
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Modernizing Women's Learning in Software Development: A Study on Constructionist
Pedagogy and Networked Support

Permalink
https://escholarship.org/uc/item/9w05t8p8

Author
Hegab, Dahlia

Publication Date
2015

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9w05t8p8
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Modernizing Women’s Learning in Software Development: A Study on Constructionist
Pedagogy and Networked Support

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

In Information and Computer Sciences

By

Dahlia Hegab

Thesis Committee:
 Professor, Judith Olson, Chair
Associate Professor, Don Patterson

 Professor, Debra Richardson

2015

© 2015 Dahlia Hegab

ii

DEDICATION

To my parents, who have supported me in ways I cannot explain.

iii

TABLE OF CONTENTS

LIST OF FIGURES vi

ACKNOWLEDGEMENTS vii

ABSTRACT OF THE THESIS viii

Chapter 1 Introduction and Research Questions 1

Chapter 2 What is Hackbright? 5

Chapter 3 Constructionist Theories Related Works 8

3.1 First Wave of Constructionist Scholars (Vygotsky, Piaget, Papert) 8

3.2 Constructionism and Experiential Learning (Dewey) 10

3.3 Social Constructionism and Its Take on Culture in Education 16

3.4 Resnick’s Collocated & Distributed Constructionism (Computer

 Clubhouse & Scratch) 19

3.5 Recent Advancements in Distributed Constructionism 21

3.6 Co-Constructed Learning 22

Chapter 4 Constructionist Environments Related Works 25

4.1 Logo & Lego Mindstorms 26

4.2 Resnick’s Computer Clubhouse 31

4.3 MOOSE Crossing 35

4.4 Alice 38

4.5 Scratch 41

4.6 Google App Inventor 42

4.7 Challenges with Constructionist Environments 45

Chapter 5 Related Work on Women in CS, CSCL, Pair programming, Collocation 50

5.1 Inclusion of Women in CS 50

5.2 CSCL/CSCW Patterns 52

iv

5.3 Pair programming 53

5.4 Collocation 56

Chapter 6 Research Methods 59

6.1 Hackbright in Practice 60

Chapter 7 Results 64

7.1 Demographics of Accepted Hackbright Interviewees 64

7.1.1 Motivations for Joining 64

7.1.2 Age/Education Demographics Before/After Hackbright 65

7.1.3 Most Participants Knew a Hackbright Graduate Before

 Applying 65

7.1.4 Previous Exposure to Technology through Schooling, Family,

Friends, Employment 66

7.1.5 Employment Before/After Hackbright 66

7.1.6 The Best Learners Are Teachers? 67

7.1.7 Participants Exhibit Similar Hobbies and Personality Traits 69

7.2 Interactions at Hackbright 69

7.2.1 Safe Environment at Hackbright 69

7.2.2 Difference in Age or Temperament 74

7.2.3 Community Engagement 74

7.2.4 Many Women Experienced Different Self-Concept Before

 Hackbright 75

7.3 Interactions with Mentors 76

7.3.1 Maximizing the Role of Industry Mentorship in a Bootcamp 76

7.3.2 Is it Better to Have Mentorship or Support from a Personal

Network of Friends and Significant Others? 77

7.3.3 Challenges with the Industry Mentorship Program 78

v

7.3.4 Recommendations for Mentorship Program 79

7.4 Challenges in Hackbright 80

7.4.1 Downside of Taking on More Challenging Artifact Creation 80

7.4.2 Difficulty Understanding the Concepts in Short Amount of Time 81

7.5 Suggestions for Improving Other Constructionist Spaces 82

7.5.1 Recommendations for Use of Space in Constructionist Environment 82

7.6 Constructionist Findings 84

7.6.1 Examples of Constructionism 85

7.6.2 Social Constructionism 87

7.6.3 Types of Distributed Communal Support 91

7.7 Computer Supported Cooperative Learning 91

7.8 Pair programming 92

7.8.1 Benefits of Pair programming 92

7.8.2 Challenges of Pair programming 93

7.8.3 Recommendations for Improving Pair Programming Practices 94

7.9 Collocation Practices at Hackbright 95

Chapter 8 Discussion 99

8.1 Summary of Results 99

8.2 Challenges and Considerations for Hackbright 102

8.3 Mentorship Program Recommendations 102

8.4 Pair programming Recommendations 103

8.5 Considerations for Constructionist Activities 104

8.6 Considerations for Collocation Practices & Computer Supported

 Cooperative Learning 106

8.7 Implications for the Design of Bootcamps 106

 8.7.1 Effective Transition for Women into Software Engineering 107

8.8 Future Directions 109

BIBLIOGRAPHY 111

vi

LIST OF FIGURES

Figure 1: Snapshot of LogoBlocks Environment 27

Figure 2: Snapshot of MOOSE Crossing Environment 36

Figure 3: Snapshot of Alice Environment 39

Figure 4: Snapshot of Scratch Environment 41

Figure 5: Snapshot of Google App Inventor Environment 43

Figure 6: Phases of Constructionist Environments 47

Figure 7& 8: Hackbright “learning space” 82

Figure 9: Hackbright Participant’s Business Card 88

Figure 10: Logo for Co-Sponsored Industry Related Hackbright Dinner & Reception 89

vii

ACKNOWLEDGEMENTS

Thank you to my advisor, Judy Olson, whose endless support and encouragement pushed

me to make this research better. You helped me get through writers block and talked me

through the tough parts. I could not have done this without you. Also a special thank you to

my committee members, Don Patterson and Debra Richardson. Your flexibility and

support made this happen. I am beyond grateful to the PhD students that helped, in this,

and my defense, especially Tao Wang, Yiran Wang, Martin Shelton, and Andy Echenique.

Your wisdom and advice are appreciated more than you know. Also thank you to my peers

at Hana Lab and Patterson Lab Group.

I am also beyond grateful to those at Hackbright Academy that made this work possible. To

Angie Chang, Christian Fernandez, and David Phillips, and the students who volunteered to

be interviewed, you were gracious and amazingly hospitable in allowing me to understand

how you were making meaningful changes in the software development industry. This

work is really for you and the possibility of the futures you are creating.

Lastly, this work would not be possible without the support of AAUW Selected Professions

Fellowship, the Google Anita Borg Fellowship, and UCI’s COR Graduate Student Fellowship.

To all those mentioned, and some of those who I might have forgotten, a heartfelt thank

you!

viii

ABSTRACT OF THE THESIS

Modernizing Women’s Learning in Software Development: A Study on

Constructionist Pedagogy and Networked Support

By

 Dahlia Hegab

Master of Science in Information and Computer Sciences

University of California, Irvine

Professor Judith S. Olson, Chair

We present the results of a study of the learning practices of adult women in a 10 week

software engineering bootcamp in San Francisco. We explore the technical, social, and

pedagogical constructionist practices resulting from student immersion in this

organization. The results of our research reveal how cultivating a distributed and

collocated learning process that incorporates communal support at the peer and

instructional levels, while providing a network of alums and industry mentors to encourage

and refine career prospects, can facilitate successful inclusion and transitioning of non-

technical women into the software engineering field.

1

Chapter 1- Introduction and Research Questions

Currently, there is a significant need for more professionals in the software development

industry. There are 1.4 million jobs available and only 400,000 computer science students

set to graduate in the last year (Soper 2014). In addition, only 17.4 % of those computer

science graduates are women (Zweben and Bizot 2013). Various studies have divulged

reasons why women do not end up in computer science including: “lack of experience, lack

of confidence, a misperception of the field, a misperception of the CS culture as hostile and

or “geeky”, and a lack of role-models and mentors” (Klawe 2013; AAUW 2000). A growing

body of literature (Hartness 2011; Milam 2012, Boyer et al. 2014; Margolis and Fisher

2003), (Weaver and Prey 2013) has sought to address concerns regarding gender diversity

in computing. Numerous initiatives to resolve gender disparities in computing and

engineering disciplines have included:

• computing outreach programs for girl scouts (Bruckman et al. 2009),

• summer camp engineering programs for middle school girls (Webb and Rosson

2011) ,

• the emergence of pre-introductory computer science courses in colleges (CS O)

(Margolis and Fisher 2003; Klawe 2013),

• the creation of makerspaces as communal spaces to incubate engineering learning

(Blikstein 2013),

• informal DIY learning groups/meetup groups targeting women,

2

• school run Fablabs (Blikstein 2013)

• post-collegiate software engineering bootcamps.

Post collegiate software engineering bootcamps, specifically, have become popular in

recent years. Today, there are at least 60 software bootcamps in existence across the globe

and the number is quickly rising (Kamenetz 2015). These bootcamps range in

accommodating specific populations (e.g., one is Christian based, another recruits

underrepresented minorities, while another is all female) (Kamenetz 2015). None of them

promise a degree and they vary in time commitments (usually around 10-12 weeks) and

cost (approximately $10,000-$15,000) (Kamenetz 2015). What they do offer, however, is

an opportunity for populations of people who have an interest in computing, but little

experience in it, to get the experience needed to obtain a software engineering position.

In our study, we focus on one post-collegiate, all female, software engineering bootcamp,

Hackbright Academy. We should note, Hackbright does not actually call itself a bootcamp.

On its webpage, it describes itself as a “leading engineering school for women” with “a

mission to increase female representation in tech through education, mentorship, and

community” (Hackbright Academy 2015). It offers a ten week course to teach women

software engineering basics, Python, and several other programming technologies (HTML,

Javascript. JSON, JQuery, etc.). Moreover, it assists graduates in obtaining a software

engineering position by holding a career day that includes interviews with 20-25 of its

partner companies (including Pinterest, Facebook, SurveyMonkey, etc.) (Hackbright

3

Academy 2015) . This ten week course is described as “an accelerated software engineering

fellowship” (Hackbright Academy 2015), presumably to demonstrate the high caliber of the

program and it graduates.

It should be noted Hackbright Academy is distinctive as a bootcamp because of its dual

objective: it hopes to address concerns of both lack of supply and lack of gender diversity in

the software engineering industry. More importantly, it aims to combine and augment

existing perspectives in educational design by introducing new ways of engaging those

female students. It provides a constructionist environment that is supportive emotionally

and professionally through accessible teaching staff and an industry mentorship program.

In the following work, we focus on the pedagogical practices, the social and professional

environment, and the mentorship program provided at Hackbright Academy. We also look

at the intelligent design of its educational space, its students’ use of pair programming, its

demonstration of computer supported cooperative learning in the space, and its radical

collocation practices that enhance its educational environment. We also evaluate the reach

of its social and professional practices beyond student graduation.

4

Research Questions

Our research study is guided by several questions, which are as follows:

1. How does Hackbright compare with traditional learning environments and other

informal learning environments?

2. What can be learned from the design of the learning space + its process + the

resources in this environment to inform best practices in engineering literacy

(among women)?

3. What kind of women sign up for Hackbright Academy? Who is attracted to it?

4. Does the manner of instruction or immersion of “non-technical” adult women at

Hackbright affect their interest in this subject? How?

5. For women who have completed Hackbright, do they obtain industry positions?

How frequently? What helps them stay?

6. What can be learned from pedagogical practices in this informal learning

environment to inform best practices in engineering literacy of adult females?

7. What might we be able to learn from this population of “non-technical” adults

transitioning into software engineering that could be relevant, if not applicable, to

other populations trying to learn this subject?

5

Chapter 2- What is Hackbright?

Background Information:

• Participants are selected by going through a series of interviews, with a specific focus

on evaluating their ability to explain a skill they are an expert in (the more clear and

simplified the explanation, the better)

• Cohort is all-female (teaching staff is both male and female)

Learning Environment:

• Has a culture of respect and trust for learning

• Provides an undertone of support, complete openness, and vulnerability during the

course (e.g. no questions are dumb questions)

• Offers an informal, yet semi structured learning environment

• Provides lectures for initial 5 weeks of the program, but the lectures are free form:

o There are no formalized lesson plans

o Lectures vary depending on questions raised.

• Uses many methods and tools to simplify learning including:

o Teacher sessions/lectures,

o Collaborative pair programming lab sessions,

o Interactions with industry mentors (online and in person)

6

o Distributed and collocated community (distributed interaction occurs through

email listserv and during mentorship activities)

• Presents fundamental programming challenges to prepare students for their own

projects

• Promotes self-motivated learning through personally meaningful projects

• Encourages students to work on personal artifacts through software project sites like

Github

Social/Professional Support:

• Has student-led cross-class reunions, parties, and other types of social and career

development events

• Has anonymized sources of support to encourage pushing through challenging times

(i.e. a motivational wall of post-its put up by students)

• Provides an email listserv where people share social and professional information

(including open jobs at their company or invitations to study an emerging technical

practice)

• Provides unrestricted access to the learning space for current students and alums

during and after the program.

• Creates emergent female community that can be readily seen in Hackbright’s “females

in tech” events

7

Professional Development:

• Provides up to 3 mentors per student (mentors from local tech companies volunteer

and provide continued engagement with students personalized projects)

• Utilizes industry mentorship that includes distributed constructionist activities (help

through chat, emails, Skype)

• Engages with current and popular technological culture (including vocational

technologies used in partner companies such as Flask, Javascript, Python, Github, etc.)

• Offers career training with a focus on salary negotiations and interview preparation

• Provides new graduates with a career day where they pitch their projects to a

representative from a reputable partner company looking to hire female candidates,

such as Pinterest or Facebook (20-25 companies are represented on career day)

• Has open house events for Hackbright students to showcase and demo their projects to

the public

8

Chapter 3- Related Works on Constructionist Theories

Learning Theories:

To enrich our understanding of the learning model we observed at Hackbright Academy,

and expand on best practices in educational design, we turn towards the educational

theory literature. We identified several theoretical models that emulated the primary goals

and values of Hackbright Academy.

3.1 First Wave Constructionist Scholars: Papert, Piaget, Vygotsky

Part of the core ethos of Hackbright Academy, using individualized projects (and artifacts

created during collaborative pair programming exercises) to demonstrate knowledge

gained throughout the course, aligns well with the principles and assumptions of

constructionism. Principles of constructionism include (Papert 1980):

1) “knowledge being built by the learner,

2) an emphasis on having learners engaging in artifact constructions that are

external and shared,

3) teachers having roles as facilitators of students’ active learning.”

The concept of knowledge being built by the learner comes from Piaget’s constructivism.

Although Piaget and Papert concur on the need for knowledge to be built by the learner,

9

Papert diverts from Piaget by putting less emphasis on the cognitive processes of learning,

and instead focuses on

1) the learners constructing a physical object to represent their learning, and

2) the learners’ cultural surroundings (i.e. teachers, or tools in the learning process,

or the environment itself).

Papert references the importance of culture in learning by pointing out (Ackermann 2001):

“All builders need materials to build with. Where I am at variance with Piaget is in the

role I attribute to the surrounding cultures as a source of these materials. In some

cases the culture supplies them in abundance, thus facilitating constructive Piagetian

learning. But in many cases where Piaget would explain slower development of a

particular concept by its greater complexity or formality, I see the critical factor as the

relative poverty of the culture in those materials that would make the concept simple

and concrete. In yet other cases, the culture may provide materials, but block their

use.” (Ackermann 2001)

Papert discusses important components of learning culture, which may include teachers,

tools in the learning process, and the environment itself. He highlights how these

components facilitate or impede the learning process. In this sense, he draws on Piaget’s

concept of constructivism, but also ties it in with Vygotsky’s socio-cultural theory, which

posits that learning is social process (Ackermann 2001). Vygotsky emphasizes social

10

interaction in the development of learning by saying: “individual development cannot be

understood without reference to the social and cultural context within which its

embedded…higher mental processes in the individual have their origin in social processes”

(McLeod 2007). In other words, community plays a central role in the process of learning

or in “making meaning” of concepts (McLeod 2007).

3.2 Constructionism and Experiential Learning (Dewey)

Dewey posits similar sentiments to Papert, and Vygotsky, citing the importance that

cultural components like teachers and learning environment can play, but is much more

focused on itemizing what components are relevant factors in learning, and how they can

affect it in either a positive or negative way. For example, Dewey states that education can

be stifling to learners, and their independence, when they are taught that knowledge is

transmitted in one direction, from the expert to the learner (Dewey 2007). He is one step

removed from Papert, acknowledging that learners should transmit knowledge, but does

explicitly state learning is their responsibility. Despite the difference in terminology for

these scholars, it seems for the most part, both are stating the same thing: teachers play a

part in facilitating learning, and, learners have to diagnose and resolve their own

challenges as part of the learning process.

Dewey goes a step further in discussing potential concerns from the role that teachers play

in a traditional classrooms, including the concern of keeping the order, instead of creating a

11

progressive environment where students are part of a community (Dewey 2007). This

concept touches on concerns posited by later scholars, Freire and Blikstein, who worry that

teachers are less concerned with learners’ needs and more focused on maximizing their

needs being met as instructors (Blikstein 2013). More importantly, Dewey and Papert both

agree with earlier scholars, Vygotsky and Piaget, in stating that education and learning are

social and interactive processes (Dewey 2007; Ackermann 2001). Through a review of

scholars like Dewey and Papert, we see the origins of community based learning and later

movements by scholars like Bruckman, Resnick, Blikstein, and Freire, who we will discuss

later.

Dewey also cites the difficulties associated with traditional schools that are “insular” and

therefore prevent real life interactions with the world (Dewey 2007). The effect is a lack of

context for how the material learned fits into the world at large. Dewey is unique in citing

the importance of this kind of learning, which he terms, “experiential learning” (Dewey

2007).

To clarify, the term “experiential learning,” refers to the concept that students learning new

material must find a way to ground unfamiliar concepts and ideas within the scope of

ordinary life experience (Dewey 2007). Dewey also believes students’ diverse backgrounds

can create an infinitely diverse range of experiences for the educator to consider (Dewey

2007). Dewey also notes that it is the responsibility of teachers to organize learning

experiences for a diverse range of students to be able to understand and engage with the

12

material. Developing this structure first requires acknowledgment of experience as a

vehicle of learning. Subsequently the educator’s discretion is important in selecting the

material for a course of study and sensitivity to weaving connections between the students’

previous experiences and new material, so that the value of lessons learned is maximized.

One of Dewey’s preeminent concerns was the educator’s role in creating an environment

that provided continuity and a contextualized model of student learning. The difficulty in

this challenge lies in continually adapting subject matter as students’ experiences grow and

progress.

More importantly, Dewey (Dewey 2007), like Freire (Blikstein 2013), Margolis (Margolis

and Fisher 2003), and Klawe (Klawe 2013), all touch on the importance of diversified

perspectives in learning. Freire (Blikstein 2013), a critical pedagogy scholar, disapproves of

de-contextualization of curriculum. In other words, he like Dewey, believe that learning

needs to be grounded or “contextualized” in real world application. Papert (Ackermann

2001) echoes similar sentiments by criticizing uniformity in curriculum. He argues for

diversity of ideas and experiences, like Dewey. Dewey (Dewey 2007) is very specific on the

benefits of diversity of ideas, arguing that “democratic social arrangements,” where all

perspectives are considered and vocalized, promote a better quality of human experience

that’s more widely accessible and enjoyable than non-democratic ones. Freire, extends the

concepts Papert and Dewey promote in valuing diversified perspectives, by introducing the

idea of “culturally meaningful” curriculum construction, where designers get inspiration

from the local culture toward creating “generative themes” with members of these cultures

13

(Blikstein 2013). Freire believes education is a tool of empowerment, and argues that

“learners should go from the consciousness of the real to the consciousness of the possible

as they perceive viable new alternatives beyond limiting situations” (Blikstein 2013).

Therefore, he argues student projects should be deeply connected with meaningful

problems, at a personal or community level. By doing this, he states, the design of student’s

solutions are both educational and empowering (Blikstein 2013).

Freire’s concept of student projects being connected with meaningful problems in the

world is echoed by current scholars and teachers including Margoilis (Margolis and Fisher

2003) and Klawe; Klawe 2013). Klawe introduces the importance of diversity in

perspective in a different way than perhaps Dewey or Papert had imagined. In

reconstructing the curriculum for Harvey Mudd’s collegiate computing courses, Klawe

replaced traditional “CS1” curriculum with a “breadth first approach” that provide students

with substantial programming experience in a variety of application areas to some of the

major intellectual and societal contributions on the field (Klawe 2013). Klawe, like Dewey

and Freire, believes students thrive more in real-world experiences and research projects.

She also advocates for students to engage in research to gain experience engaging in

meaningful problem solving.

The second generation of constructionist thinkers, such as Papert’s protégé, Resnick

(Resnick and Rosenbaum 2013) and Amy Bruckman (Bruckman 1998), did not just speak

of how to design generative learning environments, but created them (i.e. Scratch and

14

MediaMoo). Children, or new learners of computing, could solve meaningful problems, but

the premise of their pedagogy was more focused on students to playing, learning, and

making objects while learning. Resnick and Bruckman (i.e. MOOSE Crossing and Computer

Clubhouse) were slightly different because they put more emphasis on creating a safe

space for learners to engage with each other for the purpose of experimenting, sharing, and

learning from each other. In contrast, experiential thinkers and critical pedagogists (i.e.

Freire), focused more on having students create projects that were contextually relevant,

instead focusing on a safe space or creating fun places to learn.

The new generation of making, which Freire could arguably be a part of, with scholars such

as Blikstein, tries to merge all these learning pedagogies (Blikstein 2013). They try to

create an experiential safe space that is not imagined or virtual, like some constructionist

environments (i.e. MOOSE Crossing). Additionally, the new generation of making in

constructionist environments provides both a safe space and a learning environment that is

contextually applicable to the real world. This allows learners in engineering and

computing disciplines to experiment and create relevant, innovative, and meaningful

personal projects.

That is perhaps the introduction for our work, which discusses a safe space for learning

engineering and computing practices that promotes diversity in learning and application of

real world concerns. This application is demonstrated through a constructionist

15

environment predicated on vocational training for adult women entering the software

engineering pipeline.

In our research, we focus on the emergence of this new constructionist environment,

termed a “software engineering bootcamp”. However, it must be noted, not all bootcamps

are designed to be safe spaces where people can promoted diversified viewpoints while

making things to learn vocational skills. The one we researched, Hackbright Academy, is

specific in having these goals. Other bootcamps in this space are vastly different in

approach and training. Some have been touted as “factories” where graduates taught

material as quickly as possible in a competitive environment and then pumped out in the

hopes of obtaining a new software developer position, but not necessarily assistance from

the bootcamp in obtaining it.

As mentioned in Chapter 2, in our study of Hackbright Academy, an all-female software

engineering bootcamp, we study the process and design of the learning space. We learn

that is both supportive and constructionist. It employs experiential and critical pedagogical

practices so students can create personally meaningful projects, while using their unique

backgrounds and perspectives in doing so, and obtain employment positions (which

require contextually relevant learning). Moreover, as female graduates become employed

and transition in software engineering roles (particularly from non-technical fields), these

students “create change” by contributing their thoughts and perspectives to the

engineering and computing workforce. They, like subjects in Lindtner’s recent work in

16

making at hackerspaces and hardware startups (Lindtner, Hertz, and Dourish 2014), use

constructionist spaces not just as part of a hobbyist practice, but as a tool in

professionalization.

3.3 Social Constructionism and Its Take on Culture in Education

Shaw, the protégé of Papert and Resnick, introduced the third wave of constructionism.

Shaw emphasized the value in providing an adequate social setting for constructionist

activities by discussing his study on urban neighborhood residents creating neighborhood

programs to help each other (Shaw 1995). Using his MUSIC (Multi-User Sessions in the

Community) software, Shaw created a digital network of neighborhood natives who built a

total of 11 successfully organized and maintained projects. These included a group trip to

Jamaica, a poetry collection, a summer jobs program for neighborhood teenagers, and

crime watch information updates (Shaw 1995). What is important to note is his study’s

intent to enable members to invest in relationships in order to construct artifacts, which in

this case, were neighborhood services and programs.

Shaw redefined constructionist artifacts to include local community organizations, written

literary collections, and grassroots efforts. All of his constructionist activities were outside

of traditional classrooms and did not involve common constructionist activities such as

learning to code or building a robot. Instead, Shaw introduced constructionist activities

that could transpire in the real world (grounding Papert’s constructionism in Dewey’s

17

experiential learning). Shaw also shed light on constructionist learning and social

environments that could persist beyond one school year or one phase in a student’s

learning because they were rooted in organizations without those temporal considerations.

He also took a step in informing scholars how to design constructionist environments that

were not virtual, or based on constructionist kits, or simplified programming building

blocks, but were instead grounded in real world environments.

Although Shaw’s study focused on real world constructionism instead of virtual

constructionism, his study did nonetheless provide several contributions to future virtual

constructionist environments. His emphasis on the importance of social interactions in

constructionism, is a precursor to much of the later research done by other

constructionists like Amy Bruckman and Mitch Resnick in virtual learning environments

(Shaw 1995; Bruckman 1998; Utting et al. 2010).

Bruckman extends Shaw’s work in virtual learning environments such as MUDs (text based

virtual reality environments), by explaining the value of social setting (i.e. social

interactions) in these new learning environments. In Bruckman’s MediaMoo and MOOSE

Crossing (Bruckman 1998), she discovers that many beginners’ motivation for trying to

program something in MUDs are primarily social (Bruckman 1998). She notes that the first

step in learning to program is the hardest and that the initial barrier is primarily emotional,

hence a community provides the initial motivation for learning to program and provides

support to help through the process (Bruckman 1998). Additionally, “an individual’s quest

18

for mastery, if situated in social activity, leads other members in the community to act as an

“appreciative audience” and the artifact created becomes a tool used for social contact and

social status,” that can contribute to society (Bruckman 1998). Hence, an appreciative

audience for the artifacts helps to not only create one’s identity in the community, it helps

motivate learners to continually engage in the community (one student, Jim, in Bruckman’s

study said “while programming is fun, I don’t think I’d do it if there wasn’t anyone who

would appreciate it”) (Bruckman 1998).

Hence, it’s important to note the social dynamics in constructionist activities become the

catalyst for individuals to begin and continue their learning. Particularly if a learner is

struggling, the value of the communal support provided by social environments becomes

very evident. Constructed objects can follow from social activity in some instances, while in

other instances they can become the predecessor to it. The value of the support received

from social activities around learning is most evident to participants who do not receive it.

Emotional and technical support (i.e. asking for help, receiving help, and giving help) are all

social acts which help to build networks of relationships. Hence help is not merely

information- “it’s a relationship between the tutor and tutee and an essential component of

the learning process” (Bruckman 1998). Giving and receiving help is part of a social

connection. Beyond that, social interaction facilitates having role models, which are

important. In MOOSE Crossing, one MUD member named Jim, actively chose to engage

because he was “surrounded by peers who could program” which meant “he could give it a

try knowing those friends could help him” (Bruckman 1998). Beyond that, he could

19

imagine being like them, which was an important component to him beginning and

continuing his work.

3.4 Resnick’s Collocated & Distributed Constructionism (Computer Clubhouse &

Scratch)

Mitch Resnick also demonstrated the importance of social community in computing

learning by developing computer clubhouses for young students. He said in order for them

to become technologically fluent, they needed a type of immersion that facilitated living in

“a digital community,” which included interactions with technological equipment and

people who knew how to explore, experiment, and express themselves with technology

(Resnick and Rusk 1996).

Resnick also introduced distributed constructionism through creating the Scratch

environment. Scratch is an online community that allows children to display and showcase

their constructions, giving them the ability to discuss what they’re working on, ways to

better it, while allowing others to give feedback on it. Scratch enables distributed

constructionism specifically through three categories of activities: 1) discussing

constructions, 2) sharing constructions, and 3) collaborating on constructions (Resnick

1996). Scratch’s uniqueness also comes from how it introduces beginners to coding

through having them share their projects (and ideas for their projects) online. Both

Resnick’s Computer Clubhouse and Scratch facilitated collocated and distributed ways,

20

respectively, for learners to engage in supportive community based interactions, while

creating their constructions.

To provide a bigger overview of the importance of support in environment, we also look at

another scholar, Margolis, who cites the importance of supportive environments in subjects

such as computing, and math and science, particularly in traditional collegiate

environments. She discusses female students at Carnegie Mellon who attribute their

undergrad survival to the support received from family and friends (Margolis and Fisher

2003). She also cites professors advocating for support in learning, referencing calculus

professor Uri Treisman’s sentiments on a supportive learning environment being critically

important for the success of minority students in math and science (Margolis and Fisher

2003). Specifically, Margolis profiles Treisman’s observations on distinctions between the

high failure rate of African American students studying calculus at the University of

California Berkeley and the high success rates of Asian American students (Margolis and

Fisher 2003). Treisman notes that Asian American students form social communities

where they help each other with math, compete at mastering the material, and generally

support each other’s learning (Margolis and Fisher 2003). In effect, Margolis’ discussion of

the benefits of supportive environments for math, science, and computing extend and

ground the literature that discusses the benefits of having this kind of environment for

students, and more specifically women (and minorities), when they engage in learning,

particularly for technical subject material.

21

3.5 Recent Advances in Distributed Constructionism

Additionally, Parmaxi et. al builds on previous scholars’ discussion on the importance of

social support, which can effectively be termed social constructionism, and Resnick’s

distributed social support, also known as distributed constructionism (Parmaxi and

Zaphiris 2014). They argue that the creation of the social web, with social technologies like

Facebook, wikis, Dropbox, Google Docs, etc. all facilitate new dynamics and ways for the

social constructionism to thrive (Parmaxi et al. 2013). Specifically, Parmaxi studies the

construction of online artifacts in these media sites to show how learning through creating

online artifacts collaboratively occurs in 9 stages:

• orientation

• brainstorming

• material exploration

• outlining, editing material

• revising

• peer reviewing

• instructor reviewing

• presenting

• publishing

22

Parmaxi’s study shows how these types of online collaborative social platforms can

“enhance learners’ thinking and understanding of abstract ideas by relating them to a

shared artifact.”

It is important to reference these works in relation to our study for several reasons.

 At Hackbright, the influence and access of resources provided by the social setting, and the

collocated and distributed network that emerged from it, was particularly notable. These

resources facilitated continued engagement in the students’ personalized projects and

software engineering practices even after graduation. This is because the social network,

while collocated and distributed, was able to avoid many of the temporal restrictions that

would have impeded its survival in the past. Hence, the continued dialogue, interaction,

and support among participants facilitated renewed discussions and opportunities for

improvement professionally. These resources also provided existing support online and

offline to those who needed it.

3.6 Co-Constructed Learning

The concept of knowledge or meaning emerging from the community is often identified as

learning being co-constructed and has shown up in a several prominent educational

theories, including Lave & Wagner’s “Situated Learning” (Lave and Wenger 1991),

Bruckman’s “Community Supported Cooperative Learning” (Bruckman 1998), Slavin’s

“Cooperative Learning” (Marcu et al. 2010), Baxter and Magdola’s “Learning Partnership

23

Model” (Kolko et al. 2012). These theories often appear in informal learning-environment

models as scaffolding for how curriculum should be structured.

Moreover, the concept of learning being mutually constructed is also emergent in recent

literature on informal and semi-formal learning engineering environments. In Kolko’s

Hacademia, a semi-formal program teaching non-technical students, engineering gave

students opportunities to “validate their capacity to construct knowledge” by letting them

define the scope and content of their work in the program (Kolko et al. 2012). Hackademia

encouraged students to take an “active role in design” through “lack of specific external

guidelines,” pushing them to discover “what skills to learn and how to acquire them”

(Kolko et al. 2012). This facilitated students “using their background as a learning

framework to obtain additional knowledge,” while relying on collaboration with other

students to further skill acquisition (Kolko et al. 2012).

As described in more detail later, there was a similar experience at Hackbright Academy.

Students had an informal, but semi-structured learning environment that presented

fundamental programming challenges during the initial part of the course. This period of

programming challenges was followed by instructor approved individualized students’

projects where students picked an individual project and figured out what skills were

needed and how to obtain those skills to complete the project. In the process, students at

Hackbright gained experience building with vocational software technologies (Flask,

Github, Parallax) as a corridor to showcase their ability to engage with newer technologies

24

in creative ways. Unlike students at universities or high schools, or even Hackademia, they

also had access to industry professionals who, in most cases, understood and could help

them contextualize the technologies they were learning to appeal to current industry

standards. While some universities or schools have access to professionals who can help

students with projects, what is noteworthy about Hackbright is the prolonged amount of

access students had to industry mentors during their learning. Students engaged with

mentors weekly, for half the program, sometimes extending their mentorship after the

program was completed. This lead to continued professional development, during the

project, and after.

25

Chapter 4- Related Works on Environments for Constructionist Learning

One reason constructionist environments are particularly relevant when discussing

learning pedagogy for computing and engineering is their ability to simplify the abstraction

prevalent in those disciplines. As one scholar put it:

“Students’ learning progression is usually from the concrete to the abstract. Young

people can learn most readily about things that are tangible and directly accessible to

their senses—visual, auditory, tactile, and kinesthetic. With experience, they grow in

their ability to understand abstract concepts, manipulate symbols, reason logically,

and generalize. These skills develop slowly, however, and the dependence of most

people on concrete examples of new ideas persists throughout life. Concrete

experiences are most effective in learning when they occur in the context of some

relevant conceptual structure.” (Dann and Cooper 2009)

 In the following section, we review several noteable constructionist environments that

have emerged since Papert introduced the concept of constructionism in digital

technologies in 1980. It is important to note that these constructionist environments take

many forms:

• some use simplified programming to create robots (Mindstorms),

• some use virtual networked interaction (Bruckman’s MOOSE Crossing. Scratch) for

students to learn and share projects,

26

• some simplify commonly used programming languages (Logo, Java, Python) to help

learners adjust to learning programming concepts while creating projects, stories,

animations, and robotics (LogoBlocks, Scratch, Alice, Google App Inventor).

There are also constructionist environments that are real life learning communities

(Resnick’s Computer Clubhouse, Shaw’s MUSIC program) using people (mentors, teachers,

etc.) to simplify learning challenges such as programming. Other environments are online

constructionist platforms (i.e. Parmaxi et al.’s study) where people work together (i.e.

Google Docs, Dropbox, Wikis, Github) to create and comment on shared artifacts.

In the following sections, we introduce how these environments relate to our study of

Hackbright. We contrast similarities and differences in these environments. We note a shift

in the way more recent constructionist environments have been designed to be less

focused on “tinkering” (i.e. play for play’s sake) and more centered on exhibiting

sentiments posed by scholars such as Dewey and Papert to create more opportunities for

real world use, while demonstrating flexibility for students to express broad interests and

help others.

4.1 Logo & Lego Mindstorms

In the late 1960s, Papert invented the Logo programming language at the MIT Media Lab

(Parmaxi and Zaphiris 2014). It allowed children to control and direct mechanical turtles to

draw pictures through computer keyboard commands (forward, back, left, right, pen up,

27

pen down) (Parmaxi and Zaphiris 2014). In the process, children in this environment could

control a turtle only by resolving problems related to angles, numbers, and graphical

movements.

Figure 1: Snapshot of LogoBlocks Environment (reprinted from (Kelleher and

Pausch 2005))

In Figure 1, a screenshot of the LogoBlocks Environment shows the visual blocks children

could piece together to create a functional line of code for a small program.

By using LogoBlocks as an “object to think with,” children were active and self-directed

learners in forming programming solutions. In the process, they demonstrated an adequate

understanding of mathematical concepts in order for the drawings to materialize. Logo was

inventive because it provided a play oriented methodology (such as creating a drawing) to

incentivize children to learn abstract concepts they otherwise would not be familiar with.

28

In the process, the concept of children developing cognitive skills in mathematical concepts

from play oriented activities became a more tangible technique for learning.

Despite Logo’s innovation, it received some criticism. Research showed children using

Logo had limited abstract knowledge after drawing activities (Parmaxi and Zaphiris 2014).

Additionally, there was little potential for the knowledge children gained from using Logo

to transfer into other kinds of learning (Parmaxi and Zaphiris 2014). The study also did not

indicate that obtaining programming experience could translate into other domains

(Parmaxi and Zaphiris 2014). Lastly, some believed the tool restricted other lines of

thinking (Parmaxi and Zaphiris 2014). All these findings demonstrated that although

benefits could be obtained from this technique in learning, there also were considerable

limitations that needed to be addressed if this technique was to be more effective in the

future.

Lego Mindstorms, a successor to Logo which also used its programming language,

attempted to minimize some of Logo’s earlier limitations. Mindstorms allowed children to

play with software and hardware kits that contained Legos, sensors, gears, and motors. The

kit could be used to make robot machines, showing that the Logo programming language

could yield more advantageous and robust demonstrations of knowledge. A variation of

these kits has since been released including: “Microworlds, StarLogo, and Programmable

Bricks” (Parmaxi and Zaphiris 2014). Children could further customize these kits by

connecting them to their computers to program controls for the robots. Later construction

29

kits, using Programmable Bricks (a large Lego Brick), could operate up to four motors at

once and receive input from up to eight sensors. These kits were used for several reasons:

• “to help kids become more fluent and expressive with new technologies (and with

“old” technologies);

• to help them explore important concepts (often in the domains of mathematics,

science, and engineering) through their expressive activities; and

• to help them become better learners.” (Resnick and Silverman 2005)

More recent constructionist kits have allowed children to use “traditional LEGO bricks for

static, structural creations (such as houses and castles) or interactive constructions (such

as animations in a virtual world or kinetic sculptures in the physical world),” but these kits

have drawbacks (Resnick and Silverman 2005). Certain kits that have pre-arranged

templates (like the Star Wars spaceship or Harry Potter castle) lead children to focus on

“constructing the templates provided” so they can “learn by doing” without exploring the

ideas underlying the construction of those designs (Resnick and Silverman 2005). This is a

similar problem to some criticisms posited to the Logo programming language where

learners could not transfer knowledge gained to activities outside the immediate activity

they were engaging in.

30

In this sense, although Logo, Mindstorms, and other successor constructionist kits acted as

a step in conceptualizing what could be done with these kinds of environments, it was hard

to see what could be done with the knowledge gained from them outside of using them for

hobbyist practices. As indicated by studies on children using Logo, it wasn’t clear what

children could do with the knowledge they gained once the prescribed activity was

completed. Similarly, Lego Mindstorms and succeeding construction kits, allowed for

students to tinker with robotics, sensors, lights, etc., but not necessarily to build upon the

learning from that tinkering (as is prescribed in “bottom-up learning”). This was primarily

because it was not completely clear how what was learned from these environments could

be used in a real life context (Utting et al. 2010).

Resnick’s Computer Clubhouse, Hackbright Academy, and more recent college courses

featuring a CS 0 course (Klawe Harvey Mudd curriculum, Karakus’s Google App Inventor)

have all aimed at addressing this issue by developing new constructionist environments

that are grounded in real life application. With the growth of ubiquitous devices such

mobile phones, these newer constructionist environments simplify programming (through

platforms such as Github, Scratch, Google App Inventor), but allow for creating and

designing technology with real world applications in mobile or computing devices. They

enable individuals without prior programming experience to envision tools they always

wanted but did not think they could create, while encouraging individuality and

empowerment through designing and creating technological tools. More importantly, the

31

tools are ubiquitous enough for learners to begin to understand the breath of their use.

Hence, these real life tools allow for learners to understand the context of where and how

the knowledge they learn can be applied.

In addition, Hackbright’s constructionist environment, with a particular focus on women

who are more socially oriented learners, uses not only active and self-directed learning, but

also collaborative paired exercises (and collocated spaces), to facilitate learning

programming concepts. This environment, in comparison to constructionist environments

like Logo or Lego’s Mindstorms kits, resolves the need many women have to engage in

constructionist activities that are more collective and social. Moreover, it allows them to

help each other, while showing the potential for helping others, in the real world.

4.2 Resnick’s Computer Clubhouse

While looking at constructionist environments, it’s also important to discuss Resnick’s

Computer Clubhouse. Resnick’s Computer Clubhouse showed a new model of a learning

community that changed the traditional practices of learning (particularly in a computer

lab). It allowed “inner city youth” to become designers and creators of computer based

products as opposed to just consumers of them (Resnick and Rusk 1996). At the Computer

Clubhouse, youth created many different types of projects including video games, digital

stories, interface designs, and digital art projects.

32

There are four core principles of the Clubhouse educational approach:

• supporting learning through design experiences (students creating their own

computer games instead of playing them),

• helping students build on their own interests (learning to use Photoshop to augment

a student’s comic book drawings),

• cultivating an “emergent community“ (this builds on the concept that for young

people to be fluent in a language, they must be immersed in it and have a space for

that immersion)

• creating an environment of respect and trust (Resnick and Rusk 1996).

Hence, Resnick’s computer clubhouse inherently reinforced and updated Papert’s vision of

a technological samba school (Parmaxi and Zaphiris 2014). “Technological samba schools,”

which Papert discussed in his 1980 book Mindstorms (Papert 1980), reference Papert’s

desire to merge technical learning with the culture observed in samba schools in Brazil.

Papert wanted technical learning to include (Papert 1980):

• students being self-motivated

• richly connected to popular culture

• focused on personally meaningful projects

• in an environment that is community based

33

In samba schools, a community of people of all ages gather together to prepare a

presentation for carnival. Papert describes his observations by saying:

 "Members of the school range in age from children to grandparents and in ability

from novice to professional. But they dance together and as they dance everyone is

learning and teaching as well as dancing. Even the stars are there to learn their

difficult parts" (Papert 1980)

Resnick’s Clubhouse model realized much of Papert’s vision in several ways. Computer

clubhouses were community based, focus on expressive projects that were individualistic,

and self-motivated because students designed their own projects. Arguably they were also

connected to popular culture because students would take hobbies they had (i.e.

photography or drawing) and blend that interest with current software that could refine or

augment their creations in new ways (i.e. through Photoshop) (Resnick and Rusk 1996).

Hackbright, like the Computer Clubhouse, also makes a point of creating an environment

that encompasses a lot of what Papert envisioned in a technological samba school. It uses:

• current and popular technological culture,

• encourages self-motivated learning through personally meaningful projects,

• is community based for current students and alums (during lab exercises, events,

and even after the program)

34

Additionally, the goals that Resnick aimed to achieve at the Computer Clubhouse are also

goals that are self-evident at Hackbright. At Hackbright, the goals include:

• a culture of respect and trust for learning and an emergent community that can be

readily seen in Hackbright’s “females in tech” events,

• open demo events for Hackbright students to showcase their projects to the

community,

• cross-class reunions/parties, and other types of social/career development events

(to develop and maintain unity amongst past and present students),

• an undertone of support, complete openness, and vulnerability during the course

(e.g. no questions are dumb questions).

Also like Resnick’s Computer Clubhouse, Hackbright students design and create a variety of

software projects ranging from 3-D rendering projects using Parallax, to language

translation web apps, to mobile Twitter-like apps that provide updates for special groups

like school teachers. There are differences in these environments however. Hackbright’s

environment is distinct because it:

• has an all-female student body,

• utilizes industry mentorship that includes distributed constructionist activities

(help through chat, emails, Skype),

• includes career training with a focus on salary negotiations/interview preparations,

35

• engages in online artifact creation in software project sites such as Github.

4.3 MOOSE Crossing

While discussing community based constructionist environments, it’s also important to

look at Bruckman’s MOOSE Crossing. MOOSE Crossing (1997) is a text- based MUD (multi-

user dungeon) “networked-programming environment for children” (Kelleher and Pausch

2005). It uses “an object-oriented scripting language” (Kelleher and Pausch 2005) to create

spaces and characters in a make-believe textual world. Learners create rooms, laboratories,

castles, helicopters, and other spaces (or characters) similar to those found in text

adventure games, sometimes with secret passages that other learners can explore. Once

projects are completed, any learner in the MOOSE Crossing environment can interact with

the project.

36

Figure 2: Snapshot of MOOSE Crossing Environment (reprinted from

(Bruckman 1998))

Figure 2 illustrates this activity. Reading from the top of Figure 2, once a learner in the

MOOSE Crossing environment enters a room (room #445), they see the number of “kids” in

the room (124) and all the objects (i.e. Yellow Cab), characters, and sub-rooms (i.e. Generic

Cards Room) that are connected to it. Learners can then press a command to enter an

object or room and interact with other learners in the room or view the scripts used to

create that object.

37

Additionally, this environment lets beginners look at how these spaces, characters, or

passages are created. The scripts controlling any object can be seen by users entering the

environment. Learners can also chat with others logged onto MOOSE Crossing. Many times

learners have their own projects and are open to chat and/or display their projects.

Although most learners work alone on projects, a project turns into a vehicle for others to

use as an example and begin programming. Learners can ask others for help or advice and

in turn get a place that provides role models and positive feedback for users of the system.

Hackbright has several similarities and differences to MOOSE Crossing. In both

environments, learners rely on each other (peer learning model is obtained in Hackbright

through pair programming) and showcase their artifacts (at Hackbright it’s done through

Hackbright demo events). Both also have a networked communal interaction, but with

Hackbright it is done through:

• an email list serve where people share social/professional information (including

open jobs at their company or invitations to study an emerging technical practice)

• actual networking events and constructionist activities supported through industry

mentors working using collocation and computer supported cooperative learning

practices (i.e. over the shoulder learning)

• networked interaction including real life software project sites (such as Github)

which showcase technical skill for vocational and professionalization purposes.

38

4.4 Alice

Alice is another constructionist environment worthy of discussion, not for its community

based approach, but because of its ability to harness technological practices for learning

coding, while expressing individualistic interests and creativity. Alice allows children and

adults to create characters, objects, and engage in storytelling while learning to program.

Created by Randy Paush at Carnegie Mellon, Alice uses “a programmable 3D-authoring tool

to make interactive 3D-graphical worlds” accessible to middle school, high school and

college-level, non-science majors (Kelleher and Pausch 2005, Dann and Cooper 2009).

Similar to MOOSE Crossing’s use of a text-based virtual-reality world to motivate learning

programming, Alice uses animations “to teach students problem solving and algorithm

building” using simplified versions of mainstream programming languages (Pyton, Java)

modified based on user recommendations (Kelleher and Pausch 2005).

39

Figure 3: Snapshot of Alice Environment (reprinted from (Kelleher and Pausch

2005))

Figure 3 above shows a screenshot of the authoring tool being used to create part of a

scene with characters.

Alice has had several updates from Alice98, to Generic Alice, to Alice 1,2,3 (Storytelling

Alice). The most notable changes from older Alice versions and the most recent Storytelling

Alice are:

• “Storytelling Alice provides high- level animations inspired by girls’ storytelling

goals (while Generic Alice provides animations inspired by common 3D graphics

transformations),

40

• In Storytelling Alice, users’ programs animate simple stories (while in generic Alice,

users’ programs cause 3D objects to move, turn, and resize).

• In Storytelling Alice, the gallery includes characters with custom animations….while

3D objects in the Generic Alice gallery do not include custom animations.” (Kelleher

and Pausch 2005)

Alice has several similarities and distinctions from Hackbright as a constructionist

environment. One similarity is both environments promote more gender diversity by

finding “female friendly” versions of artifact expression. Hackbright is distinctive however

because it is a physically collocated rather than virtual. Additionally, while Alice is a 3D

authoring tool using modified versions of Java and Python (like Logo, Scratch, and

construction kits like Mindstorms) to promote learning, Hackbright uses modern

distributed constructionist technologies like Github and social media such as Skype or

chatting apps like Google chat to obtain help from mentors, friends, etc. during personal

artifact creation. Moreover, Hackbright is a community based constructionist environment

(like Scratch, MOOSE Crossing, Resnick’s Computer Clubhouse), while Alice is more of a

tool that is used for students to learning to program while coming up with creative ways to

express their learning through animations. Lastly, Hackbright’s constructions have goals

that instill change and so they can join the technical dialogue. Students are actively trying

to create technologies that can help others. For example, some Hackbright student projects

include:

41

• building a mobile app for handicapped individuals to use for taking Philadelphia

transportation

• designing a mobile app that uses the accelerometer sensor in phones to measure

specific frequencies occurring during Parkinson’s trembles.

4.5 Scratch

Scratch (http://scratch.mit.edu) is a virtual learning constructionist environment (similar

to MOOSE Crossing) where learners can program “interactive stories, games, animations,

and simulations in a 2-dimensional environment” (Resnick et al. 2009). Creating a program

requires “snapping graphical programming blocks together into a script, like snapping

LEGO programming bricks together “(Kelleher and Pausch 2005; Resnick and Rosenbaum

2013, Resnick et al. 2009).

Figure 4: Snapshot of Scratch Environment (reprinted from (Resnick et al. 2009))

42

Figure 4 shows the use of these graphical blocks (on the left) being put together into

several lines of code that create a simple “Nice Kitty” program.

The difference between virtual networked environments such as Scratch (and Google App

Inventor) and more physical constructionist spaces (Resnick’s clubhouse, Hackbright

Academy) is that in the latter learning to program is not represented in snapping together

LEGO programming bricks, or graphical blocks online, but in using other people as tools to

help students learn programming fundamentals. People that become the tools for learning

may be classmates, instructors, TAs, tech series speakers, industry mentors, or even

friends/family/significant others. Additionally, in Hackbright’s lab exercises specifically,

the programming building blocks are not interactive stories or animations, but exercises

that teach fundamentals of programming needed for students to go on and create their own

individualistic real world project.

4.6 Google App Inventor

Google App Inventor allows beginners to create mobile apps or personalized software for

their phone. It is different from Alice and Scratch because instead of motivating students to

program through storytelling and multi-media animations in a visual environment, it

allows them to create apps that augment their actual reality. It uses a similar blocks

language to Scratch, which have proven successful with both children and college students

(in a university course) (Karakus et al. 2012).

43

Figure 5: Snapshot of Google App Inventor Environment (reprinted from

(Kelleher and Pausch 2005))

As shown in Figure 5, a simple program can consist of several blocks being placed together

horizontally (to form a line of code) and vertically until sufficient to create a functional

program.

Additionally, Google App Inventor allows students, while learning to program a mobile

application:

• to use and process SMS texts (as part of the application they are building),

• to work with the GPS location sensor of the phone,

• to scan barcodes, and

• to communicate with web APIs.

44

It also enables students to use technological advances in the mobile industry to further

projects stemming from their learning. That enables students to demonstrate greater

chances at innovation during project design that are concurrently applicable to real world

needs.

Hackbright’s constructionist environment demonstrates many of the benefits displayed

through the use Google App Inventor in schools and college courses. Hackbright

encourages beginners to use platforms like mobile devices or Github to illustrate

personalized and meaningful projects. Additionally Hackbright, like the distributed

constructionism outlined in Parmaxi (Parmaxi and Zaphiris 2014), allows students to work

on personal artifacts through software project sites like Github to share ideas, while

constructing external and shared artifacts. Hackbright is different than Google App

Inventor because it’s not a software constructionist environment, but rather a learning

community that uses many methods and tools to simplify learning including;

• teacher sessions/lectures,

• collaborative pair programming lab sessions,

• distributed and collocated community-based interaction through an email list serve,

• interactions with industry mentors online and in person, all while engaging in a

supportive and safe environment.

45

4.7 Challenges with Constructionist Environments

Some challenges with the constructionist paradigm involve the concept of tinkering as a

stepping-stone to learning (Utting et al. 2010). The concern is to create an environment

where the tinkering does in fact facilitate a jump to the next level of comprehension for a

particular mathematical, scientific, or engineering concept. In other words, the tinkering

must lead somewhere (must be bottom up learning where learning builds on knowledge

gained from tinkering). As Dewey and Papert suggest in their works, a teacher’s role is to

design curriculum that allows students to build upon whatever mistakes they discover

while tinkering and therefore develop an understanding of a particular concept in question.

At Hackbright, some challenges from the constructionist environment were visible.

Constructionist building-upon-mistakes was effective in class sessions with:

• smaller classroom sizes so the teacher could keep track and direct students more

effectively and

• teachers who were familiar with computing concepts the student was using in the

project.

The omission of either of these characteristics in a constructionist environment led to

breakdowns in communication and learning, while effecting the efficacy of the resources

available to students.

46

Moreover it is important to note that recent constructionist environments like Alice,

Scratch, Google App Inventor, embrace “girly” topics by emphasizing individuality and

empowering users. This empowerment is also visible in Computer Clubhouses, MOOSE

Crossing, and Hackbright. These constructionist environments are more socially oriented,

more interested in context, and making a difference in society. They divert away from

earlier constructionist environments (Logo, Mindstorms, construction kits, etc.) that were

more focused on play for play’s sake, and hence deemed to be more masculine (Utting et al.

2010). Constructionist environments like Google App Inventor, and Hackbright

particularly, are more “realistic,” using modern ubiquitous technologies like Github or

mobile phone apps, while creating opportunities for change and helping others. Moreover,

Hackbright as a constructionist environment is distinct because its ultimate focus is not

just education, but using these technologies to promote rapid professionalization.

What becomes most relevant from this discussion is the progression of constructionist

environments from more tinkering-based (Logo) environments to ones more focused on

constructing objects that may lead to immediate employment (Hackbright).

47

Figure 6: Phases of Constructionist Environments (From the 1960s-Present Day)

In Figure 6 above, we aim to visualize the progress of constructionist environments over

the last several decades. Initially, constructionist environments were designed to facilitate

tinkering (Phase 1). Environments like Logo, Mindstorms, and other construction kits were

designed to have children or learners interested in computers or technology play in order

to learn mathematical or computing concepts. The difficulty with some of these

environments was children might try to just create a drawing (Logo) or build a robot

(Mindstorms) without necessarily understanding why they were doing it or how it was

48

transferrable. Also these environments did not necessarily foster social interaction or

understanding the application beyond the activity prescribed in the environment.

In Phase 2 in Figure 6, a shift in constructionist environments is made where networked

interaction can occur among students trying to learn in a virtual world. Despite these

environments only being text-based, eliminating visual demonstrations of constructed

learning, these environments nonetheless allowed for children (and interested adults) to

share and learn from each other while displaying artifacts. This phase illustrates a shift to a

constructionist activity that is more social, community-based, and paves the way for

constructionist environments that include emphasize those aspects while incorporating

more visually engaging projects.

In Phase 3, constructionist environments shift again. They include both virtual and physical

constructionist environments. The virtual environments that are now available (Scratch,

Alice) allow for students to use storytelling (Alice) or interactive media (Scratch) such as

video games, birthday cards, and interactive tutorials. Physical constructionist

environments like the Computer Clubhouse allow students to come together in a shared

spaced and work together, learn from each other, and augment hobbies (photography or

drawing) with technical skill (creating drawings in Photoshop). All environments in Phase

3 allow for social interaction, individual and creative expression, but they also open the

door for students to begin creating projects that are more oriented in real world

application. Since people use Photoshop and play video games the real world, there is a

49

progression for constructionist activities to become more contextually relevant to current

technical practices.

In Phase 4, virtual constructionist environments become even more contextually relevant

to the world today. A shift is made so that building blocks software does not just build

games or birthday cards (Scratch) or stories (Alice), but can build mobile applications

(Google App Inventor) that can be used for a variety of broad applications. This change

facilitates more inclusion of women since they are typically drawn to environments where

they can see how an application would be useful to them or others. Furthermore, several

courses in schools and colleges use Google App Inventor to teach non-majors

programming. In physical constructionist environment, “Fablabs” are designed to foster

“making” in learning environments like schools. This shows the progression of physical

constructionist environments moving from a hobbyist activity (in after school) to an

activity in schools.

In Phase 6, we see the final shift in constructionist activities from hobbyist to school and

then professional areas. Constructionist environments not only create the products that

emerge from hardware startups or makerspaces, but they create people who become

professionals (i.e. software engineers in bootcamps). That is, bootcamps professionalize

students: they become the products (along with their projects which are used to affirm

their professionalization and readiness for employment).

50

Chapter 5- Related Work on Women in CS, CSCL/CSCW, Pair programming, Collocation

Now we turn towards other streams of literature that are relevant to our analysis of

Hackbright. We discuss related works from computer science research, computer

supported cooperative learning practices, computer supported cooperative work practices,

pair programming, and collocation practices.

5.1 Inclusion of Women in Computer Science

"Many assume that programming a computer is a difficult activity that should be undertaken

only by the technically educated elite; it’s not the province of a mere building contractor or

humanities majors, or women; technology increasingly surrounds our everyday lives, but most

people can’t imagine themselves having meaningful control over it. For girls and women, the

problem is compounded: they may fear success with a computer as much as they fear failure."

-Sherry Turkle (Bruckman 1998)

Several academics have addressed the concern to bring more women into technology,

science, and engineering disciplines at the college level through creating and implementing

new curriculum. One change was the development of a CS 0 course to facilitate interest in

software development to students without prior computing exposure (Karakus et al. 2012;

Klawe 2013; Margolis and Fisher 2003). Some institutions also changed the marketing and

structure of courses to include more real-world applications (as opposed to theoretical

51

problem sets), while changing course titles and names to reflect a more modern approach

to teaching (Margolis and Fisher 2003). Variations of approaches that are in this vein are

now in place at prominent colleges such as MIT, Georgia Tech, and Harvey Mudd (Forte and

Guzdial 2005; Margolis and Fisher 2003; Klawe 2013).

Despite there being discussion of these advances, which have led to expansion of female

enrollment in computer science departments in colleges (Milam 2012), and discussion of

initiatives supporting engagement of girls in middle schools and high schools in

engineering activities (Boyer et al. 2014; Kuznetsov et al. 2011), the existing body of

research provides little discussion, if any, on post-collegiate women transitioning into the

computer science field through software development bootcamps, or other informal

learning environments.

It is the aim of this research to present a qualitative study that looks at one all-female

software development bootcamp, Hackbright Academy, whose main goal is to bring more

women into computer science jobs. Hackbright does not call itself a bootcamp, however. It

describes its course as a “software engineering fellowship” to convey the importance of

community and sharing, if not to demonstrate the high caliber of its program. In this study

on Hackbright Academy, we evaluate its pedagogical practices, students, and graduate

success rates, while providing educational design considerations for promoting diversity in

computing and engineering disciplines.

52

5.2 Computer Supported Cooperative Learning/Computer Supported Cooperative Work

Patterns

Our study of Hackbright extends research in aspects of Computer Supported Cooperative

Learning, including over-the-shoulder learning (M. B. Twidale, Wang, and Hinn 2005; M.

Twidale 2013). Over-the-Shoulder Learning (OTSL) is a type of learning that enables

shared context (Miller et al. 2014). Shared context is where “the helper understands the

task the learner is trying to do and the learner’s goals for doing it” (Miller et al. 2014). OTSL

sometimes requires organizational changes so that giving help to colleagues leads to

effective demonstrations of benefits of the help. Our study of Hackbright hopes to

demonstrate the positive value of giving help, particularly in a new setting, such as a

software engineering bootcamp.

Our study of Hackbright also hopes to expand on Berlin and Jeffries work in apprentice

learning (Berlin and Jeffries 1992). In this study, graduate students and their mentors were

observed in their computer science labs. One finding was that the occurrence of incidental

learning, where events requiring conflict resolution, enabled learning between apprentices

and their mentors (Miller et al. 2014). Apprentices also had to limit their use of mentor’s

time and therefore developed strategies to do so while maximizing learning. By Hackbright

having many of the students help each other, they minimized their reliance on apprentice

learning provided by teaching staff or actual industry mentors. Nonetheless, some

53

apprentice learning occurred during whiteboarding sessions between mentors and

mentees (or between teachers and mentees). Additional instances of apprentice learning

occurred through mentees seeking help on their artifacts or through getting professional

development advice from mentors or teaching staff.

5.3 Pair Programming

Williams et al. describes pair programming (Cockburn and Williams 2000) as:

“In pair programming, two programmers jointly produce one artifact (design,

algorithm, code). The two programmers are like a unified, intelligent organism

working with one mind, responsible for every aspect of this artifact. One partner, the

driver, controls the pencil, mouse, or keyboard and writes the code. The other partner

continuously and actively observes the driver’s work, watching for defects, thinking of

alternatives, looking up resources, and considering strategic implications. The

partners deliberately switch roles periodically. Both are equal, active participants in

the process at all times and wholly share the ownership of the work product, whether

it is a morning’s effort or an entire project (Cockburn and Williams 2000).”

In Williams et al., one study found there were several categories where pair programming

proved beneficial (Cockburn and Williams 2000):

• “better economics (reduced cost of defects),

54

• improved satisfaction (programmers experience more enjoyable than working alone),

• faster problem solving (pair relaying)

• improved design quality b/c of continuous reviews (more efficient programs from

shoulder to shoulder learning technique),

• improved learning, about the system and about software development (line- of-sight

learning),

• better team building and communication (the people learn to work together and talk

more often together, giving better information flow and team dynamics)

• increased staff and project management (reduced risk of staff loss because more staff

familiar with the code).”

The study also went on to discuss pair programming as allowing for learning through

“expert in earshot,” “legitimate peripheral participation," and “line-of-sight” learning.

Additional findings suggested that pair programming allowed for (Cockburn and Williams

2000):

• “learning to work together,

• sharing problems and solutions efficiently (better teamwork)

• developing ways to communicate more easily and more often (raised communication

bandwidth and overall information flow within the team).

55

Other more recent studies have gone on to discuss additional benefits and drawbacks of

pair programming. Wills et al. looks at the efficacy of putting together students on self-

ranking questionnaire responses about confidence with material (Wills, Davis, and Cooke

2004). Other studies looked at the effects of certain factors in pair programming efficacy

such as: learning styles, programming self-esteem levels, work ethic and time-management

skills, differing personality types, similar perceived skill levels and similar actual skill

levels. In addition, the research was inconclusive on how to most effectively match a pair

(Cliburn 2003).

Carver et al. suggests that the ability to learn from one’s partner, the lowering of student

frustration, and the improving of communication skills are definite advantages that come

from pair programming (Carver et al. 2007). Williams and Kessler also suggest pair

programming is beneficial because it encourages shared ownership, since both partners

participate and contribute (Williams and Kessler 2000). It also keeps partners more

concentrated on the work to be done and helps partners expand each other’s aptitude in

programming (Williams and Kessler 2000). However, studies have also noted challenges to

achieving success with pair programming, including mismatched schedules (Bevan,

Werner, and McDowell 2002; Cliburn 2003) and pair incompatibility (Bevan, Werner, and

McDowell 2002; McDowell, Hanks, and Werner 2003; McDowell et al. 2002).

According to NCWIT’s 2007 report on pair programming, there are specific benefits for pair

programming on women. These include that it (NCWIT 2015):

56

• “increases likelihood of students (particularly women) declaring a computer science

major;

• grows the number of students in the computer science major one year later, (in

contrast to non-paired classmates)

• lowers the “confidence gap” between female and male students and raises

programming confidence of all students;

• initiates better-quality student programs compared to non-paired peer programs.“

Our study extends the findings from these previous studies by presenting more qualitative

information regarding potential advantages and disadvantages of pair programming, with

specific emphasis on the pair programming practices with the adult female population, in

an informal constructionist environment.

5.4 Collocation

 Teasley et. al. studied companies putting teams in “war rooms for productivity

enhancement,” through a field study with 6 teams. They examined activity, attitudes, use of

technology and productivity (Teasley et al. 2000). Teams in war rooms “showed doubling

of productivity” (Teasley et al. 2000). Also they noted that teams had “easy access to each

other for coordination of their work, for learning, and work artifacts remained visible to

all” so that people could be aware of everyone’s process on their tasks (Teasley et al. 2000).

57

At Hackbright, although the environment is a constructionist learning environment, many

parts of it replicate or prepare its students for workplace practices in technology

companies like the one studied in Teasley’s research. Hackbright students often work in

paired teams and have to explain direction, progress, and their approach to lab exercises

during the first five weeks of the course. Many companies today still use pair programming

exercises in the workplace to increase productivity and reduce error rates in code.

Additionally, Hackbright students engage in scrum meetings (during the last five weeks of

the course), which are a common practice in many technology companies today. The

difference is that Hackbright students update their teachers, TAs, and other students on

individual progress, goals, and conflicts they might need to address/resolve, instead of co-

workers and managers.

Therefore, when we analyze the collocation practices at Hackbright, with Teasley’s work in

mind, we see the benefits of radical collocation on the productivity of students. The

instructional co-founder of the Hackbright program, Christian, noted that participants

mentioned that just having mentors collocated with them enabled them to feel more

supported and encouraged to step up and do the work, even if they did not actually end up

asking their mentor many questions.

In Covi’s et.al’s study of the collaborative habits of teams in 9 U.S. companies who had

dedicated project rooms, research showed that team members using “dedicated project

rooms reported clear advantages” (Covi et al. 1998). These advantages included “increased

58

learning, motivations, and coordination” (Covi et al. 1998). Findings also suggested

buildings needed “to support features of collocated teamwork such as shared display and

awareness of team members activities” (Covi et al. 1998).

59

Chapter 6- Research Methods

In this study, we used multiple methods including participant observation, shadowing, and

semi-structured interviews to understand the learning practices of 15 adult female

students in one 10-week software engineering fellowship in California.

We conducted observations of project demos of 5 female students upon completion of the

software engineering fellowship. We shadowed 3 participants at the software engineering

fellowship field site and at a project showcase at GitHub headquarters. We also conducted

semi-structured interviews with 15 software engineering fellowship graduates and 2

interviews with both of the original co-founders of the Hackbright program. Interview

participants included graduates who had just completed the fellowship, along with

graduates from earlier class sessions, most of whom were already working in the software

engineering industry.

Our interviews focused on motivations for joining Hackbright, including previous

background before joining, interactions with peers, instructors, and mentors provided

during the fellowship, educational environment, career development, and individual

projects. All interviews were audio recorded and transcribed.

60

6.1 Hackbright in Practice

Each software development cohort session lasts 10 weeks and is taught primarily in

Python. Daily sessions occur Monday through Friday from 10 am to 6 pm. During the first 5

weeks, students attend class sessions with instructors discussing computing fundamentals

by a main teacher, Christian (an instructional co-founder who has since left the program),

and four other supporting instructors. The instructional design has since changed in the

last 2 cohorts so that there are 3 instructors, 3 teaching assistants, and 3 instructional

developers.

The schedule for the first five weeks features lectures and pair programming. Each day’s

schedule from 10 am- 6 pm is as follows:

• 10 am- Morning Lecture

• 11 am- Pair Programming exercises begin

• 1 pm- Lunch Break

• 2 pm- Lightning Tech Talk (given by students on topic of their choosing)

• 2:15 pm- Afternoon Lecture

• 3 pm- More Pair programming exercises

• 6 pm- Session Ends

61

Typically lectures total about 2 hours each day (one from 10 am- 11am, one from 2:15 pm-

3 pm) before the cohort members choose their pair programming partners. Hackbright

strongly suggests picking a different pair programming partner during each lab exercise

(this practice is known as “promiscuous pair programming”). Also during the first five

weeks, students are to give a brief presentation on a technical subject of their choosing,

called a “tech talk,” lasting about ten minutes, in order to demonstrate more familiarity

with current technical trends in the industry.

Each day they engage in several programming exercises (some of which can be found in

Github under the instructor’s Hackbright curriculum repository,

https://github.com/hackbrightacademy) in order to develop knowledge of the computing

fundamentals needed to construct their personal projects in the second five weeks of the

course.

The schedule for the remaining five weeks of the course, Weeks 6-10 is as follows:

• 10 am- Scrum meetings (Agile development technique)

• 11 am- Programming for personal projects

• 6 pm- Session Ends

After the initial 5 weeks, students choose their own individual projects with the approval of

instructors. Daily sessions began with scrum meetings, which are a common in agile

development practices in the software development industry. Scrum meetings last for one

62

hour and allow students to report on progress and troubleshoot student project

roadblocks. These meetings allow for each student to become familiar with the work of

their peers, while enabling the staff and other students to help resolve concerns and

learning challenges that may arise.

Students can seek the assistance and guidance of instructors, teaching assistants,

instructional developers, their peers, and industry mentors to help them develop their

projects. Many of the participants interviewed sought help from friends and or significant

others in figuring out the design and implementation of their project.

We refer to Hackbright as an informal learning environment since there is no academic

credit or academic degree conferred upon participants. Although there are instructors who

utilize lecture-based curriculum for the initial weeks of the program, the lectures are free

form:

• there are no formalized lesson plans

• lectures vary depending on questions raised.

Hackbright’s program also features social events such as showcases, fieldtrips to

companies like Google, Pinterest, Intuit, Microsoft, etc., and other events at local tech

companies. Many companies welcome the women and discuss their need to have women

represented in the company.

63

Lastly, upon finishing the course, Hackbright students showcase their projects at a career

day with 20-30 industry partners. During career day, they demo their projects and conduct

rapid-fire interviews with representatives from partner companies. The participants'

experience in the program and exposure at these events, rather than a degree, becomes the

gateway to obtaining a position as a software engineer in industry.

64

Chapter 7- Results

7.1 Demographics of Accepted Hackbright Interviewees

We began our study evaluating the demographics of the 15 female interviewees. We looked

at motivations for joining, their age, educational/professional backgrounds, and additional

commonalities (including outside interests).

7.1.1 Motivations for Joining

Participants reported that they joined the software engineering fellowship for several

reasons:

• wanting to create a bigger impact in their lives and work (p1, p3, p5, p7, p8)

• wanting to build things (p1-p4, p7, p13)

• wanting to find a job that is fulfilling and enjoyable (p1, p2, p9, p15)

• disempowerment/ lack of mobility in career choices upon collegiate graduation (p1-

p8, p11, p13, p15)

• wanting to be financially independent (p1, p3, p6, p7, p9)

• wanting to learn complex technical material in a place where they felt “safe.”

65

7.1.2 Age/Education Demographics Before/After Hackbright

Interviewees ranged in age from 20 to 42. The average age of participants interviewed was

approximately 28 years old. Many interviewees had a graduate degrees (6), some had a

bachelors degree (7), while others had completed partial college coursework (2).

7.1.3 Most Participants Knew a Hackbright Graduate Before Applying

Most participants had a friend in Hackbright or had spoken to a Hackbright alum before

making the decision to apply for the program (p1, p2, p3, p6, p7, p10, p11, p13, p15). They

reported that meeting Hackbright alums who had similar interests, thought patterns, and

had completed the program, while finding the industry work to be fulfilling, was important

in their decision-making to apply to the program. Specifically, one participant noted that

she had “more in common with these people [alums] than anyone else” (p11). Also she

indicated that referrals might “carry some weight” since she had a friend who was an alum

from the third Hackbright class (p11). Another had a close friend who had gone through

the program that was a “big source of support” because she “could turn” to her “anytime”

(p6). Other participants knew each other before applying, talked to each other about

applying, and ended up joining the same cohort (p10, p15). Another participant turned to a

previous fellow to get a sense of the program, asking “how she felt going through the

process.” She reported that this conversation helped her because she “felt like she wasn’t

alone” in being “scared, excited” during the program (p7).

66

7.1.4 Previous Exposure to Technology through Schooling, Family, Friends,

Employment

Six participants had previous exposure to technology through their work environments or

previous schooling which provided enough familiarity to consider transitioning into

software engineering career (p1,p5, p7, p10, p12, p13). Five participants had friends or

family in the software industry (p2, p4, p6, p9, 14). Three had a science or math

background that facilitated an easier transition into software development (p4, p5, p14).

7.1.5 Employment Before and After Hackbright

Although at the time of interviewing, 10 out of the 15 of the participants were not currently

employed (1 was in school, 1 was freelancing, and 8 were still interviewing). Follow-up

surveys conducted approximately one year later showed that all participants were working

in the software development industry, primarily as software engineers or data scientists.

One now works as an instructor at Hackbright Academy, 2 are working as data scientists at

Keen.IO and Change.org, while the remaining 7 are working as software engineers at

companies such as Heroku, New Relic, Stripe, SurveyMonkey, and Crittercism.

67

7.1.6 The Best Learners Are Teachers?

Preliminary demographics revealed that many of the interview participants (8 out 15)

were previously teachers, camp counselors, or coaches (p1, p2, p3, p5, p6, p8, p11. p12).

During semi-structured interviews, both co-founders (p16, p17) indicated the program

looked for candidates with:

1) a passionate interest in learning to code

2) an ability to learn and teach a skill (both termed this skill as demonstrating the

potential for how good a programmer could be).

At the time of the study, Hackbright used a unique selection process for interviewing and

selecting participants. During the previous cohort application process prior to the study,

Hackbright had to sift through 400 applicants for only 30 available slots (8% acceptance

rate). Candidates that were selected for an interview had an initial interview by phone or

Skype. Each applicant was screened for her ability to break down skills in a subject that she

had become an “expert” (p17). Phone interviewers were looking to see how

comprehensively and clearly interviewees could explain a subject, and if done effectively,

she would move on to the next round of interviews (p16, p17).

Also 5 out 15 of interview participants had husbands, partners, boyfriends, or fiancés who

were in the software development field (p1, p3, p4, p6, p8). This became a particularly

interesting finding in light of the fact that current headlines in tech indicate that the

68

software development culture is hostile towards women and their advancement. From

these findings, the women graduating from Hackbright and coming into the pipeline are

having the opposite experience from many female counterparts in tech, getting support

from their male partners in the software development industry. Effectively, these males

reinforced the participant’s success, motivation, and experience in joining the software

engineering industry.

Moreover, the two co-founders of Hackbright Academy were both male. Christian, the

instructional co-founder at Hackbright Academy was previously an instructor at Dev

Bootcamp. The other co-founder, David, was a student at Dev Bootcamp when they met.

Both noted that during their time at Dev Bootcamp they noticed the communication

differences between men and women often resulted in women not looking as if they were

benefiting as much from the program because they were not getting their questions

answered (p16, p17). Since both noticed that “men and women learn differently,” they

created Hackbright Academy as an alternative bootcamp that would provide more support

to female participants’ learning. In interviews, both co-founders also noted difficulties they

faced while learning computer science. Both are minorities, which may have given them

better perspective on difficulties women may face in learning programming (taking into

consideration findings from Margolis’ study on trends in computer science enrollment)

(Margolis and Fisher 2003).

69

7.1.7 Participants Exhibit Similar Hobbies and Personality Traits

Seven participants described themselves as being introverted (p2, p7, p8, p9, p10, p14,

p15). Many baked in their spare time (p2, p3, p13, p14) or liked to engage in arts or

photography (p6, p8, p9, p10, p13). Many also engaged in hackathons.

7.2 Interactions at Hackbright

To develop a better understanding of the learning environment at Hackbright, we turn to

findings that discuss the social, technical, and pedagogical practices at Hackbright.

Specifically, we focus on the social interactions between the teaching staff and peers, the

interactions between the peers themselves, and the interactions between the peers and

their mentors.

7.2.1 Safe Environment at Hackbright

Four out of 15 respondents mentioned how being in “a safe environment” where everyone

could collaborate allowed them to be more “open” to sharing and learning (p1, p2, p14

p15). Four participants mentioned suffering from imposter syndrome (p1, p2, p14, p15),

revealing there were many times they felt they were not necessarily the software engineers

they were purporting to be. They were constantly worried that they would be “found out.”

70

Additionally some participants described specifically the positive energy of the program

and the effect of diversity of ideas. One indicated the interactions “gave her more energy”

as there was not a “single day she didn’t want to come” (p11). Two participants also noted

they would “lose excitement without the community” as diversity “plays an important role

in productivity” because “many ideas can solve one problem” and they could not “say which

is better than another” (p5, p7).

Many participants also discussed the sense of support they felt, particularly emotional

support, and how it helped them cope with and adjust to the pace and challenges of the

program (p14, p15, p5). One indicated that the “supportive community” got her where she

needed to be (p5). Another indicated the teachers made the experience because she “did

hear the instructors were nice” and “if [she] didn’t have that….it would be bad” (p2). One

participant noted: “you have to be able to ask the questions you don’t want to ask, that

show you don’t know, to be able to understand concepts” (p15). Another indicated she just

“really liked the supportive nature of the group” (p2). Many of the participants (5 out of 15)

describe themselves as being more introverted and that this environment helped them feel

like it was okay to ask more questions when ordinarily they would not feel comfortable

doing so (p4, p7, p8, p9, p14).

For one participant, despite describing herself as more introverted, she said she made

more of an effort to show her classmates she was supporting them. Moreover the

environment allowed her to be more open:

71

It “reinforces [your] own learning when you have to explain things to people, it made me

question if I actually know something, it’s just a good feeling to help someone and then people

think of you as a resource and I enjoy that role….it’s definitely a positive experience.” (p14)

This shows the potential power of communal reinforcement: students finding others in the

learning environment whom they can mentor or teach can be a significant motivator and

detractor from negative feelings they may be experiencing during challenging times in

learning. It can reinforce students’ knowledge, strengthen confidence, and shift one’s focus

from personal struggles. Learners instead focus on remembering and restating knowledge

to others that so they can continue learning, despite getting stuck or can discuss learning

challenges with others. Many participants noted that this supportive environment helped

particularly during the intensive learning process (p5, p6). One participant noted that pair

programming meant that she "could not give up" on the material she was learning (p6).

Even participants who were interviewed after being in the software engineering industry

for some time, credited the continued support of their peers, alums, instructors, or "the

Hackbright network" as giving them the support they needed to continue to grow in their

careers (p6, p15).

Several participants also indicated that the supportive environment “enriched” learning,

helped them “feel confident” (p9, p15) and more importantly “helped [them] feel like [they]

had a group that believed in [them] (p15). Many participants reported there was a

distinction in how they felt (and therefore how they engaged with the material) during

72

studies in traditional computer science learning and the confidence building environment

they found at Hackbright.

Moreover, several participants had taken computer science classes and done online

programming tutorials but had experienced an initial learning hump that they could not

overcome alone (p2, p5, p8, p10, p11, p14). One participant compared Hackbright to

Crossfit, where “you get fit quick” and there’s “muscle stress,” but you “exert yourself more

than you would alone” (p11). Some mentioned coding as something they were afraid of

doing initially because of how challenging it was (p7, p9).

One participant noted that it was emotional and hard to get through Hackbright (and “the

48-50 hour work weeks”), “particularly without knowing anything” (p15). She indicated it

was “a constant battle” between “feeling like you can grow” and learn, and, feeling like “you

couldn’t get it” (p15). As a result, she thought a lot of female students did not, and would

not, “get” programming at first (p15). In her experience, the initial learning barrier was

overcome through:

• “students teach[ing] each other” and

• “instructors spen[ding] a lot of time outside class trying to explain [a concept] in

different ways so students get it” (p15).

73

Teachers effectively became:

• “a shoulder to cry on”, and

• “a catalyst to get students off of being stuck.”

This had the effect of making instructors “more approachable” so that students “c[ould] ask

stupid questions” and it was “a safe space to learn” (p15).

Another participant, who had previously graduated with a computer science

undergraduate degree, contrasted her undergraduate experience in a traditional computer

science program with her experience at Hackbright. She described Hackbright as a safe

environment where she “could ask questions multiple times “without pretending she got it

when she did not” (p7). In her college computer science classes, by contrast, she felt like

“she couldn’t get a word in” and “had to be aggressive” (p7). Moreover, she “felt like she

could not be feminine without being judged” (p7). Since “she did not see other people

struggle as much as she felt she had,” she reported feeling like “a fraud, and had major

imposter syndrome” (p7).

Other interviewees added similar sentiments, noting that the Hackbright community “does

a good job” of supporting women, particularly during initial stages (p4, p17). Christian

made a point of mentioning that he created a safe space for women before they graduated

into an industry with a culture that was not as friendly, “shielding” women from potential

“animosity” in industry (p17).

74

7.2.2 Difference in Age or Temperament

Several participants indicated that age and maturity had a significant effect on how they

performed during the Hackbright program and their decision to join Hackbright was based

in them being more “aware” of what they wanted because they had matured (p7, p8, p11,

p15). One participant specifically added she was not mature in college to make a decision

“like this” and it “comes from being older” (p11).

7.2.3 Community Engagement

One participant, after completing the course, co-organized a hackathon event with an

instructor at Hackbright (p4). Several additional interviewees discussed participation in

community events such as hackathons, often with significant others, peers, or fellow

classmates, to boost skill acquisition and awareness of emerging concepts in programming

hardware and software applications. Many participants also went onto becoming

Hackbright mentors in subsequent sessions.

One participant used her mentors, and mentors of other "Hackbrighters" to network with

experts in a particular domain she was trying to become better at, even after failing to get a

job after approximately 10 interviews. This participant, who once had a successful

consulting career, used her networking skills in "the Hackbright community" to build

75

relationships that led to job interviews, all while becoming a historian for information

learned by authoring a blog. She used the network to give back to others who were also

learning and to be a "life coach" to others going through the program. She also used the

blog as a vehicle to pick up the industry skills and document knowledge needed to obtain

an industry position (she now works as a data scientist in a well-known non-profit).

The social interaction and community building in Hackbright facilitated a lot of interaction

that translated into reunions with members of each cohort as well as reunions across

different cohorts. Alums used email threads to plan activities including parties, hikes, and

craft days. They also used these threads to vocalize new things they had learned and share

them with other members of the Hackbright community. That often led to other students

wanting to meet, discuss, and learn these new-found tools, applications, etc. in study

groups at Hackbright facility (even after graduating).

7.2.4 Many Women Experienced Different Self-Concept Before Hackbright

Several participants noted that they were told by either parents or career counselors that

computer science was not a fit for them because they did not have more experience or a

math background (p1, p15). Many did not see themselves as programmers before

Hackbright (p1, p2, p5, p8, p12, p13). Others reported they took computer science courses

and it was disheartening because they could not manage the workload (p11, p14, p15) or

find a computer science community at their school to engage with (p2).

76

For these participants, despite their interest and desire to learn more about computer

science, they did not encounter encouragement to keep pursuing their interest in this

subject. Despite this, all Hackbright participants who came back to computer science are

now working as software engineers, data scientists, or instructors in computer science.

7.3 Interactions with Mentors

Here we switch focus from the social and pedagogical learning environment at Hackbright

to discuss the positive and negative interactions among Hackbright participants and their

industry mentors. Some findings indicated that mentors functioned as peer role models,

showing the success possible after Hackbright. Other mentors pushed their students to be

better, while some were inaccessible during the mentorship program, despite volunteering

for it.

7.3.1 Maximizing the Role of Industry Mentorship in a Bootcamp

Several participants reported a positive interaction with mentors (p2, p3, p5, p6, p8).

Many had mentors who pushed them to do better, such as launch an app in the Google

Chrome store, pursue a more challenging a hardware project, or provided support by

staying with students during debugging (p5, p3, p8, p6). Other participants reported that

one significant benefit of encountering alums (and mentors that were alums) was seeing

77

mentors who were younger and very successful after Hackbright (p1, p2, p3, p6, p7, p10,

p11, p13, p15).

Hackbright Academy’s mentorship program, which is mostly male, became a test-bed in

how to facilitate better mentorship interactions between female students and male

industry professionals. Through a series of trial and error approaches to improving

interactions between mentors and mentees, Christian indicated that problems with

communication or learning styles became much less prevalent when there was an initial

training session for mentors during each 10 week session (p17). The mentor training

functioned as a type of communication class and sensitivity training in how to effectively

communicate while teaching, particularly to this population of female students.

7.3.2 Is it Better to Have Mentorship or Support from a Personal Network of Friends

and Significant Others?

Several participants (p14, p2) mentioned that having up to three mentors was challenging

because it was hard to “juggle” those mentors with their workload. Christian said that often

mentors would object to what could be accomplished during the 10-week program. Some

mentors said that participants’ projects were impossible in the time allotted or that

participants were not qualified for hire in comparison to those who had more exposure

than the 10-week period. Other participants mentioned being disappointed by mentors

who remained largely inaccessible while they were struggling through their projects.

78

Moreover, several participants mentioned that when they did receive help from mentors, it

wasn’t always helpful because it was too “granular,” delving into very specific things, while

participants were still trying to get a grasp on how to get their code to work properly (p2,

p14). These participants instead reached out to friends, or their significant others, who

were more accessible through instant messaging, text, or some other social media forum or

in person. The reason for this was that friends or significant others “were more

straightforward” or accessible (p1, p14). They would “just indicate a specific library needed

to be used in a project and here’s the link,” whereas a mentor was “too low-level” and

“more theoretical”, instead of just being practical (p14).

7.3.3 Challenges with the Industry Mentorship Program

Some participants reported having mixed feelings about mentors because it was hard to

arrange a visit and there was no guarantee that the help would help them progress with

their projects (p1, p3, p4). Additionally, some mentioned they didn’t feel they could be

completely honest with their mentors, indicating that they felt that “they can’t be

vulnerable” because their mentor was “weary of accelerated bootcamps” or because they

had “asked twice and fe[lt] bad” (p1, p2). Others reported not using their mentors because

of differences in personality (p3, p8). Some did not end up using mentors to ask about

projects or programming questions at all (p2, p11).

79

7.3.4 Recommendations for Mentorship Program

Some participants (p2, p14) mentioned having mentors that were not knowledgeable in an

area related to their project. They also had difficulty in coordinating schedules. Suggestions

for improvement included having fewer mentors and ones who had skills that were more

in line with a participant’s’ project. Some participants (p2, p14) mentioned feeling obliged

to reach out even when so many mentors were needed. One participant thought it would be

helpful to rotate mentors (p14). She wished there were a tool where mentors were

“forced” to hang out with their mentees to get to know them better, not just working, but

also bounding, in order to create relationships where they could continue to get feedback

throughout the program.

Christian indicated a key element of having better interactions between mentors and

mentees was establishing a protocol for interactions with the mentors. This would consist

of Hackbright having a mentor-training session providing information on how to

constructively provide feedback to participants so they could improve and stay motivated

despite learning challenges.

80

7.4 Challenges in Hackbright

7.4.1 Downside of Taking on More Challenging Projects

The individual-project periods (the last five weeks of the course) are the points in the

program where students have more one-on-one time with instructors. One student

described it as a critical time to develop relationships with instructors (p14). For those

students who chose to take on material that instructors are not familiar with, this time

period becomes isolating since those students cannot ask for sufficient help from

instructors (or other students). These participants do not experience the benefits of

communal support because no one in the cohort (or on staff) is familiar with the elements

of their project. One participant said her alternative was to instead engage in “rubber

ducking” (a mode of self-help where one talks to a rubber duck to try to talk out the answer

to a question posed), which was very isolating (p14). She noted that bonding forms when

one is getting help from instructors because they become invested in the projects/artifacts

of students they are helping. Instructors will give high fives when their students get a

concept that is important to their artifact, but for the participant taking on more

challenging material, her victories are not noticed. The more instructors interact with a

student and help her build an artifact, the more invested instructors become in the

participant’s progress and success. If teaching staff help students with coding, it’s similar to

the participant having another mentor, whom they can bond with. One can argue that

bonding helps creates the safe environment for continued learning mentioned throughout

81

participant interviews, which propels students to continue working through difficult parts

of their projects.

Additionally, this participant had difficulty in pair programming exercises because she got

paired with partners who “did not know as much and had different beliefs on how

something should work” (p14). Hence she preferred to work alone and at her own pace.

Her experience was different from her peers as she was learning more challenging

technology than her peers (Objective C) without communal support or encouragement

from her peers or teaching staff.

7.4.2 Difficulty Understanding All the Concepts in Short Amount of Time

Another participant (p15) stated it was hard to understand concepts, stating “it took me a

lot more time to write code for problems.” The short duration of the program (10 weeks)

was seen as not sufficient to obtain a strong grasp of the material. Hence she (and several

other) participants spend months after the program studying for coding interviews until

they are comfortable enough with the material to do well in a “whiteboarding” interview.

One participant had to go back and practice after finishing Hackbright by taking online

courses such as MIT’s CS 21 Python course and EdX’s 6.0 Introduction to CS. Although this

participant went through 10 initial interviews without getting an offer, with her first one

being at a partner company, Facebook, she is now working as a data scientist at Change.org.

82

7.5 Suggestions for Improving Other Constructionist Spaces

7.5.1 Recommendations for Use of Space in Constructionist Environment

As part of our research findings, we present recommendations on the intelligent design of

an informal constructionist space. We present a collaborative design model based on

interview findings from Christian during his instruction at Hackbright.

With each cohort (he was lead instructor for 5 cohort sessions), Christian redesigned and

adjusted aspects of the space to facilitate more learning and fewer distractions.

Figures 7 & 8: Hackbright “learning space”

Christian advocated being cognizant of reactionary learning differences based on usage of

space and furniture. He suggested designing a space, shown in Figures 7 and 8, that

facilitates comfort and community (couches and “backjacks” enable communal

attentiveness, while coffee tables enable zoning out). He indicated that having a shared

83

space where the learning area is next to the kitchen is not incidental. He specifically wanted

students to be there “hanging out,” and even welcomed student-planned sleepovers as they

indicated continued interest in doing the work.

Another consideration is for design of a constructionist space is class size and its marked

effect on the overall community building of a cohort. A smaller class size is recommended

to maintain a communal aspect to the students in the class. Christian commented that when

he had 30 students, the communal aspect of the classes faded, but when the classes

increased to 40, the result was a more fragmented and divisive labspace, instead of

collective one. At a class size of 40, students formed cliques of 2-4 people instead of a

singular community or even 2 smaller communities.

Another recommendation made was to create a motivational area in the space where

learners can be expressive and encouraging to each other. At Hackbright, these spaces

included a motivational bathroom and an area displaying photos and plaques. Creating a

space that is motivational allowed participants to feel more at ease using nearby resources

during challenging times (i.e. students had sleepovers at the facility and oftentimes came

back “to hang out” since each cohort member kept their keys even after graduating).

Lastly, another recommendation made was to develop an awareness of how the activity

level (and positioning) of instructors affects participant’s willingness to ask questions.

During sessions, Christian mentioned that students would hesitate to get up to ask

84

questions if they saw teaching staff sitting or communicating with each other instead of

focusing on being available for nearby students. Hence, he made a point of remaining active

physically during class sessions to stimulate continued confidence in students asking

questions.

7.6 Constructionist Findings

Our literature review of constructionist environments discussed several types of

constructionist environments and a shift from initial tinker based masculine

constructionist environments (LogoBlocks, Mindstorms, construction kits) to more social

ones that were virtual but non-visual (MOOSE Crossing, MediaMoo), to constructionist

environments that were visual both in the virtual and physical spaces (Alice and Resnick’s

Computer Clubhouse, respectively). We then saw a shift from constructionist activities as

hobbies (refer to Figure 6, Phases 1, 2, 3) to activities that took place in schools. These

activities (Phase 4 in Figure 6) include designing virtual mobile apps in Google App

Inventor and “making” things in school-run Fablabs. Lastly, we see the professionalization

of constructionist activities (Phase 5 in Figure 6) where professional products are created

for sale and distributed in hardware startups, incubators, and makerspaces. Additionally,

constructionist activities are used to professionalize people (via software bootcamps)

through artifact creation so that they can become software engineers.

85

We now shift our focus to discussing instances where Hackbright participants created

artifacts that were demonstrative of their learning for professionalization. We pay special

attention to instances of social constructionism and distributed communal support.

7.6.1 Examples of Constructionism

Hackbright participants engaged in constructionist activities that were external and shared

during pair programming exercises and individual projects. In both activities, they acted as

central agents in their learning. For their individual projects however, Hackbright

participants developed individualized and personally meaningful artifacts that they shared

not only with instructors and peers for feedback, but also with an extended network that

included industry mentors (each Hackbright student got 1-3 mentors), Hackbright alums,

and other technology professionals that chose to be part of the Hackbright network by

coming to networking dinners, industry events, and student showcases.

The surrounding culture of Hackbright teachers, industry mentors, Hackbright graduates,

industry sponsors, tech speakers, industry mentors, and fellow peers all became resources

for Hackbright participants to build and extend their knowledge in the short time they

were given. These resources also allowed them to take what they learned, refine it, present

it, measure its effectiveness by obtaining feedback in all these channels, if not support from

these surrounding cultures. They could then reiterate and present their construction of

those concepts in an individualized way.

86

Hackbright students also discussed and shared their constructions throughout the course

during pair programming exercises (during the first five weeks of the course) and while

creating their individual projects (during the last five weeks of the course). Individual

projects included mobile apps, foreign language programs, and desktop games.

Much of the constructionist discussions were localized, with students often consulting each

other, or one of the five instructors, for feedback and guidance. Other discussions, those

that involved distributed constructionist activities, often took place by students sharing

their constructions with friends, Hackbright alums, or more prominently, industry mentors.

Each Hackbright student was assigned 2-3 industry mentors to help them develop their

projects and prepare for a career day in which they would showcase their projects to

approximately 25 partner companies,

The distributed network that students at Hackbright referenced included students, alums,

previous mentors and/or affiliates of Hackbright. Much of the discussions and sharing took

place through this distributed network at events designed to foster development of

relationships, such as industry events, tech talks, networking dinners, and receptions (i.e.

Girl Geek Dinners). There are also student demo showcases for students to share their

work with the public. Sharing their work through this venues enabled students to reiterate

ideas and concepts tied to their projects so they could create an artifact that was relevant

and up-to-date with current technologies in industry.

87

One student interviewed indicated she blogged about her learnings, using the blog as a

forum to discuss, share, and further reiterate on development projects she was taking part

in. She also consulted those in the distributed Hackbright network to help her take on

projects in a technical area she was less familiar with so she could improve herself before

going onto the job market.

7.6.2 Social Constructionism

In our study, social setting played a significant role in artifact creation. The community of

Hackbright participants encouraged taking on identities as software engineers through

activities such as receiving business cards (as shown in Figure 7) so they could internalize

and externalize their role as software developers early in their training. Their business

cards were linked with their artifact creation (i.e. Gitub accounts that facilitated

development and sharing of their online artifacts as shown in Figure 9). This allowed for

participants to more easily assimilate into a software development role, but also allowed

for artifact creation to be prominently linked to their title (through Github repositories).

88

Figure 9: Hackbright Participant’s Business Card

In addition, while Hackbright’s social setting included traditional lecture-based daily

activities for the first five weeks, emphasis was also given to constructionist activities like

pair programming exercises where participants could choose different partners every day.

Hence, the social setting that stemmed from these activities promoted relationships where

a usually-marginalized demographic (women in computer science) could develop strong

bonds, provide emotional support, all while building a network that would support their

own individual and shared artifacts in that setting.

The social setting at Hackbright also included going on tours of companies like Github and

Google, while holding “tech talks” featuring industry speakers from a specialized software

development area (Figure 10 shows an example of the logo used at a recently co-sponsored

89

dinner with Hackbright and industry partners). Access to these industry professionals,

particularly ones discussing and sharing their craft, allowed Hackbright participants to

more critically understand facets of the environment they were trying to become a part of.

In addition, by attending tours at tech companies like Google, Github, Square, etc., they

were able to build informal relationships with people representing those companies, and

use those relationships to not only be perceived and addressed as software engineers, but

to practice assimilating into the field by discussing their Hackbright experiences and

projects.

Figure 10: Logo for Co-Sponsored Industry Related Hackbright Dinner & Reception

Lastly, the network of Hackbright alums, industry partners, mentors, etc. created a setting

where the network (and people in it) became a vital resource for knowledge, networking,

job recommendations, mentoring, etc. This enabled students to improve and refine ideas

and skills used towards creation of artifacts. In addition, many interviewed shared a

common vision to change the world through beginning to engage in dialogue that was once

90

restricted solely to software developers creating technical products, but also through

changing a predominantly male status quo in the software development industry.

Moreover, in interviewing students, it became evident that Hackbright participants did not

just construct their projects or knowledge, or engage in various forms of distributed/social

constructionism, but that their constructionism took new forms.

Hackbright participants did not just construct these objects or relationships that facilitated

learning, they constructed coping mechanisms to deal with challenges in learning. For

example, on a micro-level, this constructed coping mechanism to learning challenges took

the form of an anonymized wall of motivational quotes in one of the female bathrooms.

This social practice started during the third or fourth cohort before becoming a part of the

community support in Hackbright. What is especially noteworthy is some participants

would take pictures of the wall and look at it during particular moments when they needed

encouragement. In this sense, participants constructed anonymized support to help other

students when they were at their absolute lowest.

On a macro-level, the support system, which was really propagated through a shared email

thread provided by the co-founders of Hackbright, and social events run by Hackbright,

enabled the creation of a sub-society of engineer graduates who could not only provide

emotional, intellectual, and professional support, but could also continue to further social

and career-oriented pursuits even after graduating the course. Students’ constructions

91

therefore, were not just physical individualized projects, but also cultural and social

systems to facilitate continued existence, if not success, in the computing workplace.

7.6.3 Types of Distributed Communal Support

Participants keep in touch through emails and in person after the program. A co-founder

indicated that Hackbright provided a mailing thread such as those used in Y Combinator to

facilitate communication among participants. The email thread was then used to facilitate

further get-togethers (parties, reunions amongst cohorts, study groups for new material to

learn even after completing the program). Several participants (p14, p15, p6) indicated

there were “a bunch of threads” and a number of people who go on there to share technical

information or vent about difficulties in workplaces. Many participants communicated with

each other even after graduation almost every day (p14, p15, p6).

7.7 Computer Supported Cooperative Learning

At Hackbright, over the shoulder learning was used in helping participants develop an

understanding of programming environments, languages, and to help students in building

hardware related projects (p5).

We found that participant interactions with other students and industry mentors,

particularly during final projects and technology talks, allowed for continued interest and

92

both over-the-shoulder learning and apprentice learning, both in collocated and distributed

spaces. Pair programming exercises also allowed for incidental learning and over-the-

shoulder learning.

7.8 Pair programming

7.8.1 Benefits of Pair Programming

One student labeled pair programming as a tool for self-improvement because students

had to improve themselves with communication issues (i.e. not being too forward in

solving a problem, particularly if it wasn’t their turn). Additional discussion focused on the

effects of interaction during the teamwork in pair programming. For example, if a student

did volunteer an answer out of turn, one mentioned feeling “dumb” because of it, since pair

programming lab exercises are not just about arriving at the solution, but also about

teamwork. More specifically, she stated she learned that as a partner she had to

accommodate her role in the pair programming interaction (i.e. be respectful of who’s turn

was it or who got “there first”) and work within that paradigm to facilitate a collaborative

solution.

Additionally, other students reported that the pair programming process enabled them to

learn how to talk through problems and get comfortable vocalizing how code works (which

turned out to be a key skill for job preparation). One student reported that pair

93

programming, while partners worked with someone else, allowed for a leveling out of the

pace of the problem solving (p1).

Another student indicated she learned the pair programming process was not just about

the solution, but also about getting feedback during the process.

7.8.2 Challenges of Pair Programming

Another student discussed hidden challenges in the navigator role. While the student

leading the pair programming (navigator) could think big picture, the partner (the driver)

could get caught up in tiny details and encounter challenges. The challenges would stem

from both listening to the navigator discuss her proposed solution while considering

(internally) the details of that solution and potential debugging issues (p8). Hence it took a

certain amount of being focused in order to handle the navigator role, even though it was

considered to be more of a “backseat” to the driver who directly conveys a direction for

implementing a solution. Another student indicated that while a driver could take over the

entire process/program, a navigator had to think more, pick out mistakes, immerse herself

and look at code, and also could encounter difficulties by getting lost in a train of thought

(p7). While some students reported that pair programming made them feel less pressure in

coming up with a solution (p5), others indicated they were harsh towards themselves

during paired exercises (p1). One student indicated that if she was working alone she

94

would take responsibility for problems she solved, but in a pair she would give credit to her

partner for good things and blame herself for the bad things (p1).

Many students indicated that pair programming was very taxing because they had to

constantly interact and engage with a partner (p15, p10). Some indicated they would

counteract this pressure by taking more breaks. One student indicated she felt safer as a

navigator and more “put on the spot” as a driver to solve problems because she usually

wanted whatever time was needed to solve the problem (p5).

Another indicated that working with another person resulted in taking double or triple the

time to submit a solution, so partners had to learn time management (p5).

7.8.3 Recommendations for Improving Pair Programming Practices

Some interviewees made suggestions for things to consider during the pair programming

process. One specified the key to the process was the understanding that patience and

communication are the key skills to making a pairing successful (p10). Another student

made recommended that students take a communication class (p15).

Moreover, one student reported that during pair programming, it was really important to

make sure not to discount a partner’s capabilities if they lacked knowledge in certain

subjects out of the gate as it’s possible to learn from a partner who is learning if there is

95

receptivity to the idea (p15). On the flip side, a pair programming partner who has “less

knowledge” should not “shut down” if she was uncertain about concepts initially and push

on with the questions because the space is for learning and mistakes are okay (p15).

Another student indicated that it took time to develop a good working rapport to be in

sync. Specifically, even though promiscuous (rotating) pairs could be put together

immediately, work ethics might be different, with some not talking as much as others, or

others talking more thoroughly (p7). Hence working on developing a good rapport could

offset differences in work ethics or communication styles if pair programming partners

worked on improving these skills. According to one student, promiscuous pairs were

beneficial because the student knew the following day would be “totally different” and she

would have an opportunity to try a new approach, in optimizing her learning or acquiring a

skill (i.e. “maybe tomorrow my partner will be really good at visualizing the problem and

I’ll be really good at knowing the specific methods and classes we need”) (p5).

7.9 Collocation Practices at Hackbright

At Hackbright, Covi’s finding that collaborative practices should include a shared display

and awareness of team members’ activities is evident but through more modern practices

such as pair programming and scrum meetings. Shared spaces for learning and building at

Hackbright facilitated not only improved productivity and sharing of tips to increase

efficacy, but led to a more communal environment that encouraged communication, unity,

96

and an increased willingness for individuals to step outside their own personal comfort

zones to become better for their Hackbright classmates/teachers.

With Teasley’s work in mind, we see the benefits of radical collocation on the productivity

of students. Christian noted that mentors often made sure they were collocated with their

mentees to prevent communication issues when their mentees were seeking help with

personal projects. Surprisingly, one of the benefits of collocation in mentor/mentee

relationships was the promise or potential productivity that could occur as a result of being

collocated in the same space, even if that access to that promise or potential help was not

realized (p17). Collocated mentors could also assist Hackbright interviewees with career

development such as whiteboarding (solving computer science problems on a whiteboard

to share ideas while solving) or could boost morale, motivation, and productivity to their

mentees (p17). Hackbright participants would often meet mentors at coffee shops or the

mentor’s workplace to acquire necessary information for contextualizing their projects in

existing industry practices.

At Hackbright, many components of the program replicate or prepare students for

workplace practices in technology companies like the one studied in Teasley’s research.

Hackbright students work in paired teams often, having to explain their direction, progress,

and approach during lab exercises. Many companies today still use pair programming

exercises in the workplace to increase productivity and reduce error rates in code. Radical

collocation was also effective during pair programming because it allowed partners in

97

teams to learn “tricks” from their partners during programming. These tricks included

ways to simplify their development environment or shortcuts to help during programming

(p3, p6, p8). Radical collocation also allowed for increased productivity while participants

worked on their individual projects because they could use each other’s increasing

knowledge to resolve problems they were encountering with new vocational technologies

(p8).

Participants during their individualized projects worked in one collaborative lab space to

help each other through challenges in their individual learning. This dedication to using a

specified space for constructionist activity and vocational training allowed for increased

motivation (p2 noted that during the most challenging times of her project, many of her

Hackbright peers and she would sit together and high five each other if they moved

forward past a roadblock). Additionally, Christian indicated that he preferred smaller class

sizes (around 20 or so) to enable a more cohesive group that could learn from each other’s

perspectives without becoming so big that it could become divided.

Additionally, advantages such as communal support in a collocated space were evident

during scrum meetings. Participants would report on their own individual progress with

their projects. The benefits of this were two-fold:

1) scrum meetings enable on the job training

98

2) allowed for participants to track their progress, while using the collective

intelligence and expertise of teaching staff and peers to work through problems

they were facing.

99

Chapter 8- Discussion

In the following section, we provide an overview of the results of our study on Hackbright

and its graduates. We discuss contributions our study makes to existing literature on

constructionism, collocation, computer supported cooperative learning, and pair

programming. We also discuss implications for design for bootcamps at large, and

Hackbright specifically. Lastly, we discuss future directions for our work.

8.1 Summary of Results

The findings of our study revealed numerous things. Many women who joined Hackbright

did so for financial security (5 out 15), out of a desire to find a fulfilling job (7 out 15), due

to lack of mobility/disempowerment in their previous line of work (8 out 15). Many had

previous exposure to technology through work or school (6 out 15). Several had the

support of friends or family in the software industry (5 out 15). Many also had partners in

the software industry who supported them during their fellowship (5 out 15). Moreover,

most students knew someone who had gone through the Hackbright program (9 out 15).

That enabled them to get a sense of what going through Hackbright and getting a software

engineering position would look like. The “role models” of these Hackbright graduates

were not older or established in software engineering, they were peers, who stepped up

and transitioned into software engineering just like they had. Their example made it

possible to envision taking that step.

100

Preliminary demographics also revealed that many of the interview participants, were

previously teachers, camp counselors, or coaches (8 out of 15). Additionally some

women interviewed reported that the “open” environment present in the software

engineering fellowship facilitated becoming more extroverted in classroom activities (4

out of 15).

Fifteen out of 15 participants (all the interviewees) had successfully transitioned into

software industry positions after a one year follow-up. One was teaching at Hackbright,

another was a data scientist, and the remaining 13 had secured software engineering roles

in various companies like Keen.IO, Crittercism, and SurveyMonkey.

Two out 15 reported that their older age enabled them to be more mature when deciding

to join Hackbright as they were not mature enough to make this kind of decision during

college (and even went through grad school not knowing how to ask questions).

Ten out 15 participants reported having a very positive experience at Hackbright in terms

of both learning and social interactions. They indicated the instructors were approachable,

allowed students to ask questions as many times as needed, and would often try explaining

concepts multiple times in an effort to make sure students understood the concepts before

going on. This type of support enabled students to engage in the “confidence building”

necessary to get past initial learning humps that they could not overcome alone. Two

101

reported that they felt their age and maturity played a role in their decision to come to

Hackbright as they were more “aware” and were not ready during college to make big

decisions regarding their career.

Findings on the mentorship program indicated there were both pros and cons for mentees.

One pro included the students getting a realistic depiction of what it would be like to be a

software engineer after Hackbright (2 out 15). In fact many reported that it was inspiring

seeing a Hackbright alum who was very successful after Hackbright and found the work

fulfilling (9 out 15). Many mentors provided mentees with help for broad concepts,

including interviewing, but not technical help on projects (3 out of 15). Other pros included

mentors helping with professional development and encouraging students to be better or

helping with networking opportunities (3 out of 15). Some mentees also reported

difficulties with having mentors because they did not feel safe in asking them questions (i.e.

asked twice and felt bad asking again or did not ask much because mentor indicated he was

weary of bootcamps in general; 2 out 15). Others indicated they did not engage with their

mentors because of personality differences so the relationship fizzled (2 out 15).

102

8.2 Challenges and Considerations for Hackbright

Since a few participants did experience difficulties with Hackbright, one must look at

possible ways to circumvent these difficulties in the future. One student indicated she had

significant difficulty because the course was only 10 weeks making it hard for her to really

learn the concepts (p15). Another struggled with the social environment because she was

more advanced than her peers, leading to isolation during activities such as pair

programming and project time, where she ended up working alone. She reported feeling

isolated because it was not easy to get help and she was not congratulated for her learning

milestones the same way her peers were.

This gives room for thought on creating software development bootcamps that might last

longer (approximately 15 weeks) to give students more time to learn the material

adequately. Another possible solution to accommodating a more advanced student is to

make sure one or more of the teaching staff is knowledgeable enough to accommodate

student’s skill level in the class prior to the start of the fellowship so they do not become

isolated.

8.3 Mentorship Program Recommendations

We add to the existing literature on constructionist environments by discussing the

benefits and disadvantages of mentorship in these professionalized software development

103

bootcamps. We note the following recommendations made by students regarding having a

mentorship program in a bootcamp:

• having mentors paired with students they can build a bond with

• having mentors who had skills that were more in line with a participants’ project

• rotating mentors so participants could have more access to learning new

information

• create mentorships where mentees can build relationships where they could

continue to get feedback as their careers progress.

8.4 Pair Programming Recommendations

Our work adds to existing literature on pair programming. Participants reported on

difficulties, benefits, and suggestions to improve the experience for other students in the

future, regardless of whether they were learning in an informal or formal learning

environment.

Previous literature in this field discussed mostly quantitative findings on solo vs. pair

programming scores on assignments and finals (McDowell, Hanks, and Werner 2003;

McDowell et al. 2002; McDowell et al. 2003) or how students explain the benefits of

rotating pairs (L. Williams et al. 2000), or discuss whether the quality of a computer

science class would improve with pair programming (McDowell, Hanks, and Werner 2003).

No studies have discussed pair programming in bootcamps and none have given qualitative

104

feedback for non-technical women on ways to improve pair programming practices. With

this in mind, we share the following pair programming recommendations made by

students.

Suggestions to improve pair programming in the future include:

• Understand that patience and communication are the key skills to a successful

pairing

• Take a communication class prior to working in pairs

• Do not discount a partner’s capabilities if they lacked knowledge in certain subjects

as it is possible to learn from a partner who is [still] learning.

• Do not shut down as a pair programming partner who has “less knowledge” and

uncertain about concepts initially. Just push on with the questions because the

space is for learning.

• Develop a good working rapport to be in sync as it can be a vehicle to offset

differences in working styles, communication styles, and work ethics.

8.5 Considerations for Constructionist Activities

We identify and discuss engagement in constructionist activities in this new type of

constructionist space that teaches not only the technical skill but professional practice as

well. Students discussed and shared constructions in pair programming, during shared lab

space time, and during interactions with their mentors (in person and online). They

105

engaged in distributed constructionist activity by collaborating with mentors or peers

through Github, Skype, or messaging applications. They also engaged in constructionist

activity through setting up meetings for professional development, discussing jobs, and

raising questions through an email list serve linking all Hackbright graduates.

Two particularly unexpected but important forms of social constructionism occurred

among Hackbright graduates. First, they began to organize cross-cohort functions including

parties, reunions, and get-togethers, using the email list serve. The effect is continued

support, networking, professional and social development that encourages growth and

self-sustained development among graduates in the group. Secondly, graduates created an

anonymized wall of “motivational quotes” to inspire each other during the peak of their

learning challenges. In effect, their constructions were not just the artifacts, but the coping

mechanisms used to break through learning challenges.

Our contribution is to identify these new and unique ways Hackbright graduates

constructed social networks and coping mechanisms to ensure survival and getting

through difficulties during the fellowship.

106

8.6 Considerations for Collocation Practices & Computer Supported Cooperative

Learning

We identified collocation practices in this new setting, software development bootcamps

for post-collegiate women. Specifically we identify instances during mentor and mentee

interactions where radical collocation enabled better efficacy in artifact construction for

personalized projects through computer supported cooperative learning. Radical

collocation led to improved efficacy during pair programming and artifact construction

since peers could share knowledge they had gained in order to improve both collaborative

and individual constructionist activities. Over-the-shoulder learning and incremental

learning also occurred among between mentors, teaching staff, and mentees during

teaching sessions. Mentees often learned tricks to simplify designing their projects or

setting up their development environment. Radical collocation also allowed for better

professional development as mentees could practice interview questions with mentees by

whiteboarding.

8.7 Implications for the Design of Bootcamps

In the following section we discussion the implications of our data, specifically that all 15

participants interviewed were able to secure a job in software engineering or data science

after taking the course. We look at the implications of bootcamps and their success in

transitioning non-technical adults into software engineering. We also look at the

107

implications of Hackbright’s success as a bootcamp, discussing significant considerations in

our data (and potential future work).

8.7.1 Effective Transition for Women into Software Engineering

On a macro-level, there is an important reason why software engineering bootcamps, and

specifically Hackbright Academy, have been able to place and keep its graduates in

software engineering roles. According to Christian, there’s a hidden secret in tech--a

distinction between vocational skills and theoretical skills in software development. The

two do not necessarily overlap. Even if one candidate had all of the desired software

development training a company was looking for, they would still not be of value to them

for the first 1-6 months. Hence, once a Hackbright graduate gets hired into a software

engineering role, even if she was not as skilled as a college computer science graduate, she

was given time to adjust to the new. What becomes crucial, according to Christian, is the

new-found confidence the students acquire. It’s more paramount than skill in interviews.

Hackbright facilitated establishing confidence in several ways including giving participants

software engineering business cards with their Github accounts listed. According to him,

“they have to believe it so they can sell it.”

There is also another reason why bootcamp candidates might have an advantage over

traditional computer science graduates. Graduates from bootcamps are trained in the

vocational technologies used by partner companies so their knowledge in grounded in

108

current industry practices (Kamenetz 2015). In contrast, students at traditional four year

schools are taught more theoretical languages such as Java and C++, which may or may not

be appropriate for the company making the hire. Furthermore, after the first year or two in

traditional computer science majors, there becomes such variation in the courses offered to

graduates that what is being taught is not necessarily what a student will want or need to

learn in order to obtain a desired job. Classes are chosen subjectively and are not

necessarily fundamental to obtaining a software engineering position. Additionally, getting

into the bootcamp program is competitive. Surviving it demonstrates a level of work ethic

that could be comparable to, if not superior, to that of a graduate from a traditional four

year university.

On a micro-level. Hackbright is distinctive from other bootcamps because of its selection

process. Many bootcamps recruit their students by having them attempt or complete a

series of programming challenges before deciding whether or not they are accepted into a

bootcamp session. Hackbright does something radically different. In a phone interview

with potential candidates, they are to talk about a skill they picked up and break down

every relevant and notable component of that skill and teach it to the interviewer. In

essence, the phone interviewer is trying to ascertain the candidate’s ability to break down

information presented (the same way one would do when writing a program) and to teach

the information they have become experts at (which makes coding the computer analogous

to teaching). The more clear, concise, articulate the candidate is in relaying that

information, the more desirable they become as a candidate. For Hackbright it’s not about

109

previous exposure in computer science, but about testing a candidate’s ability to

communicate (sometimes complex) ideas succinctly because that is essentially what

programming, as a skill, entails.

One implication from this study can be to look at the kinds of learning environments that

facilitate students continuing to exhibit confidence in challenging material such as software

engineering. Hackbright enabled female students to have confidence by consistently

providing a safe space for them to learn while getting emotional support, encouragement,

and unrestricted access to a space where they could meet. The result is all the participants

interviewed are working in software development as engineers, data scientists, or software

development instructors (and have been working in it for over one year).

8.8 Future Directions

One surprise in this research was the mentorship training (to mostly male mentors) given

by the instructional co-founder in how to address software learning challenges, while

acknowledging specific communication and learning differences to women (Tannen 1991).

There are many trained professional women leaving the software industry because of the

"hostile" culture. This training could facilitate mentors’ communication, sensitivity to

learning styles, and awareness of what women can accomplish in such a small timeframe.

This in turn could create working environments to be more women-friendly. This is an

important researchable question.

110

More importantly, the success in training mentors to have smoother interactions with their

mentees has significant implications for design for software engineering bootcamps and

mentorship programs in tech at large. If the training that Hackbright gave to mostly male

mentors became effective in cultivating better working relationships between men and

women in software engineering through mentorship, what is not to say that it might be an

effective tool in addressing these differences in the software industry in general? With

many accomplished and professional women leaving the tech industry today because of the

unfavorable culture, training that could facilitate better communication might be a

necessary component in changing the prevailing culture in tech.

In future research, we hope to conduct further studies on defining and understanding the

mentorship training used in the bootcamp to facilitate smoother interaction between men

and women in the space. We then hope to determine the potential effectiveness of a model

that could effective to bridge difficulties in communication and learning in the software

engineering industry.

111

BIBLIOGRAPHY

AAUW. 2000. “Educating Girls in the New Computer Age.” American Association of

University Women Educational Foundation, Washington, DC, USA.

Ackermann, Edith. 2001. “Piaget’s Constructivism, Papert’s Constructionism: What’s the
Difference.” Future of Learning Group Publication 5 (3): 438.

Berlin, Lucy M., and Robin Jeffries. 1992. “Consultants and Apprentices: Observations about
Learning and Collaborative Problem Solving.” In Proceedings of the 1992 ACM

Conference on Computer-Supported Cooperative Work, 130–37. ACM.
http://dl.acm.org/citation.cfm?id=143471.

Bevan, Jennifer, Linda Werner, and Charlie McDowell. 2002. “Guidelines for the Use of Pair
Programming in a Freshman Programming Class.” In Software Engineering

Education and Training, 2002.(CSEE&T 2002). Proceedings. 15th Conference on, 100–
107. IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=995202.

Blikstein, Paulo. 2013. “Digital Fabrication and ‘Making’in Education: The Democratization
of Invention.” FabLabs: Of Machines, Makers and Inventors, 1–21.

Boyer, Kristy Elizabeth, James Lester, Bradford Mott, and Eric Wiebe. 2014. “Toward a
Computer Science Learning Progression: Investigating the Role of Adaptive Learning
Environments for K–12.” Accessed March 14.
http://www.stanford.edu/~coopers/2013Summit/BoyerKristyNCSU.pdf.

Bruckman, Amy. 1998. “Community Support for Constructionist Learning.” Computer

Supported Coop. Work 7 (1-2): 47–86. doi:10.1023/A:1008684120893.

Bruckman, Amy, Maureen Biggers, Barbara Ericson, Tom McKlin, Jill Dimond, Betsy
DiSalvo, Mike Hewner, Lijun Ni, and Sarita Yardi. 2009. “Georgia Computes!:
Improving the Computing Education Pipeline.” In ACM SIGCSE Bulletin, 41:86–90.
ACM. http://dl.acm.org/citation.cfm?id=1508899.

Carver, Jeffrey C., Lisa Henderson, Lulu He, Julia Hodges, and Donna Reese. 2007.
“Increased Retention of Early Computer Science and Software Engineering Students
Using Pair Programming.” In Software Engineering Education & Training, 2007.

112

CSEET’07. 20th Conference on, 115–22. IEEE.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4271597.

Cliburn, Daniel C. 2003. “Experiences with Pair Programming at a Small College.” Journal of

Computing Sciences in Colleges 19 (1): 20–29.

Cockburn, Alistair, and Laurie Williams. 2000. “The Costs and Benefits of Pair
Programming.” Extreme Programming Examined, 223–47.

Covi, Lisa M., Judith S. Olson, Elena Rocco, William J. Miller, and Paul Allie. 1998. “A Room of
Your Own: What Do We Learn about Support of Teamwork from Assessing Teams in
Dedicated Project Rooms?” In Cooperative Buildings: Integrating Information,

Organization, and Architecture, 53–65. Springer.
http://link.springer.com/chapter/10.1007/3-540-69706-3_7.

Dann, Wanda, and Stephen Cooper. 2009. “Education Alice 3: Concrete to Abstract.”
Communications of the ACM 52 (8): 27–29.

Dewey, John. 2007. Experience and Education. Simon and Schuster.
https://books.google.com/books?hl=en&lr=&id=JhjPK4FKpCcC&oi=fnd&pg=PA14&
dq=dewey+experience+education&ots=D9uHZsGCIf&sig=OuuXNCyJY5jJ-
EsiiGo9oHbDSt8.

Forte, Andrea, and Mark Guzdial. 2005. “Motivation and Nonmajors in Computer Science:
Identifying Discrete Audiences for Introductory Courses.” Education, IEEE

Transactions on 48 (2): 248–53.

Hackbright Academy. 2015. “Hackbright About Me.” Hackbright Academy. Accessed March
13. http://hackbrightacademy.com/about/.

Hartness, Ken T. N. 2011. “Working to Change Perceptions.” J. Comput. Sci. Coll. 26 (5): 259–
67.

Kamenetz, Anya. 2015. “12 Weeks To A 6-Figure Job.” NPR.org. Accessed January 14.
http://www.npr.org/blogs/ed/2014/12/20/370954988/twelve-weeks-to-a-six-
figure-job.

113

Karakus, Murat, Suleyman Uludag, Evrim Guler, Stephen W. Turner, and Ahmet Ugur. 2012.
“Teaching Computing and Programming Fundamentals via App Inventor for
Android.” In Information Technology Based Higher Education and Training (ITHET),

2012 International Conference on, 1–8. IEEE.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6246020.

Kelleher, Caitlin, and Randy Pausch. 2005. “Lowering the Barriers to Programming: A
Taxonomy of Programming Environments and Languages for Novice Programmers.”
ACM Computing Surveys (CSUR) 37 (2): 83–137.

Klawe, M. 2013. “Increasing Female Participation in Computing: The Harvey Mudd College
Story.” Computer 46 (3): 56–58. doi:10.1109/MC.2013.4.

Kolko, Beth, Alexis Hope, Brook Sattler, Kate MacCorkle, and Behzod Sirjani. 2012.
“Hackademia: Building Functional rather than Accredited Engineers.” In Proceedings

of the 12th Participatory Design Conference: Research Papers-Volume 1, 129–38.
ACM. http://dl.acm.org/citation.cfm?id=2347654.

Kuznetsov, Stacey, Laura C. Trutoiu, Casey Kute, Iris Howley, Eric Paulos, and Dan
Siewiorek. 2011. “Breaking Boundaries: Strategies for Mentoring Through Textile
Computing Workshops.” In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, 2957–66. CHI ’11. New York, NY, USA: ACM.
doi:10.1145/1978942.1979380.

Lave, Jean, and Etienne Wenger. 1991. Situated Learning: Legitimate Peripheral

Participation. Cambridge university press.
https://books.google.com/books?hl=en&lr=&id=CAVIOrW3vYAC&oi=fnd&pg=PA11
&dq=lave+wengar+situated+learning&ots=OBmErpXIEl&sig=NP91LuhnB63YdeVU
Z4PJgZ7MTHs.

Lindtner, Silvia, Garnet D. Hertz, and Paul Dourish. 2014. “Emerging Sites of HCI
Innovation: Hackerspaces, Hardware Startups & Incubators.” In Proceedings of the

32nd Annual ACM Conference on Human Factors in Computing Systems, 439–48. ACM.
http://dl.acm.org/citation.cfm?id=2557132.

Marcu, Gabriela, Samuel J. Kaufman, Jaihee Kate Lee, Rebecca W. Black, Paul Dourish, Gillian
R. Hayes, and Debra J. Richardson. 2010. “Design and Evaluation of a Computer
Science and Engineering Course for Middle School Girls.” In Proceedings of the 41st

114

ACM Technical Symposium on Computer Science Education, 234–38. SIGCSE ’10. New
York, NY, USA: ACM. doi:10.1145/1734263.1734344.

Margolis, Jane, and Allan Fisher. 2003. Unlocking the Clubhouse: Women in Computing. MIT
press.
http://books.google.com/books?hl=en&lr=&id=StwGQw45YoEC&oi=fnd&pg=PR7&
dq=margolis+fisher+unlocking&ots=nnH6KXe5tH&sig=gjxlfMoynNhJF6t-
6WDpZe5_xVk.

McDowell, Charlie, Brian Hanks, and Linda Werner. 2003. “Experimenting with Pair
Programming in the Classroom.” In ACM SIGCSE Bulletin, 35:60–64. ACM.
http://dl.acm.org/citation.cfm?id=961531.

McDowell, Charlie, Linda Werner, Heather E. Bullock, and Julian Fernald. 2003. “The Impact
of Pair Programming on Student Performance, Perception and Persistence.” In
Proceedings of the 25th International Conference on Software Engineering, 602–7.
IEEE Computer Society. http://dl.acm.org/citation.cfm?id=776899.

McDowell, Charlie, Linda Werner, Heather Bullock, and Julian Fernald. 2002. “The Effects of
Pair-Programming on Performance in an Introductory Programming Course.” In
ACM SIGCSE Bulletin, 34:38–42. ACM. http://dl.acm.org/citation.cfm?id=563353.

McLeod, S. 2007. “Vygotsky | Simply Psychology.”
http://www.simplypsychology.org/vygotsky.html.

Milam, Jennifer. 2012. “Girls and STEM Education: A Literature Review.”
https://wiki.cc.gatech.edu/designcomp/images/d/de/CCDC_Final_Writeup.pdf.

Miller, Robert C., Haoqi Zhang, Eric Gilbert, and Elizabeth Gerber. 2014. “Pair Research:
Matching People for Collaboration, Learning, and Productivity.” In Proceedings of the

17th ACM Conference on Computer Supported Cooperative Work & Social

Computing, 1043–48. CSCW ’14. New York, NY, USA: ACM.
doi:10.1145/2531602.2531703.

NCWIT. 2015. “NCWIT Promising Practice: Pair Programming (Case Study 1): Retaining
Women through Collaborative Learning | Computing Portal.” Accessed March 10.
http://ensemble-beta.cc.vt.edu/node/6323.

115

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc. http://dl.acm.org/citation.cfm?id=1095592.

Parmaxi, Antigoni, and Panayiotis Zaphiris. 2014. “The Evolvement of Constructionism: An
Overview of the Literature.” In Learning and Collaboration Technologies. Designing

and Developing Novel Learning Experiences, 452–61. Springer.
http://link.springer.com/chapter/10.1007/978-3-319-07482-5_43.

Parmaxi, Antigoni, Panayiotis Zaphiris, Eleni Michailidou, Salomi Papadima-Sophocleous,
and Andri Ioannou. 2013. “Introducing New Perspectives in the Use of Social
Technologies in Learning: Social Constructionism.” In Human-Computer Interaction–

INTERACT 2013, 554–70. Springer. http://link.springer.com/chapter/10.1007/978-
3-642-40480-1_39.

Resnick, M. 1996. “Distributed Constructionism.” In , 280–84. International Society of the
Learning Sciences. http://dl.acm.org/citation.cfm?id=1161135.1161173.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, et al. 2009. “Scratch: Programming for
All.” Communications of the ACM 52 (11): 60–67.

Resnick, Mitchel, and Brian Silverman. 2005. “Some Reflections on Designing Construction
Kits for Kids.” In Proceedings of the 2005 Conference on Interaction Design and

Children, 117–22. IDC ’05. New York, NY, USA: ACM. doi:10.1145/1109540.1109556.

Resnick, M., and E. Rosenbaum. 2013. “Designing for Tinkerability.” Design, Make, Play:

Growing the Next Generation of STEM Innovators, 163–81.

Resnick, M., and Natalie Rusk. 1996. “The Computer Clubhouse: Helping Youth Develop
Fluency with New Media.” In Proceedings of the 1996 International Conference on

Learning Sciences, 285–91. ICLS ’96. Evanston, Illinois: International Society of the
Learning Sciences. http://dl.acm.org/citation.cfm?id=1161135.1161174.

Shaw, Alan. 1995. “Social Constructionism and the Inner City: Designing Environments for
Social Development and Urban Renewal.” Unpublished Ph. D. Dissertation.

Cambridge, MA: MIT Media Laboratory. http://llk.media.mit.edu/papers/shaw-
PHD.rtf.

116

Soper, Taylor. 2014. “Analysis: The Exploding Demand for Computer Science Education,
and Why America Needs to Keep up.” GeekWire.
http://www.geekwire.com/2014/analysis-examining-computer-science-education-
explosion/.

Tannen, Deborah. 1991. You Just Don’t Understand: Women and Men in Conversation. Virago

London.
http://www.sheltonstate.edu/userfiles/File/faculty/a%20wible/scan0001.pdf.

Teasley, Stephanie, Lisa Covi, Mayuram S. Krishnan, and Judith S. Olson. 2000. “How Does
Radical Collocation Help a Team Succeed?” In Proceedings of the 2000 ACM

Conference on Computer Supported Cooperative Work, 339–46. ACM.
http://dl.acm.org/citation.cfm?id=359005.

Twidale, Michael. 2013. Over-the-Shoulder Learning: B Supporting Brief Informal Learning

Embedded in the Work Context. Graduate School of Library and Information Science.
http://people.lis.illinois.edu/~twidale/pubs/otsl1.html.

Twidale, Michael B., X. Christine Wang, and D. Michelle Hinn. 2005. “CSC: Computer
Supported Collaborative Work, Learning, and Play.” In Proceedings of Th 2005

Conference on Computer Support for Collaborative Learning: Learning 2005: The Next

10 Years!, 687–96. CSCL ’05. Taipei, Taiwan: International Society of the Learning
Sciences. http://dl.acm.org/citation.cfm?id=1149293.1149384.

Utting, Ian, Stephen Cooper, Michael Kölling, John Maloney, and Mitchel Resnick. 2010.
“Alice, Greenfoot, and Scratch–a Discussion.” ACM Transactions on Computing

Education (TOCE) 10 (4): 17.

Weaver, Alfred C. Alf, and Jane Chu Prey. 2013. “Fostering Gender Diversity in Computing.”
Computer 46 (3): 0022–0023.

Webb, Heidi C., and Mary Beth Rosson. 2011. “Exploring Careers While Learning Alice 3D: A
Summer Camp for Middle School Girls.” In Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education, 377–82. ACM.
http://dl.acm.org/citation.cfm?id=1953275.

Williams, Laurie A., and Robert R. Kessler. 2000. “All I Really Need to Know about Pair
Programming I Learned in Kindergarten.” Communications of the ACM 43 (5): 108–
14.

117

Williams, Laurie, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. 2000.
“Strengthening the Case for Pair Programming.” IEEE Software 17 (4): 19–25.

Wills, G. B., H. C. Davis, and E. C. Cooke. 2004. “Paired Programming for Non-Computing
Students.” http://eprints.soton.ac.uk/259658/.

Zweben, Stuart, and Betsy Bizot. 2013. “2012 Taulbee Survey Strong Increases in
Undergraduate CS Enrollment and Degree Production; Record Degree Production at
Doctoral Level.” COMPUTING 25 (5).
http://www.cra.org/uploads/documents/resources/crndocs/2012_taulbee_survey.
pdf.

