

as well as its drawbacks during training. This exploration provides valuable insights into

striking a balance between ease of verification and computational efficiency.

The thesis is organized as follows, Chapter 2, lays the groundwork for the thesis. It provides

an overview of the preliminary topics and introduces the notation used throughout the thesis.

This chapter serves as a foundation, ensuring that readers are equipped with the necessary

background knowledge to understand the subsequent chapters. Chapter 3, delves into the

heart of the thesis by introducing PeregriNN. This chapter discusses in detail the algorithmic

enhancements that make PeregriNN a significant advancement in the formal verification of

neural networks. The intricacies of the algorithm are explored, providing a deep understanding

of its workings and its contributions to the field. Chapter 4, discusses overapproximation

the output of a ReLU NN using Bernstein Polynomials. We show that using polynomials

approximations yield tighter bounds that SOTA methods and can increase verification efficacy.

Chapter 5, introduces DeepBern-Nets, a type of neural networks with a novel activation

function that is more amenable to verification. This chapter discusses the benefits and

challenges of this new activation function, providing a balanced view of its impact on the

efficiency of neural network verification and its drawbacks during training. Chapters 6 and 7
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consider applications of formal verification of NNs in different domains. Chapter 6 discusses

the formalization of individual fairness as a formal verification problem. It then discusses

how PeregriNN can be extended to verify fairness properties and proposes two innovative

techniques for training neural networks that are individually fair. This chapter provides

valuable insights into the intersection of fairness and formal verification of NNs. Chapter 7

considers another application where formal verification is crucial due to the safety-critical

nature of autonomous systems. In this chapter, we discuss how to use formal verifiers to verify

safety properties defined using Linear Temporal Logic (LTL) of a NN-controlled autonomous

system.
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Chapter 2

Background

In this chapter, we introduce all the notation and concepts needed to define our problem, as

well as the formal definition of the NN verification problem. We also discuss briefly the state

of the art algorithms of the field and categorize them based on the underlying methods used.

2.1 Neural networks

We consider an n-layer feedforward neural network NN : Rk0 → Rkn with input x ∈ Rk0 and

ouput z ∈ Rkn , where R is the set of real numbers, k0 is the dimension of the input, and kn is

the dimension of the output of the network. The i-th layer in NN corresponds to a function

fi : Rki−1 → Rki . Hence, the neural network can be represented by NN = fn ◦ fn−1 ◦ ... ◦ f1,

where ◦ is function composition operator. For the i-th hidden layer, we denote the layer

inputs (pre-activations) by ŷi ∈ Rki and the layer outputs (post-activations) by yi ∈ Rki .

Specifically, we consider networks with ReLU activation layer which is parameterized by

weights, Wi, and biases, bi, and is defined as fi : y ∈ Rki−1 7→ max{Wiy + bi, 0} ∈ Rki . Hence,
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the neurons’ input and output can be represented by

ŷi = Wiyi−1 + bi, i = 1, ...., n

yi = max(0, ŷi), i = 1, ...., n− 1

y0 = x, z = yn = ŷn,

(2.1)

where Wi ∈ Rki×ki−1 , bi ∈ Rki are the weights and bias of the i-th layer respectively, and the

max function is taken element-wise. Moreover, we denote the j-th neuron in the i-th layer

by nij, the lower bound of ŷi by l̂i, the upper bound of ŷi by by ûi. Similarly, the lower and

upper bounds of yi are denoted by li and ui.

2.2 Neural network verification problem

Let NN be an n-layer NN as defined above. Furthermore, let Py0 ⊂ Rk0 be a convex polytope

in the input space of NN , and let Pyn ⊂ Rkn be a convex polytope in the output space of

NN . Finally, let hℓ : Rk0×Rkn → R, ℓ = 1, . . . ,m be convex functions. Then the verification

problem is to decide whether for all inputs x ∈ Py0 , the output is NN (x) ∈ Pyn given the

constraints hℓ for ℓ = 1, . . . ,m. Formally, this is equivalent to deciding whether

{
x ∈ Rk0

∣∣∣ x ∈ Py0 ∧ NN (x) ∈ Pyn ∧
(

m
∧
ℓ=1

hℓ(x,NN (x)) ≤ 0
)}

= ∅. (2.2)

Note that the addition of the convex inequality constraints hj is a unique feature of our

problem formulation compared to other NN verifiers, and it significantly broadens the scope

of the problem. In particular, other solvers can only verify independent input and output

constraints Py0 and Pyn .

So, given the input and output constraints, we either prove that no valid input that violates
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those constraints and deem the property provably satisfied (SAT) or find an input that does

and return a counter example which shows that the property is unsatisfied (UNSAT).

We can verify Neural networks against different specifications in different domains using the

same formulation explained above. We will discuss problems in where we are able to use this

formulation to verify neural networks with different types of specifications.

2.3 ReLU linear relaxation

Due to the non-linearity and non-convexity of the ReLU function, many of the algorithms

that will be discussed use a convex relaxation to approximate the ReLU neurons. Ehlers [3]

introduced linear (triangular) relaxation to approximate the ReLU non-linear function. The

relaxation replaces each ReLU constraint by a set of three linear constraints on the input and

the output of the neuron. This convex relaxation leads to an overestimation of the actual

output set of the ReLU function.

Formally, for a ReLU with input ẑ, the output set is given by {z | z = max(0, ẑ)}. Given the

lower and upper bounds l̂ and û on the ReLU input, the relaxed convex set will be

{z | z ≥ 0, z > ẑ, z ≤ û(ẑ − l̂)

û− l̂
}.

Figure 2.1 shows a pictorial representation of the ReLU function (figure 2.1a) and its relaxation

(figure 2.1b).
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(a) ReLU activation function (b) ReLU triangular relaxation

Figure 2.1: Triangular relaxation of the ReLU function

2.4 Interval arithmetic

Calculating the lower and upper bounds of each neuron is used in many of the tools discussed

in this thesis. In this section we discuss interval arithmetic and how it can be used to compute

the neuron lower and upper bounds.

By using interval arithmetic, given the bounds of layer i− 1, the bounds at layer i is given by

l̂i = W+
i li−1 +W−

i ui−1 + bi, (2.3)

ûi = W+
i ui−1 +W−

i li−1 + bi, (2.4)

li = max(0, l̂i), (2.5)

ui = max(0, ûi), (2.6)

where W+ = max(0,W+) and W− = min(0,W−) element wise. The interval arithmetic

bounds are usually very loose, which is a major drawback of this method. This is due to the

fact that the neurons cannot reach their maximum and minimum at the same time. This is

not taken into account in equations (2.3)-(2.6)
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2.5 Symbolic interval analysis

To tighten the bounds computed by interval arithmetic, [4] introduced symbolic interval

analysis. Symbolic interval analysis propagates linear symbolic equations instead of concrete

bounds. Concrete neuron bounds can then be computed by maximizing and minimizing the

symbolic equation.

Let eqi−1
low (x) and eqi−1

up (x) be the lower and upper bound equations of layer i− 1. Then the

preactivation lower and upper bound equations of layer i can be computed using the formulas:

êqilow(x) = W+
i eqi−1

low (x) +W−
i eqi−1

up (x) + bi

êqiup(x) = W+
i eqi−1

up (x) +W−
i eqi−1

low (x) + bi

The challenge in symbolic propagation is how to maintain linear bound equations. However,

propagating the preactivation bounds equations through a ReLU will yield a nonlinear

function. Instead of propagating the symbolic bounds through the ReLU function, Wang et

al.[4] addressed this issue by introducing two linear relaxations, the upper bound equation is

propagated through the upper linear relaxation, while the lower bound equation is propagated

through the lower linear relaxation. Figure 2.2 shows the upper and lower linear relaxations

used.

 

Figure 2.2: Symbolic interval analysis relaxations, the upper dotted line is the upper relaxation,
and the lower line is the lower bound relaxation
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Formally, the post-activation lower and upper bound linear equations for neuron nij can be

computed using the formulas:

eqijlow(x) =
uij
low

uij
low − lijlow

eqijlow(x),

eqijup(x) =
uij
up

uij
up − lijup

(eqijlow(x)− lijup),

where uij
low and lijlow are the pre-activation concrete upper and lower bounds for the lower

bound equation êqijlow. Similarly, uij
up and lijup are the pre-activation concrete upper and lower

bounds for the upper bound equation. These bounds can be simply be computed as follows.

For a linear equation eq(x) =
∑

i cixi, the upper and lower bounds are given by:

u =
∑
i|ci>0

cix
u
i +

∑
i|ci≤0

cix
l
i (2.7)

l =
∑
i|ci>0

cix
l
i +

∑
i|ci≤0

cix
u
i , (2.8)

where xu
i and xl

i are the upper and lower bounds on the input to the neural network.
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Chapter 3

PeregriNN: Neural Network Verifier

In this work, we introduce a new approach to formally verify the most commonly considered

specifications for ReLU NNs – i.e. polytopic specifications on the input and output of the

network. Like some other approaches, ours uses a relaxed convex program to mitigate the

combinatorial complexity of the problem. However, unique in our approach is the way we use

a convex solver not only as a linear feasibility checker, but also as a means of penalizing the

amount of relaxation allowed in solutions. In particular, we encode each ReLU by means of

the usual linear constraints, and combine this with a convex objective function that penalizes

the discrepancy between the output of each neuron and its relaxation. This convex function

is further structured to force the largest relaxations to appear closest to the input layer; this

provides the further benefit that the most “problematic” neurons are conditioned as early

as possible, when conditioning layer by layer. This paradigm can be leveraged to create

a verification algorithm that is not only faster in general than competing approaches, but

is also able to verify considerably more safety properties; we evaluated PEREGRiNN on a

standard MNIST robustness verification suite to substantiate these claims.
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3.1 Overview

We propose PeregriNN, an algorithm for efficiently and formally verifying the input/output

behavior of ReLU NNs of the form 2.2. In this context, PeregriNN falls into the broad

category of sound and complete search and optimization NN verifiers [5]. The search aspect

of PeregriNN involves iterating over different combinations of neuron activation patterns to

verify that each is compatible with the specified safety constraints (on the input and output

of the network). Like other algorithms in this category, PeregriNN combines this search with

optimization techniques to make inferences about the feasibility of full-network activation

patterns on the basis of activation patterns of only a subset of neurons. The optimization in

question reformulates the original NN feasibility problem into a relaxed convex feasibility

problem to allow sound inferences: i.e. if the convex relaxation is infeasible, then the original

NN problem may soundly be concluded to be infeasible. In this relaxed feasibility problem,

the output of each individual neuron is assigned a relaxation variable that is decoupled

from the actual output of that neuron. PeregriNN also uses a type of reachability analysis

(symbolic interval analysis) both to enhance the optimization-based inference described above

and as a source of additional sound inference itself. For this reason, PeregriNN’s search

procedure searches neurons in a layer-by-layer fashion, preferring to fix the phases of neurons

closest to the input layer first.

In contrast to other search and optimization algorithms, however, PeregriNN augments each

convex feasibility query with a (convex) penalty function in order to obtain better guidance

on which activation patterns to search next. In particular, we note that the amount of

relaxation needed on a neuron can be regarded as a quasi-measure of how close the convex

solver came to operating the associated neuron in a valid regime – i.e. at a valid evaluation

of that neuron on a particular input. In this sense, the amount of relaxation in aggregate can

be regarded as a quasi-measure of how close the solver came to finding a valid evaluation of

the network as a whole. Inversely, the largest distance between a relaxation variable and its
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neuron’s closest ReLU constraint intuitively corresponds in some sense to how “problematic”

that neuron is with regard to obtaining such a valid evaluation. These distances we refer to

as the “slacks” for each neuron. Thus, PeregriNN may be regarded as greedily minimizing a

slack-based penalty.

Finally, we evaluated the performance of PeregriNN by using it to verify the adversarial

robustness of networks trained on the MNIST [6] dataset. Our experiments show that

PeregriNN is on average 1.27× faster than Neurify [4], 1.24× faster than Venus [7], 1.15×

faster than nnenum [8], and 1.65× faster than Marabou [9]. It also proves 27 %, 19 %, 10 %,

and 51 % more properties than the other solvers, respectively. PeregriNN’s unique convex

penalty augmentations are also considered in ablation experiments to validate their benefits.

Related work. Since PeregriNN is a sound and complete verification algorithm, we restrict

our comparison to other sound and complete algorithms. NN verifiers can be grouped

into roughly three categories: (i) SMT-based methods, which encode the problem into a

Satisfiability Modulo Theory problem [3, 10, 9]; (ii) MILP-based solvers, which directly encode

the verification problem as a Mixed Integer Linear Program [11, 12, 7, 13, 14, 15, 16, 17]; (iii)

Reachability based methods, which perform layer-by-layer reachability analysis to compute

the reachable set [8, 18, 19, 20, 21, 22, 23, 24]; and (iv) convex relaxations methods [25, 4, 26].

In general, (i), (ii) and (iii) suffer from poor scalability. On the other hand, convex relaxation

methods depend heavily on pruning the search space of indeterminate neuron activations;

thus, they generally depend on obtaining good approximate bounds for each of the neurons in

order to reduce the search space (the exact bounds are computationally intensive to compute

[27]). These methods are most similar to PeregriNN: for example, [13, 28, 22] recursively

refine the problem using input splitting, and [4] does so via neuron splitting. Other search

and optimization methods include: Planet [3], which combines a relaxed convex optimization

problem with a SAT solver to search over neurons’ phases; and Marabou [9], which uses a
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Figure 3.1: Block Diagram of the PeregriNN Algorithm

modified simplex algorithm.

3.2 Search and optimization

The general structure of PeregriNN is depicted in Fig. 3.1. Like other search and optimization

based NN verifiers it has two main components: a search component and an inference

component, and PeregriNN iterates back and forth between these these two components until

termination. In particular, the search and inference components interact in the following way.

The search component successively iterates over all possible on/off activations for each neuron;

this is done by fixing these activations one neuron at a time, starting from the input layer

and working towards the output layer. The process of fixing a neuron’s activation is referred

to as conditioning its phase: each neuron can be in either its active phase (operating linearly)

or inactive phase (outputting zero). Thus, the search component provides the inference

component a subset of neurons, each of which has been conditioned; the inference component

then attempts to soundly reason about whether the remaining, unconditioned neurons can be

operated in such a way as to violate the safety constraint. If the inference component soundly

concludes safety for all possible activations of the remaining unconditioned neurons, then the

search component backtracks, oppositely reconditioning one of the neurons that was already

conditioned. Otherwise, if a sound safe conclusion is not made, then the search component

uses information from the inference component to decide on a new neuron to condition, and
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the process repeats. The algorithm terminates if either a counterexample to safety is found,

or else all possible neuron activations are considered without finding such a counterexample.

The convex program inference block is at the heart of the inference component and PeregriNN

itself. In this block, PeregriNN, like other search and optimization solvers, uses a relaxed

linear feasibility program where the output of each individual neuron is assigned a relaxation

variable that is decoupled from the actual output of that neuron. Using the notation of

section 2.1, such a linear feasibility program can be written as follows, where the vector

variables yi, i ̸= 0 are the relaxation variables.


yi ≥ 0, yi ≥ Wiyi−1 + bi ∀i = 1, . . . , n

y0 ∈ Py0 , yn ∈ P c
yn ,

m
∧
ℓ=1

hℓ(y0, yn) ≤ 0

(3.1)

Importantly, if (3.1) is infeasible, then the original NN problem in (2.2) may be soundly

concluded to be infeasible as well – and hence, safe. However, as described above, the primary

function of the convex feasibility program is to use a set of conditioned neurons supplied

by the search component in order to soundly reason about the remaining neurons. To do

this, the conditioned neurons supplied by the search component are incorporated into the

feasibility program (3.1) as equality constraints in the following way:

Neuron (yi)j ON: (yi)j = (Wiyi−1 + bi)j ∧ (yi)j ≥ 0 (3.2)

Neuron (yi)j OFF: (yi)j = 0 ∧ (Wiyi−1 + bi)j ≤ 0. (3.3)

Inferences created by the symbolic interval inference block using Symbolic Interval Analysis

[22] are also incorporated using equality constraints like (3.2) and (3.3).

Of the remaining blocks, the “Backtracking & Reconditioning” block is essentially described

above. The “Condition New Neuron” and “Sampling Inference” blocks have features unique to

PeregriNN that are described in Section 3.3; the former implements a novel neuron prioritiza-
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tion, and the latter is a unique approach to quickly obtaining initial safety counterexamples.

3.3 PeregriNN Enhancements

3.3.1 Sum-of-Slacks Penalty

The core enhancement in PeregriNN is the inclusion of a specific objective function in

the convex program used by the inference component. As per the discussion above, this

objective function is interpreted as a penalty on how far away a particular solution is from a

valid input/output response of the network (and activation pattern on all hidden neurons).

Specifically, this penalty function penalizes the sum of all of the “slack” variables for the

entire network, where each neuron’s slack variable is defined as si ≜ yi − (Wi · yi−1 + bi).

That is the distance between a relaxation variable yi and the linear response of its associated

neuron. During each feasibility/inference call, this has the obvious effect of incentivizing the

convex solver to choose an actual input/output response of the network.

In addition, this penalty is effectively the L1-norm of the vector of all the slack variables, since

the slack variables are non-negative. The L1-norm of a vector, used as a penalty function,

is well known to effectively encourage sparsity on the resulting optimal solution. Thus, the

sum-of-slacks effectively incentivizes the convex solver to leave as few neurons as possible

indeterminate in the solution. That is a sum-of-slacks penalty effectively encourages the

convex solver to fix the phases of as many neurons as possible.

3.3.2 Max-Slack Conditioning Priority

As noted above, the search component of PeregriNN operates layer-wise from input layer to

output layer in order to leverage Symbolic Interval Analysis for additional inference. Hence,

15



the search component always chooses the next neuron to be searched (i.e. conditioned) from

among those as-yet-unconditioned neurons that are closest to the input layer. It further

makes sense to only consider conditioning neurons that the convex solver was unable to

operate at valid inputs/output. However, the convex solver typically returns several neurons

to choose from with this property, and it is necessary to choose which of them to search next.

Given the interpretation of a neuron’s “slack” variable as a measure of how “problematic”

that neuron was for the solver to obtain a valid evaluation of the network, PeregriNN’s

search component chooses the next neuron to condition based on slack-order ranking of those

neurons that are not being operated at valid input/output points. This “max-slack” heuristic

choice is unique to PeregriNN; compare to the output gradient heuristic employed in [4].

3.3.3 Layer-wise-weighted Penalty

PeregriNN takes the “max-slack” neuron search priority one step further, though. Using

techniques similar to those in [29], it is possible to show that there exists weights q1, . . . , qn

such that solving (3.1) with the penalty

min
y0,..,yn

n∑
i=0

ki∑
j=1

qisij (3.4)

will result in a solution that is guaranteed to concentrate the most total slack in the earliest

(unconditioned) layer. Thus, by using the layer-wise weighted sum-of-slacks penalty in (3.4),

PeregriNN is uniquely able to force the (unconditioned) layer closest to the input layer to

have the largest total slack among all the layers. As a consequence, PeregriNN effectively

concentrates the most “problematic” neurons in the layer where the next conditioning choice

will be made. This scheme makes it much more likely that the neuron with the highest slack

among all of the neurons will be among the next neurons considered for conditioning – in

effect, often guiding the search component to condition on the most problematic neuron in
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the whole network (although this is not guaranteed).

As noted above, SMC [29] can be used to obtain layer-wise weights that guarantee concentra-

tion of slack in the earliest (shallowest) layer. However, these weights are often very large,

since they depend on bounding the slack variables (most readily by over-approximation);

the effect of this is possible computational instability in the convex program. Thus, as an

implementation matter, we instead select these weights using a heuristic scheme characterized

by two real-valued hyperparameters, λ0 and γ. In particular, the weight of the ith layer, qi, is

selected as qi = λ0 · γi. In our experiments, we found the values λ0 = 10−7 and γ = 103 to

effectively achieve the maximum slack concentration in the earliest layers.

3.3.4 Initial Counterexample Search by Sampling

Finally, PeregriNN extends a simple idea first introduced in [22] to rapidly identify coun-

terexamples by means of sampling. The basic idea is to sample within a known region of

the input to the NN (or the input to some deeper layer), and evaluate the NN (sub-NN)

exactly on those samples in order to rapidly identify a counterexample; this approach help

identify un-safe networks/properties early on. However, whereas [22] samples from within

hyper-rectangle sets derived by symbolic interval analysis, PeregriNN uses the Volesti [30]

Python library to uniformly sample points within the polytopic input constraint set, Py0 , and

thus applies to be more general input constraint sets in (2.2).

3.4 Experiments

We evaluated the performance and effectiveness of PeregriNN at verifying the adversarial

robustness of NNs trained to recognize digits using the standard MNIST dataset. This

verification problem fits into the general NN verification problem described in Section 2.2,
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and it is described subsequently in detail. In this context, we evaluated PeregriNN with two

objectives described as follows.

1. We conducted ablation experiments for all of PeregriNN’s novel features as described in

Section 3.3. In particular, we compared the performance of a full implementation of

PeregriNN – i.e. exactly as described in Section 3.3 – with implementations that are

otherwise the same except for changing one and only one of the following: the penalty

function used in the convex program inference block; the neuron prioritization used by

the search component.

2. We compared PeregriNN against other state-of-the-art NN verifiers, both in terms of

the time required to verify individual networks and properties and in terms of the

number of properties proved with a common, fixed timeout.

Implementation. We implemented PeregriNN in Python, and used an off-the-shelf Gurobi

9.1 [31] convex optimizer for solving linear programs; the Volesti [30] Python interface was

used to sample from the input polytope for the sampling inference block. For the other NN

verifiers, we used publicly available implementations that were published by their creators

(citations are included below). Each instance of of any verifier was run within its own single-

core Virtual Box VM with 30 GB of memory; no more than 4 VMs were run concurrently on

a host machine with 48 hyperthreaded cores and 256 GB of memory.

3.4.1 Adversarial Robustness Verification Task

Subsequent experiments used the testbench we describe in this section; it is largely identical

to the PAT-FCN test in the VNN-COMP 2020 competition [32].
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Table 3.1: Architecture of the NN models used in the experiments

Models # ReLUs Architecture
MNIST_FC1 512 <784,256,256,10>
MNIST_FC2 1024 <784,256,256,256,256,10>
MNIST_FC3 1536 <784,256,256,256,256,256,256,10>

Neural Networks.

We used three ReLU NNs to recognize digits using the standard MNIST training database;

these NNs are exactly as in the PAT-FCN portion of [32]. The sizes of these fully-connected

networks are described in Table 3.1. Each entry in the “Architecture” column of Table 3.1 is

the number of number of neurons in a layer, from input layer on the left to output layer on

the right.

Verification Properties.

We created a number of NN verification tasks based on proving whether the above described

networks were robust against max-norm perturbations of their inputs. In particular, each

verification task involves proving whether a particular input image, x′, always results in the

same classification when it is subjected to a max-norm perturbation of at most some fixed

size, ϵ > 0. Thus, each such verification problem is parameterized by both the specified input

image, x′, and the maximum amount of perturbation, ϵ.

Formally, let x′ be a given image in category t ∈ {1, . . . ,M}, and let ϵ > 0 be a specified

maximum amount of max-norm perturbation of x′. Then we say that a NN with M

classification outputs, NN , is robust if for each classification category m ∈ {1, . . . ,M} \ {t}

the set of inputs yielding classification of x′ as m

ϕm ≜ {x | x ∈ Rk0 , ∥x− x′∥∞ ≤ ϵ, z ∈ Rkn , max
i=1,...,n

NN (x)i = NN (x)m} (3.5)
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is empty. Note that each instance of (3.5) is compatible with the problem in (2.2).

Adversarial Robustness Verification Testbench

Our verification testbench was then constructed by selecting 50 test images from the MNIST

test dataset; this set of test images includes the 25 used in the PAT-FCN portion of [32].

Each test instance was then a combination of one of those images, one of the networks

from Table 3.1 and one the following two max-norm perturbations, ϵ = 0.02 or ϵ = 0.05;

these perturbations are same ones used in PAT-FCN [32]. Thus, each verification test in our

testbench can be identified by one of 300 tuples of the form: (net, image, perturb.) ∈ TB ≜

{FC1, FC2, FC2} × {1, . . . , 50} × {0.02, 0.05}.

3.4.2 Ablation Experiments

In this series of experiments we evaluated the contribution that each of the primary PeregriNN

enhancements made to its overall performance. This was done by comparing the full PeregriNN

algorithm – as described in Section 3.3 – with altered versions that replace exactly one of

those enhancements at a time.

Note: removing core features of PeregriNN often resulted in much longer run times, so the

experiments in this section use a testbench TB′ ⊂ TB that excludes all tests with one of

the larger networks FC2 or FC3 and ϵ = 0.05.

Penalty Function Ablation.

Our first ablation experiment evaluated the contribution of PeregriNN’s unique penalty

function features; see Section 3.3.1 and Section 3.3.3. In particular, we ran different variants
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Figure 3.2: Performance of PeregriNN variants with different objective functions

of PeregriNN with the following penalty functions used inside the convex program inference

block:

1. “Weighted sum of slacks”: PeregriNN’s own weighted sum of slacks penalty;

2. “Sum of slacks”: A sum-of-slacks penalty with equal weighting on all layers;

3. “Feasibility”: A feasibility-only convex program such as the one used in other tools, e.g.

[4] (i.e. simply using a constant penalty function of 1);

4. “Inverted weighted sum of slacks”: PeregriNN’s own weighted sum of slacks penalty,

except with the layer-wise weights applied in reverse order to force slack towards deeper

layers rather than shallower ones (see also Section 3.3.3).

Fig. 3.2a shows a cactus plot of the number of proved cases vs. the timeout permitted to the

algorithm: i.e. to prove at least a specified number of the test cases, each algorithm must

have its timeout set at to the value of its curve in Fig. 3.2a. Fig. 3.2b shows a histogram

of the number of times each of the algorithm variants needed to call the convex solver in

order to terminate; this quantifies each algorithm’s cost in a well-known unit of computation,

also the single most computationally costly part of PeregriNN. Fig. 3.2b plots the number of

convex solver calls required for evenly spaced bins of convex solver calls.
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Conclusions: Fig. 3.2a demonstrates that PeregriNN’s weighted sum of slacks has a clear

benefit over both a uniformly weighted sum-of-slacks penalty and a plain feasibility convex

program. For timeouts of longer than ≈1.2 seconds, PeregriNN overtakes the other two in

terms of number of properties proved; even the uniform sum-of-slacks penalty considerably

outperforms the feasibility convex program at similar timeouts. Note that reversing the

layer-wise weights of PeregriNN’s penalty function incurs a performance hit, especially for

timeouts > 1.2 seconds. This suggests that driving slacks toward shallower layers, where

the next neuron is conditioned, is the correct heuristic to apply. Fig. 3.2b also shows that

going from feasibility to sum-of-slacks to weighted sum-of-slacks significantly reduces the

number of test cases that require between 425 and 525 calls to the convex solver. This order

of comparison shows a concomitant net influx of tests into the lowest bin of <25 convex calls;

PeregriNN has the most test cases in this category, with ≈ 130 test cases proved in <25

convex solver calls.

Neuron Conditioning Priority Ablation.

In the second ablation experiment, we evaluated the contribution of PeregriNN’s maximum-

slack neuron conditioning priority (see Section 3.3.2). To that end, we ran variants of

PeregriNN with three different neuron conditioning priorities for the search component:

1. “Maximum slack”: PeregriNN’s max-slack neuron conditioning priority;

2. “Minimum slack”: This variant conditions the neuron with the smallest slack;

3. “Random choice”: This variant conditions on a random indeterminate neuron.

The performance of these algorithm variants is shown in Fig. 3.3a and Fig. 3.3b. As in the

previous ablation experiment, Fig. 3.3a shows a cactus plot of the number of proved cases

vs. the timeout, and Fig. 3.3b shows a histogram of the number of calls to the convex solver
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Figure 3.3: Performance of PeregriNN variants with different conditioning priorities

required under each of the conditioning priorities.

Conclusions: Fig. 3.3a shows that PeregriNN’s max-slack neuron priority allows it to prove

slightly more properties than either a random neuron choice priority or the minimum-slack

priority. The maximum slack priority also required the fewest total convex calls across all

instances: it used 178 fewer than minimum slack and 686 fewer than a random choice. Thus,

we conclude PeregriNN’s max-slack heuristic slightly improves performance on this testbench.

3.4.3 Comparison with Other NN Verifiers

In this experiment, we evaluated PeregriNN with respect to a number of state-of-the-art NN

verifiers on our adversarial robustness testbench, TB. In particular, we ran the following tools

on TB: Venus [7]; Marabou [9]; Neurify [4]; and nnenum [8]. Venus was run with st_ratio=

0.4, depth_power=4, offline_deps = True, online_deps = True, and ideal_cuts = True;

Marabou and Neurify were used with default parameters but THREADS = 1; and nnenum had

ADVERSARIAL_SEARCH turned off. Each algorithm had its own one-core VM.

Fig. 3.4 contains a cactus plot showing the results for each of these algorithms, including

PeregriNN. For a given number of test cases to be proved, Fig. 3.4 depicts the corresponding
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timeout required for each of the algorithm to prove that many cases. Of all the algorithms,

PeregriNN was able to prove the most properties within the timeout limit of 600 seconds:

PeregriNN was able to prove 190 properties; it was followed by nnenum, which proved

172; Venus, which proved 159; Neurify, which proved 149; and Marabou, which proved 125.

Marabou consistently performed the worst, proving fewer cases than any other algorithm

at every timeout. By contrast, Neurify was able to prove significantly more test cases than

any other algorithm for extremely short timeouts, but it failed to prove more than 150 out

of 300 test cases across the whole experiment. nnenum performed worse than Neurify on

the way to proving 150 test cases, but it fared significantly better than either PeregriNN or

Venus, which had more or less similar performance below this threshold. However, after ≈150

test cases, PeregriNN significantly outperformed all other algorithms: as the timeout was

increased, PeregriNN proved additional properties at a rate significantly outpacing its closest

competitor in this regime, nnenum. We further note that all algorithms proved a mixture of

SAT and UNSAT properties.

This data, taken as a whole, suggests that PeregriNN suffers from a worse “best-case” perfor-

mance than several other algorithms, especially nnenum and Neurify. However, PeregriNN’s

performance seems to be much more consistent across different test cases. This allows it to

prove more properties in aggregate at the expense of being slower on a smaller subset of

them. This further suggests that PeregriNN is significantly less sensitive to peculiarities of

particular test cases on the TB testbench. This will likely be a considerable advantage, on

average, when faced with verifying unknown networks and properties of this type.
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Figure 3.4: Cactus plot of various solvers on 300-case testbench, TB
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Chapter 4

BERN-NN: Tight Bound Propagation For

Neural Networks Using Bernstein

Polynomial Interval Arithmetic

In this paper, we present BERN-NN as an efficient tool to perform bound propagation of

Neural Networks (NNs). Bound propagation is a critical step in wide range of NN model

checkers and reachability analysis tools. Given a bounded input set, bound propagation

algorithms aim to compute tight bounds on the output of the NN. So far, linear and convex

optimizations have been used to perform bound propagation. Since neural networks are highly

non-convex, state-of-the-art bound propagation techniques suffer from introducing large errors.

To circumvent such drawback, BERN-NN approximates the bounds of each neuron using

a class of polynomials called Bernstein polynomials. Bernstein polynomials enjoy several

interesting properties that allow BERN-NN to obtain tighter bounds compared to those

relying on linear and convex approximations. BERN-NN is efficiently parallelized on graphic

processing units (GPUs). Extensive numerical results show that bounds obtained by BERN-

NN are orders of magnitude tighter than those obtained by state-of-the-art verifiers such as
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linear programming and linear interval arithmetic. Moreoveer, BERN-NN is both faster and

produces tighter outputs compared to convex programming approaches like alpha-CROWN.

4.1 Introduction

Neural Networks (NNs) have become an increasingly central component of modern, safety-

critical, cyber-physical systems like autonomous driving, autonomous decision-making in

smart cities, and even autonomous landing in avionic applications. Thus, there is an increasing

need to verify the safety and correctness [33, 34, 35] of NNs when they are used to control

physical systems.

The problem of NN Verification has been well studied in literature [36]. Most NN verifiers rely

mainly on either using linear relaxation and optimization [4, 25, 26, 37, 38, 39] to falsify a given

property or prove its satisfaction, or reachability analysis to compute an over-approximation of

the output set. The latter is specifically important for control applications where the property

of interest is defined over a time horizon. Both techniques rely on overapproximation, hence,

having tight output bounds is at the core of NN verification as it allows reasoning about NN

properties in an efficient manner. For example, model checking the robustness of NNs against

adversarial perturbations can be done by simply comparing the tight bounds of the outputs

of the network. Moreover, networks used in control applications often involve multi-step

reachability, and hence computing tight bounds is crucial to harness the accumulation of the

error and hence be able to efficiently reason about the safety of the system.

Due to the non-convexity and non-linearity of NNs, the problem of finding the exact bounds

of NN outputs is NP-hard[10]. Different tools have been proposed to find tight overapproxima-

tions of NN outputs. MILP-based methods [40, 16, 17, 12, 13, 15, 11, 14] encode the non-linear

activations as linear and integer constraints. Reachability methods [23, 24, 19, 22, 21, 20, 18]
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use layer-by-layer reachability analysis (exact or overapproximation) of the network. Most of

these methods either rely on convex linear relaxation of the non-linear activation functions

to overapproximate the output of the NN, or try to find the exact bounds which are often

intractable.

In this work, we explore using polynomials to approximate non-linear activations (e.g. ReLU).

More specifically, we approximate non-linear activations using Bernstein polynomials which

are constructed as a linear combination of the Bernstein basis polynomials [41]. The use of

Bernstein polynomials is motivated by two reasons. First, based on the Stone-Weierstrass

approximation theorem [42], Bernstein polynomials can uniformly approximate continuous

activation functions. Second and most importantly, bounding a Bernstein polynomial is

computationally cheap based on the interesting properties of Bernstein polynomials discussed

in section 4.3. The goal of using higher-order polynomials versus linear relaxation is to get

tight bounds on NNs which is crucial for verifying a large class of formal properties. This

idea of using polynomials has inspired other researchers [43, 44, 1], however, the proposed

tools suffer from scalability issues.

Our main contributions can be summarized as follows:

• We propose a tool that uses Bernstein polynomials to approximate ReLU activations

and hence compute tighter NN bounds than state-of-the-art.

• The tool is designed with scalability in mind; hence, the entire operations can be

accelerated using GPUs.

• We show that by using the proposed approximation, we are able to compute tighter

output sets than alpha-Crown (winner of VNN22’ competition[45] for Formal Verifica-

tion of NNs) and other state-of-the-art bounding methods. For instance, BERN-NN

approximations are twice reduced compared to alpha-Crown for actual NN’s controllers.

Moreover, Numerical results showed that Bern-NN can process neural networks with
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more than 1000 neurons in less than 2 minutes

4.2 Problem Formulation

4.2.1 Notation:

General notation: We use the symbols N and R to denote the set of natural and real

numbers, respectively. We denote by x =
(
x1, x2, · · · , xn

)
∈ Rn the vector of n real-valued

variables, where xi ∈ R. We denote by In(d, d) =
[
d1, d1

]
× · · ·×

[
dn, dn

]
⊂ Rn the n-

dimensional hyperrectangle where d = (d1, · · · , dn) and d =
(
d1, · · · , dn

)
are the lower and

upper bounds of the hyperrectangle, respectively. We denote by xT and AT the transpose

operation of the vector x and the matrix A. We denote by 0n a vector that contains n zero

values and by 0n×m the matrix of shape n×m that contains zeros. Finally, A ∗B stands for

the element-wise product between the multi-dimensional tensors A and B, and A⊗B stands

for the Kronecker product between the matrices A and B.

Notation pertaining to multivariate polynomials: For a real-valued vector x =(
x1, x2, · · · , xn

)
∈ Rn and an index-vector K = (k1, · · · , kn) ∈ Nn, we denote by xK ∈ R

the scalar xK = xk1
1 × . . . × xkn

n . Given two multi-indices K = (k1, · · · , kn) ∈ Nn and

L = (l1, · · · , ln) ∈ Nn, we use the following notation throughout this paper:

K + L = (k1 + l1, · · · , kn + ln) ,(
L

K

)
=

(
l1
k1

)
× · · · ×

(
ln
kn

)
,∑

K≤L

=
∑
k1≤l1

· · ·
∑
kn≤ln
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Finally, a real-valued multivariate polynomial p : Rn → R is defined as:

p(x1, . . . , xn) =

l1∑
k1=0

l2∑
k2=0

. . .
ln∑

kn=0

a(k1,...,kn)x
k1
1 xk2

2 . . . xkn
n

=
∑
K≤L

aKx
K ,

where L = (l1, l2, . . . , ln) is the maximum degree of xi for all i = 1, . . . , n.

Notation pertaining to neural networks: In this paper, we consider H-layer, feed-forward,

ReLU-based neural networks NN : Rn → Ro defined as:

NN (x) = W (H)z(H−1) + b(H)

z(H−1) = σ
(
W (H−1)z(H−2) + b(H−1)

)
...

z(1) = σ
(
W (1)x+ b(1)

)
where σ is the ReLU activation function (i.e., σ(z) = max(0, z)) that operates element-wise,

W (i) ∈ Rhi×hi−1 and b(i) ∈ Rhi with i ∈ {1, · · · , H} are the weights and the biases of the

network. For simplicity of notation, we use ẑ
(i)
j and z

(i)
j to denote the pre-activation (input)

and the post-activation (output) of the j-th neuron in the i-th layer.

4.2.2 Main Problem:

In this paper, we seek to find polynomials that upper and lower approximate the NN’s

outputs NN (x) whenever the NN’s input x is confined within a pre-defined hypercube, i.e.

x ∈ In(d, d).

Problem 1. Given a neural network NN : Rn → Ro and an input domain hypercube

In(d, d) ⊂ Rn. Find lower and upper approximate polynomials
(
pNN ,1

(x), pNN ,1(x)
)
,
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. . .
(
pNN ,o

(x), pNN ,o(x)
)
, such that:

pNN ,1
(x) ≤ NN1(x) ≤ pNN ,1(x)

...

pNN ,o
(x) ≤ NNo(x) ≤ pNN ,o(x),

where with some abuse of notation, we use NNi(x) to denote the ith output of the neural

network NN .

Note that the lower/upper bound polynomials
(
pNN ,1

(x), pNN ,1(x)
)
, . . .

(
pNN ,o

(x), pNN ,o(x)
)

depend on the input domain In. That is, for each value of In, we need to find different

lower/upper bound polynomials. However, for the sake of simplicity of notation, we drop the

dependency on In.

4.3 Tight bounds of ReLU Functions Using Bernstein

Polynomials

To solve Problem 1, we rely on a class of polynomials called Bernstein polynomials which are

defined as follows:

Definition 4.3.1. (Bernstein Polynomials) Given a continuous function g : Rn → R, an

input domain (hypercube) In(d, d) ⊂ Rn, and a multi-index L = (l1, · · · , ln) ∈ Nn, the

polynomial:

Bg,L (x) =
∑
K≤L

bgK,LBerK,L (x) , (4.1)

BerK,L (x) =

(
L

K

)
(x− d)K

(
d− x

)L−K(
d− d

)L , (4.2)
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bgK,L = g

((
d1 − d1

) k1
l1

+ d1, · · · ,
(
dn − dn

) kn
ln

+ dn

)
, (4.3)

is called the Lth order Bernstein polynomial of g, where BerK,L (x) and bgK,L are called the

Bernstein basis and Bernstein coefficients of g, respectively.

Bernstein polynomials are known to be capable of approximating any continuous function.

That is, Bernstein approximation has an advantage compared to Taylor approximation

because the latter relies on the function being differentiable. In this case, Taylor model can

not approximate ReLU activation functions because they are not differentiable which makes

Bernstein polynomials a good option to approximate ReLU functions. Bernstein polynomials

have an interesting and useful property called range enclosing property which is defined as

follows:

Definition 4.3.2. (Range Enclosing Property [46]) Given a multi-dimensional polynomial

p (x) of order L that it defined over the region In
(
d, d
)

with its Bernstein polynomial Bp,L =∑
K≤L

bpK,L (x)BerK,L (x). The following holds for all x ∈ In
(
d, d
)
:

min
K≤L

bpK,L ≤ p (x) ≤ max
K≤L

bpK,L. (4.4)

The range enclosing property states that the minimum (maximum) over all the Bernstein

coefficients is a lower (upper) bound for the polynomial p over the region In
(
d, d
)
. These

bounds provided by the Bernstein coefficients are generally tighter than those given by interval

arithmetic and many centered forms [47]. Note that the range enclosing property applies

only when the Bernstein polynomial is used to approximate other polynomials p and other

continuous functions g. Nevertheless, as we show in Section 4, these bounds will be helpful

to provide tight bounds on the polynomials used to over/under approximate the individual

neurons and hence obtain tight polynomial bounds on the NN’s outputs.
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Figure 4.1: (Top) Bernstein polynomial approximations of ReLU activation for different
approximation’s order L ∈ {1, 2, 8, 16}, in the interval I1 (−6, 10) =

[
− 6, 10

]
. (Bottom)

Bernstein polynomial approximations of ReLU and their associated approximation errors for
different approximation’s order L ∈ {1, 2, 8, 16} in the interval I1 (−6, 10) =

[
− 6, 10

]
.

4.3.1 Over-Approximating ReLU functions using Bernstein Polyno-

mials

We now study how to use Bernstein polynomials to over-approximate the ReLU function

σ : R → R defined as σ(x) = max(0, x). While Bernstein polynomials can approximate

any continuous function g, there is no guarantee that this Bernstein approximation is either

over-approximation or under-approximation. The next result establishes an order between

the ReLU function σ and its Bernstein approximation.

Proposition 4.3.3. Given an interval I1
(
d, d
)
=
[
d, d
]
, where 0 ∈

[
d, d
]

and any approxi-

mation order L ≥ 1. The following holds for all x ∈ I1:

σ(x) ≤ Bσ,L(x) = Bσ,L(x).

Proof. This follows directly by substituting the function σ in the definition of Bernstein

polynomials (4.1)-(4.3).

In other words, Proposition 4.3.3 states that the Bernstein polynomial of σ is a guaranteed

over-approximation of σ. This even holds for any approximation order L. Moreover, since the

approximation error between a function g and its Bernstein approximation Bg,L is known to

decrease as L increases [48]. Then another consequence of Proposition 4.3.3 is that Bernstein
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polynomials produce a tighter over-approximation for ReLU functions as L increases.

Figure 4.1 emphasizes these conclusions pictorially where we show the Bernstein polynomials

of σ with orders L = 1, 2, 8, 16. As shown in Figure 4.1 (Left), the Bernstein polynomials

Bσ,L(x) for L =∈ {1, 2, 8, 16} over-approximate the ReLU activation function over the entire

input range. Furthermore, the over-approximation gets tighter to the actual ReLU by

increasing the approximation order L. We note that using L = 1, the resulting Bernstein

polynomial produces the well-studied linear convexification of the ReLU function which is

used in state-of-the-art algorithms for bounding neural networks including Symbolic Interval

Arithmetic (SIA) [4] and alpha-CROWN [49]. In other words, Bernstein polynomials can be

seen as a generalization of these techniques.

4.3.2 Under-approximating ReLU functions using Bernstein poly-

nomials

In addition to the over-approximation of the ReLU function σ, it is essential to establish a

Bernstein under-approximation of σ which is captured by the following result.

Proposition 4.3.4. Given an interval I1
(
d, d
)
=
[
d, d
]
, where 0 ∈

[
d, d
]
, then the following

holds for all x ∈ I1:

Bσ,L(x) = Bσ,L(x)−Bσ,L(0) ≤ σ(x).

Proof. To prove the result, we define the approximation error ϵσ,L as:

ϵσ,L(x) = Bσ,L(x)− σ(x).
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We bound the maximum estimation error satisfies as follows:

max
x∈[d,d]

ϵσ,L(x) = max
x∈[d,d]

(
Bσ,L(x)− σ(x)

)
(4.5)

(a)
= max

x∈[d,0]
Bσ,L(x) (4.6)

(b)
= Bσ,L(0) (4.7)

where (a) follows from the fact that σ(x) = 0 for x ∈ [d, 0] and σ(x) ≥ 0 for x ∈ [0, d] and

hence the maximum of the equation is attained whenever σ(x) = 0. Equation (b) holds

from the monotnicity of Bσ,L(x) when x ∈ [d, 0]—the monotnicity follows directly from the

definition of Bσ,L(x)—and hence the maximum is attained when x = 0. It follows from the

definition of ϵσ,L(x) that:

σ(x) = Bσ,L(x)− ϵσ,L(x) ≥ Bσ,L(x)− max
x∈[d,d]

ϵσ,L(x)

= Bσ,L(x)−Bσ,L(0) = Bσ,L

which concludes the proof.

Proposition 4.3.4 shows that the maximum error between the Bernstein over-approximation

polynomial Bσ,L and the ReLU activation function σ is equal to the value of the Bernstein

polynomial at 0, i.e., Bσ,L(0). This result has a direct consequence on the efficiency of our

tool. It is enough to propagate over-approximation of the ReLU function and one can get an

under-approximation directly by shifting the over-approximation polynomial.

Figure 4.1 (Right) emphasizes this fact pictorially. As it is shown in the figure, the maximum

error ϵσ,L(x) = Bσ,L − σ(x) is reached at x = 0 and is equal to Bσ,L (0).
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Figure 4.2: Illustrations of the over-approximation sets (shaded in gray) of the ReLU
activation functions in the interval

[
− 6, 10

]
using different approaches: Bernstein approach

(Left), triangulation approach (Center), and zonotope approach (Right). Green (Red)-colored
curves represent the over-approximation (under-approximation) curves for every approach,
respectively. Ai, i ∈ {1, 2, 3}, represents the over-approximation set’s area for every approach.

Table 4.1: The area of the over-approximation set of the ReLU activation functions in the
interval

[
− 6, 10

]
using different Bernstein approach for different approximation order L.

Approx. Triangulation Zonotope Bernstein poly
Method L = 2 L = 3 L = 8
error 80.0 80.0 37.5 28.1 16.9

4.3.3 Comparing Bernstein Approximation Against Widely Used

Approximations

The major advantage of using Bernstein polynomials is that they produce a tighter approxi-

mation for the response function of ReLU compared to the other state-of-the-art techniques.

In particular, existing techniques focus on “convexifying” the response of the ReLU func-

tion through linear approximation/triangulation (Figure 4.2-middle) or zonotopes (Figure

4.2-right). Unlike these techniques, Bernstein polynomials lead to tighter non-convex ap-

proximations of the non-convex ReLU function. While it is direct to obtain a closed-form

expression for the difference in the approximation error between Bernstein polynomials

and triangulation/zonotope approximations, we, instead support our conclusions with the

numerical example shown in Table 4.1 and highlighted in Figure 4.2. In this example, we

compute the approximation error (highlighted in gray) which captures the quality of the over

and under-approximations. As captured by this example, it is direct to see that Bernstein
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polynomials lead to tighter approximation. Moreover, such approximation gets tighter as the

approximation order L increases.

4.4 Encoding Basic Bernstein Polynomial Operations Us-

ing Multi-Dimensional Tensors

While using Bernstein polynomials to approximate individual ReLU functions provides tighter

bounds compared to other techniques, computing Bernstein polynomials via its definition

in (4.1)-(4.3) is time-consuming. That is why state-of-the-art techniques have focused on linear

(or convex) relaxations to obtain tractable computations. Nevertheless, in this section, we

show that technological advances in Graphics Processing Units (GPUs) can be used to perform

all the required operations to efficiently compute Bernstein polynomial approximations of

individual neurons along with propagating these polynomials from one layer of the neural

network to the next layer. Our main contribution of this section is to encode all necessary

operations over Bernstein polynomials into additions and multiplication of multi-dimensional

tensors that can be easily performed using GPUs.

4.4.1 Multi-dimensional tensor representation of Bernstein polyno-

mials

We represent the Bernstein polynomial:

Bg,L (x) =
∑
K≤L

bgK,LBerK,L (x)

of function g and order L as a multi-dimensional tensor Ten(Bg,L) of n dimensions, and of

a shape of L = (l1 + 1, · · · , ln + 1), where the K = (k1, · · · , kn) component of Ten(Bg,L) is
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equal to the Bernstein coefficient bgK,L. The multi-dimensional tensor Ten(Bg,L) represent all

the Bernstein coefficients bgK,L of g, ∀K ≤ L.

Example 1. Consider the two-dimensional Bernstein polynomial:

Bg,L (x1, x2) =
2∑

k1=0

3∑
k2=0

bg(k1,k2),LBer(k1,k2),L (x1, x2)

with orders L = (2, 3). Its two-dimensional tensor representation is written as follows:

Ten (Bg,L) =


bg(0,0),L bg(0,1),L bg(0,2),L bg(0,3),L

bg(1,0),L bg(1,1),L bg(1,2),L bg(1,3),L

bg(2,0),L bg(2,1),L bg(2,2),L bg(2,3),L

 . (4.8)

In a similar manner, we represent a multi-dimensional polynomial of order L written in the

power series form p (x) =
∑
K≤L

aKx
K as a multi-dimensional tensor Ten (p) of n dimensions,

and of a shape of L = (l1 + 1, · · · , ln + 1), where the K = (k1, · · · , kn) component of Ten (p)

is equal to the coefficient aK .

4.4.2 Multiplication of two multi-variate Bernstein polynomials

Multiplying two polynomials represented in the power series form on GPUs has been widely

studied in the literature. Unlike power series, multiplying two Bernstein polynomials need

extra handling [50]. In this subsection, we propose how to encode the multiplication of

Bernstein polynomials using GPU implementations that were designed for power-series

polynomials.

Given two multivariate polynomials written in a power series form, p1 =
∑

K≤L1

a1Kx
K and

p2 =
∑

K≤L2

a2Kx
K , and their tensor representation, Ten (p1) and Ten (p2), we use an effi-

cient algorithm [51] that performs multivariate polynomial multiplications. We denote by
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Prod (Ten (p1) ,Ten (p2)) the tensor resulting from such multiplication, i.e.:

Ten (p1p2) = Prod (Ten (p1) ,Ten (p2)) .

Applying power-series-based algorithms to multiply two Bernstein polynomials produce

incorrect results. Different algorithms were proposed for the case when the Bernstein

polynomials are functions of one variable x1 [52] and two variables x1, x2 [50]. Below, we

generalize the procedure in [50] to account for Bernstein polynomials in n variables.

Proposition 4.4.1. Given two multivariate Bernstein polynomials

Bg1,L1 (x) =
∑
K≤L1

bg1K,L1
BerK,L1 (x)

and

Bg2,L2 (x) =
∑
K≤L2

bg2K,L2
BerK,L (x)

. The tensor representation of the Bernstein polynomial Bg1,L1(x)Bg2,L2(x) can be computed

as follows:

Ten
(
B̃g1,L1

)
= Ten (Bg1,L1) ∗ CL1 , (4.9)

Ten
(
B̃g2,L2

)
= Ten (Bg2,L2) ∗ CL2 , (4.10)

Ten (Bg1,L1Bg2,L2) =
1

CL1+L2

∗Prod
(
Ten

(
B̃g1,L1

)
,Ten

(
B̃g2,L2

))
. (4.11)

where CL is the multi-dimensional binomial tensor where its Kth component is equal to
(
L
K

)
,

i.e, (CL)K =
(
L
K

)
. With some abuse of notation, we use 1/CL to denote the multi-dimensional

binomial tensor where its Kth component is equal to 1

(L
K)

.

The proof of Proposition 4.4.1 generalizes the argument in [50] to multi-dimensional inputs

and is omitted for brevity. The Bernstein polynomials in (4.9) and (4.10) are called scaled
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Bernstein polynomials [50] and enjoy the fact that their multiplication corresponds to the

multiplication of power series polynomials. Hence we can use the power series Prod in (4.11)

followed by the element-wise multiplication with the 1
CL1+L2

tensor to remove the effect of

the scaling. Recall that we use A ∗B to denote the element-wise multiplication between the

tensors A and B, which can also be carried over using GPUs efficiently which renders all

the steps in equations (4.9)-(4.11) to be efficiently implementable on GPUs. We refer to the

equations (4.9)-(4.11) as Prod_Bern(Bg1,L1 , Bg2,L2).

Using Prod_Bern, one can compute the tensor corresponding to raising the function g to

power i, where i ∈ N is an integer power, denoted by Ten(Bgi,L) by applying the Prod_Bern

procedure i times. We refer to this procedure as Pow_Bern(Ten(Bg,L), i).

4.4.3 Addition between two Bernstein polynomials

The authors in [52] studied how to add two Bernstein polynomials. However, their study is

restricted to one-dimensional polynomials which are defined over the unity interval I1 (x) =

[0, 1]. We extend the argument to the general case with n inputs and any interval In(d, d)

using the following result.

Proposition 4.4.2. Given two Bernstein polynomials Bg1,L1 (x) and Bg2,L2(x) with two

different orders L1 = (l11, · · · , l1n) and L2 = (l21, · · · , l2n). Define Lsum = max(L1, L2), where

the max operator is applied element-wise. The tensor representation of Bg1+g2,Lsum can be

computed as:

Lsum = (max(l11, l
2
1), . . . ,max(l1n, l

2
n)) (4.12)

Ten (Bg1,Lsum) = Prod_Bern (Ten (Bg1,L1) , 1Lsum−L1+1) (4.13)

Ten (Bg2,Lsum) = Prod_Bern (Ten (Bg2,L2) , 1Lsum−L2+1) (4.14)

Ten (Bg1+g2,Lsum) = Ten (Bg1,Lsum) + Ten (Bg2,Lsum) (4.15)
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where 1Le−L+1 is a multi-dimensional tensor of a shape Le − L+ 1 that contains just ones.

The proof of Proposition 4.4.2 generalizes the argument in [52] and is omitted for brevity.

The operation in (4.13) and (4.14) is referred to as degree elevation in which we change the

dimensions of the tensors ... Once both tensors are of the same dimension, we can add them

element-wise. We denote by Sum_Bern the procedure defined by (4.12)-(4.15). Again, we

note that all the operations in the Sum_Bern entail tensor element-wise multiplication and

addition

4.5 BERN-NN algorithm

In this section, we provide the details of our tool, named BERN-NN. BERN-NN uses the

tensor encoding discussed in Section 4 to propagate Bernstein polynomials that over- and

under-approximate the different neurons in the network until over- and under-approximation

polynomials for the final output of the network are computed.

4.5.1 Propagating bounds through single neuron

We first discuss how to propagate over- and under-approximations through neurons. Recall

our notation that we use ẑ
(i)
j and z

(i)
j to denote the input and output of the j-th neuron in

the i-th layer. For ease of notation, we drop the i and j from the notation in this subsection.

Assume that we already computed the over- and under-approximations for the input of one

of the hidden neurons, denoted by B ẑ,Lẑ
(x) and B ẑ,Lẑ

(x), respectively. The objective is to

compute the over- and under-approximations for the output of such a neuron, denoted by

Bz,Lz(x) and Bz,Lz
(x), respectively. We proceed as follows.
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Step 1: Compute input bounds for the neuron. Recall that the Bernstein coefficients

depend on the input bounds of the function it aims to approximate. Since our aim is to

approximate the scalar ReLU function of a neuron, we start by computing the bounds on the

input to that neuron as follows:

lo = min
x∈In(d,d)

B ẑ,Lẑ
(x), hi = max

x∈In(d,d)
B ẑ,Lẑ

(x) (4.16)

Thanks to the enclosure property (4.4), we can solve the optimization problems (4.16) by

finding the minimum and the maximum coefficients of B ẑ,Lẑ
and B ẑ,Lẑ

.

Step 2: Compute the polynomials Bσ,L and Bσ,L that approximate the ReLU

function. Given a user-defined approximation order L, the next step is to compute the

Bernstein polynomials that over- and under-approximate the ReLU activation function σ

denoted by Bσ,L and Bσ,L. These polynomials can be computed using the knowledge of

lo and hi along with the definition of the Bernstein polynomial in (4.3). To facilitate the

computations of the next step, we need to convert these polynomials into the corresponding

power series form. This can be done by following the procedure in [53] to obtain:

pBσ,L
(x) =

∑
K≤L

a
Bσ,L

K xK , pBσ,L
(x) =

∑
K≤L

a
Bσ,L

K xK (4.17)

Step 3: Propagate the bounds through the decomposition of polynomials. First,

note that the following holds due to the monotonicity of the ReLU function σ and the fact

that z = σ(ẑ):

B ẑ,Lẑ
(x) ≤ ẑ(x) ≤ B ẑ,Lẑ

(x)⇒ (4.18)

σ
(
B ẑ,Lẑ

(x)
)︸ ︷︷ ︸

Bz,Lz
(x)

≤ σ
(
ẑ(x)

)
︸ ︷︷ ︸

z(x)

≤ σ
(
B ẑ,Lẑ

(x)
)︸ ︷︷ ︸

Bz,Lz (x)

(4.19)
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In other words, the post-bounds of the neuron, denoted by Bz,Lz(x) and Bz,Lz
(x) can be

computed by composing the function σ with the under- and over-approximations of the

neuron input B ẑ,Lẑ
(x) and B ẑ,Lẑ

(x). Indeed such composition is hard to compute due to

the nonlinearity in σ. Instead, we perform such composition with the over- and under-

approximations of σ, pBσ,L
and pBσ,L

, computed in Step 2, as:

Bz,Lz
(x) =

∑
K≤L

a
Bσ,L

K

(
B ẑ,Lẑ

(x)
)K (4.20)

Bz,Lz(x) =
∑
K≤L

a
Bσ,L

K

(
B ẑ,Lẑ

(x)
)K (4.21)

Given the tensor representation Ten(B ẑ,Lẑ
) and Ten(B ẑ,Lẑ

), we can use the Pow_Bern

and Sum_Bern procedures to perform the computations in (4.20) and (4.21) to calculate

Ten(Bz,Lz
) and Ten(Bz,Lz) with Lz = Lẑ ∗ L.

4.5.2 Propagating the bounds through one layer

Next, we discuss how to propagate the under- and over-approximation polynomials of the

outputs of the i−1 layer denoted by B
z
(i−1)
j , Lz

, B
z
(i−1)
j , Lz

, j ∈ {1, . . . , hi−1} to compute under-

and over-approximation of the inputs of the neurons in the ith layer B
ẑ
(i)
m , Lẑ

, B
z
(i)
m , Lẑ

,m ∈

{1, . . . , hi} of the neural network. Such bound propagation entails composing the under- and

over-approximation polynomials B
z
(i−1)
j , Lz

, B
z
(i−1)
j , Lz

with the weights of the ith layer of the

neural network W (i), b(i). To that end, we define the set of positive and negative weights as:

W
(i)
+ = max

(
W (i), 0i×(i−1)

)
W

(i)
− = min

(
W (i), 0i×(i−1)

)
.
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Similarly, for the outputs of the i − 1 layer of the network, we define the vector of over-

approximation polynomials and vector of the under-approximation polynomials as:

Bz(i−1), Lz
=

[
B

z
(i−1)
1 ,Lz

. . . , B
z
(i−1)
hi−1

,Lz

]T
,

Bz(i−1), Lz
=

[
B

z
(i−1)
1 ,Lz

. . . , B
z
(i−1)
hi−1

,Lz

]T
,

and for the inputs of the ithe layer as:

B ẑ(i), Lẑ
=

[
B

ẑ
(i)
1 ,Lẑ

. . . , B
ẑ
(i)
hi

,Lẑ

]T
B ẑ(i), Lẑ

=

[
B

ẑ
(i)
1 ,Lẑ

. . . , B
ẑ
(i)
hi

,Lẑ

]T

Hence, the over- and under-approximations of the inputs of the ith layer can be efficiently

computed as:

Ten
(
B ẑ(i),Lẑ

)
=Ten

(
Bz(i−1),Lz

)
∗W (i)

+ +Ten
(
Bz(i−1),Lz

)
∗W (i)

− + b(i) (4.22)

Ten
(
B ẑ(i),Lẑ

)
=Ten

(
Bz(i−1),Lz

)
∗W (i)

+ +Ten
(
Bz(i−1),Lz

)
∗W (i)

− + b(i) (4.23)

4.5.3 Mechanism of BERN-NN Polynomial Interval Arithmetic

We finally describe the proposed BERN-NN Polynomial Interval Arithmetic algorithm,

depicted in Figure 4.3. For a neural network with n inputs x1, . . . , xn, we initialize an over-

and under-approximation Bernstein polynomials for each of the inputs, i.e.,:

B
z
(0)
i ,1

= B
z
(0)
i ,1

= B
z
(0)
i ,1

i ∈ {1, . . . , n}.

Note that in the equation above, we used z
(0)
i as a replacement of xi to unify the notation

with the remainder of the operations (see Figure 4.3). To compute the Bernstein polynomials
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Figure 4.3: Mechanism of BERN-NN Polynomial Interval Arithmetic.

B
z
(0)
i ,1

and B
z
(0)
i ,1

, we recall that the coefficients of such polynomials depend on the input

domain. Hence, given a hypercube In(d, d) that bounds the input x of the neural network,

we compute the tensor representation of these polynomials as:

Ten
(
B

z
(0)
1 ,1

)
= Ten

(
B

z
(0)
1 ,1

)
=

d1
d1

⊗
1
1

⊗ . . .⊗

1
1

 (4.24)

Ten
(
B

z
(0)
2 ,1

)
= Ten

(
B

z
(0)
2 ,1

)
=

1
1

⊗
d2
d2

⊗ . . .⊗

1
1

 (4.25)

... (4.26)

Ten
(
B

z
(0)
n ,1

)
= Ten

(
B

z
(0)
n ,1

)
=

1
1

⊗
1
1

⊗ . . .⊗

dn
dn

 (4.27)

Next, we propagate these over- and under-approximation polynomials to the inputs of the

first layer in the neural network using (4.22) and (4.23). Given a user-defined approximation

order L, we propagate the polynomial approximations through the ReLU function using (4.20)

and (4.21) for each of the neurons in layer 1. The produced over- and under-approximations
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of the outputs of all neurons are aggregated together in one tensor which is then propagated

to the next layer. This process continues until we compute the over- and under-approximation

polynomials of the outputs of the neural network, denoted by B
z
(H)
j ,LH−1(x), Bz

(H)
j ,LH−1(x) for

j = 1, . . . , o. These polynomials are used as the solution of Problem 1.

It is important to note that the final Bernstein polynomials B
z
(H)
j ,LH−1(x), Bz

(H)
j ,LH−1(x) have

orders of LH−1 where L is the user-defined order of approximation of the ReLU function and

H is the number of layers. This polynomial order increases exponentially with the number of

hidden layers. Similarly, the shape of their multi-dimensional tensor representations is equal

to LH−1 +1 which increases exponentially with the number of hidden layers. To alleviate this

problem, we introduce a parameter called Lin. Based on this parameter, we drop the orders

of the post-bound over- and under-approximation polynomials to [1, · · · , 1]. In other words,

we linearize the approximation polynomials every Lin hidden layers. We use the algorithm

in [54] to perform such linearization of the Bernstein polynomial. Luckily, this algorithm,

like all the other operations in our BERN-NN involves tensor multiplications and additions

and hence can be parallelized over GPUs efficiently.

Finally, note that one can always obtain absolute bounds on the inputs or outputs of any of

the neurons (including the outputs of the neural network), thanks to the enclosure property

of Bernstein polynomials (4.4). Such absolute bounds are useful for reachability analysis and

model checkers.

4.5.4 GPU Implementation Details

To get the performance increase of GPUs without the complications of low-level languages,

we implemented this tool in PyTorch. As mentioned above, we represent n-dimensional

Bernstein polynomials as dense n-dimensional tensors. The tool becomes memory bound

very quickly as the number of input nodes increases, making the number of dimensions in

45



the tensors larger. In order to combat this, we use as many in-place operations as possible

to avoid repeatedly allocating large chunks of memory during computation. Similarly, the

multinomial coefficients used for degree elevation are used multiple times throughout the

tool, and we cache each the first time they are generated to avoid spending time re-doing

calculations and allocating additional memory.

We parallelized the tool on a node level: at each layer, the outputs of the last layer are

passed to each node, which then can run independently of each other on separate GPUs.

However, because the tensors become large very quickly, the gains in computation time only

offset the overhead of copying tensors between GPUs when the neural network is particularly

large. We collect and stack the outputs of all the nodes in one tensor and pass it to the next

layer. When the polynomials are being composed with the ReLU approximation, each term

is elevated to the highest degree expected of a composition between these two polynomials.

This both ensures that the outputs of all the neurons can be stacked, as they are all the

same shape and size, and also allows the multiplication of the stacked outputs of the last

layer by the incoming weights to be a simple broadcasting multiplication, which is then easily

parallelizable on a GPU.

We achieved additional performance gains by rewriting for-loops as element-wise tensor oper-

ations and by batching linear algebra operations like matrix multiplications and calculating

the least-square solutions of matrices, both of which allow operations to be easily parallelized

on GPUs and reduce the amount of time spent allocating many small patches of memory,

instead doing a single large allocation.
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4.6 Numerical Results

In this section, we perform a series of numerical experiments to evaluate the scalability and

effectiveness of our tool. First, we conduct an ablation study to check the effect of varying

different parameters (e.g., neural network width, neural network depth, ReLU approximation

order) on the performance of our tool. We utilize two metrics:

• Execution time: which measures the time (in seconds) needed to compute the final

Bernstein polynomials. Indeed, smaller values indicate better performance.

• Relative volume of the output set: this metric measures the “tightness” of the

produced over- and under-approximation polynomials. Without loss of generality, we

focus on neural networks with one output z(H) and we compute this metric as:

Vol_relative =
Vol_Output
Vol_Input

(4.28)

Vol_Input =
n∏

i=1

(
di − di

)
(4.29)

Vol_Output =
∫
· · ·
∫
In

(
Bz(H)(x)−Bz(H)(x)

)
dx1 . . . dxn (4.30)

Indeed, smaller values of this metric indicate tighter approximations of the output set.

After the ablation study, we compare our tool with a set of state-of-the-art bound compu-

tation tools—including the winner of the last 2022 Verification of Neural Network (VNN)

competition [45]—to study the relative performance.

Setup: We implemented our tool in Python3.9 using PyTorch for all tensor arithmetic. We

run all our experiments using a single GeForce RTX 2080 Ti GPU and two 24-core Intel(R)

Xeon(R). We like to note that the throughput of the tool can be increased by utilizing multiple

GPU to process different neurons in parallel in a batch-processing fashion. However, in this
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section, we focus on using only one GPU and we leave the generalization of our algorithm to

utilize multiple GPUs for future work.

4.6.1 Ablation study

The effect of varying the ReLU’s order of approximation:

We study the effect of varying the ReLU’s order of approximation L for a fixed NN architecture

on the execution time and the output’s relative volume space of our tool. In Figure 4.4, we

report the statistical results for 50 random networks of a fixed architecture. Figure 4.4 (top)

shows that increasing the approximation order increases the execution time. On the other

hand, Figure 4.4 (bottom) shows that the relative volume of the output set significantly

decreases with increasing the order of approximation. The results of both figures highlight

the trade-off between the tightness of the output bounds and the execution time as a function

of the ReLU approximation order L.

The effect of varying the input’s dimension:

We study the effect of varying the input’s dimension n, for a fixed NN architecture on the

execution time of our tool. Figure 4.5 shows that the execution time for computing the

output set grows linearly for smaller values of n but seems to grow more rapidly after n = 7.

This suggests that the proposed tool can be used efficiently for many control applications.

The effect of increasing the number of neurons per layer:

We study the effect of varying the number of neurons per layer Ne, for a fixed NN architecture

[3, Ne, Ne, 1] on the execution time of our tool. Figure 4.6 summarizes the execution times
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Figure 4.4: Effect of varying the ReLU’s order of approximation L for a NN architecture
[2, 20, 20, 1] on the execution time of our tool (top) and the relative volume of the output
set (bottom). We set n = 2, In = [−1, 1]n, and Lin = 0. The weights and biases are
generated randomly following uniform distribution between −5 and 5. The reported results
are generated for 50 experiments.
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Figure 4.5: Effect of varying the input’s dimension n for a NN architecture [n, 20, 20, 1] on the
execution time our tool. We set L = 2, In = [−1, 1]n, and Lin = 0. The weights and biases
are generated randomly following uniform distribution between −5 and 5. The reported
results are generated for 50 experiments.
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Figure 4.6: Effect of varying the number of neurons per layer Ne for a NN architecture
[2, Ne, Ne, 1] on the execution time of our tool. We set n = 2, L = 2, In = [−1, 1]n, and
Lin = 0. The weights and biases are generated randomly following uniform distribution
between −5 and 5. The reported results are generated for 50 experiments.

with a varying number of neurons per layer. The results show that increasing the number of

neurons per layer highly affects the execution time. This is due to the expensive arithmetic and

memory operations for large tensors that represent the Bernstein polynomials. Nevertheless,

this increase in execution time can be harnessed by using multiple GPUs to compute bounds

for different nodes in parallel along with using the same GPU to process multiple nodes

simultaneously.

The effect of increasing the number of hidden layers:

We study the effect of varying the number of hidden layers nh, with 20 neurons in every

hidden layer, on the execution time of our tool. Unlike the effect of increasing the number

of neurons per layer, the results in Figure 4.7 show that the execution time almost grows

linearly with the number of hidden layers.

Scalability analysis of Bern-NN:

We finally try to study the execution time of Bern-NN for relatively large neural networks.

In this study, we add extra layers with 100 neurons each and report the execution time in

Figure 4.8 for random neural networks. As shown in the figure, Bern-NN can process neural
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Figure 4.7: Effect of varying the number of hidden layers nh, for a NN architecture
[2, 20, .., 20, 1] with 20 neurons in every hidden layer on the execution time of our tool.
We set n = 2, L = 2, In = [−1, 1]n, and Lin = 0. The weights and biases are generated ran-
domly following uniform distribution between −5 and 5. The reported results are generated
for 50 experiments.
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Figure 4.8: Scalability of the Bern-NN tool as a function of increasing the total number of
neurons.

networks with more than 1000 neurons in less than 2 minutes.

4.6.2 Comparison against other tools

In this subsection, we compare the performance of our tool in terms of execution time and the

output set’s relative volume compared to bound propagation tools such as Symbolic Interval

Analysis (SIA)[4], alpha-CROWN [49], and reachability analysis tool such as POLAR [1].

We note that alpha-CROWN [49] was the winner of the 2022 VNN competition and we

compare Bern-NN against the bound propagation algorithm used within alpha-CROWN as a

representative tool for all the bound propagation techniques. Moreover, alpha-CROWN is

also designed to harness the computational powers of GPUs. We compare Bern-NN against
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Figure 4.9: Performance results in terms of average execution times (top) and relative volume
(bottom) for BERN-NN, SIA, and alpha-CROWN for different input spaces. The NN’s
architecture is [2, 20, 20, 1]. The ReLU’s order of approximation is L = 4, and Lin = 0. The
weights and biases are generated randomly following uniform distribution between −5 and
5. Input1 = In = [−5, 5]2, Input2 = In = [−10, 10]2, Input3 = In = [−20, 20]2, Input4 =
In = [−40, 40]2.

POLAR since it also uses polynomials (Taylor Model with a Bernstein error correction) to

compute bounds on the output of neural networks. POLAR [1] outperforms other reachability-

based tools and hence is a representative tool for such techniques.

Comparison against SIA and alpha-CROWN for random NN

We compare the performance of our tool to SIA and alpha-CROWN for random neural

networks with [2, 20, 20, 1] architecture for different hyperrectangle input spaces (Figure 4.9).

We also compare the performance as the input dimension of the network increases (Figure

4.10). The results show that SIA is the fastest in terms of execution time for all different input

hyperrectangles due to the simplicity of its computations. However, its relative volume is the

highest. On the other hand, Bern-NN’s relative volume is the smallest for all different input

spaces thanks to its tight higher-order ReLU approximations. Compared to alpha-CROWN

(which also runs on GPUs), Bern-NN is both faster and produces tighter bounds leading

to an average of 25% reduction in execution time with an average of 10% reduction in the

relative volume metric. This shows the practicality of Bern-NN for control applications.
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Figure 4.10: Performance results in terms of average execution times (top) and relative
volume (bottom) for BERN-NN, SIA, and alpha-CROWN for input’s dimensions n. The
NN’s architecture is [n, 20, 20, 1]. the input’s space is [−10, 10]n. The ReLU’s order of
approximation is L = 4, Lin = 0. The weights and biases are generated randomly following
uniform distribution between −5 and 5. dim1 = n = 2, dim2 = n = 3, dim3 = n = 4.

Case Study for Control Benchmarks

In this experiment, we test different tools on benchmarks of NN controllers (used by POLAR)

to evaluate the tightness of their estimated bounds. Table 4.3 shows the architecture of the

networks used in each benchmark. Table 4.2 summarizes the performance of the tools with

respect to the average execution time and average relative volume for six control benchmarks.

The results show that Bern-NN provides the tightest estimate for the output set for all

benchmarks except Benchmark 3. We would like to highlight that the tight approximation

provided by Bern-NN is important for control applications because the specification of interest

is usually defined over a time horizon and require multi-step reachability, hence, tighter

bounds at each step are crucial. Lastly, Bern-NN is faster than alpha-CROWN over all

benchmarks except Benchmark 5. However, SIA and POLAR are faster than Bern-NN but

provide looser bound estimates. Each benchmark is run with five different hyperrectangles

that are all centered around zero and have a radius r ∈ {1, 1.5, 2, 2.5, 3}.
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Table 4.2: Performance results in terms of average execution times and volume for BERN-NN,
SIA, alpha-CROWN, and POLAR, for 5 different input’s spaces In

(
d, d
)

for 6 benchmarks
[1]. The ReLU’s order of approximation is L = 2, Lin = 0.

Tool Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 Benchmark 5 Benchmark 6
time volume time volume time volume time volume time volume time volume

SIA 0.01 2.544 0.02 6.05 0.01 1.02 0.01 9.41 0.02 53.38 0.02 2.03
CROWN 2.9 3.1 3.49 5.50 3.54 0.73 3.13 17.04 3.80 77.72 4.10 2.4

Bern−NN 0.84 1.62 1.30 5.4 1.09 0.81 1.15 6.21 41.7 35.85 3.25 1.38
POLAR 0.21 25.43 0.284 51.80 0.29 18.81 0.42 33.32 5.52 432.75 0.81 7.00

Table 4.3: Architectures of POLAR Benchmarks

Architecture
Benchmark 1 [2,20,20,1]
Benchmark 2 [2,20,20,1]
Benchmark 3 [2,20,20,1]
Benchmark 4 [3,20,20,1]
Benchmark 5 [3,100,100,1]
Benchmark 6 [4,20,20,20,1]

4.7 Conclusion

In conclusion, we presented Bern-NN, a tool for computing higher-order tight bounds for

NNs by approximating non-linear ReLU activations using Bernstein polynomials. We pro-

vided GPU-based computational machinery to handle tensor arithmetic for manipulating

polynomials as well as bounding them using the properties of Bernstein polynomials. We

conducted extensive experiments to evaluate the scalability of our tool as well as compare

its estimated bounds with state-of-the-art methods. The results showed that our tool can

process neural networks with thousands of neurons in a few minutes. These results also show

that our tool outperforms state-of-the-art tools in terms of computing tighter bounds while

reducing the execution time compared to other tools.
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Chapter 5

DeepBern-Nets

As discussed in the previous chapters, formal certification of Neural Networks (NNs) is crucial

for ensuring their safety, fairness, and robustness. Unfortunately, on the one hand, sound

and complete certification algorithms of ReLU-based NNs do not scale to large-scale NNs.

On the other hand, incomplete certification algorithms—based on propagating input domain

bounds to bound the outputs of the NN—are easier to compute, but they result in loose

bounds that deteriorate with the depth of NN, which diminishes their effectiveness. In this

paper, we ask the following question; can we replace the ReLU activation function with

one that opens the door to incomplete certification algorithms that are easy to compute

but can produce tight bounds on the NN’s outputs? We introduce DeepBern-Nets, a class

of NNs with activation functions based on Bernstein polynomials instead of the commonly

used ReLU activation. Bernstein polynomials are smooth and differentiable functions with

desirable properties such as the so-called range enclosure and subdivision properties. We

design a novel Interval Bound Propagation (IBP) algorithm, called Bern-IBP, to efficiently

compute tight bounds on DeepBern-Nets outputs. Our approach leverages the properties of

Bernstein polynomials to improve the tractability of neural network certification tasks while

maintaining the accuracy of the trained networks. We conduct comprehensive experiments
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in adversarial robustness and reachability analysis settings to assess the effectiveness of

the proposed Bernstein polynomial activation in enhancing the certification process. Our

proposed framework achieves high certified accuracy for adversarially-trained NNs, which is

often a challenging task for certifiers of ReLU-based NNs. Moreover, using Bern-IBP bounds

for certified training results in NNs with state-of-the-art certified accuracy compared to ReLU

networks. This work establishes Bernstein polynomial activation as a promising alternative

for improving neural network certification tasks across various NNs applications. The code

for DeepBern-Nets is publicly available1.

5.1 Introduction

Deep neural networks (NNs) have revolutionized numerous fields with their remarkable

performance on various tasks, ranging from computer vision and natural language processing

to healthcare and robotics. As these networks become integral components of critical systems,

ensuring their safety, security, fairness, and robustness is essential. It is unsurprising, then,

the growing interest in the field of certified machine learning, which resulted in NNs with

enhanced levels of robustness to adversarial inputs [55, 56, 57, 58], fairness [59, 60, 61, 62],

and correctness [63].

While certifying the robustness, fairness, and correctness of NNs with respect to formal prop-

erties is shown to be NP-hard [10], state-of-the-art certifiers rely on computing upper/lower

bounds on the output of the NN and its intermediate layers [39, 38, 64, 65, 37]. Accurate

bounds can significantly reduce the complexity and computational effort required during the

certification process, facilitating more efficient and dependable evaluations of the network’s

behavior in diverse and challenging scenarios. Moreover, computing such bounds has opened

the door for a new set of “certified training” algorithms [66, 67, 68] where these bounds are
1https://github.com/rcpsl/DeepBern-Nets
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used as a regularizer that penalizes the worst-case violation of robustness or fairness, which

leads to training NNs with favorable properties. While computing such lower/upper bounds

is crucial, current techniques in computing lower/upper bounds on the NN outputs are either

computationally efficient but result in loose lower/upper bounds or compute tight bounds

but are computationally expensive. In this paper, we are interested in algorithms that can

be both computationally efficient and lead to tight bounds.

This work follows a Design-for-Certifiability approach where we ask the question; can we

replace the ReLU activation function with one that allows us to compute tight upper/lower

bounds efficiently? Introducing such novel activation functions designed with certifiability

in mind makes it possible to create NNs that are easier to analyze and certify during their

training. Our contributions in this paper can be summarized as follows:

1. We introduce DeepBern-Nets, a NN architecture with a new activation function based

on Bernstein polynomials. Our primary motivation is to shift some of the computational

efforts from the certification phase to the training phase. By employing this approach,

we can train NNs with known output (and intermediate) bounds for a predetermined

input domain which can accelerate the certification process.

2. We present Bern-IBP, an Interval Bound Propagation (IBP) algorithm that computes

tight bounds of DeepBern-Nets leading to an efficient certifier.

3. We show that Bern-IBP can certify the adversarial robustness of adversarially-trained

DeepBern-Nets on MNIST and CIFAR-10 datasets even with large architectures with

millions of parameters. This is unlike state-of-the-art certifiers for ReLU networks,

which often fail to certify robustness for adversarially-trained ReLU NNs.

4. We show that employing Bern-IBP during the training of DeepBern-Nets yields high

certified robustness on the MNIST and CIFAR-10 datasets with robustness levels that
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are comparable—or in many cases surpassing—the performance of the most robust

ReLU-based NNs reported in the SOK benchmark.

We believe that our framework, DeepBern-Nets and Bern-IBP, enables more reliable guarantees

on NN behavior and contributes to the ongoing efforts to create safer and more secure NN-

based systems, which is crucial for the broader deployment of deep learning in real-world

applications.

5.2 DeepBern-Nets: Deep Bernstein Polynomial Net-

works

5.2.1 Bernstein polynomials preliminaries

Bernstein polynomials form a basis for the space of polynomials on a closed interval [69].

These polynomials have been widely used in various fields, such as computer-aided geometric

design [69], approximation theory [70], and numerical analysis [71], due to their unique

properties and intuitive representation of functions. A general polynomial of degree n in

Bernstein form on the interval [l, u] can be represented as:

P [l,u]
n (x) =

n∑
k=0

ckb
[l,u]
n,k (x), x ∈ [l, u] (5.1)

where ck ∈ R are the coefficients associated with the Bernstein basis b
[l,u]
n,k (x), defined as:

b
[l,u]
n,k (x) =

(
n
k

)
(u− l)n

(x− l)k(u− x)n−k, (5.2)

with
(
n
k

)
denoting the binomial coefficient. The Bernstein coefficients ck determine the shape

and properties of the polynomial P [l,u]
n (x) on the interval [l, u]. It is important to note that
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Figure 5.1: (Left) shows the structure of a DeepBern-Nets with two hidden layers. DeepBern-
Nets are similar to Feed Forward NNs except that the activation function is a Bernstein
polynomial. (Right) shows a simplified computational graph of a degree n Bernstein activation.
The Bernstein basis is evaluated at the input x using l and u computed during training, and
the output is then computed as a linear combination of the basis functions weighted by the
learnable Bernstein coefficients ck.

unlike polynomials represented in power basis form, the representation of a polynomial in

Bernstein form depends on the domain of interest [l, u] as shown in equation 5.1.

5.2.2 Neural Networks with Bernstein activation functions

We propose using Bernstein polynomials as non-linear activation functions σ in feed-forward

NNs. We call such NNs as DeepBern-Nets. Like feed-forward NNs, DeepBern-Nets consist of

multiple layers, each consisting of linear weights followed by non-linear activation functions.

Unlike conventional activation functions (e.g., ReLU, sigmoid, tanh, ..), Bernstein-based

activation functions are parametrized with learnable Bernstein coefficients c = c0, . . . , cn, i.e.,

σ(x; l, u, c) =
n∑

k=0

ckb
[l,u]
n,k (x), x ∈ [l, u], (5.3)

where x is the input to the neuron activation, and the polynomial degree n is an additional

hyper-parameter of the Bernstein activation and can be chosen differently for each neuron.

Figure 5.1 shows a simplified computational graph of the Bernstein activation and how it is
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used to replace conventional activation functions.

Training of DeepBern-Nets. Since Bernstein polynomials are defined on a specific

domain (equation 5.2), we need to determine the lower and upper bounds (l(k) and u(k)) of

the inputs to the Bernstein activation neurons in layer k, during the training of the network.

To that end, we assume that the input domain D is bounded with the lower and upper

bounds (denoted as l(0) and u(0), respectively) known during training. We emphasize that

our assumption that D is bounded and known is not conservative, as the input to the NN

can always be normalized to [0, 1], for example.

Using the bounds on the input domain l(0) and u(0) and the learnable parameters of the

NNs (i.e., weights of the linear layers and the Bernstein coefficients c for each neuron), we

Algorithm 1 Training step of an L-layer DeepBern-Net NN
1: Given: Training Batch (X , t) and input bounds [l(0), u(0)]
2: Initialize all parameters
3: Set the learning rate α
4: ▷ Forward propagation
5: Set y(0) = X
6: Set B(0) = [l(0), u(0)]
7: for i = 1....L do
8: if layer i is Bernstein activation then
9: l(i),u(i) ← B(i−1) ▷ Store Input bounds of the Bernstein layer

10: for each neuron z in layer i do
11: Let c

(i)
z be the Bernstein coefficients for neuron z of the i-th layer

12: B(i)
z ← [min

j
c
(i)
zj ,max

j
c
(i)
zj ]

13: B(i) ← [B(i)
0 ,B(i)

1 , ...,B(i)
m ] ▷ m denotes the number of neurons in layer i

14: else
15: B(i) ←IBP(B(i−1))

16: y(i) ← forward(y(i−1)) ▷ Regular forward step
17: ▷ Backpropagation
18: Compute the loss function: L(y(L), t)
19: Compute the gradients with respect to all model parameters (including Bernstein coeffi-

cients)
20: for each Parameter θ do ▷ W̊eights, biases, and Bernstein coefficients ck
21: θ ← θ − α∇θL
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will update the bounds l(k) and u(k) with each step of training by propagating l(0) and u(0)

through all the layers in the network. Unlike conventional non-linear activation functions

where symbolic bound propagation relies on linear relaxation techniques [4, 22], the Bernstein

polynomial enclosure property allows us to bound the output of an n-th order Bernstein

activation in O(n) operations (Algorithm 1-line 12). We start by reviewing the enclosure

property of Bernstein polynomials as follows.

Property 1 (Enclosure of Range [72]). The enclosure property of Bernstein polynomials

states that for a given polynomial P [l,u]
n (x) of degree n in Bernstein form on an interval [l, u],

the polynomial lies within the convex hull of its Bernstein coefficients. In other words, the

Bernstein polynomial is bounded by the minimum and maximum values of its coefficients ck

regardless of the input x.

min
0≤k≤n

ck ≤ P [l,u]
n (x) ≤ max

0≤k≤n
ck, ∀x ∈ [l, u]. (5.4)

Algorithm 1 outlines how to use the enclosure property to propagate the bounds from

one layer to another for a single training step in an L-layer DeepBern-Net. In contrast to

normal training, we calculate the worst-case bounds for the inputs to all Bernstein layers by

propagating the bounds from the previous layers. Such bound propagation can be done for

linear layers using interval arithmetic [36]—referred to in Algorithm 1-line 15 as Interval

Bound Propagation (IBP)—or using Property 1 for Bernstein layers (Algorithm 1-Line 12).

We store the resulting bounds for each Bernstein activation function. Then, we perform the

regular forward step. The parameters are then updated using vanilla backpropagation, just

like conventional NNs. During inference, we directly use the stored layer-wise bounds l(k) and

u(k) (computed during training) to propagate any input through the network. In Appendix

B.3.3, we show that the overhead of computing the bounds l(k) and u(k) during training adds
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between 0.2× to 5× overhead for the training, depending on the order n of the Bernstein

activation function and the size of the network.

Stable training of DeepBern-Nets. Using polynomials as activation functions in deep

NNs has attracted several researchers’ attention in recent years [73, 74]. A major drawback

of using polynomials of arbitrary order is their unstable behavior during training due to

exploding gradients–which is prominent with the increase in order [74]. In particular, for a

general nth order polynomial in power series fn(x) = w0 + w1x+ . . .+ wnx
n, its derivative

is dfn(x)/dx = w1 + . . . + nwnx
n−1. Hence training a deep NN with multiple polynomial

activation functions suffers from exploding gradients as the gradient scales exponentially with

the increase in the order n for x > 1.

Luckily, and thanks to the unique properties of Bernstein polynomials, DeepBern-Net does

not suffer from such a limitation as captured in the next result, whose proof is given in

Appendix B.1.1.

Proposition 5.2.1. Consider the Bernstein activation function σ(x; l, u, c) of arbitrary order

n. The following holds:

1.
∣∣ d
dx
σ(x; l, u, c)

∣∣ ≤ 2nmaxk∈{0,...,n} |ck|,

2.
∣∣∣ d
dci

σ(x; l, u, c)
∣∣∣ ≤ 1 for all i ∈ {0, . . . , n}.

Proposition 5.2.1 ensures that the gradients of the proposed Bernstein-based activation

function depend only on the value of the learnable parameters c = (c0, . . . , cn). Hence, the

gradients do not explode for x > 1. This feature is not enjoyed by the polynomial activation

functions in [74] and leads to better stable training properties when the Bernstein polynomials

are used as activation functions. Moreover, one can control these gradients by adding a

regularizer–to the objective function–that penalizes high values of ck, which is common for
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other learnable parameters, i.e., weights of the linear layer. Proof of Proposition 5.2.1 is in

Appendix B.1.1

5.3 Bern-IBP: Certification using Bernstein Interval Bound

Propagation

5.3.1 Certification of global properties using Bern-IBP

We consider the certification of global properties of NNs. Global properties need to be held

true for the entire input domain D of the network. For simplicity of presentation, we will

assume that the global property we want to prove takes the following form:

∀y(0) ∈ D =⇒ y(L) = NN (y(0)) > 0 (5.5)

where y(L) is a scalar output and NN is the NN of interest. Examples of such global properties

include the stability of NN-controlled systems [75] as well as global individual fairness [62].

In this paper, we focus on the incomplete certification of such properties. In particular, we

certify properties of the form (5.5) by checking the lower/upper bounds of the NN. To that

end, we define the lower L and upper U bounds of the NN within the domain D as any real

numbers that satisfy:

L
(
NN (y(0)),D

)
≤ min

y(0)∈D
NN (y(0)), U

(
NN (y(0)),D

)
≥ max

y(0)∈D
NN (y(0)) (5.6)

Incomplete certification of (5.5) is equivalent to checking if L
(
NN (y(0)),D

)
> 0. Thanks

to the Enclosure of Range (Property 1) of DeepBern-Nets, one can check the condition

L
(
NN (y(0)),D

)
> 0 in constant time, i.e., O(1), by simply checking the minimum Bernstein
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coefficients of the output layer.

5.3.2 Certification of local properties using Bern-IBP

Local properties of NNs are the ones that need to be held for subsets S of the input domain

D, i.e.,

∀y(0) ∈ S ⊂ D =⇒ y(L) = NN (y(0)) > 0 (5.7)

Examples of local properties include adversarial robustness and the safety of NN-controlled

vehicles [33, 76, 77]. Similar to global properties, we are interested in incomplete certification

by checking whether L
(
NN (y(0)), S

)
> 0.

The output bounds stored in the Bernstein activation functions are the worst-case bounds for

the entire input domain D. However, for certifying local properties over S ⊂ D, we need to

refine these output bounds on the given sub-region S. To that end, for a Bernstein activation

layer k with input bounds [l(k), u(k)] (computed and stored during training), we can obtain

tighter output bounds thanks to the following subdivision property of Bernstein polynomials.

Property 2 (Subdivision [72]). Given a Bernstein polynomial P [l,u]
n (x) of degree n on the

interval [l, u], the coefficients of the same polynomial on subintervals [l, α] and [α, u] with

α ∈ [l, u] can be computed as follows. First, compute the intermediate coefficients ckj for

k = 0, ..., n and j = k, ..., n

ckj =

 cj if k = 0

(1− τ)ck−1
j−1 + τck−1

j if k > 0
, c′i = cii c′′i = cn−i

n i = 0 . . . n,
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where τ = α−l
u−l

. Next, the polynomials defined on each of the subintervals [l, α] and [α, u] are:

P [l,α]
n (x) =

n∑
k=0

c′kb
[l,α]
n,k (x), P [α,u]

n (x) =
n∑

k=0

c′′kb
[α,u]
n,k (x).

Indeed, we can apply the Subdivision property twice to compute the coefficients of the

polynomial P [α,β]
n . Computing the coefficients on the subintervals allows us to tightly bound

the polynomial using property 1. Therefore, given a DeepBern-Net trained on D = [l(0), u(0)],

we can compute tighter bounds on the subregion S = [l̂(0), û(0)] by applying the subdivision

property (Property 2) to compute the Bernstein coefficients on the sub-region S, and then use

the enclosure property (Property 1) to compute tight bounds on the output of the activation

equivalent to the minimum and maximum of the computed Bernstein coefficients. We do this

on a layer-by-layer basis until we reach the output of the NN. Implementation details of this

approach is given in Appendix B.2.

5.4 Experiments

Implementation: Our framework has been developed in Python, and is designed to facilitate

the training of DeepBern-Nets and certify local properties such as Adversarial Robustness

and certified training. We use PyTorch [78] for all neural network training tasks. To conduct

our experiments, we utilized a single GeForce RTX 2080 Ti GPU in conjunction with a

24-core Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz. Only 8 cores were utilized for our

experiments.
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5.4.1 Experiment 1: Certification of Adversarial Robustness

The first experiment assesses the ability to compute tight bounds on the NN output and its

implications for certifying NN properties. To that end, we use the application of adversarial

robustness, where we aim to certify that a NN model is not susceptible to adversarial

examples within a defined perturbation set. The results in [2, 79] show that state-of-the-art

IBP algorithms fail to certify the robustness of NNs trained with Projected Gradient Descent

(PGD), albeit being robust, due to the excessive errors in the computed bounds, which forces

designers to use computationally expensive sound and complete algorithms. Thanks to the

properties of DeepBern-Nets, the bounds computed by Bern-IBP are tight enough to certify

the robustness of NNs without using computationally expensive sound and complete tools.

To that end, we trained several NNs using the MNIST [6] and CIFAR-10 [80] datasets using

PGD. We trained both Fully Connected Neural Networks (FCNN) and Convolutional Neural

Networks (CNNs) on these datasets with Bernstein polynomials of orders 2, 3, 4, 5, and 6.

For detailed information regarding the model architectures, please refer to Appendix B.3.2.

Further information about the training procedure can be found in Appendix B.3.1.

Formalizing adversarial robustness as a local property

Given a NN modelNN : [0, 1]d → Ro, a concrete input xn, a target class t, and a perturbation

parameter ϵ, the adversarial robustness problem asks that the NN output be the target class

t for all the inputs in the set {x | ∥x−xn∥∞ ≤ ϵ}. In other words, a NN is robust whenever:

∀x ∈ S(xn, ϵ) = {x | ∥x− xn∥∞ ≤ ϵ} =⇒ NN (x)t > NN (x)i, i ̸= t

where NN (x)t is the NN output for the target class and NN (x)i is the NN output for any

class i other that t. To certify the robustness of a NN, one can compute a lower bound on
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the adversarial robustness Lrobust for all classes i ̸= t as:

Lrobust(xn, ϵ) = min
i ̸=t

(
L
(
NN (x)t, S(xn, ϵ))− U

(
NN (x)i, S(xn, ϵ)

))
(5.8)

≤ min
i ̸=t

(
min

x∈S(xn,ϵ)
NN (x)t −NN (x)i

)
(5.9)

Indeed, the NN is robust whenever Lrobust > 0. Nevertheless, the tightness of the bounds

L(NN (x)t, S(xn, ϵ)) and U(NN (x)i, S(xn, ϵ)) plays a significant role in the ability to

certify the NN robustness. The tighter these bounds, the higher the ability to certify the NN

robustness.

Experiment 1.1: Tightness of output bounds - Bern-IBP vs IBP

For each trained neural network, we compute the lower bound on robustness Lrobust(xn, ϵ)

using Bern-IBP and using state-of-the-art Interval Bound Propagation (IBP) that does not

take into account the properties of DeepBern-Nets. In particular, for this experiment, we used

auto_LiRPA[39], a tool that is part of αβ-CROWN[39]—the winner of the 2022 Verification

of Neural Network (VNN) competition [79]. Figure 5.2 shows the difference between the

bound Lrobust(xn, ϵ) computed by Bern-IBP and the one computed by IBP using a semi-log

scale. The raw data for the adversarial robustness bound Lrobust(xn, ϵ) for both Bern-IBP

and IBP is given in Appendix B.3.4.

The results presented in Figure 5.2 clearly demonstrate that Bern-IBP yields significantly

tighter bounds in comparison to IBP. Figure 5.2 also shows that for all values of ϵ, the bounds

computed using IBP become exponentially looser as the order of the Bernstein activations

increase, unlike the bounds computed with Bern-IBP, which remain precise even for higher-

order Bernstein activations or larger values of ϵ. The raw data in Appendix B.3.4 provide a

clearer view on the superiority of computing Lrobust(xn, ϵ) using Bern-IBP compared to IBP.
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Figure 5.2: A visual representation of the tightness of bounds computed using Bern-IBP
compared to IBP. The figure shows the log difference between Lrobust computed using Bern-
IBP and IBP for NNs with varying orders of and different values of ϵ. The figure demonstrates
the enhanced precision and scalability of the Bern-IBP method in computing tighter bounds,
even for higher-order Bernstein activations and larger values of ϵ, as compared to the naive
IBP method.

Experiment 1.2: Certification of Adversarial Robustness using Bern-IBP

Next, we show that the superior precision of bounds calculated using Bern-IBP can lead to

efficient certification of adversarial robustness. Here, we define the certified accuracy of the

NN as the percentage of the data points (in the test dataset) for which an adversarial input

can not change the class (the output of the NN). Table 5.1 contrasts the certified accuracy for

the adversarially-trained (using 100-step PGD) DeepBern-Nets of orders 2, 4, and 6, using

Table 5.1: A comparison of certified accuracy and verification time for neural networks
with Bernstein polynomial activations using both IBP and Bern-IBP methods and varying
values of ϵ. The table also presents the upper bound on certified accuracy calculated using
a 100-step PGD attack. The results highlight the superior performance of Bern-IBP in
certifying robustness properties compared to IBP.

Dataset Model
(# of params) Test acc. (%) ϵ

IBP Bern-IBP U.B (PGD)

Time (s) Certified
acc. (%) Time (s) Certified

acc. (%)
Certified
acc. (%)

MNIST

CNNa_4
(190,426) 97.229

0.01 3.45 0 1.43 88.69 95.97
0.03 3.41 0 1.42 72.12 92.53
0.1 3.26 0 1.39 65.22 75.27

CNNb_2
(905,882) 97.14

0.01 4.38 0 2.07 80.21 95.42
0.03 4.58 0 2.11 56.49 90.57
0.1 4.61 0 1.97 72.35 78.6

CIFAR-10

CNNa_6
(258,626) 46.77 1/255 3.29 0 1.82 27.74 33.53

2/255 3.25 0 1.83 33.49 35.81
CNNb_4

(1,235,994) 54.66 1/255 5.17 0 4.45 28.55 42.86
2/255 5.14 0 4.33 14.7 36.73
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both IBP and Bern-IBP methods and varying values of ϵ. As observed by the table, IBP

fails to certify the robustness of all the NNs. On the other hand, Bern-IBP achieved high

certified accuracy for all the NNs with varying values of ϵ. Finally, we use the methodology

reported in [39] to upper bound the certified accuracy using 100-step PGD attack.

It is essential to mention that IBP’s inability to certify the robustness of NNs is not unique

to DeepBern-Nets. In particular, as shown in [2, 79], most certifiers struggle to certify the

robustness of ReLU NNs when trained with PGD. This suggests the power of DeepBern-Nets,

which can be efficiently certified—in a few seconds even for NNs with millions of parameters,

as shown in Table 5.1—using incomplete certifiers thanks to the ability of Bern-IBP to

compute tight bounds.

5.4.2 Experiment 2: Certified training using Bern-IBP

In this experiment, we demonstrate that the tight bounds calculated by Bern-IBP can be

utilized for certified training, achieving state-of-the-art results. Although a direct comparison

with methods from certified training literature is not feasible due to the use of Bernstein

polynomial activations instead of ReLU activations, we provide a comparison with state-

of-the-art certified accuracy results from the SOK benchmark [2] to study how effectively

can Bern-IBP be utilized for certified training. We trained neural networks with the same

architectures as those in the benchmark to maintain a similar number of parameters, with the

polynomial order serving as an additional hyperparameter. The training objective adheres to

the certified training literature [81], incorporating the bound on the robustness loss in the

objective as follows:

min
θ

E
(x,y)∈(X,Y )

[
(1− λ)LCE(NN θ(x), y; θ) + λLRCE(S(x, ϵ), y; θ))

]
, (5.10)
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where x is a data point, y is the ground truth label, λ ∈ [0, 1] is a weight to control the

certified training regularization, LCE is the cross-entropy loss, θ is the NN parameters, and

LRCE is computed by evaluating LCE on the upper bound of the logit differences computed[81]

using a bounding method.

For DeepBern-Nets, LRCE is computed using Bern-IBP during training, while the networks in

the SOK benchmark are trained using CROWN-IBP [81]. Table 5.2 illustrates that employing

Bern-IBP bounds for certified training yields state-of-the-art certified accuracy (certified with

Bern-IBP) on these datasets, comparable to—or in many cases surpassing—the performance

of ReLU networks. The primary advantage of using Bern-IBP lies in its ability to compute

highly precise bounds using a computationally cheap method, unlike the more sophisticated

bounding methods for ReLU networks, such as α-Crown. For more details about the exact

architecture of the NNs, please refer to Appendix B.3.2

Table 5.2: A comparison of certified accuracy for NNs with Bernstein polynomial activations
versus ReLU NNs as in the SOK benchmark [2]. The certified accuracy is computed using
Bern-IBP for NNs with polynomial activations, and the method yielding highest certified
accuracy as reported in SOK for ReLU NNs. The table highlights the effectiveness of Bern-IBP
in achieving competitive certification while utilizing a very computationally cheap method
for tight bound computation.

Model MNIST Certified acc. (%) CIFAR-10 Certified acc. (%)
ϵ = 0.1 ϵ = 0.3 ϵ = 2/255 ϵ = 8/255

DeepBern-Net
(%)

SOK
(%)

DeepBern-Net
(%)

SOK
(%)

DeepBern-Net
(%)

SOK
(%)

DeepBern-Net
(%)

SOK
(%)

FCNNa 72 68 31 25 38 33 28 27
FCNNb 86 85 57 54 39 37 26 25
FCNNc 80 80 51 22 36 32 31 30
CNNa 95 95 82 88 45 46 31 34
CNNb 95 94 77 85 49 49 37 35
CNNc 87 89 72 87 38 51 32 38
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5.4.3 Experiment 3: Tight reachability analysis of NN-controlled

Quadrotor using Bern-IBP

In this experiment, we study the application-level impact of using Bernstein polynomial

activations in comparison to ReLU activations with respect to the tightness of reachable sets

in the context of safety-critical applications. Specifically, we consider a 6D linear dynamics

system ẋ = Ax+Bu representing a Quadrotor (used in [82, 83, 84]), controlled by a nonlinear

NN controller where u = NN (x). To ensure a fair comparison, both sets of networks are

trained on the same datasets, using the same architectures and training procedures. The

only difference between the two sets of networks is the activation function used (ReLU vs.

Bernstein polynomial).

After training, we perform reachability analysis with horizon T = 6 on each network using

the respective bounding methods: Crown and α-Crown for ReLU networks and the proposed

Bern-IBP for Bernstein polynomial networks. We compute the volume of the reachable sets

after each step for each network. The results are visualized in Figure 5.3, comparing the error

in the volume of the reachable sets for both ReLU and Bernstein polynomial networks. The

error is computed with respect to the true volume of the reachable set for each network, which

is computed by heavy sampling. As shown in Figure 5.3, using Bern-IBP on the NN with

Bernstein polynomial can lead to much tighter reachable sets compared to SOTA bounding

methods for ReLU networks. This experiment provides insights into the potential benefits of

using Bernstein polynomial activations for improving the tightness of reachability bounds,

which can have significant implications for neural network certification for safety-critical

systems.
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Figure 5.3: (Left) The trajectory of the Quadrotor for the ReLU and Bernstein polynomial
networks. (Right) the error in the reachable set volume e = (V̂ − V )/V for each of the
networks after each step. V̂ is the estimated volume using the respective bounding method
and V is the true volume of the reachable set using heavy sampling

5.5 Discussion and limitations

Societal impact. The societal impact of utilizing Bernstein polynomial activations in neural

networks lies in their potential to enhance the reliability and interpretability of AI systems,

enabling improved safety, fairness, and transparency in various real-world applications.

Limitations. While Bernstein polynomials offer advantages in the context of certification,

they also pose some limitations. One limitation is the increased computational complexity

during training compared to ReLU networks.
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Chapter 6

CertiFair: A Framework for Certified

Global Fairness of Neural Networks

We consider the problem of whether a Neural Network (NN) model satisfies global individual

fairness. Individual Fairness (defined in [85]) suggests that similar individuals with respect

to a certain task are to be treated similarly by the decision model. In this work, we have two

main objectives. The first is to construct a verifier which checks whether the fairness property

holds for a given NN in a classification task or provide a counterexample if it is violated, i.e.,

the model is fair if all similar individuals are classified the same, and unfair if a pair of similar

individuals are classified differently. To that end, We construct a sound and complete verifier

that verifies global individual fairness properties of ReLU NN classifiers using distance-based

similarity metrics. The second objective of this paper is to provide a method for training

provably fair NN classifiers from unfair (biased) data. We propose a fairness loss that can

be used during training to enforce fair outcomes for similar individuals. We then provide

provable bounds on the fairness of the resulting NN. We run experiments on commonly used

fairness datasets that are publicly available and we show that global individual fairness can

be improved by 96 % without significant drop in test accuracy.
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6.1 Introduction

Neural Networks (NNs) have become an increasingly central component of modern decision-

making systems, including those that are used in sensitive/legal domains such as crime

prediction [86], credit assessment [87], income prediction [87], and hiring decisions. However,

studies have shown that these systems are prone to biases [61] that deem their usage unfair

to unprivileged users based on their age, race, or gender. The bias is usually either inherent

in the training data or introduced during the training process. Mitigating algorithmic bias

has been studied in the literature [59, 60, 88] in the context of group and individual fairness.

However, the fairness of the NN is considered only empirically on the test data with the hope

that it represents the underlying data distribution.

Unlike the empirical techniques for fairness, we are interested to provide provable certificates

regarding the fairness of a NN classifier. In particular, we focus on the “global individual

fairness” property which states that a NN classification model is globally individually fair if

all similar pairs of inputs x, x′ are assigned the same class. We use a feature-wise closeness

metric instead of an ℓp norm to evaluate similarity between individuals, i.e, a pair x, x′ is

similar if for all features i, |xi−x′
i| ≤ δi. Given this fairness notion, the objective of this paper

is twofold. First, it aims to provide a sound and complete formal verification framework that

can automatically certify whether a NN satisfy the fairness property or produce a concrete

counterexample showing two inputs that are not treated fairly by the NN. Second, this paper

provides a training procedure for certified fair training of NNs even when the training data is

biased.

Challenge: Several existing techniques focus on generalizing ideas from adversarial robust-

ness to reason about NN fairness [89, 90]. By viewing unfairness as an adversarial noise that

can flip the output of a classifier, these techniques can certify the fairness of a NN locally,
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i.e., in the neighborhood of a given individual input. In contrast, this paper focuses on global

fairness properties where the goal is to ensure that the NN is fair with respect to all the

similar inputs in its domain. Such a fundamental difference precludes the use of existing

techniques from the literature on adversarial robustness and calls for novel techniques that

can provide provable fairness guarantees.

This work: We introduce CertiFair, a framework for certified global fairness of NNs. This

framework consists of two components. First, a verifier that can prove whether the NN satisfies

the fairness property or produce a concrete counterexample that violates the fairness property.

This verifier is motivated by the recent results in the “relational verification” problem [91]

where the goal is to verify hyperproperties that are defined over pairs of program traces. Our

approach is based on the observation that the global individual fairness property (6.1) can

be seen as a hyperproperty and hence we can generalize the concept of product programs to

product NNs that accepts a pair of inputs (x, x′), instead of a single input x, and generates

two independent outputs for each input. A global fairness property for this product NN can

then be verified using existing NN verifiers. Moreover, and inspired by methods in certified

robustness, we also propose a training procedure for certified fairness of NNs. Thanks again

to the product NN, mentioned above, one can establish upper bounds on fairness and use it

as a regularizer during the training of NNs. Such a regularizer will promote the fairness of

the resulting model, even if the data used for training is biased and can lead to an unfair

classifier. While such fairness regularizer will enhance the fairness of the model, one needs to

check if the fairness property holds globally using the sound and complete verifier mentioned

above.

Contributions: Our main contributions are:

• To the best of our knowledge, we present the first sound and complete NN verifier for
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global individual fairness properties.

• A method for training NN classifiers with a modified loss that enforces fair outcomes

for similar individuals. We provide bounds on the loss in fairness which constructs a

certificate on the fairness of the trained NN.

• We applied our framework to common fairness datasets and we show that global fairness

can be achieved with a minimal loss in performance.

6.2 Preliminaries

Our framework supports regression and multi-class classification models, however for sim-

plicity, we only present our framework for binary classification models h : Rn → {0, 1}

of the form h(x) = t(fθ(x)) where t is a threshold function with threshold equals to 0.5.

Moreover, we assume fθ is an L-layer NN with ReLU hidden activations and parameters

θ = ((W1, b1), . . . , (WL, bL)) where (Wi, bi) denotes the weights and bias of the ith layer. We

also assume the activation function of the last layer of fθ is a sigmoid function. The NN

accepts an input vector x where the components xi ∈ R (the set of real numbers) or xi ∈ Z

(the set of integer numbers). This is suitable for most of the datasets where some features of

the input are numerical while others are categorical. In this paper, we are interested in the

following fairness property:

Definition 6.2.1 (Global Individual Fairness [85, 92]). A model fθ(x) is said to satisfy the

global individual fairness property ϕ if the following holds:

∀x, x′ ∈ Dϕ s.t. d(x, x′) = 1 =⇒ h(fθ(x)) = h(fθ(x
′)), (6.1)

where d : Rn × Rn → {1, 0} is a similarity metric that evaluates to 1 when x and x′ are

similar and Dϕ is the input domain of x for property ϕ defined as Dϕ := D0
ϕ× ...×Dn−1

ϕ with
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Di
ϕ := {xi | li ≤ xi ≤ ui} for some bounds li and ui.

In this paper, we utilize the feature-wise similarity metric d defined as:

d(x, x′) =


1 if |xi − x′

i| ≤ δi ∀i ∈ {1, . . . n}

0 otherwise
(6.2)

This feature-wise similarity metric allows the fairness property ϕ in (6.1) to capture several

other fairness properties as special cases as follows:

Definition 6.2.2 (Individual discrimination [93]). A model fθ(x) is said to be nondiscrimi-

natory between individuals if the following holds:

∀x = (xs, xns), x
′ = (x′

s, x
′
ns) ∈ Dϕ s.t. xns = x′

ns and xs ̸= x′
s =⇒ h(fθ(x)) = h(fθ(x

′)),

where xs and xns denotes the sensitive attributes and non-sensitive attributes of x, respectively.

Indeed, the individual discrimination corresponds to a global individual fairness property

by setting δi = 0 in (6.2) for the non-sensitive attributes. Another definition of fairness[90]

states that two individuals are similar if their numerical features differ by no more than α.

Again, this can be represented by the closeness metric simply by setting δi = 0 for categorical

attributes and δi = α for numerical attributes.

Based on Definition 1 above, we can formally verify whether the fairness property ϕ holds by

checking if the set of counterexamples (or violations) C is empty, where C is defined as:

C =

{
(x, x′)

∣∣∣x, x′ ∈ Dϕ,

n−1∧
i=0

|xi − x′
i| < δi, h(x) ̸= h(x′)

}
= ∅. (6.3)
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6.3 Global Individual Fairness as a hyperproperty

In this section, we draw the connection between the verification of global individual fairness

properties (6.1) and hyperproperties in the context of program verification. On the one hand,

several local properties of NNs (e.g., adversarial robustness) are considered trace properties,

i.e., properties defined on the input-output behavior of the NN. In this case, one can search the

input space of the NN to find a single input (or counterexample) that leads to an output that

violates the property. In the domain of adversarial robustness, a counterexample corresponds

to a disturbance to an input that can change the classification output of a NN. On the

other hand, other properties, like the global fairness properties, can not be modeled as trace

properties. This stems from the fact that one can not judge the correctness of the NN by

considering individual inputs to the NN. Instead, finding a counterexample to the fairness

property will entail searching over pairs of inputs and comparing the NN outputs of these

inputs. Properties that require examining pairs or sets of traces (input-outputs of a program)

are defined as hyperproperties [91].

Figure 6.1: Construction of the Product NN.

Modeling global individual fairness as a hyperproperty leads to a direct certification framework.

In particular, a key idea in the hyperproperty verification literature is the notion of a product
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program that allows the reduction of the hyperproperty verification problem to a standard

verification problem [91]. A product program is constructed by composing two copies of

the original program together. The main benefit is that the hyperproperties of the original

program become trace properties of the product program that can be verified using standard

techniques. Motivated by this observation, our framework CertiFair generalizes the concept

of product programs into product NNs (described in detail in Section 6.4.2 and shown in

Figure 6.1) that accepts a pair of inputs and generates a pair of two independent outputs. We

then use the product network to verify fairness (hyper)properties using standard techniques.

6.4 CertiFair: A Framework for Certified Fairness of Neu-

ral Networks

As mentioned earlier in section 6.3, the fairness property can be viewed as a hyperproperty

of the NN. We propose the use of a product NN that can reduce the verification of such

hyperproperty into standard trace (input/output) property. In this section, we first explain

how to construct the product NN followed by how to use it to encode the fairness verification

problem into ones that are accepted by off-the-shelf NN verifiers. Next, we discuss how to use

this product NN to derive a fairness regualrizer that can be used during training to obtain a

certified fair NN.
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6.4.1 Product Neural Network

Given a neural network fθ, the product network fθp is basically a side-to-side composition of

fθ with itself. More formally, the parameters vector θp of the product NN is defined as:

θp =



W1 0

0 W1

 ,

b1
b1


 , . . . ,


WL 0

0 WL

 ,

bL
bL



 (6.4)

where (Wi, bi) are the weights and biases of the ith layer of fθ. The input to the product

network fθp is a pair of concatenated inputs xp = (x, x′). Finally, we add an output layer

that results in an output hp ∈ {0, 1} defined as: hp(fθp(xp)) = |h(fθ(x))− h(fθ(x
′))| where

the absolute value operator |.| can be implemented using ReLU nodes by noticing that

|a| = max(a, 0) +max(−a, 0). Figure 6.1 summarizes this construction.

6.4.2 Fairness Verification

Using the product network defined above, we can rewrite the set of counterexamples C in (6.3)

as:

Cp =

{
xp

∣∣∣xp ∈ Dϕ ×Dϕ,
n−1∧
i=0

|xi − x′
i| < δi, hp(xp) > 0

}
(6.5)

which corresponds to the standard verification of NN input-output properties in equation

(2.2), albeit being defined over the product network inputs and outputs..

To check the emptiness of the set Cp in (6.5) (and hence certify the global individual fairness

property), we need to search the space Dϕ ×Dϕ to find at least one counterexample that

violates the fairness property, i.e., a pair xp = (x, x′) that represent similar individuals who

are classified differently by the NN. Finding such a counterexample is, in general, NP-hard

due to the non-convexity of the ReLU NN fθp . To that end, we use PeregriNN [38] as our
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NN verifier. Briefly, PeregriNN overapproximates the highly non-convex NN with a linear

convex relaxation for each ReLU activation. This is done by introducing two optimization

variables for each ReLU, a pre-activation variable ŷ and a post-activation variable y. The

non-convex ReLU function can then be overapproximated by a triangular region of three

constraints; y ≥ 0, y ≥ ŷ, and y ≤ u
u−l

(ŷ − l), where l,u are the lower and upper bounds of

ŷ respectively. The solver tries to check whether the approximate problem has no solution

or iteratively refine the NN approximation until a counterexample that violates the fairness

constraint is found. PeregriNN employs other optimizations in the objective function to guide

the refinement of the NN approximation but the details of these methods are beyond the

scope of this paper. We refer the reader to chapter 3 for more details on the internals of the

solver.

Proposition 6.4.1. Consider a NN model fθ and a fairness property ϕ—either representing

a Global Individual Fairness property (Definition 6.2.1) or an Individual Discrimination

property (Definition 6.2.2). Consider a set of counterexamples Cp computed using a NN

verifier applied to the product network fθp. The NN satisfies the property ϕ whenever the set

Cp is empty.

Proof. This result follows directly from the equivalence between the sets C in (6.3) and Cp

in (6.5) along with the NN verifiers (like PeregriNN) being sound and complete and hence

capable of finding any counterexample, if one exists.

6.4.3 Certified Fair Training

In this section, we formalize a fairness regularizer that can be used to train certified fair

models. In particular, we propose two fairness regularizers that correspond to local and global

individual fairness. We provide the formal definitions of both these regularizers below and

their characteristics.
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Local Fairness Regularizer Ll
f using Robustness around Training Data: Our first

proposed regularizer is motivated by the robustness regularizers used in the literature of

certified robustness [26, 81]. The regualrizer, denoted by Ll
f , aims to minimize the average

loss in fairness across all training data. More formally, given a training point (x, y) and NN

parameters θ, let L(fθ(x), y; θ) = −[y log(fθ(x)) + (1 − y) log(1 − fθ(x))] be the standard

binary cross-entropy loss. The fairness regularizer Ll
f can then be defined as:

Ll
f (θ) = E(x,y)∈(X,Y )

 max
x′∈Dϕ

d(x,x′)=1

L(fθ(x′), y; θ)

 (6.6)

= E(x,y)∈(X,Y )

[
max

x′∈Sϕ(x)
−y log(fθ(x′))− (1− y) log(1− fθ(x

′))

]

In other words, the regularizer above aims to measure the expected value (across the training

data) for the worst-case loss of fairness due to points x′ that are assigned to different classes.

Indeed, the regualrizer (6.6) is not differentiable (with respect to the weights θ) due to the

existence of the max operator. Nevertheless, one can compute an upper bound of (6.6) and

aims to minimize this upper bound instead. Such upper bound can be derived as follows:

max
x′∈Dϕ

d(x,x′)=1

L(fθ(x′), y; θ) =max
x′∈Dϕ

d(x,x′)=1


− log(1− fθ(x

′)) if y=0

− log(fθ(x
′)) if y=1

(6.7)

≤


− log(1− θTwSϕ(x)) if y=0

− log(θTwSϕ(x)
) if y=1

(6.8)

where θTwSϕ(x) and θTwSϕ
are the linear upper/lower bound of fθ(x′) inside the set Sϕ(x) =

{x′ ∈ Dϕ|d(x, x′) = 1}. Such linear upper/lower bound of fθ(x′) can be computed using

off-the-shelf bounding techniques like Symbolic Interval Analysis [4] and α-Crown [49]. We

denote by L(y; θ) the right hand side of the inequality in (6.8) which depends only on the

label y and the NN parameters θ. Now the fairness property can be incorporated in training
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by optimizing the following problem over θ (the NN parameters):

min
θ

E
(x,y)∈(X,y)

(1− λf )L(fθ(x), y; θ)︸ ︷︷ ︸
natural loss

+λf L(y; θ)︸ ︷︷ ︸
local fairness loss

 , (6.9)

where λf is a regularization parameter to control the trade-off between fairness and accuracy.

Although easy to compute and incorporate in training, the regularizer Ll
f (θ) (and its upper

bound) defined above suffers from a significant drawback. It focuses on the fairness around the

samples presented in the training data. In other words, although the aim was to promote global

fairness, this regularizer is effectively penalizing the training only in the local neighborhood of

the training data. Therefore, its effectiveness depends greatly on the quality of the training

data and its distribution. Poor data distribution may lead to the poor effect of this regularizer.

Next, we introduce another regularizer that avoids such problems.

Global Fairness Regularizer Lg
f using Product Network: To avoid the dependency

on data, we introduce a novel fairness regularizer capable of capturing global fairness during

the training. Such a regularizer is made possible thanks to the product NN defined above. In

particular, the global fairness regularizer Lg
f (θ) is defined as:

Lg
f (θ) = max

(x,x′)∈Dϕ×Dϕ

d(x,x′)=1

|fθ(x)− fθ(x
′)| (6.10)

In other words, the regualizer Lg
f (θ) in (6.10) aims to penalize the worst case loss in global

fairness. Similar to (6.6), the Lg
f (θ) is also non-differentiable with respect to θ. Nevertheless,

and thanks to the product NN, we can upper bound Lg
f (θ) as:

Lg
f (θ) ≤ max

(x,x′)∈Dϕ×Dϕ

|fθ(x)− fθ(x
′)| = max

xp∈Dϕ×Dϕ

fp(xp) ≤ θTwDϕ
(6.11)
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where θTwDϕ
is the linear upper bound of the product network among the domain Dϕ ×Dϕ.

Again, such bound can be computed using Symbolic Interval Analysis and α-Crown on the

product network after replacing the output hp with fp = |fθ(x)− fθ(x
′)|. It is crucial to note

that the upper bound in (6.11) depends only on the domain Dϕ. Hence, the fairness property

can now be incorporated into training by minimizing this upper bound as:

min
θ

E
(x,y)∈(X,y)

(1− λf )L(fθ(x), y; θ)︸ ︷︷ ︸
natural loss

+ λf θTwDϕ︸ ︷︷ ︸
global fairness loss

, (6.12)

where the fairness loss is now outside the E[ . ] operator.

In the next section, we show that the global fairness regularizer Lg
f (θ) empirically outperforms

the local fairness regularizer Ll
f (θ). We end up our discussion in this section with the following

result:

Proposition 6.4.2. Consider a NN model fθ and a fairness property ϕ—either representing

a Global Individual Fairness property (Definition 6.2.1) or an Individual Discrimination

property (Definition 6.2.2). Consider a NN model fθ trained using the objective function

in (6.12). If θTwDϕ
= 0 by the end of the training, then the resulting fθ is guaranteed to

satisfy ϕ.

Proof. The result follows directly from equation (6.11).

Indeed, the result above is just a sufficient condition. In other words, the NN may still

satisfy the fairness property ϕ even if θTwDϕ
> 0. Such cases can be handled by applying the

verification procedure in Section 6.4.2 after training the NN.

84



6.5 Experimental evaluation

We present an experimental evaluation to study the effect of our proposed fairness regularizers

and hyperparameters on the global fairness. We evaluated CertiFair on four widely investigated

fairness datasets (Adult [87], German [87], Compas [94], and Law School [95]). All datasets

were pre-processed such that any missing rows or columns were dropped, features were scaled

so that they’re between [0, 1], and categorical features were one-hot encoded.

Implementation: We implemented our framework in a Python tool called CertiFair that can

be used for training and verification of NNs against an individual fairness property. CertiFair

uses Pytorch for all NN training and a publicly available implementation of PeregriNN [38]

as a NN verifier. We run all our experiments using a single GeForce RTX 2080 Ti GPU and

two 24-core Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (only 8 cores were used for these

experiments).

Table 6.1: Comparison between verifying local and global fairness properties on the Adult
dataset for different similarity constraint (distance δi).

δi Certified Certified
local global

fairness fairness
(%) (%)

0.02 89.25 6.56
0.03 100.00 65.98
0.05 81.42 6.40
0.07 100.00 57.39
0.1 99.95 66.35

Measuring global fairness using verification: While the verifier (described in Sec-

tion 6.4.2) is capable of finding concrete counterexamples that violate the fairness, it is

also important to quantify a bound on the fairness. In these experiments, the certified

global fairness is quantified as the percentage of partitions of the input space with zero

counterexamples. In particular, the input space is partitioned using the categorical features,

i.e., the number of partitions is equal to the number of different categorical assignments and
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each partition corresponds to one categorical assignment. Note that the numerical features

don’t have to be fixed inside each partition (property dependant). To verify the property

globally, we run the verifier on each partition of the input space and verify the fairness

property. Finally, we count the number of verified fair partitions (normalized by the total

number of partitions).

Fairness properties: In the experimental evaluation, we consider two classes of fairness

properties. The first class P1 is the one in definition 6.2.2 where two individuals are similar

if they only differ in their sensitive attribute. The second class of properties P2 relaxes the

first by also allowing numerical attributes to be close (not identical), this is allowed under

definition 6.2.1 of global individual fairness by setting δi > 0 for numerical attributes.

6.5.1 Experiment 1: Global Individual Fairness vs. Local Individual

Fairness

In this experiment, we empirically show that NNs with high local individual fairness does not

necessarily result into NNs with global individual fairness. In particular, we train a NN on the

Adult dataset and considered multiple fairness properties (all from class P2 defined above) by

varying δi. Note that δi is equal for all features i within the same property, but is different

from one property to another. Next, we use PeregeriNN verifier to find counterexamples for

both the local fairness (by applying the verifier to the trained NN) and the global fairness (by

applying the verifier to the product NN). We measure the fairness of the NN for both cases

and report the results in Table 6.1. The results indicate that verifying local fairness may

result in incorrect conclusions about the fairness of the model. In particular, rows1-4 in the

table shows that counterexamples were not found in the neighborhood of the training data

(reflected by the 100% certified local fairness), yet verifying the product NN was capable of

finding counterexamples that are far from the training data leading to accurate conclusions
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Figure 6.2: Comparison between the base and CertiFair classifiers in terms of fairness as
defined in 6.2.2. We show the classifications for the minority group of the adult dataset
projected on two features; Age, and hours worked per week. The figure shows that the
base classifier suffers from biases against identical individuals who are of different race (red
markers). CertiFair is able to drastically improve the individual fairness on this dataset with
only 2% reduction in accuracy.

Figure 6.3: Test accuracy (left) and certified fairness (right) across training epochs when
training a NN with the fairness constraint (λf = 0.007) and without it (λf = 0) on the Adult
dataset.

about the NN fairness.

6.5.2 Experiment 2: Effects of Incorporating the Fairness Regular-

izer

We investigate the effect of using the global fairness regularizer (defined in (6.11)) on the

decisions of the NN classifier when trained on the Adult dataset. The fairness property for

this experiment is of class P1. To investigate the predictor’s bias, we first project the data

points on two numerical features (age and hours/week). Our objective is to check whether the
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points that are classified positively for the privileged group are also classified positively for

the non privileged group. Figure 6.2 (left) shows the predictions for the unprivileged group

when using the base classifier (λf = 0). Green markers indicate points for which individuals

from both privileged and non privileged groups are treated equally while red markers show

individuals from the non privileged group that did not receive the same NN output compared

to the corresponding identical ones in the privileged group. Figure 6.2 (right) shows the

same predictions but using the fair classifier (λf = 0.03), the predictions from this classifier

drastically decreased the discrimination between the two groups while only decreasing the

accuracy by 2%. These results suggest that we can indeed regularize the training to improve

the satisfaction of the fairness constraint without a drastic change in performance.

We also investigate how the certified fairness changes across epochs of training. To that end,

we train a NN for the German dataset and evaluate the test accuracy as well as the certified

global fairness after each epoch of training for two different values of λf . Figure 6.3 shows

the underlying trade-off between achieving fairness versus maximizing accuracy. As expected,

lower values of λf results in lower loss in accuracy (compared to the base case with λf = 0)

while having lower effect on the fairness. The results also show that a small sacrifice of the

accuracy can lead to significant enhancement of the fairness as shown for the λf = 0.007 case.

6.5.3 Experiment 3: Certified Fair Training

Experiment setup: The objective of this experiment is to compare the two regularizers, the

local fairness regularizer in (6.8) and the global fairness regularizer in (6.11). To that end,

we performed a grid search over the learning rate α, the fairness regularization parameter λf ,

and the NN architecture to get the best test accuracy across all datasets. Best performance

was obtained with a NN that consists of two hidden layers of 20 neurons (except for the

German dataset, where we use 30 neurons per layer), learning rate α = 0.001, global fairness
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Table 6.2: Comparison between a base classifier (λf = 0) and CertiFair classifier with different
fairness regularizers

Constraint Dataset Test Accuracy (%) Positivity Rate(%) Certified
Global Fairness (%)

Base Lg
f Ll

f Base Lg
f Ll

f Base Lg
f Ll

f

P2

Adult 84.55 82.34 83.81 20.8 17.4 21.79 6.40 100.00 61.92
German 75.30 73.00 70.00 79.00 72.00 83.00 8.64 95.06 86.41
Compas 68.30 65.08 63.19 61.55 66.00 69.40 47.22 100.00 100.00
Law 87.60 79.92 78.69 21.51 9.10 25.03 6.87 51.87 78.54

P1

Adult 84.55 82.33 83.25 20.80 18.13 20.15 1.77 97.86 95.31
German 75.30 72.66 69.66 79.00 83.14 81.71 14.81 92.59 82.71
Compas 68.30 65.08 63.82 61.55 66.00 71.60 47.22 100.00 100.00
Law 87.60 84.90 86.69 21.42 17.50 21.63 34.16 70.10 86.45

regularization parameter λf equal to 0.01 for Adult and Law School, 0.005 for German, and

0.1 for Compas dataset, and local fairness regularization parameter λf equal to 0.95 for Adult,

0.9 for Compas, 0.2 for German, and 0.5 for Law School. We trained the models for 50 epochs

with a batch size of 256 (except for Law School, where the batch size is set to 1024) and used

Adam Optimizer for learning the NN parameters θ. All the datasets were split into 70% and

30% for training and testing, respectively.

Effect of the choice of the fairness regularizer: We investigate the certified global

fairness for the two regularizers introduced in Section 6.4.3. Table 6.2 summarizes the results

for P1 and P2 fairness properties across different datasets. For each property and dataset,

we compare the test accuracy, positivity rate (percentage of points classified as 1), and the

certified global fairness of the base classifier (trained with λf = 0) and the CertiFair classifier

trained twice with two different fairness regularizers Ll
f and Lg

f . Compared to the base

classifier, training the NN with the global fairness regularizer Lg
f significantly increases the

certified global fairness with a small drop in the accuracy in most of the cases except for the

Law School dataset, where the test accuracy dropped by 7 % on P2 but the global fairness

increased by 55 %. Compared to the local regularizer Ll
f , the global regularizer achieves

higher global fairness and comparable (if not better) test accuracy on all datasets except Law
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Table 6.3: Effect of fairness regularization parameter λf on the test accuracy and certified
fairness.

λf 1× 10−4 5× 10−4 7× 10−4 5× 10−3 7× 10−3 1× 10−2 2× 10−2 5× 10−2

Test accuracy (%) 74.33 74.33 75.00 72.33 72.66 73.00 72.6 66.33
Certified global fairness (%) 8.64 14.81 13.58 66.66 82.71 95.06 98.76 100

School. We think that this might be due to the network’s limited capacity to optimize both

objectives. We also report the positivity rate (number of data points classified positively) for

the classifiers. This metric is important because most of these datasets are unbalanced, and

hence the classifiers can trivially skew all the classifications to a single label and achieve high

fairness percentage. Thus it is desired that the positivity rate of the CertiFair classifier to

be close to the one of the base classifier to ensure that it is not trivial. Lastly, we conclude

that even though the local regularizer improves the global fairness, the global regularizer

can achieve higher degrees of certified global fairness without a significant decrease in test

accuracy, and of course, it avoids the drawbacks of the local regularizer discussed in Section

6.4.3.

Effect of the fairness regularization parameter: In this experiment, we investigate the

effect of the fairness regularization parameter λf on the classifier’s accuracy and fairness. The

parameter λf controls the trade-off between the accuracy of the classifier and its fairness, and

tuning this parameter is usually dependent on the network/dataset. To that end, we trained

a two-layer NN with 30 neurons per layer for the German dataset using 8 different values

for λf and summarized the results in Table 6.3. The fairness property verified is of class P2.

The results show that the global fairness satisfaction can increase without a significant drop

in accuracy up to a certain point, after which the fairness loss is dominant and results in a

significant decrease in the classifier’s accuracy.
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6.6 Related work

Group fairness: Group fairness considers notions like demographic parity [96], equality of

odds, and equality of opportunity [97]. Tools that verify notions of group fairness assume

knowledge of a probabilistic model of the population. FairSquare [98] relies on numerical

integration to formally verify notions of group fairness; however, it does not scale well for

NNs. VeriFair [99] considers probabilistic verification using sampling and provides soundness

guarantees using concentration inequalities. This approach is scalable to big networks, but it

does not provide worst-case proof.

Individual fairness: More related to our work is the verification of individual fairness

properties. LCIFR [90] proposes a technique to learn fair representations that are provably

certified for a given individual. An encoder is empirically trained to map similar individuals to

be within the neighborhood of the given individual and then apply NN verification techniques

to this neighborhood to certify fairness. The property verified is a local property with respect

to the given individual. On the contrary, our work focuses on the global fairness properties

of a NN. It also avoids the empirical training of similarity maps to avoid affecting the

soundness and completeness of the proposed framework. In the context of individual global

fairness, a recent work [92] proposed a sound but incomplete verifier for linear and kernelized

polynomial/radial basis function classifiers. It also proposed a meta-algorithm for the global

individual fairness verification problem; however, it is not clear how it can be used to design

sound and complete NN verifiers for the fairness properties. Another line of work [100] focuses

on proving dependency fairness properties which is a more restrictive definition of fairness

since it requires the NN outputs to avoid any dependence on the sensitive attributes. The

method employs forward and backward static analysis and input space partitioning to verify

the fairness property. As mentioned, this definition of fairness is different from the individual

fairness we are considering in this work and is more restrictive.
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NN verification: This work is algorithmically related to NN verification in the context of

adversarial robustness. However, adversarial robustness is a local property of the network

given a nominal input, and a norm bounded perturbation. Moreover, the robustness property

does not consider the notion of sensitive attributes. The NN verification literature is extensive,

and the approaches can be grouped into three main groups: (i) SMT-based methods, which

encode the problem into a Satisfiability Modulo Theory problem [9, 10, 3]; (ii) MILP-based

solvers, which solves the verification problem exactly by encoding it as a Mixed Integer Linear

Program [16, 17, 12, 13, 15, 11, 14]; (iii) Reachability based methods [23, 24, 19, 22, 21, 20, 18],

which perform layer-by-layer reachability analysis to compute a reachable set that can be

verified against the property; and (iv) convex relaxations methods [4, 25, 26, 37, 38, 39].

Generally, (i), (ii), and (iii) do not scale well to large networks. On the other hand, convex

relaxation methods use a branch and bound approach to refine the abstraction.

6.7 Discussion

On the contention between Group and Individual fairness: Group fairness is the

requirement that different groups should be treated similarly regardless of individual merits.

It is often thought of as a contradictory requirement to individual fairness. However, this

has been an issue of debate [101]. Thus, it’s not clear how our framework for training might

affect the group fairness requirement and is left for further investigation.

Can fairness be achieved by dropping sensitive attributes from data? Fairness

through unawareness is the process of learning a predictor that does not explicitly use

sensitive attributes in the prediction process. However, dropping the sensitive attributes is

not sufficient to remove discrimination as it can be highly predictable implicitly from other

features. It has been shown [102, 103, 104, 105] that discrimination highly occurs in different
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systems such as housing, criminal justice, and education that do not explicitly depend on

sensitive attributes in their predictions.
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Chapter 7

Formal Verification of Neural Network

Controlled

Autonomous Systems

In this paper, we consider the problem of formally verifying the safety of an autonomous robot

equipped with a Neural Network (NN) controller that processes LiDAR images to produce

control actions. Given a workspace that is characterized by a set of polytopic obstacles, our

objective is to compute the set of safe initial states such that a robot trajectory starting

from these initial states is guaranteed to avoid the obstacles. Our approach is to construct a

finite state abstraction of the system and use standard reachability analysis over the finite

state abstraction to compute the set of safe initial states. To mathematically model the

imaging function, that maps the robot position to the LiDAR image, we introduce the notion

of imaging-adapted partitions of the workspace in which the imaging function is guaranteed

to be affine. Given this workspace partitioning, a discrete-time linear dynamics of the robot,

and a pre-trained NN controller with Rectified Linear Unit (ReLU) nonlinearity, we utilize a

Satisfiability Modulo Convex (SMC) encoding to enumerate all the possible assignments of
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different ReLUs. To accelerate this process, we develop a pre-processing algorithm that could

rapidly prune the space of feasible ReLU assignments. Finally, we demonstrate the efficiency

of the proposed algorithms using numerical simulations with the increasing complexity of the

neural network controller.

7.1 Introduction

From simple logical constructs to complex deep neural network models, Artificial Intelligence

(AI)-agents are increasingly controlling physical/mechanical systems. Self-driving cars, drones,

and smart cities are just examples of such systems to name a few. However, regardless of the

explosion in the use of AI within a multitude of cyber-physical systems (CPS) domains, the

safety and reliability of these AI-enabled CPS is still an under-studied problem. It is then

unsurprising that the failure of these AI-controlled CPS in several, safety-critical, situations

leads to human fatalities [106].

Motivated by the urgency to study the safety, reliability, and potential problems that can rise

and impact the society by the deployment of AI-enabled systems in the real world, several

works in the literature focused on the problem of designing deep neural networks that are

robust to the so-called adversarial examples [107, 108, 109, 110, 111, 112, 113]. Unfortunately,

these techniques focus mainly on the robustness of the learning algorithm with respect to data

outliers without providing guarantees in terms of safety and reliability of the decisions made

by these neural networks. To circumvent this drawback, recent works focused on three main

techniques namely (i) testing of neural networks, (ii) falsification (semi-formal verification) of

neural networks, and (iii) formal verification of neural networks.

Representatives of the first class, namely testing of neural networks, are the works reported

in [114, 115, 116, 117, 118, 119, 120, 121, 122, 123] in which the neural network is treated
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as a white box, and test cases are generated to maximize different coverage criteria. Such

coverage criteria include neuron coverage, condition/decision coverage, and multi-granularity

testing criteria. On the one hand, maximizing test coverage gives system designers confidence

that the networks are reasonably free from defect. On the other hand, testing does not

formally guarantee that a neural network satisfies a formal specification.

To take into consideration the effect of the neural network decisions on the entire system

behavior, several researchers focused on the falsification (or semi-formal verification) of

autonomous systems that include machine learning components [124, 125, 126]. In such

falsification frameworks, the objective is to generate corner test cases that forces a violation

of system-level specifications. To that end, advanced 3D models and image environments are

used to bridge the gap between the virtual world and the real world. By parametrizing the

input to these 3D models (e.g., position of objects, position of light sources, intensity of light

sources) and sampling the parameter space in a fashion that maximizes the falsification of the

safety property, falsification frameworks can simulate several test cases until a counterexample

is found [124, 125, 126].

While testing and falsification frameworks are powerful tools to find corner cases in which the

neural network or the neural network enabled system may fail, they lack the rigor promised

by formal verification methods. Therefore, several researchers pointed to the urgent need of

using formal methods to verify the behavior of neural networks and neural network enabled

systems [127, 128, 129, 130, 131, 132]. As a result, recent works in the literature attempted

the problem of applying formal verification techniques to neural network models.

Applying formal verification to neural network models comes with its unique challenges. First

and foremost is the lack of widely-accepted, precise, mathematical specifications capturing

the correct behavior of a neural network. Therefore, recent works focused entirely on verifying

neural networks against simple input-output specifications [133, 3, 134, 135, 136, 137]. Such

input-output techniques compute a guaranteed range for the output of a deep neural network
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given a set of inputs represented as a convex polyhedron. To that end, several algorithms that

exploit the piecewise linear nature of the Rectified Linear Unit (ReLU) activation functions

(one of the most famous nonlinear activation functions in deep neural networks) have been

proposed. For example, by using binary variables to encode piecewise linear functions, the

constraints of ReLU functions are encoded as a Mixed-Integer Linear Programming (MILP).

Combining output specifications that are expressed in terms of Linear Programming (LP),

the verification problem eventually turns to a MILP feasibility problem [136, 138].

Using off-the-shelf MILP solvers does not lead to scalable approaches to handle neural

networks with hundreds and thousands of neurons [3]. To circumvent this problem, several

MILP-like solvers targeted toward the neural network verification problem are proposed. For

example, the work reported in [133] proposed a modified Simplex algorithm (originally used

to solve linear programs) to take into account ReLU nonlinearities as well. Similarly, the work

reported in [3] combines a Boolean satisfiability solving along with a linear over-approximation

of piecewise linear functions to verify ReLU neural networks against convex specifications.

Other techniques that exploit specific geometric structures of the specifications are also

proposed [139, 23]. A thorough survey on different algorithms for verification of neural

networks against input-output range specifications can be found in [140] and the references

within.

Unfortunately, the input-output range properties are simplistic and fail to capture the safety

and reliability of cyber-physical systems when controlled by a neural network. Recent

works showed how to perform reachability-based verification of closed-loop systems in the

presence of learning components [141, 20, 142]. Reachability analysis is performed by

either separately estimating the output set of the neural network and the reachable set of

continuous dynamics [141], or by translating the neural network controlled system into a

hybrid system [20]. Once the neural network controlled system is translated into a hybrid

system, off-the-shelf existing verification tools of hybrid systems, such as SpaceEx [143] for
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piecewise affine dynamics and Flow∗ [144] for nonlinear dynamics, can be used to verify safety

properties of the system. Another related technique is the safety verification using barrier

certificates [145]. In such approach, a barrier function is searched using several simulation

traces to provide a certificate that unsafe states are not reachable from a given set of initial

states.

Differently from the previous work—in the literature of formal verification of neural network

controlled system—we consider, in this paper, the case in which the robotic system is equipped

with a LiDAR scanner that is used to sense the environment. The LiDAR image is then

processed by a neural network controller to compute the control inputs. Arguably, the ability

of neural networks to process high-bandwidth sensory signals (e.g., cameras and LiDARs)

is one of the main motivations behind the current explosion in the use of machine learning

in robotics and CPS. Towards this goal, we develop a framework that can reason about the

safety of the system while taking into account the robot continuous dynamics, the workspace

configuration, the LiDAR imaging, and the neural network.

In particular, the contributions of this paper can be summarized as follows:

1- A framework for formally proving safety properties of autonomous robots equipped with

LiDAR scanners and controlled by neural network controllers.

2- A notion of imaging-adapted partitions along with a polynomial-time algorithm for

processing the workspace into such partitions. This notion of imaging-adapted partitions

plays a significant role in capturing the LiDAR imaging process.

3- A Satisfiability Modulo Convex (SMC)-based algorithm combined with an SMC-based

pre-processing for computing finite abstractions of neural network controlled autonomous

systems.
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7.2 Problem Formulation

7.2.1 Notation

The symbols N, R,R+ and B denote the set of natural, real, positive real, and Boolean

numbers, respectively. The symbols ∧,¬ and → denote the logical AND, logical NOT,

and logical IMPLIES operators, respectively. Given two real-valued vectors x1 ∈ Rn1 and

x2 ∈ Rn2 , we denote by (x1, x2) ∈ Rn1+n2 the column vector [xT
1 , x

T
2 ]

T . Similarly, for a vector

x ∈ Rn, we denote by xi ∈ R the ith element of x. For two vectors x1, x2 ∈ Rn, we denote by

max(x1, x2) the element-wise maximum. For a set S ⊂ Rn, we denote the boundary and the

interior of this set by ∂S and int(S), respectively. Given two sets S1 and S2, f : S1 ⇒ S2

and f : S1 → S2 denote a set-valued and ordinary map, respectively. Finally, given a vector

z = (x, y) ∈ R2, we denote by atan2(z) = atan2(y, x).

7.2.2 Dynamics and Workspace

We consider an autonomous robot moving in a 2-dimensional polytopic (compact and convex)

workspace W ⊂ R2. We assume that the robot must avoid the workspace boundaries ∂W

along with a set of obstacles {O1, . . . ,Oo}, withOi ⊂ W which is assumed to be polytopic. We

denote by O the set of the obstacles and the workspace boundaries which needs to be avoided,

i.e., O = {∂W,O1, . . . ,Oo}. The dynamics of the robot is described by a discrete-time linear

system of the form:

x(t+1) = Ax(t) +Bu(t), (7.1)

where x(t) ∈ X ⊆ Rn is the state of robot at time t ∈ N and u(t) ⊆ Rm is the robot input.

The matrices A and B represent the robot dynamics and have appropriate dimensions. For
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Figure 7.1: Pictorial representation of the problem setup under consideration.

a robot with nonlinear dynamics that is either differentially flat or feedback linearizable,

the state space model (7.1) corresponds to its feedback linearized dynamics. We denote by

ζ(x) ∈ R2 the natural projection of x onto the workspace W, i.e., ζ(x(t)) is the position of

the robot at time t.

7.2.3 LiDAR Imaging

We consider the case when the autonomous robot uses a LiDAR scanner to sense its envi-

ronment. The LiDAR scanner emits a set of N lasers evenly distributed in a 2π degree fan.

We denote by θ
(t)
lidar ∈ R the heading angle of the LiDAR at time t. Similarly, we denote by

θ
(t)
i = θ

(t)
lidar + (i− 1)2π

N
, with i ∈ {1, . . . , N}, the angle of the ith laser beam at time t where

θ
(t)
1 = θ

(t)
lidar and by θ(t) = (θ

(t)
1 , . . . , θ

(t)
N ) the vector of the angles of all the laser beams. While

the heading angle of the LiDAR, θ(t)lidar, changes as the robot pose changes over time, i.e.,

θ
(t)
lidar = f(x(t)) for some nonlinear function f , in this paper we focus on the case when the

heading angle of the LiDAR, θ(t)lidar, is fixed over time and we will drop the superscript t from

the notation. Such condition is satisfied in several real-world scenarios whenever the robot

is moving while maintaining a fixed pose (e.g. a quadrotor whose yaw angle is maintained

constant).

For the ith laser beam, the observation signal ri(x(t)) ∈ R is the distance measured between
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the robot position ζ(x(t)) and the nearest obstacle in the θi direction, i.e.:

ri(x
(t)) = min

Oi∈O
min
z∈Oi

∥z − ζ(x(t))∥2

s.t. atan2
(
z − ζ(x(t))

)
= θi. (7.2)

In this paper, we will restrict our attention to the case when the LiDAR scanner is ideal (with

no noise) although the bounded noise case can be incorporated in the proposed framework.

The final LiDAR image d(x(t)) ∈ R2N is generated by processing the observations r(x(t)) as

follows:

di(x
(t)) =

(
ri(x

(t)) cos θi, ri(x
(t)) sin θi

)
,

d(x(t)) =
(
d1(x

(t)), . . . dN(x
(t))
)
. (7.3)

7.2.4 Neural Network Controller

We consider a pre-trained neural network controller fNN : R2N → Rm that processes the

LiDAR images to produce control actions with L internal and fully connected layers in

addition to one output layer. Each layer contains a set of Ml neurons (where l ∈ {1, . . . , L})

with Rectified Linear Unit (ReLU) activation functions. ReLU activation functions play

an important role in the current advances in deep neural networks [146]. For such neural

network architecture, the neural network controller u(t) = fNN(d(x
(t))) can be written as:

h1(t) = max
(
0, W 0d(x(t)) + w0

)
,

h2(t) = max
(
0, W 1h1(t) + w1

)
,

...

hL(t) = max
(
0, WL−1hL−1(t) + wL−1

)
,

u(t) = WLhL(t) + wL, (7.4)
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where W l ∈ RMl×Ml−1 and wl ∈ RMl are the pre-trained weights and bias vectors of the neural

network which are determined during the training phase.

7.2.5 Robot Trajectories and Safety Specifications

The trajectories of the robot whose dynamics are described by (7.1) when controlled by the

neural network controller (7.2)-(7.4) starting from the initial condition x0 = x(0) is denoted

by ηx0 : N→ Rn such that ηx0(0) = x0. A trajectory ηx0 is said to be safe whenever the robot

position does not collide with any of the obstacles at all times.

Definition 7.2.1 (Safe Trajectory). A robot trajectory ηx0 is called safe if ζ(ηx0(t)) ∈

W , ζ(ηx0(t)) ̸∈ Oi, ∀Oi ∈ O, ∀t ∈ N.

Using the previous definition, we now define the problem of verifying the system-level safety

of the neural network controlled system as follows:

Problem 2. Consider the autonomous robot whose dynamics are governed by (7.1) which is

controlled by the neural network controller described by (7.4) which processes LiDAR images

described by (7.2)-(7.3). Compute the set of safe initial conditions Xsafe ⊆ X such that any

trajectory ηx0 starting from x0 ∈ Xsafe is safe.
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Figure 7.2: Pictorial representation of the proposed framework.

7.3 Framework

Before we describe the proposed framework, we need to briefly recall the following definitions

capturing the notion of a system and relations between different systems.
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Definition 7.3.1. An autonomous system S is a pair (X, δ) consisting of a set of states X

and a set-valued map δ : X ⇒ X representing the transition function. A system S is finite if

X is finite. A system S is deterministic if δ is single-valued map and is non-deterministic if

not deterministic.

Definition 7.3.2. Consider a deterministic system Sa = (Xa, δa) and a non-deterministic

system Sb = (Xb, δb). A relation Q ⊆ Xa ×Xb is a simulation relation from Sa to Sb, and we

write Sa ≼Q Sb, if the following conditions are satisfied:

1. for every xa ∈ Xa there exists xb ∈ Xb with (xa, xb) ∈ Q,

2. for every (xa, xb) ∈ Q we have that x′
a = δa(xa) in Sa implies the existence of x′

b ∈ δb(xb)

in Sb satisfying (x′
a, x

′
b) ∈ Q.

Using the previous two definitions, we describe our approach as follows. As pictorially

shown in Figure 7.2, given the autonomous robot system SNN = (X , δNN), where δNN :

x 7→ Ax + BfNN(d(x)), our objective is to compute a finite state abstraction (possibly

non-deterministic) SF = (F , δF) of SNN such that there exists a simulation relation from SNN

to SF , i.e., SNN ≼Q SF . This finite state abstraction SF will be then used to check the safety

specification.

The first difficulty in computing the finite state abstraction SF is the nonlinearity in the

relation between the robot position ζ(x) and the LiDAR observations as captured by equa-

tion (7.2). However, we notice that we can partition the workspace based on the laser angles

θ1, . . . , θN along with the vertices of the polytopic obstacles such that the map d (defined in

equation (7.3) which maps the robot position to the processed observations) is an affine map

as shown in Section 7.4. Therefore, as summarized in Algorithm 2, the first step is to compute

such partitioning W⋆ of the workspace (WKSP-PARTITION, line 2 in Algorithm 2). While

WKSP-PARTITION focuses on partitioning the workspace W , one needs to partition the
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remainder of the state space X (STATE-SPACE-PARTITION, line 7 in Algorithm 2) to

compute the finite set of abstract states F along with the simulation relation Q that maps

between states in X and the corresponding abstract states in F , and vice versa.

Unfortunately, the number of partitions grows exponentially in the number of lasers N and

the number of vertices of the polytopic obstacles. To harness this exponential growth, we

compute an aggregate-partitioning W ′ using only a few laser angles (called primary lasers

and denoted by θp). The resulting aggregate-partitioning W ′ would contain a smaller number

of partitions such that each partition in W ′ represents multiple partitions in W⋆. Similarly,

we can compute a corresponding aggregate set of states F ′ as:

s′ = {s ∈ F | ∃x ∈ w′, w′ ∈ W ′, (x, s) ∈ Q}

where each aggregate state s′ is a set representing multiple states in F . Whenever possible,

we will carry out our analysis using the aggregated-partitioning W ′ (and F ′) and use the

fine-partitioning W⋆ only if deemed necessary. Details of the workspace partitioning and

computing the corresponding affine maps representing the LiDAR imaging function are given

in Section 7.4.

The state transition map δF is computed as follows. First, we assume a transition exists

between any two states s and s′ in F (line 8- 9 in Algorithm 2). Next, we start eliminating

unnecessary transitions. We observe that regions in the workspace that are adjacent or within

some vicinity are more likely to force the need of transitions between their corresponding

abstract states. Similarly, regions in the workspace that are far from each other are more likely

to prohibit transitions between their corresponding abstract states. Therefore, in an attempt to

reduce the number of computational steps in our algorithm, we check the transition feasibility

between a state s ∈ F and an aggregate state s′ ∈ F ′. If our algorithm (CHECK-FEASIBILITY)

asserted that the neural network δNN prohibits the robot from transitioning between the
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regions corresponding to s and s′ (denoted by Xs and Xs′ , respectively), then we conclude that

no transition in δF is feasible between the abstract state s and all the abstract states s⋆ in s′

(lines 15-21 in Algorithm 2). This leads to a reduction in the number of state pairs that need

to be checked for transition feasibility. Conversely, if our algorithm (CHECK-FEASIBILITY)

asserted that the neural network δNN allows for a transition between the regions corresponding

to s and s′, then we proceed by checking the transition feasibility between the state s and all

the states s⋆ contained in the aggregate state s⋆ (lines 23-27 in Algorithm 2).

Checking the transition feasibility (CHECK-FEASIBILITY) between two abstract states entails

reasoning about the robot dynamics, the neural network, along with the affine map repre-

senting the LiDAR imaging computed from the previous workspace partitioning. While the

robot dynamics is assumed linear, the imaging function is affine, the technical difficulty lies

in reasoning about the behavior of the neural network controller. Thanks to the ReLU acti-

vation functions in the neural network, we can encode the problem of checking the transition

feasibility between two regions as formula φ, called monotone Satisfiability Modulo Convex

(SMC) formula [147, 148], over Boolean and convex constraints representing, respectively,

the ReLU phases and the dynamics, the neural network weights, and the imaging constraints.

In addition to using the SMC solver to check the transition feasibility (CHECK-FEASIBILITY)

between abstract states, it will be used also to perform some pre-processing of the neural

network function δNN (lines 11-13 in Algorithm 2) which is going to speed up the process of

checking the the transition feasibility. Details of the SMC encoding and the strategy to check

transition feasibility (CHECK-FEASIBILITY) are given in Section 7.5.

Once the finite state abstraction SF and the simulation relation Q is computed, the next step

is to partition the finite states F into a set of unsafe states Funsafe and a set of safe states

Fsafe using the following fixed-point computation:
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Fk
unsafe =



{s ∈ F | ∃x ∈ X : (x, s) ∈ Q,

ζ(x) ∈ Oi,Oi ∈ O} k = 0

Fk−1
unsafe ∪

s∈Fk−1
unsafe

Pre(s) k > 0

Funsafe = lim
k→∞
Fk

unsafe, Fsafe = F \ Funsafe.

where the F0
unsafe represents the abstract states corresponding to the obstacles and workspace

boundaries, Fk
unsafe with k > 0 represents all the states that can reach F0

unsafe in k-steps, and

Pre(s) is defined as:

Pre(s) = {s′ ∈ F | s ∈ δF(s
′)}.

The remaining abstract states are then marked as the set of safe states Fsafe. Finally, we can

compute the set of safe states Xsafe as:

Xsafe = {x ∈ X | ∃s ∈ Fsafe : (x, s) ∈ Q}.

These computations are summarized in lines 31-40 in Algorithm 2.

7.4 Imaging-Adapted Workspace Partitioning

We start by introducing the notation of the important geometric objects. We denote by

Ray(w, θ) the ray originated from a point w ∈ W in the direction θ, i.e.:

Ray(w, θ) = {w′ ∈ W | atan2(w′ − w) = θ}.

Similarly, we denote by Line(w1, w2) the line segment between the points w1 and w2, i.e.:

Line(w1, w2) = {w′ ∈ W | w′ = νw1 + (1− ν)w2, 0 ≤ ν ≤ 1}.
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For a convex polytope P ⊆ W, we denote by Vert(P ), its set of vertices and by Edge(P )

its set of line segments representing the edges of the polytope.

7.4.1 Imaging-Adapted Partitions

The basic idea behind our algorithm is to partition the workspace into a set of polytopic

sets (or regions) such that for each region R the LiDAR rays intersects with the same

obstacle/workspace edge regardless of the robot positions ζ(x) ∈ R. To formally characterize

this property, let O⋆ =
⋃

Oi∈OOi be the set of all points in the workspace in which an obstacle

or workspace boundary exists. Consider a workspace partition R ⊆ W and a robot position

ζ(x) that lies inside this partition, i.e., ζ(x) ∈ R. The intersection between the kth LiDAR

laser beam Ray(ζ(x), θk) and O⋆ is a unique point characterized as:

zk,ζ(x) = argmin
z∈W

∥z − ζ(x)∥2 s.t. z ∈ Ray(ζ(x), θk) ∩ O⋆. (7.5)

By sweeping ζ(x) across the whole region R, we can characterize the set of all possible

intersection points as:

Lk(R) =
⋃

ζ(x)∈R

zk,ζ(x). (7.6)

Using the set Lk(R) described above, we define the notion of imaging-adapted partitions as

follows.

Definition 7.4.1. A set R ⊂ W is said to be an imaging-adapted partition if the following

property holds:

Lk(R) is a line segment ∀k ∈ {1, . . . , N}. (7.7)
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Figure 7.3 shows concrete examples of imaging-adapted partitions. Imaging-adapted partitions

enjoy the following property:

Lemma 7.4.2. Consider an imaging-adapted partitionR with corresponding sets L1(R), . . . ,LN (R).

The LiDAR imaging function d : R → R2N is an affine function of the form:

dk(ζ(x)) = Pk,Rζ(x) +Qk,R, d = (d1, . . . , dN) (7.8)

for some constant matrices Pk,R and vectors Qk,R that depend on the region R and the LiDAR

angle θk.

7.4.2 Partitioning the Workspace

Motivated by Lemma 7.4.2, our objective is to design an algorithm that can partition the

workspace W into a set of imaging-adapted partitions. As summarized in Algorithm 3, our

algorithm starts by computing a set of line segments G that will be used to partition the

workspace (lines 1-5 in Algorithm 3). This set of line segments G are computed as follows.

First, we define the set V as the one that contains all the vertices of the workspace and

the obstacles, i.e., V =
⋃

Oi∈O Vert(Oi). Next, we consider rays originating from all the

vertices in V and pointing in the opposite directions of the angles θ1, . . . , θN . By intersecting

these rays with the obstacles and picking the closest intersection points, we acquire the line

segments G that will be used to partition the workspace. In other words, G is computed as:

Gk = {Line(v, z) | v ∈ V , z = argmin
z∈Ray(v,θk+π)∩O⋆

∥z − v∥2}

G =
N⋃
k=1

Gk (7.9)

Thanks to the fact that the vertices v are fixed, finding the intersection between Ray(v, θk+π)

and O⋆ is a standard ray-polytope intersection problem which can be solved efficiently [149].
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Figure 7.3: (left-up) A partitioning of the workspace that is not imaging-adapted. Within
region R1, the LiDAR ray (cyan arrow) intersects with different obstacle edges depending
on the robot position. (left-down) A partitioning of the workspace that is imaging-adapted.
For both regions R1 and R2, the LiDAR ray (cyan arrow) intersects the same obstacle edge
regardless of the robot position. (right) Imaging-adapted partitioning of the workspace used
in Section 7.6.

The next step is to compute the intersection points P between the line segments G and

the edges of the obstacles E =
⋃

Oi∈O Edge(Oi). A naive approach will be to consider all

combinations of line segments in G ∪ E and test them for intersection. Such approach is

combinatorial and would lead to an execution time that is exponential in the number of laser

angles and vertices of obstacles. Thanks to the advances in the literature of computational

geometry, such intersection points can be computed efficiently using the plane-sweep algo-

rithm [149]. The plane-sweep algorithm simulates the process of sweeping a line downwards
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over the plane. The order of the line segments G ∪ E from left to right as they intersect the

sweep line is stored in a data structure called the sweep-line status. Only segments that are

adjacent in the horizontal ordering need to be tested for intersection. Though the sweeping

process can be visualized as continuous, the plane-sweep algorithm sweeps only the endpoints

of segments in G ∪ E , which are given beforehand, and the intersection points, which are

computed on the fly. To keep track of the endpoints of segments in G ∪E and the intersection

points, we use a balanced binary search tree as data structure to support insertion, deletion,

and searching in O(log n) time, where n is number of elements in the data structure.

The final step is to use the line segments G ∪ E and their intersection points P, discovered

by the plane-sweep algorithm, to compute the workspace partitions. To that end, consider

the undirected planar graph whose vertices are the intersection points P and whose edges

are G ∪ E , denoted by Graph(P ,G ∪ E). The workspace partitions are equivalent to finding

subgraphs of Graph(P ,G ∪ E) such that each subgraph contains only one simple cycle 1. To

find these simple cycles, we use a modified Depth-First-Search algorithm in which it starts

from a vertex in the planar graph and then traverses the graph by considering the rightmost

turns along the vertices of the graph. Finally, the workspace partitions are computed as the

convex hulls of all the vertices in the computed simple cycles. It follows directly from the

fact that each region is constructed from the vertices of a simple cycle that there exists no

line segment in G ∪ E that intersects with the interior of any region, i.e., for any workspace

partition R, the following holds:

int(R) ∩ e = ∅ ∀e ∈ G ∪ E (7.10)

This process is summarized in lines 12-20 in Algorithm 3. An important property of the

regions determined by Algorithm 3 is stated by the following proposition.
1A cycle in an undirected graph is called simple when no repetitions of vertices and edges, other than the

starting and ending vertex.
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Proposition 7.4.3. Consider a workspace partition R that is computed by Algorithm 3 and

satisfies (7.10). The following property holds for any LiDAR ray with angle θk:

∃e ∈ E such that Lk(R) ⊆ e,

where Lk(R) is defined in (7.6).

We conclude this section by stating our first main result, quantifying the correctness and

complexity of Algorithm 3.

Theorem 7.4.4. Given a workspace with polytopic obstacles and a set of laser angles

θ1, . . . , θN , then Algorithm 3 computes the partitioning R1, . . . ,Rr such that:

1. W =
⋃r

i=1Ri,

2. Ri is an imaging-adapted partition ∀i = 1, . . . , r,

3. d : Ri → R2N is affine ∀i = 1, . . . , r.

Moreover, the time complexity of Algorithm 3 is O(M log M + I log M), where M = |G ∪ E|

is cardinality of G ∪ E, and I is number of intersection points between segments in G ∪ E.

7.5 Computing the Finite State Abstraction

Once the workspace is partitioned into imaging-adapted partitions W⋆ = {R1, . . . ,Rr} and

the corresponding imaging function is identified, the next step is to compute the finite state

transition abstraction SF = (F , δF) of the closed loop system along with the simulation

relation Q. The first step is to define the state space F and its relation to X . To that

end, we start by computing a partitioning of the state space X that respects W⋆. For

111



the sake of simplicity, we consider X ⊂ Rn that is n-orthotope, i.e., there exists constants

xi, xi ∈ R, i = 1, . . . , n such that:

X = {x ∈ Rn | xi ≤ xi < xi, i = 1, . . . , n}

Now, given a discretization parameter ϵ ∈ R+, we define the state space F as:

F = {(k1, k3, . . . , kn) ∈ Nn−1 | 1 ≤ k1 ≤ r,

1 ≤ ki ≤
xi − xi

ϵ
, i = 3, . . . , n} (7.11)

where r is the number of regions in the partitioning W⋆. In other words, the parameter ϵ is

used to partition the state space into hyper-cubes of size ϵ in each dimension i = 3, . . . , n.

A state s ∈ F represents the index of a region in W⋆ followed by the indices identifying

a hypercube in the remaining n − 2 dimensions. Note that for the simplicity of notation,

we assume that xi − xi is divisible by ϵ for all i = 1, . . . , n. We now define the relation

Q ⊆ X × F as:

Q = {(x, s) ∈ X × F | s = (k1, k3, . . . , kn), x = (ζ(x), x3, . . . , xn),

ζ(x) ∈ Rk1 , xi + ϵ(ki − 1) ≤ xi < xi + ϵki,

i = 3, . . . , n}. (7.12)

Finally, we define the state transition function δF of SF as follows:

(k′
1, k

′
3, . . . k

′
n) ∈ δF((k1, k3, . . . kn)) if

∃x = (ζ(x), x3, . . . , xn) ∈ Rk1 , xi + ϵ(ki − 1) ≤ xi < xi + ϵki,

x′ = (ζ(x′), x′
3, . . . , x

′
n) ∈ Rk′1

, xi + ϵ(k′
i − 1) ≤ x′

i < xi + ϵk′
i,

s.t. x′ = Ax+BfNN(d(x)). (7.13)
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It follows from the definition of δF in (7.13) that checking the transition feasibility between

two states s and s′ is equivalent to searching for a robot initial and goal states along with a

LiDAR image that will force the neural network controller to generate an input that moves

the robot between the two states while respecting the robots dynamics. In the reminder of

this section, we focus on solving this feasibility problem.

7.5.1 SMC Encoding of NN

We translate the problem of checking the transition feasibility in δF into a feasibility problem

over a monotone SMC formula [147, 148] as follows. We introduce the Boolean indicator

variables blj with l = 1, . . . , L and j = 1, . . . ,Ml (recall that L represents the number of layers

in the neural network, while Ml represents the number of neurons in the lth layer). These

Boolean variables represent the phase of each ReLU, i.e., an asserted blj indicates that the

output of the jth ReLU in the lth layer is hl
j = (W l−1hl−1+wl−1)j while a negated blj indicates

that hl
j = 0. Using these Boolean indicator variables, we encode the problem of checking the

transition feasibility between two states s = (k1, k3, . . . , kn) and s′ = (k′
1, k

′
3, . . . , k

′
n) as:

∃ x, x′ ∈ Rn, u ∈ Rm, d ∈ R2N , (7.14)

(bl, hl, tl) ∈ BMl × RMl × RMl , l ∈ {1, . . . , L}

subject to:

ζ(x) ∈ Rk1 ∧ xi + ϵ(ki − 1) ≤ xi < xi + ϵki, i = 3, . . . , n (7.15)

∧ζ(x′) ∈ Rk′1
∧ xi + ϵ(k′

i − 1) ≤ x′
i < xi + ϵk′

i, i = 3, . . . , n (7.16)

∧ x′ = Ax+Bu (7.17)

∧ dk = Pk,Rk1
ζ(x) +Qk,Rk1

, k = 1, . . . , N (7.18)

∧
(
t1 = W 0d+ w0

)
∧
( L∧

l=2

tl = W l−1hl−1 + wl

)
(7.19)

∧
(
u = WLhL + wL

)
(7.20)
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∧
L∧
l=1

Mj∧
j=1

blj →
[(
hl
j = tlj

)
∧
(
tlj ≥ 0

)]
(7.21)

∧
L∧
l=1

Mj∧
j=1

¬blj →
[(
hl
j = 0

)
∧
(
tlj < 0

)]
(7.22)

where (7.15)-(7.16) encode the state space partitions corresponding to the states s and s′;

(7.17) encodes the dynamics of the robot; (7.18) encodes the imaging function that maps the

robot position into LiDAR image; (7.19)-(7.22) encodes the neural network controller that

maps the LiDAR image into a control input.

Compared to Mixed-Integer Linear Programs (MILP), monotone SMC formulas avoid using

encoding heuristics like big-M encoding which leads to numerical instabilities. The SMC deci-

sion procedures follow an iterative approach combining efficient Boolean Satisfiability (SAT)

solving with numerical convex programming. When applied to the encoding above, at each

iteration the SAT solver generates a candidate assignment for the ReLU indicator variables

blj . The correctness of these assignments are then checked by solving the corresponding set of

convex constraints. If the convex program turned to be infeasible, indicating a wrong choice

of the ReLU indicator variables, the SMC solver will identify the set of “Irreducible Infeasible

Set” (IIS) in the convex program to provide the most succinct explanation of the conflict.

This IIS will be then fed back to the SAT solver to prune its search space and provide the

next assignment for the ReLU indicator variables. SMC solvers were shown to better handle

problems (compared with MILP solvers) for problems with relatively large number of Boolean

variables [148].

7.5.2 Pruning Search Space By Pre-processing

While a neural network with M ReLUs would give rise to 2M combinations of possible

assignments to the corresponding Boolean indicator variables, we observe that only several
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of those combinations are feasible for each workspace region. In other words, the LiDAR

imaging function along with the workspace region enforces some constraints on the inputs

to the neural network which in turn enforces constraints on the subsequent layers. By

performing pre-processing on each of the workspace regions, we can discover those constraints

and augment it to the SMC encoding (7.15)-(7.22) to prune combinations of assignments of

the ReLU indicator variables.

To find such constraints, we consider an SMC problem with the fewer constraints (7.15), (7.18)-

(7.22). By iteratively solving the reduced SMC problem and recording all the IIS conflicts

produced by the SMC solver, we can compute a set of counter-examples that are unique for

each region. By iteratively invoking the SMC solver while adding previous counter-examples as

constraints until the problem is no longer satisfiable, we compute the set R-Conflicts which

represents all the counter-examples for region R. Finally, we add the following constraint:

∨
c∈R-Conflicts

¬c (7.23)

to the original SMC encoding (7.15)-(7.22) to prune the set of possible assignments to the

ReLU indicator variables. In Section 7.6, we show that pre-processing would result in several

orders of magnitude reduction in the execution time.

7.5.3 Correctness of Algorithm 2

We end our discussion with the following results which assert the correctness of the whole

framework described in this paper. We first start by establishing the correctness of computing

the finite state abstraction SF along with the simulation relation Q as follows:

Proposition 7.5.1. Consider the finite state abstraction SF = (F , δF) where F is defined

by (7.11) and δF is defined by (7.13) and computed by means of solving the SMC formu-

115



las (7.15)-(7.23). Consider also the system SNN = (X , δNN) where δNN : x 7→ Ax+BfNN(d(x)).

For the relation Q defined in (7.12), the following holds: SNN ≼Q SF .

Recall that Algorithm 2 applies standard reachability analysis on SF to compute the set of

unsafe states. It follows directly from the correctness of the simulation relation Q established

above that our algorithm computes an over-approximation of the set of unsafe states, and

accordingly an under-approximation of the set of safe states. This fact is captured by the

following result that summarizes the correctness of the proposed framework:

Theorem 7.5.2. Consider the safe set Xsafe computed by Algorithm 2. Then any trajectory

ηx with ηx(0) ∈ Xsafe is a safe trajectory.

While Theorem 7.5.2 establishes the correctness of the proposed framework in Algorithm 2,

two points needs to be investigated namely (i) complexity of Algorithm 2 and (ii) maximality

of the set Xsafe. Although Algorithm 3 computes the imaging-adapted partitions efficiently

(as shown in Theorem 7.4.4), analyzing a neural network with ReLU activation functions is

shown to be NP-hard. Exacerbating the problem, Algorithm 2 entails analyzing the neural

network a number of times that is exponential in the number of partition regions. In addition,

floating point arithmetic used by the SMC solver may introduce errors that are not analyzed

in this paper. In Section 7.6, we evaluate the efficiency of using the SMC decision procedures

to harness this computational complexity. As for the maximality of the computed Xsafe set,

we note that Algorithm 2 is not guaranteed to search for the maximal Xsafe.

7.6 Results

We implemented the proposed verification framework as described by Algorithm 2 on top

of the SMC solver named SATEX [150]. All experiments were executed on an Intel Core i7

2.5-GHz processor with 16 GB of memory.
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Table 7.1: Scalability results for the WKSP-PARTITION Algorithm

Number of Number of Number of Time
Vertices Lasers Regions [s]

8 111 0.0152
8 38 1851 0.3479

118 17237 5.5300
8 136 0.0245

10 38 2254 0.4710
118 20343 6.9380
8 137 0.0275
38 2418 0.5362

12 120 23347 8.0836
218 76337 37.0572
298 142487 86.6341

117



7.6.1 Scalability of the Workspace Partitioning Algorithm

As the first step of our verification framework, imaging-adapted workspace partitioning is

tested for numerical stability with increasing number of laser angles and obstacles. Table 7.1

summarizes the scalability results in terms of the number of computed regions and the

execution time grows as the number of LiDAR lasers and obstacle vertices increase. Thanks

to adopting well-studied computational geometry algorithms, our partitioning process takes

less than 1.5 minutes for the scenario where a LiDAR scanner is equipped with 298 lasers

(real-world LiDAR scanners are capable of providing readings from 270 laser angles).

7.6.2 Computational Reduction Due to Pre-processing

The second step is to pre-process the neural network. In particular, we would like to answer

the following question: given a partitioned workspace, how many ReLU assignments are

feasible in each region, and if any, what is the execution time to find them out. Recall that a

ReLU assignment is feasible if there exist a robot position and the corresponding LiDAR

image that will lead to that particular ReLU assignment.

Thanks to the IIS counterexample strategy, we can find all feasible ReLU assignments in

pre-processing. Our first observation is that the number of feasible assignments is indeed

much smaller compared to the set of all possible assignments. As shown in Table 7.2, for a

neural network with a total of 32 neurons, only 11 ReLU assignments are feasible (within the

region under consideration). Comparing this number to 232 = 4.3E9 possibilities of ReLU

assignments, we conclude that pre-processing is very effective in reducing the search space by

several orders of magnitude.

Furthermore, we conducted an experiment to study the scalability of the proposed pre-

processing for an increasing number of ReLUs. To that end, we fixed one choice of workspace
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Table 7.2: Execution time of the SMC-based pre-processing as a function of the neural
network architecture.

Number Total Number of Number of Time
of Hidden Number Feasible Counter- [s]

Layers of Neurons ReLU Assignments examples
32 11 60 2.7819
72 31 183 11.4227
92 58 265 18.4807
102 68 364 43.2459
152 101 540 78.3015
172 146 778 104.4720
202 191 897 227.2357

1 302 383 1761 656.3668
402 730 2614 1276.4405
452 816 4325 1856.0418
502 1013 3766 2052.0574
552 1165 4273 4567.1767
602 1273 5742 6314.4890
652 1402 5707 7166.3059
702 1722 6521 8813.1829
22 3 94 1.3180
42 19 481 10.9823
62 35 1692 53.2246
82 33 2685 108.2584

2 102 58 5629 292.7412
122 71 9995 739.4883
142 72 18209 2098.0220
162 98 34431 6622.1830
182 152 44773 12532.8552
32 5 319 5.7227

3 47 7 5506 148.8727
62 45 72051 12619.5353

4 22 9 205 10.4667
42 5 1328 90.1148

regions while changing the neural network architecture. The execution time, the number of

generated counterexamples, along with the number of feasible ReLU assignments are given in
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Table 7.2. For the case of neural networks with one hidden layer, our implementation of the

counterexample strategy is able to find feasible ReLU assignments for a couple of hundreds

of neurons in less than 4 minutes. In general, the number of counterexamples, and hence

feasible ReLU assignments, and execution time grows with the number of neurons. However,

the number of neurons is not the only deciding factor. Our experiments show that the depth

of the network plays a significant role in affecting the scalability of the proposed algorithms.

For example, comparing the neural network with one hidden layer and a hundred neurons

per layer versus the network with two layers and fifty neurons per layer we notice that both

networks share the same number of neurons. Nevertheless, the deeper network resulted in

one order of magnitude increase regarding the number of generated counterexamples and

one order of magnitude increase in the corresponding execution time. Interestingly, both

of the architectures share a similar number of feasible ReLU assignments. In other words,

similar features of the neural network can be captured by fewer counterexamples whenever

the neural network has fewer layers. This observation can be accounted for the fact that

counterexamples that correspond to ReLUs in early layers are more powerful than those

involves ReLUs in the later layers of the network.

In the second part of this experiment, we study the dependence of the number of feasible

ReLU assignments on the choice of the workspace region. To that end, we fix the architecture

of the neural network to one with 2 hidden layers and 40 neurons per layer. Table 7.3

reports the execution time, the number of counterexamples, and the number of feasible ReLU

assignments across different regions of the workspace. In general, we observe that the number

of feasible ReLU assignments increases with the size of the region.
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Table 7.3: Execution time of the SMC-based pre-processing as a function of the workspace
region. Region indices are shown in Figure 7.3.

Region Number of Number of Time
Index Feasible Counter- [s]

ReLU Assignments examples
A2-R3 33 2685 108.2584
A14-R1 55 4925 215.8251
A13-R3 7 1686 69.4158
A1-R1 25 2355 99.2122
A7-R1 26 3495 139.3486
A12-R2 3 1348 54.4548
A15-R3 25 3095 121.7869
A19-R1 38 4340 186.6428

7.6.3 Transition Feasibility

Following our verification streamline, the next step is to compute the transition function of

the finite state abstraction δF , i.e., check transition feasibility between regions. Table 7.4

shows performance comparison between our proposed strategy that uses counterexamples

obtained from pre-processing and the SMC encoding without preprocessing. We observe that

the SMC encoding empowered by counterexamples, generated through the pre-processing

phase, scales more favorably compared to the ones that do not take counterexamples into

account leading to 2-3 orders of magnitude reduction in the execution time. Moreover, and

thanks to the pre-processing counter-examples, we observe that checking transition feasibility

becomes less sensitive to changes in the neural network architecture as shown in Table 7.4.
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Table 7.4: Performance of the SMC-based encoding for computing δF as a function of the
neural network (timeout = 1 hour).

Number of Total Number Time [s] Time [s]
Hidden Layers of Neurons (Exploit Counter- (Without Counter-

examples) examples)
82 0.5056 50.1263
102 7.1525 timeout

1 112 12.524 timeout
122 18.0689 timeout
132 20.4095 timeout
22 0.1056 15.8841
42 4.8518 timeout
62 3.1510 timeout
82 2.6112 timeout

2 102 11.0984 timeout
122 3.8860 timeout
142 0.7608 timeout
162 2.7917 timeout
182 193.6693 timeout
32 0.3884 388.549

3 47 0.9034 timeout
62 59.393 timeout
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Algorithm 2 Verify-NN(X , δNN)
1: Step 1: Partition the workspace
2: (W⋆,W ′) = WKSP-PARTITION(W,O, θp, θp)
3:
4:
5: Step 2: Compute the finite state abstraction SF
6: Step 2.1: Compute the states of SF
7: (F ,F ′, Q) = STATE-SPACE-PARTITON(W⋆,W ′)
8: for each s and s′ in F do
9: δF .ADD-TRANSITION(s, s′)

10: Step 2.2: Pre-process the neural network
11: for each s in F do
12: Xs = {x ∈ X | (x, s) ∈ Q}
13: CEs = PRE-PROCESS(Xs, δNN)
14: Step 2.3: Compute the transition map δF
15: for each s in F and s′ in F ′ where s ̸∈ s′ do
16: Xs = {x ∈ X | (x, s) ∈ Q}
17: Xs′ = {x ∈ X | (x, s⋆) ∈ Q, ∀s⋆ ∈ s′}
18: Status = CHECK-FEASIBILITY(Xs,Xs′ , δNN, CEs)
19: if Status == INFEASIBLE then
20: for each s⋆ in s′ do
21: δF .REMOVE-TRANSITION(s, s⋆)

22: else
23: for each s⋆ in s′ do
24: Xs⋆ = {x ∈ X | (x, s⋆) ∈ Q}
25: Status = CHECK-FEASIBILITY(Xs,Xs⋆ , δNN, CEs)
26: if Status == INFEASIBLE then
27: δF .REMOVE-TRANSITION(s, s⋆)

28:
29:
30: Step 3: Compute the safe set
31: Step 3.1: Mark the abstract states corresponding to obstacles and workspace

boundary as unsafe

F0
unsafe = {s ∈ F | ∃x ∈ X : (x, s) ∈ Q, ζ(x) ∈ Oi,Oi ∈ O}

32: Step 3.2: Iteratively compute the predecessors of the abstract unsafe states
33: Status = FIXED-POINT-NOT-REACHED
34: while Status == FIXED-POINT-NOT-REACHED do
35: Fk

unsafe = F
k−1
unsafe ∪ Pre(Fk−1

unsafe)

36: if Fk
unsafe == Fk−1

unsafe then
37: Status = FIXED-POINT-REACHED
38: Fsafe = F \ Funsafe
39: Step 3.3: Compute the set of safe states
40: Xsafe = {x ∈ X | ∃s ∈ Fsafe : (x, s) ∈ Q}
41: Return Xsafe
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Algorithm 3 WKSP-PARTITION (W ,O, θ, θp )
1: Step 1: Generate partition segments
2: O⋆ =

⋃
Oi∈OOi, V =

⋃
Oi∈O Vert(Oi), E =

⋃
Oi∈O Edge(Oi)

3: for k ∈ {1, . . . , N} do
4: Use a ray-polygon intersection algorithm to compute:

Gk = {Line(v, z) | v ∈ V, z = argmin
z∈Ray(v,θk+π)∩O⋆

∥z − v∥2}

5: G =
⋃

k∈θ Gk, G′ =
⋃

k∈θp Gk
6:
7:
8: Step 2: Compute intersection points
9: P = PLANE-SWEEP(G ∪ E), P ′ = PLANE-SWEEP(G′ ∪ E)

10:
11:
12: Step 3: Construct the partitions
13: Cycles = Find-Vertices-Of-Simple-Cycle(Graph(P,G ∪ E))
14: Cycles′ = Find-Vertices-Of-Simple-Cycle (Graph(P ′,G′ ∪ E)).
15: for c ∈ Cycles do
16: R = Convex-Hull(c)
17: W⋆.ADD(R)
18: for c ∈ Cycles′ do
19: R′ = Convex-Hull(c)
20: W ′.ADD(R′)

21: Return W⋆,W ′
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Chapter 8

Conclusion

This thesis has delved into the critical domain of formal verification, presenting a compre-

hensive exploration of algorithms and applications that contribute to the robustness and

reliability of NN systems. Throughout this research endeavor, we introduced three novel

algorithms, each addressing distinct challenges in formal verification, and examined their

practical applications through the lens of two specific use cases.

The first algorithm, PeregriNN, laid the foundation for verifiying formal properties of NNs

by introducing key enhancements to existing verifiers. Its implementation and evaluation

demonstrated promising results compared to SOTA methods.

The second algorithm, Bern-NN, addressed one key challenge in NN verification, which is

tight overapproximation of ReLU NNs. To that end, we introduced an overapproximation

algorithm using Bernstein Polynomials and showed that it yields bounds that are tighter

than SOTA methods.

The third algorithm, Bern-IBP, is for tightly bounding the output of DeepBern-Nets.

DeepBern-Nets are NNs with Bernstein Polynomial activation functions, they are shown to
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be easier to verify using the novel Bern-IBP algorithm. The whole idea of DeepBern-Nets

capitalizes on the desireable properties of Bernstein Polynomials.

Building upon these algorithmic contributions, we then transitioned to the practical realm by

presenting two applications. We consider the formal verification of indidual fairness properties

and the safety of a NN-controlled autonomous system.

In conclusion, this thesis does not only contribute novel algorithms to the field of formal

verification for NNs but also demonstrates their practical significance through real-world

applications. The intersection of theoretical advancements and tangible implementations

underscores the potential of formal verification in shaping the future of safe and trustworthy

artificial intelligence systems. As we move forward, the insights gained from this research pave

the way for further exploration, refinement, and widespread adoption of formal verification

techniques in the ever-evolving landscape of NN applications.
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Appendix A

CertiFair

A.1 Datasets

In this section, we provide a detailed description of the fairness datasets used in Section 6.5.

We preprocess all the datasets such that all numerical features are scaled to [0, 1] and the

categorical features are one-hot encoded. The datasets are split into train and test sets that

amount for 70% and 30% of the actual data, respectively.

Adult: The adult dataset is considered one of the most commonly used datasets for fairness-

aware classification studies. The task is to predict whether the annual income of an individual

exceeds $50000 US dollars based on demographic characteristics. We consider the sensitive

attribute for this dataset to be gender, with the privileged group being males.

German: The German credit dataset is used for credit assessment, i.e. decide if granting a

credit to an individual is risky or not. It contains 1000 instances with no missing values.

Compas: The Compas dataset is used to predict whether a criminal will be re-offending

within two years. It contains 5278 preprocessed instances. We consider the sensitive attribute
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for this dataset to be race, with the privileged group being Caucasian.

Law School: The dataset contains records for law school admission of different universities

in the United States. The goal is to predict whether a law student will pass the bar exam.

The dataset contains 112630 preprocessed records. We consider the sensitive attribute for

this dataset to be race, with the privileged group being White.

Table A.1 summarizes the number of positive labels in each of the datasets. It is important

to compare the percentage of satisfaction of a fairness property with this value, because a

naive classifier can achieve 100 % fairness by classifying all points positevly.

A.2 Fairness constraints

In this section we provide a detailed explanation of the P2 fairness properties used to generate

Table 6.2

Adult: The numerical domain is defined as Dϕ = [0.4, 1] × [0.5, 0.7] × [0, 0.3],×[0, 0.2] ×

[0.5, 0.75]. The similarity parameter δi = 0.05 ∀i ∈ {1, . . . n}

German: The numerical domain is defined as Dϕ = [0, 1]n. The similarity parameter

δi = 0.05 ∀i ∈ {1, . . . n}.

Table A.1: Number of data points classified positively. This metric is important when
investigating fairness of classifiers. A naive classifier that classifies all points positively is 100
% fair.

Dataset Positivity rate (%)
Adult 24.17

German 66.33
Compas 52.95

Law School 26.34
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Compas: The numerical domain is defined as Dϕ = [0, 1]n. The similarity parameter

δi = 0.02 ∀i ∈ {1, . . . n}.

Law School: The numerical domain is defined as Dϕ = [0, 1]n. The similarity parameter

δi = 0.03 ∀i ∈ {1, . . . n}.

A.3 Additional experiments

We provide additional experiments similar to the ones in Table 6.2 for different values of the

regularization parameter λf . Specifically, we consider properties of class P2 and compare

between the impact of the global regularizer Lg
F and Ll

F for five randomly picked values

of λf ∈ {0.01, 0.03, 0.07, 0.1, 0.5}. We observe that the global regularizer is able to enforce

the fairness property with small values of λf , but after a certain threshold, the fairness loss

dominates the loss and the accuracy starts to decrease. The local fairness regularizer seems

to have very small effect for small values of λf but starts to improve fairness for larger values

starting from λf = 0.1 for this set of properties and datasets.

The data in Table A.2 enforces our conclusions in Section 5.3 that the global fairness regularizer

outperforms the local fairness regularizer in terms of providing better balance of fairness

and accuracy. For example, in the German dataset, the local fairness regularizer was able to

achieve 100% fairness for λf = 0.5 but with a drop of accuracy from 75.30% to 68.3%. On

the other hand, the global fairness was able to achieve the same 100% fairness with a much

smaller λf = 0.03 and a reduction in the accuracy from 75.30% to 73%. The same conclusion

can be drawn among the Adult and Compas datasets.
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Table A.2: Comparison between global and local fairness regularizers for varying values of λf

λf Dataset Test Accuracy (%) Certified Fairness(%)
Base Lg

f Ll
f Base Lg

f Ll
f

Adult 84.55 84.33 85.24 6.40 84.11 29.21
0.001 German 75.30 73.00 74.33 8.64 95.06 17.28

Compas 68.30 67.86 68.87 47.22 44.44 16.66
Law 87.60 86.39 87.39 6.87 21.45 6.04
Adult 84.55 84.05 84.76 6.40 95.83 33.22

0.003 German 75.30 73.00 72.00 8.64 100.00 13.58
Compas 68.30 67.42 68.18 47.22 97.22 19.44
Law 87.60 76.86 86.64 6.87 76.87 0.83
Adult 84.55 83.75 84.88 6.40 100.00 41.40

0.007 German 75.30 72.66 71.33 8.64 100.00 22.22
Compas 68.30 64.89 68.62 47.22 100.00 33.33
Law 87.60 74.21 85.89 6.87 100.00 1.66
Adult 84.55 83.43 84.88 6.40 100.00 50.78

0.1 German 75.30 72.66 70.33 8.64 100.00 33.33
Compas 68.30 65.21 67.42 47.22 100.00 36.11
Law 87.60 73.92 85.44 6.87 99.79 1.45
Adult 84.55 82.56 84.82 6.40 100.00 57.65

0.5 German 75.30 69.30 68.30 8.64 100.00 100.00
Compas 68.30 64.90 65.40 47.22 100.00 66.66
Law 87.60 73.71 81.01 6.87 100.00 76.04
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Appendix B

DeepBern-Nets

B.1 Bernstein Polynomials

B.1.1 Proof of Proposition 5.2.1

Proof. Before we prove our result, we review the following properties of Bernstein polynomials.

Property 3 (Positivity [72]). Bernstein basis polynomials are non-negative on the interval

[l, u], i.e., b[l,u]n,k (x) ≥ 0 for all x ∈ [l, u].

Property 4 (Partition of Unity [72]). The sum of Bernstein basis polynomials of the same

degree is equal to 1 on the interval [l, u], i.e.,
∑n

k=0 b
[l,u]
n,k (x) = 1, ∀x ∈ [l, u].

Property 5 (Closed under differentiation [151]). The derivative of an n-degree Bernstein

polynomial is n multiplied by the difference of two (n − 1)-degree Bernstein polynomials.

Concretely,
d

dx
b
[l,u]
n,k (x) = n

(
b
[l,u]
n−1,k−1(x)− b

[l,u]
n−1,k(x)

)
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Now, it follows from Property 5 that:

∣∣∣∣ ddxσ(x; l, u, c)
∣∣∣∣ =

∣∣∣∣∣
n∑

k=0

ckn
(
b
[l,u]
n−1,k−1(x)− b

[l,u]
n−1,k(x)

)∣∣∣∣∣
≤

n∑
k=0

∣∣∣cknb[l,u]n−1,k−1(x)
∣∣∣+ n∑

k=0

∣∣∣cknb[l,u]n−1,k(x)
∣∣∣

≤ nmax
k
|ck|

n∑
k=0

∣∣∣b[l,u]n−1,k−1(x)
∣∣∣+ nmax

k
|ck|

n∑
k=0

∣∣∣b[l,u]n−1,k(x)
∣∣∣

(a)
= nmax

k
|ck|

n∑
k=0

b
[l,u]
n−1,k−1(x) + nmax

k
|ck|

n∑
k=0

b
[l,u]
n−1,k(x)

(b)
= nmax

k
|ck|+ nmax

k
|ck|(1 + b

[l,u]
n−1,n(x))

(c)
= 2nmax

k
|ck|

where (a) follows from Property 3; (b) follows from Property 4, and (c) follows from the

definition of Bernstein basis and the fact that the binomial coefficient
(
n−1
n

)
= 0.

Similarly,

∣∣∣∣ ddciσ(x; l, u, c)
∣∣∣∣ = ∣∣∣b[l,u]n,i (x)

∣∣∣ (d)= b
[l,u]
n,i (x)

(e)

≤ 1.

where (d) follows from Property 3 and (e) follows from both Properties 3 and 4 which implies

that Bernstein basis satisfy 0 ≤ b
[l,u]
n,i (x) ≤ 1.

B.1.2 Example to demonstrate properties of Bernstein polynomials

To demonstrate the properties of Bernstein polynomials, we present a simple example to

represent the polynomial f(x) = x3 + x2 − x + 1 for all x ∈ [0, 1] using the Bernstein

form. Any polynomial expressed in power series form can be converted to Bernstein form by

employing a closed-form expression [72] to calculate the Bernstein coefficients. For instance,
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Figure B.1: A visual representation of the polynomial f(x) = x3 + x2 − x+ 1 along with the
Bernstein basis polynomials of degree three b

[0,1]
3,i for x ∈ [0, 1]. The basis polynomials exhibit

positivity and unity partition properties, while the range of its Bernstein coefficients bounds
the range of the polynomial.

f(x) = x3 + x2− x+1 =
3∑

i=0

cib
[0,1]
3,i for x ∈ [0, 1], with c0 = 1, c1 = c2 =

2
3
, and c3 = 2. Figure

B.1 illustrates a plot of the polynomial f(x) and the Bernstein basis polynomials b
[0,1]
3,i . As

depicted in the figure, the basis polynomials are positive (Property 3) and sum to 1 (Property

4). The range of the polynomial is constrained by the Bernstein coefficients’ range, which

is [2
3
, 2] (Property 1). Lastly, applying the subdivision property to compute the coefficients

of the Bernstein polynomial on [0.6, 0.8] results in c0 = 1.352, c1 = 1.184, c2 = 1.0613, and

c3 = 0.976. With the new coefficients, we can use the range enclosure property to infer that

the polynomial’s range on [0.6, 0.8] is [0.976, 1.352].

B.2 Implementation of Bern-IBP

In this section, we discuss the implementation details of Bern-IBP and how it can be applied

to certify global and local properties.

Following the discussion in section 5.3.1, we can check if a global property holds by examining

the output bounds of the NN . Algorithm 4 provides a procedure for incomplete certification,
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which relies on Property 1 to efficiently compute bounds on the output and check if the

property holds. The output bounds are simply the minimum and maximum of the Bernstein

coefficients of the last layer. The bounds computed using the Bernstein coefficients are not

only much tighter than IBP bounds (as demonstrated in experiment 5.4.1), but they are also

more computationally efficient, as they do not require any matrix-vector operations

Algorithm 4 Incomplete Certification of a global output property y(L) = NN (y(0)) > 0

1: Given: Neural Network NN with L layers, and input bounds l(0),u(0)

2: l(L) = min
i

c
(L)
i

3: if l(L) > 0 then
4: return SAT
5: else
6: return UNKNOWN

Certification of local properties defined on a subset of the input domain D can benefit from

computing tighter bounds on the outputs of the NN using Bern-IBP. Algorithm 5 propagates

the input bounds on a layer-by-layer basis, for linear and convolutional layers, we propagate

the bounds using IBP. For Bernstein layers, we first apply the subdivision property to compute

a new set of Bernstein coefficients to represent the polynomial on a subregion of [l(k),u(k)],

then, using the new coefficients, we apply the enclosure property to bound the output of the

Bernstein activation. This procedure result in much tighter bounds compared to IBP (as

shown in Experiment 5.4.1) and Appendix B.3.4

B.3 Additional information on numerical experiments

B.3.1 Experimental Setup

Datasets. In our MNIST and CIFAR-10 experiments, we employ torchvision.datasets

to load the datasets, maintaining the original data splits. While we normalize the input

images for CIFAR-10, we do not apply any data augmentation techniques. To evaluate the
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Algorithm 5 Incomplete Certification of a local output property y(L) = NN (y(0)) > 0

1: Given: Neural Network NN with L layers, and input bounds l(0),u(0)

2: for i = 1....L do
3: if type(layer i) is Linear or Conv then
4: l̂(i), û(i) ← IBP(layer i, [l(i−1),u(i−1)])
5: else
6: for each neuron z in layer i do ▷ Actual implementation is vectorized
7: τ ← l̂

(i)
z −l

(i)
z

u
(i)
z −l

(i)
z

▷ l
(i)
z and u

(i)
z denote lower and upper bounds for neuron z for the

entire input domain D
8: for k = 0....n do
9: for j = k....n do

10: ckj ←
{

cj if k = 0
(1− τ)ck−1

j−1 + τck−1
j if k > 0

11: c′ ← cii
12: c′′ ← cn−i

n ▷ c′′ are the coefficients of the polynomial on [l̂z, ubz]
13: ▷ # Lines 10 to 16 need to be executed twice to compute the coefficients

of the polynomial on [l̂z, ubz]. Omitted for simplicity
14: l̂

(i)
z = min

i
c′′, û

(i)
z = max

i
c′′

15: if l̂(L) > 0 then
16: return SAT
17: else
18: return UNKNOWN

certified accuracy of our models, we utilize the test set during the certification process.

Certified training. During certified training, our models are trained using the Adam

optimizer [152] for 100 epochs (unless otherwise specified) with an initial learning rate of 5e−3.

We incorporate an exponential learning rate decay of 0.999 that begins after 50 epochs. For

the MNIST dataset, we employ a batch size of 512, while for CIFAR-10, we use a batch size

of 256, except for larger models where a batch size of 128 is utilized. Prior to incorporating

the robust loss into the objective, we perform 10 warmup epochs for MNIST and 20 for

CIFAR-10. The total loss comprises a weighted combination of the natural cross-entropy loss

and the robust loss. The weight follows a linear schedule after the warmup phase, gradually

increasing to optimize more for the robust loss towards the end of training. In terms of

evaluation, the primary metric is certified accuracy, which represents the percentage of test
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examples for which the model can confidently make correct predictions within the given l∞

perturbation radius.

Bernstein activations. We use the same value of the hyperparameter n for all neurons in

the network. For a Bersntein activation layer with m neurons, we initialize the Bernstein

coefficients from a normal distribution ck ∼ N (0, σ2), where σ2 = 1
m

.

B.3.2 Models Architecture

Table B.1 lists the architecture, polynomial order and number of parameters for the Neu-

ral networks used to compare the certified robustness with ReLU networks from SOK[2]

benchmark.

Table B.1: Neural Network Models

Model Structure
Degree # of Parameters

MNIST CIFAR-10 MNIST CIFAR-10

FCNNa [20,20,10] 4 3 16,530 62,250

FCNNb [100,100,100,10] 8 3 102,410 329,710

FCNNc [100,100,100,100,100,100,100,10] 10 10 147,810 376,610

CNNa [CONV16,CONV16,100,10] 10 12 219,250 296,090

CNNb [CONV16,CONV16,CONV32,CONV32,512,10] 4 8 953,946 1,360,922

CNNc [CONV32,CONV32,CONV64,CONV64,512,512,10] 2 7 2,118,954 2,966,570

B.3.3 Training time

In this section, we study the computational complexity of training DeepBern-Nets.

Figure B.2 (left) shows the average epoch time and the standard deviation for training

DeepBern-Nets. We trained NNs with three different architectures and with increasing
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Bernstein activation order on the MNIST dataset. The figure shows that for each architecture,

the training time seems to grow linearly with the polynomial order (used in the activation

functions), except for the small architecture (CNNa). This is due to the fact that higher-

order polynomials introduce more parameters into the network and the fact that the cost of

computing the Bernstein bounds during training also scales with the order of the polynomial.

We also report the training time of a ReLU network with the same architecture to contrast

an important underlying trade-off; Bernstein activations are trained with certifiability in

mind, which comes with the extra computational cost during training.

Figure B.2: (Left) Training time (per epoch) for three different model architectures and
increasing order of Bernstein polynomials. (Right) training time (per epoch) for training
networks with certified training objective functions (i.e., Bern-IBP must be used with every
epoch to compute the loss in the certified training loss) and increasing Bernstein order on
the MNIST dataset. Crown-IBP execution times are reported for ReLU networks with the
same architecture.

Figure B.2 (right) shows the average epoch time ad the standard deviation for certified

training of DeepBern-Nets using Bern-IBP. We also report the certified training epoch time

for ReLU networks of the same architecture using Crown-IBP. We observe a similar trend of

linear increase in training time with increasing the order of Bernstein activation.

149



B.3.4 Tightness of output bounds - Bern-IBP vs IBP

In this section, we complement Experiment 5.4.1 by reporting the raw data for computing the

lower bound on the robustness margin as defined in 5.8 computed using Bern-IBP and IBP

on the MNIST dataset. Tables B.2, B.3, B.4, and B.5 present the mean, median, minimum,

and maximum values for the lower bounds using both methods on NNs of increasing order

and different values of ϵ, respectively. The model architecture is CNNb as described in

B.3.2. The tables clearly demonstrate that Bern-IBP achieves significantly higher precision

than IBP in bounding DeepBern-Nets. This improvement is observed consistently across all

DeepBern-Nets orders and various epsilon values. Bern-IBP outperforms IBP by orders of

magnitude, highlighting its effectiveness in providing tighter bounds.

Table B.2: Raw values of the average of Lrobust in Experiment 1.1. The results show that
Bern-IBP results in orders of magnitude tighter values for Lrobust compared with IBP.

Order ϵ = 0.001 ϵ = 0.01 ϵ = 0.04 ϵ = 0.1
IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP

2 3.25 6.44 -23.75 0.33 -47.85 -4.39 -48.10 0.02
3 -31.35 6.91 -145.52 -0.30 -13175.76 -8.39 -2.16e+8 -104.32
4 -109.46 6.75 -1779.87 -0.33 -8.4e+11 -0.38 -2.53e+21 -8.36
5 -410.41 6.94 -2.65e+31 2.67 -inf -0.40 -inf -7.69
6 -2429.93 7.05 -inf 1.13 -inf -11.63 -inf -42.75

Table B.3: Raw values of the median of Lrobust in Experiment 1.1. The results show that
Bern-IBP results in orders of magnitude tighter values for Lrobust compared with IBP.

Order ϵ = 0.001 ϵ = 0.01 ϵ = 0.04 ϵ = 0.1
IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP

2 3.38 6.54 -23.6 0.43 -46.71 -4.14 -47.25 0.19
3 -31.01 7.07 -145.36 -0.03 -12108.94 -8.14 -1.99e+8 -104.78
4 -105.52 6.9 -1584.41 -0.1 -2.12e+11 -0.13 -1.91e+20 -8.36
5 -404.44 7.17 -1.88e+10 2.96 -2.34e+34 -0.17 -inf -7.93
6 -2334.94 7.22 -1.32e+24 1.56 -inf -11.25 -inf -42.37
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Table B.4: Raw values of the minimum of Lrobust in Experiment 1.1. The results show that
Bern-IBP results in orders of magnitude tighter values for Lrobust compared with IBP.

Order ϵ = 0.001 ϵ = 0.01 ϵ = 0.04 ϵ = 0.1
IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP

2 -20.16 -16.63 -42.72 -16.56 -83.7 -22.22 -71.33 -8.25
3 -96.55 -12.16 -205.09 -14.02 -34962.84 -22.91 -2302369792 -137.07
4 -3550.07 -10.15 -56758.56 -13.72 -1.09065E+15 -9.23 -8.24695E+24 -23.03
5 -1345.89 -11.78 -2.2861E+35 -12.93 -inf -8.68 -inf -18.11
6 -109130.05 -12.24 -inf -17.03 -inf -30.47 -inf -72.53

Table B.5: Raw values of the maximum of Lrobust in Experiment 1.1. The results show that
Bern-IBP results in orders of magnitude tighter values for Lrobust compared with IBP.

Order ϵ = 0.001 ϵ = 0.01 ϵ = 0.04 ϵ = 0.1
IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP IBP Bern-IBP

2 14.83 18.01 -10.33 11.24 -23.36 5.61 -28 5.42
3 -12.53 20.98 -96.18 7.18 -2952.79 1.21 -13615902 -76.27
4 -71.81 18.97 -767.27 7.59 -307653536 4.35 -1.80601E+17 1.4
5 -249.03 16.76 -8781314 12.62 -7.72777E+25 4.26 -inf 2.62
6 -1055.1 19.99 -1.13219E+15 10.94 -inf 0.18 -inf -19.47
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