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Real Space Image Simulation in High Resolution Electron Microscopy 

R. Kilaas and R. Gronsky 

National Center for Electron Microscopy 
Materials and Molecular Research Division 

University of California 
Lawrence Berkeley Laboratory 

Berkeley, CA 94720 

ABSTRACT 

The validity of a new method for simulating high resolution electron 

microscope images has been critically examined. This method, which has 

been termed the Real Space method since the entire calculation is per-

formed without any Fourier transforms, offers a considerable reduction 

in computing time over the conventional multislice approach when identical 

sampling conditions are employed. However, for the same level of accuracy 

the Real Space method requires more sampling points and more computing 

time than the conventional multislice method. These character- 

istics are illustrated with calculated results using both methods to identify 

practical limitations. 

1. Introduction 

The current generation of electron microscopes makes possible the 

attainment of near-atomic resolution [1] in images of crystals; neverthe-

less there is still an urgent need for reliable computer simulation of 

these images in order that they might be correctly interpreted [2].  From 

a pragmatic point of view the full potential of computer simulation is 

realized only in an on-site, real-time system which affords immediate 

comparison between computed and experimental results. This is turn requires 

the development of more rapid and more accurate algorithms. 
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Most image calculation programs are based upon a dynamical multi- 

slice formulation originally proposed by Cowley and Moodie [3] using physical 

optics. Quantum mechanical arguments were later provided by Van Dyck [4] 

and independently by Jap and Glaeser [5],  The original calculation time 

of these early programs is proportional to N2 , N being the number of dynamical 

reflections included in the calculation. However, using Fast Fourier trans-

forms, [shizuka and Uyeda [6] demonstrated that the time becomes proportional 

to N LogN. More recently, a method derived by Van Dyck [7] promises to 

further reduce the calculation time such that it is directly proportional to 

N alone. This method, which treats the interaction between the electron beam 

and the specimen, will be referred to as the Real Space Method since the 

entire calculation is done in real space without the use of .  Fourier transforms. 

This paper examines the domain of validity of the Real Space method 

and presents a comparison between the Real Space method and the conventional 

multislice method. Specific emphasis is placed on the number of dynamical 

reflections that must be included, maximum slice thickness and calculation 

time. 

2. Theory 

2.1 General theory 

The geometry of the problem is outlined in Fig. 1. 	An electron 

with wave-vector k 0  is incident upon a thin region described by a potential 

U(r) and for simplicity the electron is assumed to be traveling in the z-

direction. In the actual computation the specimen is represented by a 

sandwich of successive slices, each slice having a thickness E. 
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The electron wave function 	is a solution to Schr&dingers 

equation 

m 	- O(k) ] w() = h2k02 	
- 	 (1) 

No 	For high energy electrons eU() << hk02 therefore the potential U 

can be considered a perturbation and the total wave function can be 

written as a modulated wave function of the form 

= 	() 	 ()e20Z. 	 (2) 

By insertinci the above expression into equation 1, one has 

[ V 2  + 47iik 	
+ 8ir2me

hz 	u() ] 	() = 0. 	(3) 

By involving the definition 

= 8ir2me u() 	 (4) 

equation (3) becomes 

[V2  + 47ik0 	+ V (c)] 	() 	0. 	 (5) 

At this point it is customary to ignore the second derivative with respect 

to z in ea. 5 by making the assumption that 0 () is a slowly varying function 

with respect to z, such that 

1 2 cb 1  
<< k0 1 Dz 

This amounts to ignorinci backscattered electrons and a slight change in the 

electron wavevector as the electron traverses the potential. A more complete 

discussion has been aiven by Van Oyck [8]. 



Ignoring the second order derivative transforms eq. 5 into a first 

order differential equation in z, 

fr C) - 	[v + V W 	 (7) 
4irk0 	- 

Formally the solution to (7) can be written 

	

1 	t€V, + 	V ()dz]. 
4rrk0 

(x,y,c) = e 	 (x,y,o). 

Note that e '  is defined through the power series 

'Y 
e A=rf'o  (r) P. 	 (8) 

Defining A = 	
V1 and V 	1 	1 

	

= 	 V()dz 

it follows that 

(x,y,c) = eC[ 	V] 	(x,y,o). 	 (9) 

2.2 Analytical solutions to (9) 

Unfortunately there are no closed analytical solution to (9), 

requiring the use of various approximate solutions. 

i) General Multislice 

In the formation of the general multislice method one writes 

(x,y,) = e ''p cp (x,y,o) Ou eeCP c (x,y,o). 	(10) 

Since A and V do not comute, (10) is correct to first order in c, A and 

with a resulting error of the order of [AV]E 2  where 1 I denotes 

commutation. The advantage to using equation (10) is that it becomes possible 

to write down analytical solutions to the expressions 

f 1  (x,y,c) = J VP f 1  (x,y,o) 
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2 (x,y,c) = e 	f2  (x,y,o) 	 (12) 

of the form 

•i (x,y,) = exp4k0 
çC V (x,y,z')dz'}f 1  (x,y,o) 	(13) 

TT 

2 (x,y,c) = 	ff dx'dy'f(x' ,y' ,o)  exp 
{ilrkO  [(x-x' )2 

ic 

+ (y-yI)]}. 	 (14) 

Defining the functions h and g through the expressions 

f1  (E:) = h.f 1  (0) 

if2 	= g*f2 (0) 

equation (10) can be written in alternative form: 

4 (c) = g *[h(0)] 
	

(15) 

Since the specimen possesses a periodic potential of period in the z-

direction over its total thickness NE,  it is necessary to use N successive 

applications of (15). The quickest way to numerically solve the expression 

(Nc) = g * [hg*[h.[g*[ ......c (0)] . . .J 	(16) 

is to use Fourier transforms as shown by Ishizuka and Uyeda 

[6] who utilized the algorithm shown in Fig. 2. 

In the remaining part of this paper the general multislice method will be 

referred to as the FFT method. 

Ij 	 ii) Real Space Method 

A different approach to finding an approximate solution to 

(9) is to expand the exponenti1 in powers of A and V P  (Van Dyck 171), and 

construct a solution that can be written as a product of functions () 



g. 	(V ) that when expanded in powers ofAand V corresponds to the 
1,C 	p 	 p 

expansion of (9) to any desired order of A and 	A unique solution 

correct to second order in A and V was found to be 

(c) = exp 	V (l+ô)} exp {cA} exp {-e V(l)} 	(o) (17) 

where 	

- ( x,y)-E/ 2 - 	f z 	 z'V(x,y,z')dz' 

	

, z 	 (18),(19) 
=  

The parameter S(x,y) is a measure of potential eccentricity and is zero 

for 	= /2. The major difference between the Real Space (RSP) method 

and the FFT method is that the RSP method uses an expansion of the propagator, 

exp (CA), keeping only terms up to second order in c. The argument is that 

(17) itself is correct only to second order in E, and no accuracy should be 

lost by using an expansion of the propagator. The expression for the propagator 

thus becomes 

exp CEA} 	l+cA + 	cA = 1 + 1AE 	a2 	32 
+ 

	

A2c2 	92 

	

- 32 1r z 	z2 
+ a 2  (20) 

Numerically one solves the equation 

f(x,y,c) = exp {A} f(x,y,o) 	(1 + sA + - s 2 A 2 ) f(x,y,o) 	(21) 

by dividing up the x and y axes in intervals of 6 and n  respectively. 

Thus 

ixe  
f(x,y,$) 	f(x,y,o) + --- {-[f(x+S,y,o) + f(x-6,y,o) - 2f(x,y,o)] 4ir 

+ 2 [f(x,y+n,o) + f(x,y-,o) - 2f(x,y,o)]} 

X2s2 (- [f (x+25,y,o) + f(x-2S,y,o) 32rr 

-4f(x+5,y,o) - 4f(x-5,y,o) - 6f(x,y,o)]} + 

1. 
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+ - if(x,y+2n,o) +f(x,y- 2n,o) - 4f(x,y + n,o) 

- 4f(x,y- ,o) - 6f(x,y,o)] 

+ fl62 If(x+ô,y+n,o) +f(x+5,y-,o) + f(x-6,y+t,o) 

+ f(x-S,y-,o) 

- 2f(x+6,y,ó) - 2f(x-6,y,o) - 2f(x,y+n,o) - 2f(x,y -n,o) 

- 4f(x,y,o)]. 	 (22) 

The computation time for the RSP method becomes proportional to N, the 

number of sampling points, while itis proportional to NLogN for the FFT 

method. Another advantage to a real space approach is that it can eliminate 

the need to use periodic extension when simulating images from faulted crystals. 

In the case of a potential having a mirror plane at Z = c/2, one 

obtains 
vp 

1++22)eP (1+cA22)e (r4c)=e 	( 

Vp 
(1+cfr4c22)e2 	(0) . 	 ( 23) 

Thus the general multislice calculation becomes accurate to second order 

for this particular case by simply beginning and ending with half a phase 

grating. 

2.3 The validity of the Real Space Method 

Compared to the FFT method, the usefulness of the RSP method 

depends on the effect of throwing away terms of order (E 3 , 3 ) in (20). 

The error depends on the slice thickness c as well as the magnitude of 

the derivatives. Bystudying the effect of the operator exp {c} on the 

function q(x,y,o), one notices that in reciprocal space the effect is that 

of a pure phase-operator. 



(.o) 	ff 

' 	)]e2'Q = ' 	!! dxdy[e q 	 (25) (,c) 	 p,o 

The expansion of the propagator to second order in e and A is 

equivalent to writing 

(,e) 	0 -  irrXcg2 + rr 2x2c2gt+) 	(o) 	 (26) 

such that the intensity of the corresponding reflection after the 

electron has traveled the distance 6, is 

I 	 I(dI 2 	[1 + ¼ ( irAcg2) 4]  I (,°). 	 (27) 

To make sure that hiqh order reflections (large g-vector) are not 

siqnificantly amplified through the action of the pronaqator, it is 

necessary to use a slice thickness 	and an effective a 	 such thatmax 

g 2max << 1 or 	<< 	= 0.45. 	 (28) 

For a periodic potential, period a, of cubic symmetry, the only g- 

vectors allowed are of the type q =, g, = 	; h,k integers. For 

a numerical calculation with N sampling points in the x-and y-direction, 

5= a/N and r= a/N. The equivalent expression to (27) is obtained by 

inserting eq. (22) into the expression 

(u,v,E) = (xyc)e_21TiUX_2TFiVY 
x,y 

and letting u = h/a and v = k/a. 

Ma 

(24) 
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This gives 

AcM 2  
I (h,k,c) = I (h,k,o)fl + (4 a z) [ cos 47rh/N + cos 47rk/N - Tr  

8 cos 2irh/N - 8 cos 2irk/N + 2 cos 27r(h+k)/F4 + 

2 cos 2rr(h-k)/N + 10) 2 ). 	 (29) 

For the special case of h = k, 

I (h,h,c) = I (h,h,o) 1 + () f [4 cos 47rh/N - 16 cos 2Trh/N 

+ 12] 2 }. 	 (30) 

By dividing the a-axis up into Nintervals, one is limited to g 
max =  

hmax - N 
a2a 	This gives 

I (h 	h 	c) = I (h 	hmaxq)•{1 	
(4/2Xc 2 ) 
	( 31) max, max, 	max 	 max 

and correspondingly one must impose 

rax <<
4 7T =  0.56. 	 (32) 

Equations (28) and (32) set an upper limit on the slice thickness and the 

number of reflections that can be included in the calculation. The slice 

thickness c and the number of sampling points in each direction x and y 

must be chosen so as to satisfy 

Kmax 	A911ax << 
	

(33) 

3. Results of Computer Calculations 

'In order to compare the Real Space method with the conventional multi-

slice method using fast Fourier transforms, proarams were written that 

could be run in either FFT or RSP mode. To make it possible to use 

different values for the slice thickness, a three dimensional potential 
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was calculated through a 3 dimensional Fourier transform. The specimen is 

copper (lattice const. 3.6A) and the c-axis (z-dir.) was divided into 16 

	

0 	 0 	 0 	 0 

intervals such that a slice thickness of either 3.6A, l.8A, 0.9A or 0.45A 

could be used. To be able to compare the results of the two methods under 

various conditions, amplitudes and phases of selected reflections were 

plotted as a function of thickness. 

Figure 3 shows what happens when K 	 increases beyond the
max 

critical value of 1/2. The reflections are 000, 200, 220 and 440 and the 

solid line is the result of the FF1 method while the broken line represents 

the RSP method. Only amplitude vs. thickness is plotted and the slice 

thickness is kept constant at 3.6A. The maximum reciprocal lattice vector 

takes on the values of 1.0, 1.9A 	and 2.5A 	to give a value max
for K of 0.18, 0.33 and 0.57 respectively. 

As K increases the discrepancy between the two methods decreases, 

and significantly, when K increases beyond its critical value the RSP 

method starts to diverge. For this particular value of K the divergence 
0 

sets in at about lOOA and the intensity of the reflection 400 is seen to 

start growing almost exponentially. At about lOOA there is enough 

intensity in the 440 reflection for it to be affected by the action of 

the propagator. The low order reflections are not affected directly 

by the propagator, although they are influenced by the interaction with 

higher order reflections through the crystal potential. 

Figure 4 shows the amplitudes, and phases of various reflections 

for 3 different values of 	and g 	 keeping K constant at 0.25. Notice
max 

that while in Figure 1 the accelerating voltage is 200kV, it is 
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now set at 1MV. The FFT calculation is almost unaffected by changes in 

c and g 	(the results for c= 3.6A and 	= 2.8A are shown here)max max

indicating that for g 	> 2.8A, no appreciable aliasing effects are 
max 

introduced. However, the results of the RSP calculation vary significantly 

as g 	 increases (c decreases), but the results of the RSP method approach
max  

that of the FFT method as the number of reflections included in the 

calculation increases. 

Figure 5 shows the result of the RSP calculation for three different 

values of the slice thickness, at constant q 	 equal to 2.8A. Althoucih
max  

the results vary somewhat dependino on the slice thickness, reducing the 

slice thickness does not have a major effect; i.e. it does not cause the 

result of the RSP method to approach that of the FFT calculation. 

Finally, Table 1 shows some computation times for the FFT and RSP 

methods. The times that are given are the computational times per slice 

for a slice thickness of 3.6A at three different numbers of sampling points. 

Using c= 3.6A obviously results in the fastest calculation since it is only 

necessary to calculate one V P  (x,y). The programs were all run on a CDC 

7600 computer. 

4. Discussion 

The primary motive behind the formulation of the Real Space method as 

an alternative way to do computer simulation of electron microscope images 

is that the RSP method appears to offer the following advantages: 

1. There is no error due to aliasing which might occur when using 

Fourier transforms. 
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There is a possibility of eliminating the need to use periodic 

extension in faulted crystals. 

The method might allow using a larger slice thickness, being 

correct to second order in e. 

A reduction in computer time is possible for the RSP method, 

the time per slice being proportional to N, the number of 

sampling points, rather than NLogN as for the FFT method. 

As to the first claim, it is true that there is no aliasing associated with 

the RSP method. However, when all the physically relevant reflections are 

taken into account in an FFT calculation, aliasing should not be a problem. 

Rather one can argue that if aliasing ever does affect the result, not enouah 

reflections have been included to give a meaningful result anyway. Although 

there has been no attention given here to determining when aliasing begins 

to affect the FFT calculation, the above results indicate that for an 

accelerating voltage of 1MV, no such effect occurs as long as q 	 > 2.8A.
max 

In most cases it will be possible to avoid using a periodic unit cell 

in an RSP calculation and thus avoid the need to use a periodic continuation 

when simulating images of defective crystals. The choice to use periodic 

continuation or not depends on how one decides to calculate the derivatives 

at the boundary of the x-y plane. 

With respect to the third possible advantage, it is instructive to 

examine the asymptotic behavior of the RSP method as the slice thickness 

is decreased and the number of sampling points is increased. The first 

condition imposed on the RSP method is that K = Xg<<1/2. Similarly, 
max 

a limit on K is also imposed in the conventional multislice method. 
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For example, Ishizuka and Uyeda [6] using astationary phase method in deriving 

the multislice formula arrive at the condition K << 1. Lynch and O'Keefe 

[9] argue that to avoid upper layer line reinforcement, the parameter for 

the pseudo-layer interaction a(g) = xcg2 should be less than 0.5. This 

again corresponds to K<l, however for safety, a vaiue of Kmax = 0.2 was 

used. Thus the major difference between the RSP method and the FFT method 

in this respect is that while an RSP calculation for Kmax > 1/2 begins to 

diverge, the corresponding FFT calculation does not. In either case, care 

should be taken with respect to the size of the slice thickness and the 

number of reflections needed to satisfy the condition K<l/2. 

However, in spite of similar conditions imposed on the two methods, 

it is seen from the results of the computer calculations that there are 

important differences between the RSP and FFT methods. Only as the slice 

thickness decreases and the number of reflections increases, does the result 

of the RSP calculation approach that of the FFT calculation. Furthermore 

while the FFT method is barely affected by changes in E and q 	 (as lonamax 

00  as 6.3.6A and g 	 >, 2.8A 	for V0  = 1MV), the RSP calculation is stronglymax  

affected. Reducing the slice thickness gives only minor changes in the 

result of the RSP calculation, which means that the number of reflections 

included in the calculation has the strongest influence on the result. 

Although the need to incorporate reflections beyond 2.8A 	is not indicated 

for the FFT approach, this may be necessary in the RSP approach to ensure 

that none of the relevant reflections become artifically amplified through 

the action of the expanded propagator. Thus instead of being able to use 

a larger slice thickness in the RSP method compared to the FFT method, 

it seems more likely that a smaller slice thickness is essential in order 
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to accommodate the inclusion of a larger number of reflections. 

Finally, under identical conditions the RSP method offers a significant 

reduction in computer time. For the range of commonly used N (number of 

sampling points), the reduction in computer time per slice amounts to a 

factor of 3-5. This represent a significant saving in computer time and 

could prove to be a great value when using smaller and slower computers. 

It must however be noted that the saving is in calculation time per slice 

for the same N and is only effective if the same slice thickness and the 

same number of reflections can be used in the two methods. 

5. Conclusion 

The RSP method gives results similar to the conventional multislice 

calculation when care is taken to include enough reflections. To keep 

within the domain of validity of the RSP method, it might be necessary 

to reduce the slice thickness as the number of reflections increases, as 

needed to maintain XEg 	< 1/2. If this condition is not satisfied, the 
max 

RSP method will begin to diverge due to a near-exponential growth of 

higher order reflections. The divergence is due to the amplification 

effect of the expanded propagator and does not set in until a nominally 

low intensity has been scattered into those reflections having g-vectors 

with magnitude close to
max *Although a similar boundary condition is 

imposed on the validity of the FFT method, going beyond the domain of 

validity does not cause any divergence. In order to obtain reliable 

results from the RSP method it might be necessary to include more 

reflections than required with the FFT method which consequently also 

requires smaller slice thicknesses and therefore increased computational 

time. Investigations into further improvements of, and extended applications 

10 

V 
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of the Real Space method are currently underway. 
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FIGURE CAPTIONS 

Fig. 1. Schematic representation of the scattering problem. The specimen 

is depicted as a potential distribution U () which may be divided 

into a series of slices having thickness E. 

Fig. 2. Schematic representation of the fast Fourier transform (FFT) 

algorithm used by Ishizuka and Uyeda [6]. 

Fig. 3. Amplitude vs. thickness for the reflections 000, 200, 220 and 440 

for copper [001]. Accelerating voltage is 200kV and the slice 
0 

thickness is 3.6A. The result from the FFT calculation is shown 

by the solid 

calculation. 

second column 

gmax= 2.5A 

Fig. 4. Amplitude and 

line, and the broken line represents the RSP 

In the first column 9max 
	

1.4°_i = 	(K = 0.18), in the 

 
gmax = 1

. 9I (K = 0.33) and in the third column 

(K = 0.57). 

phase (in uints of ii) vs. thickness for 3 sets of 

values of the slice thi.ckness c andmax*The  values are (1) 

= 3.6A, 9 	 = 2.8A; (2) c = 1.8A, g 
max 

 =3.9A; (3)E =
max 

0 -1  
0.9A, g 	 = 5.5A 	labeled separately for the RSP method. These

max 

values gave essentially the same results for the FFT method, plotted 

as the single FFT curve. 

Fig. 5. Amplitude and phase (in units of ir) vs. thickness for 3 different 

valuesof the slice thicknessE ; g 	 is kept constant at 2.8A1,max 

c takes the values 3.6A (-), l.SA  ( --- ) and 0.9A (++). Calculation 

is by the RSP method. 
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NN tRSp [sec] tFFT [sec] 

20 400 0.017 0.063 

28 784 0.034 0.12 

40 1600 0.066 0.23 

Table 1. Computational times per slice, slice 
thickness 3.6A, for the FFT method and the RSP 
method at three different values of the number 
of sampling points N. 
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