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Abstract

®

CrossMark

By means of a modal method we have calculated the angular dependence of the reflectivity and
the efficiencies of several other diffracted orders of a perfectly conducting lamellar reflection
grating illuminated by p-polarized light. These dependencies display the signatures of Rayleigh
and Wood anomalies, usually associated with diffraction from a metallic grating. The Wood
anomalies here are caused by the excitation of the surface electromagnetic waves supported by a

periodically corrugated perfectly conducting surface, whose dispersion curves in both the
nonradiative and radiative regions of the frequency-wavenumber plane are calculated.

Keywords: Rayleigh and Wood anomalies, diffraction grating, electromagnetic scattering

(Some figures may appear in colour only in the online journal)

1. Introduction

In his measurements of the angular and wavelength depen-
dencies of light diffracted from various metallic gratings,
Wood [1, 2] noted ‘anomalies’ in the data he obtained when
the wave vector of the incident beam was in the plane
perpendicular to their grooves, and its magnetic vector was
parallel to the grooves, i.e. in p polarization. These anomalies
were of two types.

The first type of anomaly was a discontinuous change in
the reflectivity as a function of the wavelength of the incident
light for a fixed angle of incidence at well-defined wave-
lengths. These wavelengths were independent of the metal on
which the grating was ruled, and were determined by the
period of the grating. It was shown by Lord Rayleigh [3, 4]
that these anomalies occur at the wavelengths at which a
diffracted order appears or disappears at a grazing angle. For
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the nth diffracted order this occurs at the wavelength given by
A = d(£1 — sin 0y)/n, where d is the period of the grating,
6y is the angle of incidence, and 7 is an integer. In the former
case the power in that order is removed from the zero order
beam; in the latter case the power in that order is returned to
the zero-order beam.

In subsequent investigations [5, 6] it was found that such
anomalies also occur at the Rayleigh wavelengths when the
electric vector of the incident light is parallel to the grooves of
the grating, i.e. in s polarization. However, in this case they
are weak and require deep grooves for their observation.

The second type of anomaly, now called a Wood
anomaly, was diffuse, and extended in a wide range of
wavelengths from a Rayleigh anomaly towards longer
wavelengths. These anomalies generally consisted of a max-
imum and minimum intensity. When the plane of incidence
was perpendicular to the grooves of the grating they occurred
only in p polarization, and the wavelengths at which they
occurred changed when the metal on which the grating was

© 2016 IOP Publishing Ltd  Printed in the UK
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fabricated was changed. Wood had no explanation for these
anomalies, nor did Lord Rayleigh. The explanation for them
was provided many years later by Fano [7], who showed that
they are due to the excitation by the incident light of the
surface plasmon polaritons supported by a periodically cor-
rugated vacuum-metal interface [8, 9]. If the dielectric func-
tion of the metal is denoted by e(w), the wavenumber of the
surface plasmon polariton, ke (W) = (w/c)
[e (W)/(€ (W) + 1)]%, is slightly larger than w/c¢ in the fre-
quency range where e(w) is negative. The component of the
wave vector of the incident light parallel to the surface,
k = (w/c)sin By, is smaller than (w/c). In order that
momentum be conserved in the interaction of the incident
wave with the surface plasmon polariton the difference
between these two wave numbers has to be made up, which in
the present case is done by a wave number of the grating,
27n/d, where n is an integer. The condition for the excitation
of the surface plasmon polariton therefore is
k=kypWw) + Qn/d)n, or (/X)) =1/ pWw)) + n/d.
Since surface plasmon polaritons propagating normal to the
grooves of a metallic grating exist only in p polarization, they
cannot be excited by s-polarized light when its electric vector
is parallel to the grooves. Thus, Wood’s anomalies do not
exist in s polarization. Since the wavelength of a surface
plasmon polariton is a function of the dielectric function of
the metal, the scattering angles or wavelengths at which these
anomalies occur vary from metal to metal.

In the years following Fano’s work these grating
anomalies were studied extensively by experimentalists and
theorists. A recent review of developments in this field is
presented in the chapter by Maystre [10].

The great majority of the theoretical studies of grating
anomalies were carried out for diffraction from metallic
gratings. However, there were exceptions to such studies. It
had been believed that when the wavelength of the incident
field was in the visible and near-infrared regions of the
electromagnetic spectrum, the grating could be regarded as a
perfect conductor, which led to rigorous calculations of the
diffraction of light from perfectly conducting gratings [11-
15]. In a particularly detailed set of calculations [15], Ray-
leigh anomalies were observed to occur in the wavelength
dependence of the reflectivity and other diffraction effi-
ciencies at the values predicted by Lord Rayleigh. In addition,
other features were observed in these dependencies. These
were referred to as resonance anomalies, and were attributed
to resonances within the grooves of the grating [16]. These
standing waves within the grating grooves were taken into
account in reference [16] by replacing the grating by a planar
surface with a periodic surface impedance (reactance). Such a
structure can support leaky (complex) surface waves that
produce features in the angular or wavelength dependencies
of the scattering efficiencies distinct from the Rayleigh
anomalies. Unfortunately, the dispersion curves of these leaky
surface waves were not calculated in either reference [15] or
reference [16]. Therefore, it was not possible to relate directly
the existence of these waves to the Wood anomalies in the
scattering efficiencies.

When results calculated on the basis of the assumption of
a perfectly conducting grating were compared to experimental
data for the diffraction of p-polarized light from metallic
gratings in the visible and near-infrared, serious discrepancies
were found [17, 18]. Interest in the diffraction of light from
perfectly conducting gratings waned in the wake of these
results.

Nevertheless, in this paper we revisit the theory of the
diffraction of p-polarized light from a perfectly conducting
grating. Our motivation for doing so is that the theoretical
studies of the diffraction of p-polarized light from metallic
gratings following the work of Fano recognized the origin of
the Wood anomalies as the surface plasmon polaritons sup-
ported by the periodically corrugated metal surface. At the
time the theoretical studies of the diffraction of p-polarized
light from perfectly conducting gratings were carried out, it
was not known, as it is now, that a periodically corrugated
perfectly conducting surface also supports surface electro-
magnetic waves [19, 20].

Perhaps for this reason the dispersion curves of the sur-
face waves supported by such surfaces, even those predicted
with heuristic impedance boundary conditions, were not cal-
culated. Now that the existence of p-polarized surface
electromagnetic waves on periodically corrugated perfectly
conducting surfaces is known, it seemed of interest to cal-
culate their dispersion curves together with the angular
dependencies of the diffraction efficiencies in the diffraction
of p-polarized light from such gratings. The goal of these
calculations is a demonstration that these surface electro-
magnetic waves give rise to Wood anomalies in the same way
that surface plasmon polaritons give rise to Wood anomalies
in the diffraction of p-polarized light from metallic gratings. It
is such calculations that we carry out in this paper. In doing so
we will use a modal approach analogous to the one employed
by Lopez-Rios et al [21] to study the reflectivity of a lamellar
metallic grating (see also [22] and [23]).

2. The diffracted field

The physical system we study in this work, a perfectly con-
ducting lamellar grating, is depicted in figure 1. It is illumi-
nated from the vacuum by a p-polarized electromagnetic field
of frequency w, whose plane of incidence, and hence of
scattering, is the x;x; plane. In p polarization it is convenient
to work with the single nonzero component of the magnetic
field, H, (x, x3; 1) = Hp (x, x3|w)exp(—iwt). Because of the
periodicity of the surface profile, this field amplitude
H,(x, x3]lw) must satisfy the Floquet-Bloch condition
[24]1 Hy (x + d, x3|w) = exp(ikd) H, (x1, x3|w), where
k = (w/c)sin 6y is the projection of the wave vector of the
incident field on the plane x; = 0, and d is the period of the
grating. The angle 6, is the angle of incidence, measured
counterclockwise from the positive x3-axis. As a consequence
the field at any point of space above the grating surface can be
determined from the field in the central cell located between
x = —a/2 and x; = a/2.
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Figure 1. A depiction of the grating considered in this work, the
parameters that define it, and the geometry of the diffraction of light
from it.

The magnetic field in the vacuum region x3 > 0 can be
written

00
H2>(.X1, .X3|(U) — eikxlfia'o(k)m + Z An eiknx1+ia'o(k,,)X3, (l)

n=-—0oo

where k, = k + 2mn/d, and

w 2 1/2
ao(k) = [(—) - kz] . )
C

The manner in which the branch cut defining the square root
in equation (2) is obtained, will be explained below.

The magnetic field within the central groove of the
grating, defined by —a/2 < x < a/2, —h < x3 < 0, that
satisfies the boundary conditions [25]

0

—H2<(:I:a/2, x3|w) =0,-h<x3<0, (3a)
X
in(xl, — h|w) =0, —-a/2<x<a/2, (3b)
8x3
can be written
< s mm a
Hy(x, x3|w) = Y B cos| —|x — =
m=0 a 2
X cos [am (W) (x5 + h)], )

1
2 215
(W) = [(%) . (%) ]2 Ray, (w) > 0, Tay, (w) > 0.

&)

The amplitudes {4, } and {B,} are obtained from the
remaining boundary conditions satisfied by the magnetic

field, namely [25]
0

—Hy (%, 0|w) =0, a/2 < |x|<d/2, (6a)
8x3
in(xl, O|w) = in(xl, 0|w), —a/2 <x <a/2,
8x3 8)(3
(6D)
H2>(x], 0|w) = H2<(x], 0|w), —a/2 <x<a/2. (6¢)

We first consider equation (6b) which, with equations (1)
and (4), becomes (for —a/2 < x < a/2)

—iag(e + 37 iag(k,)A, ek

n=—0oC

= — iam(w)Bm COS I:m(xl — %):l sin [Ozm(w)h]
a

m=0 (7)

We next multiply this equation by exp(—ik;x;) and integrate
the result with respect to x; over the period d:

d
2

— i (k) f dyel(k—k)u
“d
2

+ 2

n=—0oC

d
2

iag(kn)A, | duei(bkiba
fg

= i (W) Byy sin[ vy (w)h]

m=0
a

2
x f ek cos[%(}cl - %)] 8)

2

It should be kept in mind that according to equation (6a) the
function represented by the coefficient of exp(—ik;x) in the
integrand on the left-hand side of this equation vanishes
fora/2 < |x| < d/2.

Equation (8) can be rewritten as

— i (k)dé6jo + icvo(k;)dA;

= — i Sim o (W)aB,, sin [ (W) h] s )

m=0

where

Sim = lfi fdxle*i"fxl cos [H(xl - g)],
aJ-¢ a 2

_ Mm(’ﬂ _mm
2 2
. I
+ —exp(u;m/Z) sinc(jTa + m), (10)

with sinc(x) = sin(x)/x.



J. Opt. 18 (2016) 024004

A A Maradudin et al

Thus, the first relation between the {A,} and {B,}
becomes

A; = 6+ LU S S (@)sin [ (@)h] Boe (1)

O[()(kj) m=0

A second relation between the {4, } and {B,, } is obtained
by starting with the boundary condition (6¢). With the use of
equations (1) and (4) it becomes

00 00
e+ 3 Ayel = Y B, cos [@(xl — g)]

n=—o00 m=0 a

xcos[am(w)h], —% <x< %. (12)

We multiply this equation by cos [J—W (q — g)] and integrate
a

the result with respect to x; over the interval (—a/2, a/2). In
this way we obtain the equation

f_i dx, cos [j—w(xl — 2)]6”‘"'
g 2
+ Z A, f dx cos[ (

n=—0o0
a

= Z cos[am(w)h fdxl cos []W(xl — %)]

2

X COS [m(xl — ﬁ)]' (13)
a 2
With the aid of equation (10) this equation becomes
aS + a Z AuSS = 2“ cos[ a;(w)h] B, (14)
n=-—0oo 6/
where
_J1/2, j=0,
6"_{1, i1 (1
It follows from equation (14) that
2¢;
Bj:— SOJ—&— ZA (16)
cos[a] (w)h] e o0

On combining equations (11) and (16) we obtain the
equation satisfied by the {4, }:

Ay =bmo + Mok, w) + Z My, (k, WA,

m:O,il,iZ,...,i_‘ (17
where
1
M, (k, w) = 21 G,Sm,Sn,a,(w)tan a,(w)h
TP L)

(18)

The diffraction efficiency of the mth diffracted beam is given
by

€m = a()( )IAm |2
ag (k)

The conservation of energy in the diffraction process is
expressed by

19)

Z/ ( ) |2:1’

- o(k)

where the prime on the sum denotes that it extends over only
the open channels, i.e. the ones for which aq(k,,) is real.
Finally, the reflectivity is given by

Ao .

(20)

R=e= 1)

3. The dispersion relation for surface
electromagnetic waves

To obtain the dispersion relation for the surface electro-
magnetic waves supported by the perfectly conducting
lamellar grating depicted in figure 1, we need only to omit the
incident field from the right hand side of equation (1). This is
equivalent to deleting the inhomogeneous terms from
equation (17). In this way we obtain the homogeneous system
of equations

Z My, (ka w)An B

m=0,=x1,+2,.... (22)
n=-—o00
The solvability condition for this system of equations
det[an (k, W) - 6mn] =0, (23)

is the dispersion relation we seek.
The magnetic field of the surface wave is then given by
the second term on the right hand side of equation (1)

0
Z An eik,,xl +iag (k,l)x_; .

n=—o00

H2>(x1, X3 | w) = (24)

At the same time, to avoid working with a matrix that is
singular when o (k,,) vanishes, we rewrite equation (23) as

D (k, w) = det| Ny, (k, w) + ihao(kn) S | =0, (25)
where
N (ks ) = 225 er Sy (@)h an[ o (A, (26)

r=0

The solutions w (k) of equation (25) are even functions of
k, w(—k) = w(k). They are also periodic functions of k with
period 27/d, w(k + 2n/d) = w(k). Thus, in the reduced
zone scheme we need to solve equation (25) only for values
of k in the interval 0 < k < 7/d.

In the absence of the periodic corrugations of the per-
fectly conducting surface, the resulting planar surface does
not support a true surface wave, only a surface-skimming
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bulk wave, whose dispersion relation is w = c|k|, the vacuum
light line. When the portions of this curve in the second, third,
... , Brillouin zones are folded into the first Brillouin zone
—7m/d < k < w/d, by translations to the left and right by
multiples of 27 /d, the result is a zig-zag dispersion curve
with a second, third, ... branch in addition to the lowest
frequency branch. It is the modification of this dispersion
curve by the periodic corrugations of the surface that we
seek here.

In the nonradiative region of the (k, w) plane, defined by
|k] > (w/c), the matrix whose determinant appears in
equation (25) is real and symmetric, because of properties of
the matrix element S;,, and the fact that «ag(k,,) is pure
imaginary with a positive imaginary part for all m. From
equation (24) we see that this is required in order that
equation (24) describe a surface wave whose amplitude
decays exponentially with increasing x;. The solutions of
equation (25) in this region are real and correspond to true
surface waves.

For k and w outside the non-radiative region, the matrix
in equation (25) is no longer real and symmetric because
some « (k,,) become complex with a positive real part, and
thus represent components in the sum (24) that radiate into
the vacuum. As the surface wave radiates into the vacuum it
must decrease in amplitude. To describe this conversion of
surface waves into bulk waves in the vacuum we will con-
sider w to be complex and k to be real. The imaginary part of
w gives the inverse lifetime of the amplitude of the leaky
surface wave.

In order to obtain solutions of equation (25) that possess
these properties, we have to choose correctly the branch cut
that defines the square root in the definition of oy (k,). We
begin by setting

w(k) = wr (k) — iwy(k), 27

where wg (k) and wy (k) are real and positive functions of k.
The positivity of wj(k) is needed in order to have a wave
whose amplitude decays in time as it propagates. With
equations (2) and (27) we have

2 2
ag(kn)[%(w

2
27Tl’l) ] . iZwaI ) (28)

c2

We see that a% (k,) must be in either the third or fourth
quadrant. Thus, if we choose the branch cut along the nega-
tive real axis, we would always obtain «q(k,) in the fourth
quadrant, with a positive real part and a negative imaginary
part. This means that when a% (k,) is in the third quadrant,
(W — wi)/c* < k? ie. in the nonradiative region, the
negative sign of the imaginary part of o (k,) means that the
nth term in equation (24) increases exponentially into the
vacuum with increasing x3. This is the opposite of the phy-
sical situation we must describe. However, if we take the
branch cut along the negative imaginary axis, when a3 (k,) is
in the third quadrant ag(k,) will be in the second quadrant,
with a negative real part and a positive imaginary part. In this
case the nth term in equation (24) decreases exponentially

with increasing xs, as is required of a surface wave. Moreover,
when o} (k,) is in the fourth quadrant, (W} — w?)/c? > k2,
i.e. in the radiative region, ag(k,) is also in the fourth
quadrant, with a positive real part and a negative imaginary
part. The positive real part of «(k,) corresponds to a wave
that is radiating from the surface into the vacuum, as we wish
for a radiative or leaky surface wave. The negative imaginary
part of agy(k,) in this case corresponds to a wave whose
amplitude increases exponentially with increasing x;. This
exponential increase of the amplitude of a leaky surface wave
with increasing distance from the surface is physically cor-
rect. It has been discussed in detail by Lim and Farnell [26],
by Ingebrigtsen and Tonning [27], and by Glass and Mar-
adudin [28] in the context of leaky surface acoustic waves,
and we refer the reader to these papers for an explanation of
this counterintuitive result.

Numerical details: we begin the numerical calculation of
the dispersion curve by approximating the infinitely dimen-
sional equation system for {A, } by a finite dimensional sys-
tem. To this end, we assume |[m| < M and |n| < M (withM a
positive integer) in equation (22), so that the dimension of the
resulting linear system becomes M = 2 M + 1. The disper-
sion curve for surface electromagnetic waves that we are
interested in is determined by the vanishing of the determi-
nant D (k, w) defined in equation (25). However, this quan-
tity, like any determinant, is a highly non-linear and non-
continuous function of its parameters. For instance, a slight
variation of k and w may result in orders of magnitude
changes in D (k, w). Therefore, the function D (k, w) is not
well suited for being used in a numerical minimization rou-
tine. It is well known that a matrix is singular, and hence its
determinant vanishes, if and only if one of its eigenvalues
vanishes. Hence, we define the function

Ak, w) = min { | Ak, w)] ] (29)

M
m=—M"
where )\, denotes one of the -eigenvalues of the
M x M-matrix that has D(k, w) as its determinant (see
equation (25)). Since Dk, w) =[] Au(k, w), it
follows that the condition D(k, w) = 0 is equivalent to
A(k, w) =0 which, therefore, represents an alternative
definition for the dispersion curve for surface waves.
However, we have found the latter definition to be better
behaved numerically than the former, and the calculations
presented in this work are therefore based on this condition
for the existence of surface waves.

To obtain the dispersion curve for surface waves, a mesh
of N+ 1 -equally spaced points k,=/¢Ak, with
£=0,1,2,...,N and Ak = (7/d)/N, is created in the
interval (0, 7/d) of the k axis, where N is typically 100. For
each value ky,, a numerical minimization of the function
A (ky, w) is performed with respect to the complex angular
frequency w (k) = wg (k) — iwj(k). To this end, we use the
Nelder—-Mead optimization algorithm [29-31] by considering
A a function of the two real variables wg and wy (wg = 0 ,
wy = 0) but with k, treated as a known parameter. The
minimization starts by assuming a value k, on the zone
boundary of the first Brillouin zone; for odd branches of the
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dispersion relation we start at £ = 0 and step forward towards
{ = N, for even branches we do the opposite and step
downwards from £ = N towards £ = 0. For each value of &,
an independent numerical minimization of A(k,, w) is per-
formed to identify the complex angular frequency w(k,). To
make sure that the point indeed is on the dispersion curve for
surface waves we recorded both the smallest eigenvalue in
modulus of the matrix of equation (25) (i.e. A(ks, w(ke)))
and its reciprocal condition number. When the calculations
were performed in double precision, typical values for these
quantities were found to be ar least as small as 10~"> and
10~'°, respectively. Only for a small number of points on the
dispersion curve did we find values for the reciprocal con-
dition number that were larger than these values; however, for
all points on the dispersion curve the reciprocal condition
number remained several orders of magnitude smaller
than one.

In order to follow a given branch of the dispersion curve,
some care has to be taken when specifying the initial value for
w used by the minimization routine. For instance, for the first
(or fundamental) branch, corresponding to a true surface
wave, the minimization starts at ky = 0 with the initial guess
wr (ko) = wy(kg) = 0; as ¢ is increased, the initial values
used for wg and w; when performing the minimization at &,
are wg (ky_1) and wy(ky_1), respectively. This means that at
step £ > 0, one assumes for the initial value of the frequency
the value w(k,_) that was identified at the previous step
¢ — 1. In this way the first branch of the dispersion relation is
identified, and the approach seemed to work well for all the
parameters of the grating that we considered and tested.

We note that for the first branch, it is expected that the
imaginary part of the angular frequency is zero, wy = 0. This
we indeed also found in our numerical results, even if the
approach used to obtain them made no a priori assumption
about a zero imaginary part.

For the higher order branches, the initial values for wg (k)
and wy(k) used by the minimization routine were found to
depend somewhat more on the parameters defining the grat-
ing. However, for the numerical results presented in this work
the initial values wrd/(cm) = n — 1 and w; = 0 were used
successfully for the first k-point of the nth branch of the
dispersion curve located on the left (odd branches) or
right (even branches) zone boundary of the first Brillouin
zone. For the remaining k, values (f/ > 0) on a higher order
branch, we again successfully used wg (k,_) as the initial
value for the frequency in the minimization. In this fashion,
the second and third branches of the dispersion curve were
identified.

4. Results

To illustrate the preceding results we present results for the
dependence of the reflectivity and several other diffraction
efficiencies on the angle of incidence 6, when several reali-
zations of the perfectly conducting lamellar grating depicted
in figure 1 are illuminated by p-polarized light. To help in
interpreting the results we note that the value of 6, at which

the Rayleigh anomalies are expected to occur are obtained
from the equation
sin 9 = +1 + m%, (30)
where m is an integer, A is the wavelength of the incident
light, and d is the period of the grating. We note that if a value
98") is obtained for some integer value of m when the + sign
appears on the right-hand side of this equation, then the value
95)_’”) = —98") is obtained for the same magnitude of m but
with the opposite sign when the—sign appears on the right-
hand side.
The values of 6, at which Wood anomalies are predicted
to occur are obtained from the equation

d sin 6y = ke (w) + n2—7T,
c d

(3D
where kg(w) is the wavenumber of the surface wave of
frequency w and n is an integer. It is convenient to rewrite
equation (31) as

sin Oy = A[lkS(w)d + n]
dl2 =«

(32)

The value of kg(w) 1is confined to the inter-
val 0 < ky(w) < w/d.

The first examples we present to illustrate our results are
for a grating defined by the values a/d = 0.40 and
h/d = 0.30. The dispersion curve for the surface electro-
magnetic waves on this grating, plotted in the reduced zone
scheme, is depicted in the left-hand panel of figure 2, where
wr (k) is plotted as a function of k. It consists of an infinite
number of branches, of which we present only the three with
the lowest frequencies. We also present in the left-hand panel
the vacuum light line folded back into the first Brillouin zone.
The right-hand panel presents plots of wy (k) as a function of k
for each branch of the dispersion curves plotted in the left-
hand panel. The magnitude of wy (k) gives an indication of the
width of the Wood anomaly associated with the excitation of
the surface wave of frequency wg (k) by incident light of that
frequency; the larger wy(k), the broader the anomaly.

We present the dependencies of the first several diffrac-
tion efficiencies of this grating on the angle of incidence 6, in
figure 3. The wavelength of the incident light assumed in
obtaining these results was \/d = 0.7350 [wd /cm = 2.7212].
This corresponds to a point on the third branch of the dis-
persion curve plotted in figure 2 defined by
ks(w)d/m = 0.7551. For these values of the grating and
experimental parameters equation (30) predicts that Rayleigh
anomalies should occur at 6§, = £15.37° and 4-28.03°, while
equation (32) predicts that Wood anomalies should occur at
6y = +£16.11° and +27.22°. The angular positions of the
Rayleigh and Wood anomalies are indicated by dash-dotted
and dashed lines, respectively, in figure 3 and subsequent
figures. In the results presented in figure 3 the Rayleigh and
Wood anomalies appear at the angles of incidence predicted
for them by equations (30) and (32), respectively. In the case
of ey(fy) the Rayleigh anomaly at 6, = +15.37° is a weak
dip, while the one at 6, = +28.03° is a vertical slope. Both
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Figure 2. The dispersion curves for the surface electromagnetic waves supported by a lamellar perfectly conducting grating defined by
a/d = 0.40 and h/d = 0.30. Both the real, wg (k), and imaginary, —wj (k), parts of the frequency [w (k) = wr (k) — iwy(k)] of these waves
are presented in the reduced zone scheme. The first branch of the dispersion (blue line) is located in the nonradiative region of the

(k, w)-plane, and it corresponds to a true surface wave, the imaginary part of whose frequency vanishes identically. The second and third
branches of the dispersion curve (red and green lines, respectively) are both located in the radiative region (k| < w/c); they correspond to
leaky surface waves, whose frequencies have negative imaginary parts. The dashed (black) lines denote the vacuum light line in the reduced
zone scheme. The arrows correspond to the wavelength \/d = 0.7350 [wd /cm = 2.7212] that will be used to calculate diffraction
efficiencies in figure 3. The numerical calculations were done for M = 10, but increasing this value, did not affect the final result.
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Figure 3. The diffraction efficiencies ¢,, (), equation (19), as
functions of the angle of incidence for a lamellar grating defined by
a/d = 0.40 and h/d = 0.30. The angular positions of the Rayleigh
and Wood anomalies, determined by equations (30) and (32),
respectively, are indicated by vertical dashed—dotted and dashed
lines, respectively. Only diffracted orders m for which e, (6y) = 0 in
the range of ) considered are presented. The wavelength of the
incident light assumed in obtaining these results was A/d = 0.7350.
The point on the dispersion curve for this grating corresponding to
this wavelength is indicated by arrows in figure 2. The numerical
calculations were done for M = 10.

O
o

40

the Wood anomalies are peaks in this case. In the results
presented for e_; (), the Rayleigh anomalies are small sharp
peaks, while the Wood anomalies are now dips. In the results
for e, () and e_, (Ay) no Wood anomalies are present, but the
Rayleigh anomalies manifest themselves through the dis-
appearance of a diffracted order and the appearance of a new
one, respectively, as 6, is increased.

In the numerical calculations that produced the results
presented in figures 2 and 3, we assumed M = 10 since
increasing it further, did not result in any detectable changes
in the results obtained, at least not for the grating parameters
assumed. In these calculations, the energy conservation con-
dition, equation (20), was checked explicitly and, for all
angles of incidence considered, found to deviate from unity
by an amount no larger than 10~'* in magnitude when the
calculations were performed in double precision. Moreover,
in all the subsequent calculation results presented in this work
we also assumed M = 10, and the same satisfactory fulfill-
ment of the energy conservation condition was found
for them.

In figure 4 we present plots of wg(k) and w;(k) as
functions of k for surface electromagnetic waves on a grating
defined by a/d = 0.45 and h/d = 0.20. The first several
diffraction efficiencies of this grating are plotted as functions
of 0 in figure 5. The wavelength of the incident light assumed
in obtaining this figure was \/d = 0.7518 [wd /e = 2.660].
This corresponds to a point on the third branch of the dis-
persion curve plotted in figure 4 defined by
ks(w)d/m = 0.7551. For these values of the parameters
Rayleigh anomalies are predicted by equation (30) to occur at
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Figure 5. The same as figure 3, but now for a grating defined by
a/d = 0.45 and h/d = 0.20. The wavelength of the incident light is
A/d = 0.7518 (indicated by the arrows in figure 4).

0y = £14.37° and £30.23°, while Wood anomalies are pre-
dicted by equation (32) to occur at +16.49° and +27.90°.
Again, the Rayleigh and Wood anomalies are found to occur
at the predicted angular positions. In the case of ey(6y) the
Rayleigh anomalies have the form of vertical slopes at their
predicted angular positions, while the Wood anomalies are
peaks at their predicted angular positions. The Rayleigh
anomalies manifest themselves as sharp peaks in the case of
e_1(0y), while theWood anomalies are broad dips at
0y = £16.49° and £27.90°. In the case of e, () and e_, (6y)
no Wood anomalies are predicted, and the Rayleigh

anomalies correspond to the disappearance and appearance of
diffracted orders, respectively.

For our third example we consider a grating defined by
a/d =0.60 and h/d = 0.20. In figure 6 we present the
dependencies of wg (k) and w;(k) on k. We assume that this
grating is illuminated by light whose wavelength is
A/d = 0.8867 [wd/cm = 2.2554]. This corresponds to a
point on the third branch of the dispersion curve plotted in
figure 6 defined by k¢ (w)d/m = 0.4490. From equations (30)
to (32) we find that Rayleigh anomalies are predicted to occur
at 0y = £6.50° and £50.67°, while Wood anomalies are
predicted to occur at 6y = +16.11° and +27.22°. We see
from figure 7 that these anomalies occur at the predicted
angles of incidence.

For our final example we display the coalescence of two
Wood anomalies as the grooves of a grating are made shal-
lower for a fixed value of the width of the grooves [figure 8].
The grating chosen for this study is defined by a/d = 0.60
and four values of 2/d namely 0.20, 0.19, 0.17, and 0.15. The
calculation of the angular dependencies of the diffraction
efficiencies e (6y) and e_;(6y) were carried for each grating
for a value k(w)d/m = 0.7551. Consequently the values of
A/d varied from grating to grating. For a value of
h/d = 0.20, we see two Wood anomalies in ey(0y) at the
predicted values 6, = +18.55° and £31.63°. They are broad,
as is to be expected from the magnitude of the imaginary part
of the frequency on the third branch of the dispersion curve at
the wavenumber ks(w)d/m = 0.7551 presented in figure 6.
The dips centered at these angles in e_; (6) are also broad, for
the same reason. The Rayleigh anomalies occurring at
0y = 9.05° and 43.25° are dips in ¢y () and peaks in e_; (6y).
As the value of h/d is decreased the Wood and Rayleigh
anomalies move closer together, until at h/d = 0.15 the
Wood anomalies overlap sufficiently to produce a single peak
in ey (0y) and a single dip in e_;(6y). The Rayleigh anomalies
do not come sufficiently close to overlap for the values of the
grating parameters assumed in preparing this figure. The
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Figure 6. The same as figure 2, but now for a grating defined by a/d = 0.60 and h/d = 0.20. The arrows correspond to the wavelength

AN/d = 0.8867 [wd/cm = 2.2554], which will be used in calculating the diffraction efficiencies presented in figure 7.
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Figure 7. The same as figure 3, but now for a grating defined by
a/d = 0.60 and h/d = 0.20. The wavelength of the incident light is
A/d = 0.8867 (indicated by the arrows in figure 6).

forms of both the Wood and Rayleigh anomalies remain
unchanged as //d is decreased.

5. Conclusions

We have shown that when a perfectly conducting lamellar
grating is illuminated from vacuum by p-polarized light
whose plane of incidence is perpendicular to the grooves of
the grating, the angular dependencies of the diffraction effi-
ciencies display Rayleigh and Wood anomalies. The former
anomalies occur at the angles predicted by Rayleigh [4]. The
positions of the Wood anomalies occur at the angles
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Figure 8. The diffraction efficiencies, ey (fy) and e_;(0y), as
functions of the angle of incidence 6, for a grating defined by

a/d = 0.60, and several values of 1/d, as indicated on the figure. In
obtaining these curves the value kd/m = 0.7551 was assumed.

associated with the excitation of the surface electromagnetic
waves supported by the periodically corrugated surface, as
predicted by Fano [7] in his study of these anomalies in
diffraction from a metallic grating.

By calculating the dispersion curves of the surface
electromagnetic waves supported by the grating in both the
nonradiative and radiative regions of the frequency-wave
number plane, we have been able to relate the angles of
incidence at which the Wood anomalies occur at a given
wavelength of the incident light to the wavenumber of the
surface wave corresponding to that wavelength, something
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not done in earlier studies of diffraction from perfectly con-
ducting gratings.

In a sense our result extends the work of Fano in showing
that it is the existence of a surface wave on a periodically
corrugated surface, of whatever nature, not only a surface
plasmon polariton, as in the case considered by Fano, that
gives rise to the Wood anomalies. Thus, these anomalies can
also be expected to occur in the diffraction of volume waves
from other types of periodically corrugated impenetrable
surfaces that support surface waves. As an example of this,
because the periodically corrugated surface of an elastic
medium in contact with vacuum, which plays the role of the
impenetrable medium, supports surface acoustic waves of
sagittal and shear horizontal polarizations [32], we can expect
the occurrence of Wood (and Rayleigh) anomalies in the
angular dependencies of the reflectivity of bulk acoustic
waves of sagittal and shear horizontal polarizations incident
on such a surface. This effect should be studied theoretically
and experimentally.
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