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" PLASMA KINETIC EQUATIONS
John C. Price

Lawrence Radiation Laboratory
University of California
Berkeley, California

December 20, 1965

ABSTRACT

- Tn-the major part of this work we derive a kinetic equatioh
for a homogeneous field free plasma. This equation effectively jolins
the theory for a stable system (the Lenard-Balescu equation) and

that for an unstable system (the quasilinear equation), for it

contains terms from each equation, plus a term rather similar to

that of quasilinear theory, but depending only on the one particle

distribution function. The derivation follows the formal méthods‘

-of Dupree, except that the collision term is evaluated for finite

time, rather than in the limit t - . The behavior of a large
number of terms which appear to oscillate in time is obtained by
analytic continuvation of various integrals in a manner similar to
that used by Landau. We show that;the kinetic éqpation satisfies
the conservation-lawé, leads to an H +theorem, and correctly reduces
to the Lenard-Balescu equation in fhe asymptotic (1ong time) 1imiﬁ,

We then generalize the equation to include the effect of a uniform

. magnetic fileld.



~of the dielectric function are affected by collisional damping as

~Vi-

f‘:In a'different‘dalculation'we ocbtain a collision term valid
td'order Zﬁ%ﬂ' for small amplitude waves in a uniform plasma. This

result generalizes the ordinary Fokker-Planck equation from the domain

".f.>._0<,w<<wp,ogk<<kd tothedomain\_oga')<<Aa)P,'O\gkzkd, - N
" We show the collisional correction to the behavior of small amplitude

'wavés also appears in the description of fluétuations in a spatially

wniform plasma. This correction applies to the kinetic equation

idescribed above, so that the collective effects arising from zeros:

-well as by Landau damping.
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1. INTRODUCTION

Strlctly speaklng there can be no dlfference between the kinetic

B equatlon for a stable plasma and that for an unstable plasma. A
marginally stable system is not abruptly different from an unstable

| eystem in which certain effects tend'to grow exponentially (if slowly)

initime; nor is it markedly different from a stable system in which

' the equivalent effects damp exponentially (and possibly slowly) in -

_time. The transition of a given system from instability to stability

is a éﬁooth‘one, and this fact must be reflected by an adequate1
Kkinetic equation. |

| The major part of this work is devoted to the derivation of
such an equation, valid for stable or unstable plasmas, for the case

of an infinite homogeneous system. This equation includes as one -

- s?ecial-case the present kinetic equation for a stable plasma, the

- Lenard-Balescu’ 2 ‘equation (see Chapter II-B), and as another special

case an eqpatlon frequently used to describe unstable plasmas, the

. qua51linear equation (see Chapter II- D) In the general case the

equation 1ncludes terms coming from each of the above cases, plus a

term which may grow or damp (explicitly) in time, yet is qualitatively
- different from the term described by quasilineer theory. Thus the

equation represents a true bridge between the equafion for stable

3

and unstable systems. Balescy’ has derived a rather similar'equatien,

but his result contains sufficient errors to make it insuitable to

describe the long time behavior of a general system.

\
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313;'T~Chap£erﬁi1 éontainsxé‘éenéralvdiscussion of"the'general
'.vteéhﬁiques}of piasma kinétiéﬁﬁheory. 'Iﬁ, II-A the usual Fokker-
‘Elanck eqﬁation is derived_from the ﬁoltémann collision integral,
' and the wesknesses of the derivatign,arelpointed out. Inx II-B,
'_  the‘rigéréuéveqpations of the BBGKY hierarchy ére discussed and
.appiied to a neﬁ problem: lthe derivation of ‘a collision term fof
small amplitude waves in a plasma. This (order Z%K ) collision |
‘term effectively extends the validity of the Fokker-Planck equation '
of Ii-A from the domain O L w <K:ab, 0Lk <<_kd ’ to the domain
O << Awp , 0gx?2 k, - where ®, is the plasma _freqﬁency, kd
is the Debye wavenumber, and A 1s the plasma parameter, generally
,vof order lOu- 108 . In II-C the equations of Klimontovich and )
Dupree,.and their solution by Dupree)+ are diécussed. Dupree's powerful
methods provide : the basis for the wérk carried out here, although
Dupree made the usual Bogoliubov hypothesis regarding the behavior of
lcorrelation functioﬁs. This hypothesis is totally unsuitable for

the case of an unstable plasma. Dupree's method is illustrated by

the derivation of the Lenard-Balescu équation. Finally II-D
‘presents a derivation of the quasilineaf equétion, pius a gehefal
vcriticism éf this eguation. |

| In Chapter III the general are of "kinetic, theory" is separated

from the far more general topicvofvthe behavior of arbitrary systems
. for arbitrary time (for example very small times). .For the‘létter
case ﬁirtﬁally anything less than the éblutibn of:the Liouville
equation represents a restriction ai the types of systems which may

"be studied .

-
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3.

}Zf;'In'cohtraéti"kinetic" systems may be described by a small

- number of relatively simple equations; furthermore the resultant
-u:kinetié'equation is largely'indepeﬁdent;of the initial state of
" correlation functions in the system. Thus the general area of this

‘thesis 1s established in Chapter III, as well as the restrictions on

the work.

Chapter IV consists of a calculation of thogzeffecté,.generally

-negligible,'which must be retained in the derivation of the kinetic

equation in order to assure the proper long-timg_behavior of the
equation. In the general case of highly unstable plasmasthese "small"
téfms ére not small, and the approximations of this section limit the
validity of the final result to systems which are not highly uﬁstableQ

s

For the case considered the small térms obtained lead to the damping

of fluctuations in the system identical to that predicted by the

' .equation . of II-B for small amplitude waves.

Chapter V contains the derivation of the general kinetic

.. equation for‘a uniform system, as well as a discussion of the properties

of this equation.l Section A presents the analytic methods to be

" used in calcilation of correlation functions in the absence of'the
" Bogoliubov hypothesis (i.e., t < o ), and the use of these methods

‘for the calculation of the collision ferm of the kinetic equation.

Section B discusses the elementary'properties of the system, including
conservation laws, H-theorem, and the approximations which are used

in deriving a far simpler  form of thé equation. At this point the

equation is not valid for times of the order of the time in which the



b

= _7-_'o'fie perticle distribution furiction changes appreciably--this defect

v-;is'remedied in séctionVC'to_yield the principal resulﬁ 6f'this work., -
This'kiﬁeticfgqpation»is‘then generalized to include the effect of a

'i‘uhiform maggetic'fieid. ‘Section D contains an improved form of the ]
:.quasilinear equation discussed eaflier, plus a criticism of those

aspecﬁs of quaéilinear theory which are in contrast with the resulté.

of the rest of thils chapter. Finally sectioﬁs E, F, and G present  .

a general criticiém and discussion of the‘significance of this work.

In appendix A the equivaience is demonstrated between the

’-eQuations bf Klimontovich and Dupree, and the more commonly used

~equations of BBGKY . Appendix B contains several integrals which

- must be performed to obtain the collision term for small amﬁliﬁude

waves in a plasma. ' .

?
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IT. THE FORMULATIONS OF PLASMA KINETIC THEORY

“In this section we establish the basic subject matter of this

thesis,'and review‘sbme_ofjthe attempts to solve the basic problems

of the kinetic theory of a plasma. The historical viewpoint is not .
. logically necessary, but serves the purpose of introducing the reader

'ﬁo the lines of reasoning to be used in the body of this work. In

addition the demonstration of deficiencies in»previous work partially

on the system of interest, that the Debye length x

“blunts the need for apologies regarding the results of this work.

" There are always questions left unanswered! §
We shall define a plasma as a fully ionized gas, typically - | §
consisting of two species, ions and electrons. In generel the require- %
menf of complete ionization is not neeessary, but the difficulties 3
in treafing the interactions between charged and neutral'particlee ?

make the resulting subject beyond the scope of rigorous kinetic

theory for the present. Typically an additional reqplrement is placed

/2
>1

hﬁnq

be much less than L , where

K
.
vﬂn
.
.

is Boltzmann's constant

is the temperature of the gas, in apprepriaﬁe units

is the macroscepic'number density . of ionized particles.
is the charge of a given charged particle (say electren)

is any racroscopic length assoclated W1th the system.

We shall usually be concerned with an infinite uniform system, so this

latter,requirement is easily satisfied.
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© For purposes»of‘simblifyingvnotation‘we shall consider ‘a

‘;‘coulomb plasma, SO that the force of particle ‘i ‘on particle J is

- from particle i to

‘ a.4. I, . .
given by  Fij = .Ejif:T% , where rij is the directed length
S ~ r.. T
~id

particle j . We shall not consider the effects

 of relativistic particle motion. Formally these approximations are

'equivalent to letting the speed of light become infinite.

In brief, the goal of kinetic theory is to describe the behavior

jiﬁ time and space of a system of interest. Since a system will usually

-contain a very large number of particles, say 1025, a detailed

description of particle motion would be useless, even if we could

‘obtain it. Thus we seek the behavior of an average system, where the

average 1s taken over a large number of systems having those character=-
istics that we consider to be known, or given by experiment.

The sdbject,of main interest is the average one-particle

_ distribution function of the system, f(r,v,t), where nf(r,v,t) dr dv

represents the probable number of particles in volume dz‘dz at {,X,
at time t‘. (n is the average numbef denéity'of the.system, so that
for a hombgeneous system J[fdz = 1). Our main concern is to obtain

an equation (kinetic) describing the evolution in time of this function.
We now survey some past.attempts to obtain such‘an equation, and point

out associated difficulties.

A. The Fokker-Planck Equation

- .

The kinetic equation which we discuss now may be derived in

a number of ways; an outline of one derivation is sufficient because

;}—)3

W

<
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' and Tidman.

or to the original references.

(=

©. 1t 1llustrates the difficulties common to all. The sketch given here

. follows a more complete derivation in the excellent text by Montgomery

5

- For more details the reader is referred to this source
6,7,8

We choose as a starting point the Boltzmann equation for a
siﬁgle species plasma. The Boltzmann equation simply counts the

partiéles flowing into and out of a given region of phase (r,v) space.

collisions
In words, tﬁe change of the distribution function with time
%%f-at'ppint E,XI, may be ascribed to three causes: |
1. A net flux of particies moving (Z) into or out of th volume
‘element d{', in the absenﬁe of particle interactions.
2. A net flux of ﬁarticles which are accelerated by macroscopic g #

F .
- forces (g) into or out of the volume element dv , in the

absence-of particle intefactions;
3. A net flux of particieS‘intb or out of the volume element
:f'dE dv , which is caused by interparticle collisions. For thé
presént we consider the case in_whiéh.the distribufion function'
'f is constant over a‘region‘ih which a given pair of particiés
interact. In thls case only the flux of particles_in vélocitj

space (i.e. through volime dv) need be considered.

af

Of course the equation is not useful until the form of ==| . .. .
A - dt| collisions

© 'is specified. The Boltzmann collision term considers the effect of



'Here the term involving f£'f!

. acquires velocity v

term involving ff

8-

B intéractith'Betweén pairs of particles

= .nfdlrlfdﬂ I0 ‘IX'"'Xl‘ (r f 1 f’fl)f (11-2)

’dt"coilisions

1 gives the number of particles scattering

into , dv per unit time. The notation signifies the sum of all two-

"particle"collisions between a particlé with velocity +v''and a particle

with velocity +v!' such that one acquires velocity v ; the other

l b
do . . :
in is the cross sectlgn for such a two

body collision, while the term Iv - le 1s needed to give the flux

of particles with velocity v' incident on particlés with velocity v'

(by conservation of energy |v - vll = |v'- v’ll), Similarly the

1 gives the'number of particles scattering out of-

‘dv , per unit time, as a result of two-body collisions.

~

It is important to note a fundamental assumption made (eiplicitly

- or implicitly) in the derivation of the Boltzmann equation. Generally

. called the Stosszahlansatz or moiecular chaos assumption, it states

that < there is no relation between the positions and relative velocities

of a pair of particles before they collide. This assumption permits

'simple” : probability arguments to be used for -estimating the number

“of particles which scatter through a given angle.

In principle the calculation of the collision term is now
reduced to the evaluation of the integral over scattering angle in

equation II-2. In fact we cannot perform the integral because we

- cannot calculate the orbits of-particles; which we need'to obtain the

scattering cross section. ' The cross section for two-body scattering
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é‘;_ Do

o

‘is not.relevant,becausé_the range of the coulomb force is so long that

" many particles interact simultaneously.

. .In order to proceed we assume that two-body interactions

"rocur'independently; In effect this extends the molecular chaos

assumptionlinside the region of two body interactions. The net force

on a given particle is the sum of all two body forces, but it is

- possible that the forces are note independent of each other.

In order to simplify the mathematics, we consider the effect

of small angle (large distance between particles) scattering as

dominant. This permits a Taylor expansion of f'(v') f'l(v’l) about

£ (%) f(vl) in powers of Av = v -

] We keep terms through éecond '

order in Aw-, and find:

ar(v, )

ar § Jf Jf AV A
= | dv, [dQ [v -V, IJ-—f(v)Av o et § AT ==0P(V))
4 leo111s1ions an ' le_v G dyial
| | 5 (11-31)
1 a f(vl) - ' df(vi) arfv) N ~d°r(v) R
"5y e 2(v) - Ay mEs S p oy — 1))
- av. 1 dv
1 _ g o
The cross séction is simply.the_Rﬁtherford cross section for the
scattering»of charged particles: %% = g ! . The
. ]v-v l sin (2)
integration over solid angle leads to two ~ o~ integrals:
do ' do .
_]ng o Ov and dea Iq Ov Av . (TI-4)

When Av is expressed in a convenient reference frame these integrals

may be performed. In both cases the integrals lead to terms which
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tdivergeias ﬂne for 6 - O (small scattering angle) We keep only

| _these divergent terms, and cut off the 1ntegrat10n at some angle 6 . .

min

’_'Thls cutoff is chosen on. the basis of consideratlons which are not
mentloned in thls derlvatlon, The concept of Debye shleldlngh suggests‘

.'that we use for V] nin the value corresponding to an impact parameter

of a Debye length, N

q After some manipulation, the collision term

may be written in the form

ar | e 21q n(51n[em1n]) - |v-v l (v v, )(v )
4% |co111sions v o o ~L- : |V"Vll5
af . af /.y :
[a?; £(r) - Iv, f(g)} S (11-5)

v‘It is not difficult to criticize this derivatioh'of‘the Fokker-.

Planck collision term. In essence this is a model calculation,‘with
. assumptions based -on physical intuition rather than internal mathematical
"constraints, In view of better calculations (to be discussed) we

“may list the faults in this derivation.

1. The Stosszahlansatz; or-molecular chaos assumption is not
valid, in the sense that the range of the coulomb interaction
(as expressed by the divergent integrals over ®) is infinite.
+ Furthermore inside this (infinite) range the positions of
particles are correlated--the ad hoc cutoff of the integral isv'
' ;replaced by a natural cutoff when this correlation is included

~in 'the theory.
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of large angle scattering leads‘to formidable analytic results.

-11=-

- The negléct of higher order terms in Taylor1expansion:in the
“'Taylor expansion in_AN is nof jusﬁified when the péir of
‘particles considéred has a near collision. Large angle scaftering,

‘which causes difficulties in more exact theofies, is simply

ignored here.

'We cannot estimate the domain of wvalidity of the resulfing

eqpation; How fast may the timeidependeﬁce be, and how rapid
may spatial variation be? How do e distinguish‘ E 5 the
macroscopic force, for the microscopic forces.which yield the.
collision term?

There is no way to obtain better accuracy. The equation is

- regarded as being accurate to order ?%K but it is not

clear how this could be improved. (The quantity A is definéd'

&s the ratio of the Debye length Ay to the distance of

2 .
closest approach of two typical particles, Ty =~%%f - In

 most physical applications: InA  has a value from 7 to.15).

Other assumptions are possible (another derivation), but there
is no way of knowing which set of assumptions is best.

It must be remarked that for all its faults the Fokker-Planck '

~equation is quite satisfactory for many calculations. More sophisticated

attempts at a kinetic equation have a common difficulty: the treatment

9,10,11

Frequently no attempt is made to handle large angle scattering, so
that the kinetic equation contains.an integral which tends to diverge
for short range interactions. The integral is then cutoff at an

appropriate distaﬁce corresponding to Ty (defined above)} In this
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| work we shall follow this procedure, despite the fact that it limits

‘”4‘the”aécuracy of our result to that7of’the Fokker-Planck eqﬁation:

ﬁ(z%K)'I The justification lies in the fact that the short range

- éffects are purely ‘quantitative, for they simply close off the

divérgent integral. The short range interaction between oppositely
charged particles may be expected to cause difficulties for some time,-

as the treatment of bound states is very difficut. Again the effect

on the kinetic equation is (presumably) strictly qpantifative.

P

B. The BBGKY Kinetic Theory

1. The Eguations of the Hierarchy

We consider now a rigorous set of equations'for the behavior

of a plasma. The BBGKY (Bogoliubov, Born, Green, Kirkwood and

12,13, 14,15, 16 theory thus is a great step forward from the

Yvon

heuristic treatments that yleld the standard Fokker-Planck equation.

The difficulty now lies not in belleving the eqﬁations, but in
solving them.

, The BﬁGKY kinetic'thebry consists of a set of (N> o)
coupled equations for tﬁe probability distributions Qfs(Xi?X2°--Xs,t)

of §=1,2,3... particles, where X, = { } , etc. These equations

T

are derived in rigorous fashion frdm Liouville's theorem for the

'probabiiity.distribution of XN 'particles in 6N_ dimensional phase

space. = Since many derivations.are available in the literature we

simpiy‘quote the standard. result. The equation for 2(5 is (We consider

‘only one. type of particle)



T

‘fdr

13-

— vt Vo -y =V e . = ,
- dt ] 71 | i%s o 143=1 m i7TL3 d~1 m. = « _
_ (11-6).
. - a7 .
- R
. f CDfsvrj, ’viﬁi, s+l v, =0 -
| . N , q2
Hbrg Vi = dri B forvavplasma ¢EJ-= T;;:—EET' , and n = the

averagé number density of particles in the system. Inclusion of more

* than oné species leads to no difficulties. For purposes of solving

these equations it is useful to introduce a clﬁster expansion of the

functions ?T; . We write

o o
V&) =)
o _ (¥ .
N | - -
X = 4
3% Ky X5 = 2(%)) 1) 1) + £(X)) 6By X5) ¢ TRp)e(KpoXy)
£(X5) 8%y, %) + n(Xys Xpr %5)
IR S 5 SEEIE - - @
We may now convert the equations for the EE§> into equatiens

%% 5 %% 3 %% ». ete. -When this is done the first two equations

of the BBCGKY hierarchy lead to the following equations for. f and g.
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: RERETE . | M4 a1
TNt Vo) e(fXt) = 2 Yy 55;2 ’ {dxl' T, |

2(x) £05) + 8(Xy, %,)]

+..

3 %[fd%f({?) V1¢13f a'%; + (1H2) g(X,X,) + %fd.)ﬁ% [vl;db.;a%_l.i_}"
ot (.1<->2)] h(}flfjfg’gl)”#‘a?[%-'[% v1¢13 g(}fz"ﬁ) . (1é2)} ,‘.. , (-11‘9) | |

Of .course the f equation-contains a term in g, the g
1eration_is coupled to h; ete. We must terminate the infinite set .

»of:eqpatioﬁs in some way. We do this by noting a property of the

cluster expansion. We-expeqt g(%l,§é) << f(§l) f(§2) unless

. . 114 " ‘ .
[31 Eel is "small." ILikewise we expect h(§l,§2,}53) < g(X,%,) f(}%)

unless | and Irl- r3|3 are "small," Therefore as a first

- 5l ,
| . approximation we neglect g‘vcompared to. f in equatién ’II-8 . In

fhis approximation equation iI-8 bécomes the familiar Vlasov equation,

vvand is not coupled to higher-equations;' The Vliasov equation has been. ' -
~worked over a good deal, and wé.Will noﬁ go into its subtleties here.
| As a seconﬁ approximatipn we should-iike to keep g in ¢

.equation I-8, but nelgect the higher order terms (g comparéd to f £



- expression may be used to calculate g for the case of an unstable |

‘ plasma; but he makes no attempt to do so.

=15~

”xdﬁd‘ h:jc6mpared to fg);in eqpationii1-9, so that the set of equations

again terminates. We then solve II-9, to find g in terms. of f,

" and insert the result in equation IT-8, to obtain a kinetic equation
"::valid for a sufficient time for the system to reach equilibrium. A _

rigorous treatment has proved possible for-only two cases:

1. If £ 1is independent of space, the time dependence of £ comes
only from the term involving .g. Since g is.small, f " wvaries
slowly in time., Therefore we solve the g vequationvwhile holding

- £ fixed. This calculation has been done for the limit of
B infinite time g(t=m ), and leads to thevLenard Balescu equation, .

. which will be discussed in a later section.

+fl, g=

._ 2. Byvlineariging about equilibrium f = feq geq + 8y »
with gy << geq and fl << feq Guernsey has been able to
solve the 8 equation for fl’ while permitting fl to have

spacevahd time dependence. Guernsey's solution runs to five
| lines in the published reportl7'(involving many defined functioms,
at thaﬁ), and he makes‘only general statements about the
.résulting equation for fl .
Other results have been oﬁtained. ‘Rostokele has shown that

:nﬁhé SOiution of the g -equation may be reduced to terms inﬁolving the

solution of the Vlasov equation mentioned previously. This solution is

formal, in the sense that some 1little labor 1s required Just to

A recover the Lenard Balescu equation. Rostoker notes that his



v of certain terms which are needed toﬂkeep'certain integrals well

~16-
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- Attempts . ‘have been made to solve II-9 for the case of

'e;?eh“uﬂstabie;plasma. Theeresults are unsatisfactéry-due to the Qmissicn

-

5i5defined. This will be discussed later in the section on quasilinear

iiei;theory.

| In:general the;eéuations of the hlerarchy must bé»characterized
| -as difficult. Case 1 above was propoeed by Bogoliubev in 1946, and
.301ved b&‘Lehdfd_in 1960. Case 2 was reported by Guernsey in. 1962,
" but is too complicated to be of general interest; Furthermore one
- seldom sees the eqpatioﬁ for. h, much less an attempt to solve it .2
The Lenard Balescu eqpation breaks down for an unstable plasma--no
plan for correcting this defect has been exploited Thus progress
.1n the hierarchy seems tediously slow, although the equations must
be admitted to be exact. We shall leave this scheme after illustrating .

one of 1its virtues,

.-.:,2“‘ Extension of the _Fokkér-’-Plaan BEquation

| The eqpatioh for £ and g mey.easilyvbe approximated to lead.
‘“.to a genefalizétion of the Fokker-Planck equation (equation IT-5)
'_discuesed in the breceding section. Before carrying out the calcula-
'“ébtion We indicate the knownvregioniof valldity of eqpatiocs of the
' general form of'equation II5.
a) Prieman®® has shown that f may be spatially dependent,

. witha spatial dependence of the order of the mean free path of a

o particle.' The time dependence,is on the collis1onal time'scale,
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.'1lt)?.Berk has derived an eqpation for the behavior of the electron |

"fjfdistribution function. He treats-ions as stationary, and neglects '
.:“electron collisions.' What is. left is valid for a wide range of

r_ffrequency and wavelength dependence, except that the result diverges '

at v =0 wunless f(v) = £(|v]). Because of the approximations the

result is not comparable with other Fokker-Planck equations.

23

c) 8ilin haS'derived an equation for high frequency processes

”in the absence of spatial dependence. Since no external fields are
':considered, it is hard to see what could occur at a rate faster than

the ordinary collision rate. We conclude that the resulting equation

is mathematically correct, but is not applicable to any physical
proqess (except at very'lov frequency).

Clearly an‘importent problem has not been considered. Very

' freqpently one 1ls interested in the behavior of small amplitude waves

"in a nearly (spatially) uniform system. we'may ask what effect the

collisions might have on these waves. To be general we must permit

- the wavelength of the wave to vary from infinity to the Debye length.

(Waves with wavelength shorter than a Debye length are landau-~damped

very rapidly). Likewise +the frequency of the wave may be high (much

higher than the plasma frequency wp-— /hanq ), or low (essentially
zero). We aks that the collision term be reasonably accurate (order

E%K for our calculation) and reasbnably simple, i.e., of the

" general form of equation II-5.

A collision term valid in the broad domain indicated will

provide an analytic result in a domain where many calculations are
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- for g Dby a length cL much smaller than Kd but longer than r

o | - .18

":nbased on model" collision terms.‘ The collision term we construct
'.i"{here may be used for further analytic work or to check and 1mprove
- “the - validity.of simplified models of collisions. Since we seek-a

‘bl%esulﬁ valid only toorder Z%K , 1t is clear that we have considerable

leeway in maeking approximations. We shall therefore make further

 approximations on the g equation, which we rewrite here, with the

"higher order terms omitted.

vy ey Vg -2 {gi Idi%vl;él} g(%s) + (192)]’._

%[fdx f(XB) v;zfl3 d o (1«42)} g(X,X, ) = 1;512 [dv di ]

~1 ~2

£(x) 2(x) . o (11-10)

Wé,shall'simplify the equation bygestimating the’relatine

magnitude of the varlous terms. The term 4 may be large or

at

small--in general we must kéep it. We estimate velocities (and

velocity gradients) as comparsble to & thermal velocity, V.. .

th
)

Because<d{idv = 1, we take lf,= . within a volume -th . A more

Wmi

- exact analysis, which we are trying to avoid here, shows that two
» particle interactions are cutoff (become unimportant) for an inter-

- particle spacing greater than a Debye length, while the neglect of

the higher order term in g in equation II-9 means that short range

interactions are not treated satisfactorily. We estimate distances

O .

~
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”'},Q«It is true that g also varies on a scale given by the scale length of
R _ f . Thus we must have - L - much less than the scale length of f'. We
. how estimate the magnitude of the terms in.equation II~lO
“ . o . . :
: a Ve Vi n (1 3 3 42 ]
(T 5T % ig |7 V¥ e+ (or)]
v L
“th _
3 3 _’ - _
vV,, L 2 2 : .
mlyl 2y mfly v, | v,
th th th th th 'th
- (rT-11)
.We wish to find g in terﬁs ef‘the right-hand side. We, collect and
cancel factors in the left-hand side, and use the fact that
: 2
m P A 2
d.
to find
A 4 Ven Ven s | Ven 1 2 Vin 1 2 ] '
| - U+ ~ Jg "35-;( ;;; ) Lendil -2 L i (‘;;; ) +(Le2) g
2 ' | h ,
1 gg 1 1 } ol _ (
= = : : o II-12)
m v vV 6 v v
L [ th th | V%h , .
V'As 8 good epproximation we drop the second and third terms because
. fA;‘ L <Ny - Therefore the simplified equation we consider for g is
, L g = & e -] - |
< (T *nM %%ty &m-lf&) fE) . )



IYfZ‘Ae»e-reéult:ofﬁthese eppreximetions we must éﬁpply-both short and long
'V;ﬁ'range cutoffs for the. interactlon between the- particles. The resulting
.i collision term will be valid to order l/ﬂnA .

We now linearize f and g about a uniform étationary state.
f(£ ~l}t) ( ) + f (rl) l’t)

5(51’52’.\,1’ ’t) = go(r ,\Qf,vl:,\e:) + gl(rl’ﬂe} :A,a,t)
ﬁvWe shall.“treat the subsceript 1 quantities as small, and keep only

- first arder terms. The assumption that £ and &g have no time

0
"dependence.simply requires that their actual time dependence be much

. slower than that of fl and g - In particular when £y -varies | |

.ti.quite‘slowly fo must be the eéuilibrium (Maxwelliany distribuﬁion.
- We wish to consider equations TI-8 and II-13. In keeping with ﬁhe'

" notation of the Vlasov equation we set
m gll m d%é v&¢12 f'1%2"’0) N (11-15)

‘Throughoﬁt this work itdwill beiconvenient to use a Fourier
“transform on the spatial_dependenee of the equation we work with.,

-We'define the Fourier transform of a given function & .’

(11-16)

O TpsLstt) = fax; e <D(r1’~2’r3 *)

(II-lh)'
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whichhas ‘the inverse transformation

<I>(r

ST

1’~2’r3'"-' 2x) Q(Kl’,\e’r ee) (IIfl7)

Ve frequently wish to transform in more than one variabl‘e. ‘For,

example

' : ' -1 -i e r -iK, s T
@(&,&’%,guoo;) = d_};l d;e d£3 K:L : ;52 2 e %

¥y Xty ). . - (11-28)
@(r. r "fdxl 2 dl% iKl .Eeei%.r
l"\e’ 3) - i o

(ex) (2x) (eﬂP

@(Klye,l% ree) D _(1.1;19)-

- 0f course the functional dependence of - ¢ on _r, and on X, will be

different, in general. We transform equation  II-8 to find

d O
<c1t + ﬂf,’l’,l) £ (k: Vot t) + E (k%) - = -—q'—fdv
p— —_— gl (k K)K, l,,\e’t) . . . (II..QO)

21r2 K2

We tra.hsform eqﬁation II-13 to produce the value of g 'required by

“equation II-20.



E ‘_"~(—-—+ i(,lg-;g)-‘x +1Key,) 81( KLY 1’ ) = - =

ot g, (t) = g, (0) e

’»Hriq‘2 {d __  a }

l_-~f~Q dv da “

. [ZKQ 0( ) (~ Nl,t)+-(-1-{——;—;2— "\n?‘o(xl)vf-l(}g,ye,t)} . (11-21,>_ - .

The soiution of equation II-21 for the.time dependence of.

) “gl is elementary if we use a Laplaceﬂtransform. We find that g,

‘depends on its initial values, among other things. 1In fact we do not

wish to treat these initial values, which generally die away rapidly

" (see section ITTIA. Therefore we consider £ (and rence gl) to have

iwt

~time dependence e~ » with o analytically continued from the

>_ upper half w plane.,  The solution for gl is then arithmetic (ﬁe

ﬂbt) )

4 a0
2 dv. ~ av

iqg- ~, N ~
gl(k l"\eﬂa)) = - Lhrmq‘ l )\’2 ° [— fo(y’z)
. ~lo+ 1(5"5)’31*1%’32 K2
X £ (k, l,a)) + (K-k)2 fO(XJ.) fl(g,ge,w) . (11-22)
' We insert this quantity into eq_ué,’cion II-20 to find
. v g‘ : .v—g = 2nq f ]
(odieey) £ + 2 B -
~l Itm
R Y T ' [K K-k .
) ol = £(v,) £ (kv ,0) + f(v) ‘
[- o+ g 1 g (g )| L O TR e O

| . X E fl(}é’-,‘fe’“’)J . (II‘“23)V
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v"remembering that w 1s analytically continued from the upper half

o

TIEEY TR R T TR K-

 o5.

1

<w+k vl+K (v -vl)

We apply the PlemelJ formnla to the qpantity

'plane'

1

))'4 n.S SRR L v,)) -

(1z-2k)

"Herev‘Pyﬁ@ndicates the principal value is to be taken when the
Fiﬁtegral is performed and 8 is the Dirac delta function. The

© 1limits of the k integration are

.0
: dK
x| = x;
. ¥
where kd %E and ko = gﬁ = —E%gr.
d 0 q

S The princlpal part integral is not divergent and may be
neglected (it is odd for large X). The integration over the delta
function ié not difficult and is discussed in appendix B. In order
to symmetrize the eollision term in X and Y, we shift the origin
of the integral over ‘§(§-§) by the vector % the effect 1s
qnantitatively negligible. The final result is the equation for

perturbations on a uniform piasma, with the collision term valid

to order 1/fnA .



~2li-

o (imer 1Ew Y £ (v ) + & Lo _ 2mq” 4 f .
etk )8 (5w ,0) o By (o) =R VA

- germin-n) - (&7 - 3 L) SHole)

-SR-S ] | >
+ Q(w-k _32”31'32) dxl"" 91’2) fo(l’.l) £, (e vp0) | - (11-25) ,

.pwhere- Q is givén by
: AN

B _ v'2 }N - v'x' . lw-}s.v'
‘Qw = kev,sv') = 4nA i for. k>
8;\( LT R ) v'3 _ 'd'J"."" lV'l
L ,kOIV'I 12 I -v'y? inw5§ev|
= 4n ~ ““3 —— |for ky> 'k,
: jeo-ts- v V' R A N
|m-k~v|
: = 0 for i k (T1-26)
o ' 0
e lv |
%§j' - We demonstrate that the collision term satisfies the +-.
‘conServation laws, If we integrate equation TI-25 over Vys
the contribution from the collision term is
a , B ' B (7).
f i g Aene) = - 1kx.e) - o (men
~L _ lv |=oo o p

ghre no particles have infinite veiocity. Thus, particle number is

- conserved.

‘We multiply II-25 by m ,s &nd integrate over v, to

“deomonstrate the conservation of momentum. The collision term

contributes

=



T M A DT e e s -

~

. d " 2___%1 I3 ' ) . -~ L]
L f avy mXI dv, e dee {%m'-%%l’x g ) (dv dXE

e

'd

' a - dy . "
xe (v )t (le,w) + Q(w ‘Ye’xl'l’e) o E«Y_e—) £o(¥) fl(,lg,ye,w)}

- _ﬂrﬁ_[dv ay, [Q({b-k A Ae) . (:‘L’_ d_21;_) fl(,lf.’xl"”) fo(X2>
~p

ay,
' 4 Q@kev 57 -v.) - (s - =2) £ (v.) £ (&, v,0)
AR IR~ 20 IV~ dv. dye 0 L’ "1 ~p?

L . -
el N .
- = f ] f 72 {ﬁ(“‘k N ) (d(\ir - a%j fol%) fl(%"-xl’“’)]

DA Qow-k, N ) (a%' . ) £5(y,) £ (5 ,w)J ety
) ~L .
-0 . ‘ ~ E _ (11-28)

‘Therefore the collision term conserves momentum.

| Finally we multiply by % v, 2 and integrate over v

to demonstrate that the collision term conserves energy.

: oL . : ' ; e , .
o ETfng . [ . '. ‘ ‘ a - a
) _[dzl[dl’a o Q(¢“5‘X1:X1'XQ) ( e a-fe-) fo( ) £, (%, ,w)

| a
+ vy Qlo~k.vosv -v,) ((1xl ) £,(y;) fl(k,,\e,w)l
2nn ' | 4 -
= - fd"l [ W (up) - Yekng) - G- @) £ (5 7,0)

: "._f‘o(l’e)_‘f o . o | , (11-29)
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'The.rgsu;t:follows fromﬁthg_fact th&t '(Xi“~2é)=f;35”7Ef2if?31"29) =0,

if__Wé hﬁﬁe'QVOidéd the.COnfuéion of 'subscripts by considering only a -

~single species., We can genéralize equation II-25 immediately to

more than one species, by using greek letter subscripts to designate

the type'of.particle;

o q
4 1 B
(“'1“”’13‘5‘361) fp. Q‘/,Y,l:“’) + =

o

0 2
L - _‘{_ Z 2an 2

dx1 mu v v 9v

cld - & d(\lr 3 1(%‘,&,&)%0(2)

oy S, M . '
1 1 4 0 1 :
= o = =) (v, )F (K, Y, :w)]
dXi _ mv dXéj) M o~l Y ~2

(11-30)

We méy-compare equations II-5, II-26, and II-30, and make

a few general statements about the significance of the frequency and

,wavenumber'dependence of the collision term of equation II-30. The

vessential difference between the collision term of equation IT-30

" and that of equation II-5 (beside the fact that the collision term

1

_of equation II-30 is linearized f -~ £+ £, and it allows for more

than one species of particle) liles in the logarithm which appears in

Faaa

Q . The logarithm of equation II-30 has frequency and wavenumber

 ‘dependence. In the limit o - O,!k -+ 0, the logarithm reduces to

Inh , in agreement with equation II-5. In the general case the

:’lbgarithm is smaller than #nA Dbecause of the frequency and wavenumber

dependence. The actual dependence is Quite‘complicated, as it involves

relative velocity of the particles

Vo= V
3 RV

ol and their velocity

vt

R

L3

73

&)



(over ‘an ensemBle)'thé eqpaﬁion of motion for a particular system.

27

thbmpbnent,along-the phase Velocity;of’the wave Iw-g.x‘ . We establish

8 rough criterion for the significance of thevlogarithmic dependence

by ‘requiring that most particles (|v|< th) “be within the region

‘where the logarithm is decreased from - IoA . (We consider X = O).

‘or SR The Fokker-Planck equation (equation II-5)

We ﬁind wkad th’

.is modified significantly,for_freQuencies of the order of the plasma

frequency (and above).' More detailed statements must be based on

further analytic work.

C.__The Klimontovich Dupree Equations

The set of éqﬁations we consider now are farmed_by averaging
. oL, 25,4

‘Of'course the physical content of the equations is the same as that

' ? of the BBGKY set of equations. (See appendix A) An advantagé of

the Klimontovich Duprée set is that we éan,work with them more

easilyf'-Dupree&has indicated-a formal method for solving the Whole

ﬂset, but we shall see that there are defects in his solution.

We begin by writiné'the distribuﬁion functiop in r,p space

for a particular system. Thé distribuﬁiqn function 1is normalized to

_ volume V- . The superscript p indicates momentum~-we shall

drop it when we change to velocity as an independent variable.

N

F(r,pt) = ni— Z: SQ_Eu-s(t))a(g - Eus.(t)) . (11-31)
- . - . B s= ‘



- Héfé*igus(t), pu;(t)i,defines the position and momentum of
... particle 5 = 1,2,3,~--Nu .of species ., and 'nuv=‘ﬁ$ . We shall

,  be concerned with a two species plasma composed of ions (i) end
“electrons (e) . We assume overall charge neutrality, so that

' Né = 1\Ti’= N. The Hamiltonian of the system is

S o
- X : N Q ‘ _ :
sy Fhe iy Xowe o
p=e,i  s=1 VEmu 2 w,v #,s=1 lr - l ' (I1-32)

Ed o4 s ' ~uﬂ ~VS »“ . .

. u‘z#vs . Lt [ N

. We téke;the time derivative of II-31 to find

. (31-33)
ay ‘ P : :
~ES o {r' 2 H] = =ES . (TT-3h)
dt ~HES g mu . . ;
dp;. . . N q, 9,
Pus = a4 ‘ ' -
o [pd] - -T Y & Rl @)
at - T v m=l ~ |£ <" Evml ,
; ustvm M O
 Bubstituting these results in II-33 we have
. |
ar P P aF ' ' Q, arF
Ty Es e oLy yoa b T
L ar & T YR
at s mp. ~ ~ l - | ~HS




The final term may be simplified if we introduce the electric field.

E=-L Y &= S TR “Tm,u, fopt g === EEhphe) o
~ v £ T~ -lr-r £| . v iAo ‘ T~ lr-r'l

(o] Nv

(1-37)
. We now use the property of the delta function f£(x) 5(x-a) = £(a) d(x-a)
to rewrite the equation of motion (corresponding to the conservation

of particles) in the familiar form

P . .
dr P P .

H s _N..... . E:FH +q _d.. ({E T b = 0 . . (II.,38)
dt mp. dr H dE ~ R

- The curly brackets {} indicate that the self force term is to be
omitted. | |
'Fihally-it is customéry to work 'in the variables 1,y rather 
; than z,g . Hence we change ﬁariables so tﬁat .p = mv Vo Ther

~

~-distribution function is now (we drop the superscript p).

' N » . .
Fnnt) = ;1; 2, 0 - 5, () 8 - g,0(8) - (11-39)

The equation of motidn becomes

{
ar | a4 [ S
—t 4+ v Y YF + g e e { EF } = 0 . (II-’-FO)

The electric field is given by -

4
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F(r'l,v.',t) L (T-W)
lp-xr| VT o

~ o~

  $ﬁpatiohs ’IIFHOTdnd II-hl . appear simple, in the sense that

. equation II-4O is an.edpation in r,v,t, vhile II-41 is an

'Hquation in 'E?t . Of course the complete solution would be the

complete motion of our 2N particles, for‘thé complexity is hidden

in the definition.of F . Since this éomplete solution cannot be

- found,” we seek the behavior of an average system whose properties

correspond to the small amount of information we'might,dbtain about

‘a particular sysﬁem.

We let
Fu(g,x,t) = fg('x\-)y;t) + sfu(z,z,t) | | (1T-42)
COE@mY) = Elpt) +eE@t) (11-1)

Whefe fp is the average one particle distribution function of the

'  systeub-and EO‘ the average electric field. Of course -8 now

repreéents.a difference, not a Dirac¢ delta function. If we denote

the averaging process by () , we have

1
*—b

<VFH) (TT-4b)

o~

ReONEE (11-25)

&
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‘which implies that (8fu).=.0‘ and (BE)'= 0 _bu£-does.ndt imply
' that an expression like (6f 8E) is 0. We now substitute equations

 II-42 and II-43 into equations II-LO and_II-hl, and average. This

yields the equations

df . q | a, - |
—oavwe o2 L0, B L (amsr By -0 (IT-46)
at ~ " mp d’Y ~ T L dx ~Tpfl ‘ o

£ (z7,v't) . (TI-4T)

1

AR

. O - ‘ ‘ . | 4 1
.E = - %: nv qv’[A£ dx v

Tt is often convenlent to use the fact that V.V T%T = = hﬂvb(g)

. to rewrite equation II-47 in the form of Poisson's equation.

vV .E = z hnnqufdlr fv(,{)l,”t) . (1T1-48)
' v

".The'éqpations do not form a. closed set, since equation II-h6 depends

on the_quanﬁity (8f BE) . To proéeed we must find an equation for

' this quantity. However this:equation will depend on (8f8f§E) , ete.

-In general we end up with a coupled set of equations similar to the

BBGKY hierarchy. (The relation between the two sets of equations

- 1s described in appendix A. It is shown that the equations are

equivalent). We indicate now the procedure for‘forming these
equations. , |
| We subtract eqpatiéns II-46 and II—hV. from equations IT-L4O
and II-41 to produce the equations for the fluctuations Sfu and

5 E .
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~ oo

. SR - R
4 vV) BF 4 & 4, g0 5f + E& —~ .5 Bf
R . (TR ‘
— ) ._.E _g'_ . - . : - . . -
T om Ty d(ﬁsgafu}) - BEBL o (TI-49)
el . o . : ) ) )
8 = ~ /., na [dr'dy'V - 1 or, (z%,v',t) . (11-50)

aThe.eqpaﬁion for a quantity (Sfeﬁfenooﬁfi) becomes unmanagesbly .
;1ong*unlesé»we shorten notation. The procedure we use is véryl

‘similar to that of Dupree. We.abbreviaﬁe coordinate notation, .’

ESE) ~.1, and conslder Sfe, Bfi as & column vector by writing

- 1
‘ 8fe(£lizi;t) ‘
Sf(i)_ ={ ' . ' (11-51)

We défine a matrix operator T, which uses equation II}SO in

. expressing ﬁhe electric field

q_ ﬂi:.
e d 0]
VoV, FoeS e B
. 1
— ng d4df . "
Rele WL -z
me le U . ~
T(1) =
/ n,q, 4df,
1% i
- m— drtdv® V
\ m, dvi ~ T
. 1l
. r' -r! ]

| (11.52)
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‘The left-hand side of”equation{II-h9 may now be written (for both species,

LY)

[%E'.“" T(l)] 3r(1) . B , Co ' ' (11.53)
The integral term in T8f ,'involving-[ég"ﬁy"Vi' - 8f 1is taken
: : v ' T.".r - ! :
‘ / ‘ . ~] ~
to mean -erg' dy' v L ' 8f(x', v', t) . The remaining terms of
r. -r'
~l ~

equation IT-49 may be shortened by defining an operator £, which is a

. function of BE .

q [

e 4 .. 8E(1) 0

m - dv ~

e ~1 . _ , .
o) = ‘ | ' S . (TI-5W)

_ qQ " '
0 24 sr(1)
mi dXi ~

'EquationlII-h9‘now has the simple form

(40 o21) = (o) e - () @) . (1I-55)

We may now multiply equation II-55 by 8f(2)°"8f(n), and interchange

arguments to produce equations for all &f(1) &£(2)--.. g? &f@) -.-88(n).
/s

. When ﬁe‘add these we. have



. "

{f—t+ i 1(1')] :Sf(l),..SIf('EV)-~~6f(i)ooe8f(n)

i1

T ((o(0)B2(1))) B2(1)-+-BE(1-1)82(141)+ < BE(n):
i=1 . ’ ; o ’ e

B n ) . . ) . .
- ). 8f(1)---(g(1) BE(1))-.-BE(n) . : - (11-56)
' {21 : , S -
‘ ﬂ ,;fThe'éﬁerage of thils equation represents the equation for the
'_'genéral term (Bf£(1):-+8f(n)})

n

[aﬁ‘% g T(i)] (8£(1)+«+82(n))

i=1

+

il
st

(ﬁ@(i)&f(i)}))Q&f(l)?-isf(iél)fﬁf(i+1)~&r5f(n))»'af(n}}

i=1

1l

}rf: (&r(1)---{m(1) Bf'(i)}....Bf(n)): . |  (II-57)

. The terms involving - BE may be found by appropriate use of equation

II-50
‘ (8f(1)-»-{8f(1) 8§(i)}-.~-5f(n)> - -.Z vnqufd;;' d;vr"vi
v, . .
| X (8f(i)-~-8f(1) va('x‘:',z','t)n'-Bf(n)) . : | (3:1-58)"

' Note that we do not have to use curly brackets on the right hand

side. The self force vanishes when the angular part of the r°
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" }integration'is performed; We now describe Dupree's method for solving

- these equations. i" S

.. We may in principle solve the eration

% +om)] va) = o - '/ (11-59)

to find W(El,Xi,t) in terms .of 'w(gl,x_, t = 0). (A general

analytic solution is out of the question. However the assumptions

'jof spatial uniformity, etc., are not ﬁecessary until we wish to

obtain this analytic solution). We define an operator P. by the

relation

¥(r,vt) = Pl,yvt) vyt =0) (11-60)

i
o
~
[
jar

with the boundary condition P(r,v,t =

It follows that

(11-61)

1 .
o .

. |
(H*?)P

P(t) 'gfves!the evolution .of the syétem forward in time,'while.

1?"1(1:) = P(~t) glves the evolution backward in time. We note

also that when T is time independent

P(tl) P(te) = P(’cl + t2) ‘. , - (1TI-62)
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If we multiply,»équation-!-n-él_ -on the right and left by P‘l_(t),

- and use the fact that 5% (PflP) =“§% (1) = 0, we find

a‘?g (L) - PH(s) T = 0. - | (iI-_65)_ S

. We may'generalize equations II-61 and II-63 immediaﬁely if the operators

. apply ‘to different set of coordinates. Thus’

_ [é% + ;fng(i)] P(1)e-+P(L):«P(n) = 0 (11-6L)
' <P"l(l)-'~P'l(n)> - (P-l(l)”-l;;‘l(’ﬁ@}}% T(1) =0, (1I-65)

Using these operators we readily solve the general equation, II-57.

‘We multiply on the left by P’l(l)--~P'l(n) and use equation II-65
. ) . s

for the expression P l(l)---P l(n) Z& (1) .

‘ _ 4 1=

P w) [ fir(n]wfu)---af(n» = - P @) )
R

3 (82(1)-++ ((1)52(1) 8(n)) D (11-66)
i=1 , : .

¢ -

f )T lm) T (aee(n))) (B£(1) -2 (1-1)02(141)- - -82(n)) .
' i=1 '

| We shall abbreviate by setting P(1)---P(n) = B_ . Then II-66

. -becomes



) (0200 - bea)) + e (o) 02(a)) -

) (62(0)+ - (0B (2)) - -82(n)) 4 ph 3 (Gwer()))
S4i=1 ) ~. o ' .i=l ~ . L

; (81‘(1)4-:Sf(i'-l)Sf(i+l)'---Sf(n)) . ; (11-67)

The left hand side is a perfect differential eQual to E'dE (Pr;-l

© (6£(1)--.8f(n)), so that we may perform a time integral.

Pn'l(t)(Sf(i)-.-Sf(n)lt') = (8£(1)..-88(n)|t = O) + [ dt Pr'l'l(*r) .
, _ = Js ,

[’ i ((g(i)Sf(i)}}’.(sf(l)...sf(i.-l)w(m)- se(a)) - 3
=1 - 1=1

'(Sf(_l)...[Sf(i)g(i)}...sf(n)‘) . _ - S c o (1I-68)
Mulfiplying by Pn(t ), we prodi;cé the general result
v _ ; v -1
(8£(1)+-+02(n) |ty = Pn(t) (8£(1)-++8f(n)[t = O} + Pn(t) j ar B 7 (1) .
‘ _ “ S - o
~ [ Z((ﬂ(i)&f(i)]) (Sf(l) sf(i-_:.)sr(ifi);...Sf(r_.l);- i :
. i“l A : - 4=1

<sf<1)--~Q§(1)sr<i)}-~-sf(n)> - | |  (a6)
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'"‘Terms involv1ng SE through the ﬁf operator may be calculated

V: using eqpation II-58 We note that ({P Sfo}) 4 P ({3r8r}), ete.

- In calculating ({8f§§}).etc., using the P operators, we find that -
ﬁiﬁe self force term vanishes, as.it should. We shall frequently

‘omit the curly brackets for this reason.

We have discussed in some detaii the methods for obtaining
equation II-69 because we shall use them later in this work. We .
. now sketch very briefly Dupree's conclusions regarding the soluﬁion
to the original set of equations. |

Of course equation II-69 does not repreeent a complete’éolution
}.to the set of equations. The’original set of coupled differential
equations has been replaced by a set of coupled integral equations.
Dupree euggests an iteration technique (i.e., perturbation theory)
Based on an ordering scheme similar to.that of the BBGKY hierarchy.
One may calculate in order (Brary, (Sfﬁfﬁf), ete., and by.working
“up and down the set of equations find these.quantities to any
accuracy desired (in terms of the smallness parameter). It is
clear that the validity of.this scheme depends on the operator P
always being of arder 1, as it is at t = 0. Unfortunately this
is not always true. In facf P beeomes very large just at those
‘points'where the plasma exhibits collective behavierf-a tendency
_ toward coherent motion rather then individual particle motion. In
ad@ition the P operator 1s divergent for short range interactions.
. Dupree eliminates this divergenee by the usual cutoff. However in .

view of this cutoff it seems hardly reascnable to try to carry the



-39~

.1£era£;op‘£ééhniqﬁe:to aﬁy_gfeaﬁ_length,.especially.sincé the behévior
' iof'higﬁ¢rvordér’térmé.is éffeétéd more and more strangly bY-short
';.raﬁge effects. -

’ A further‘difficulty érops up in the time integral in equation
A',JIie69€ Onlyithe lowest order approximation of (BfSf) does not

" require this time integrai. All correcfions and higher;terms,vwhich‘

:do involve this integral; caﬁnbt bé calculated for arbitrary time
because we cannot éefform tﬁe integrals., With this in mind Dupree
suggests that we.éalculate all quantities in the limit +t +.oo. |
Thi; proceduré, which 1s based on the Bogoliub6§'hypothesis (to'bé ‘
,‘dviscussed shorle) breaks down completely for an unstable.plasma.

Iﬁ genefal we.may ﬁot accept the limit t - o unless the plasma
is in eqpilibrium.' However if the plasma is stable‘this limit is
usuaily valid (with negligible error), and does permit the time
integrals to be performed. |

We conclude that.bupree's work is an-elegant and largely
successful attempt at a complete description of plasma behaviofi

" In addition he 1s able to include'elgctromagnetig effectS‘withéut

" the slightest difficulty. This is indeed a step.forﬁard from the
‘..BBGKy hierarchy! Dupree's results.are not perfect-becauseﬂhe
"_ underestimatesthe difficulty of obtainiﬁg a valid description ofv

. plasma behavior. A brilliant formal method is no better thah.the
foundation it rests on. In this work we shall éttempt to patch up
- the foundations of plasma kihetic'theorj. In the process we must

‘give up the claim to generality that_Dupreé:makes.
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_ ) i' HBving criticized the general aspects of Dupree's theory,
ii.iwe turn now to those partlculars for ‘which the theory is admirally
‘euited.j‘we shall illustrate the direct and straightforward way in
#‘Which'bupree's ﬁethod &ields the present plasma kinetic equatiOn,

- the Lenard Balescu equation.

To construct the kinetic.equatioq‘(egpation Il-h6) we need
 the quantity ({Sfﬁg]), which may be constructed frcm (Br5r7) using

‘i equation IT-58. From equation II-69 we have

. : ) t
(s282) = B, (8£(1)8£(2)]t = O) + Pef ar B,” [((ﬁ(l)ﬁf(l)}&f@))
_ _ o

1

e . (1)

‘.Since the £ operatcr'involvee 'SE', the time integral involves
“’ (SfafﬁE),whlch is higher order than <5f8f) (It is not generally

“true that (5f(])"°8f(n)8E) is s higher order than (Sf(l)-o-Sf(n))
It is true for the single case n =2 . This is discussed in

appendix A). Therefore in the first approximation we have

(5rBf) = lP(l,t) P(2,t) (&f(1,t = 0) Sf(z,t'; o) . (rI-71)

_ , , ; _ . .
To evaluate'this expressicnvwe'must calculate the f operator defined
by eQuetion.II~60. The P operator is obtaiced‘by solving equation
_7Il~61, which is'simpler if we consider P operating on some quantity,

say 8f. Note that our purpose in solving this equation (II-59) is

é,\



A

-

'_to obtain the 4 operator, not to obtain the. behavior of '8f .
:_ Dupree always uses ‘P to obtain the behavior . of averaged qpantities.

. We now write,out eqpation IIf59 for particle species u_.

4 q - ,
( + V‘v> 5f + B e S EO 5F 4+ 2 g LBEF =0 .. (11-72)
my 4~ E m Ay

- The solution of thils equation given an arbitrary fu(ﬁ,zgt) is béyond

présent analytic methods. For this reason we limit ourselves to

distribution functions which are uniform in space, and assume no

.external electric field (the net field of the charges'is o, of

0

. course) so that E° =0 . These restrictions will remain through

most of the rest of this work,
Desplte the simplification the equation for Sfu remains
generally insoluble if we permit qu to have time dependéncé.A We

now drop this time dependence ofv fu, on the basis that Sfu varies

‘much more rapidly in time .than fu . This "adisbatic hypothesis'
" permits us to proceed anmalytically, but is motivated by physical

considerstions.

We emphasizé the distinction between dropping the space

' dependehce and dropping the time dependencé of fu‘. The omission
".of spatial dependence of £ is simply»a'restriction on the class of

distribution functions for which we develop a kinetic theory. Tt

is made without any qualification whatever. In contrast the omission

.of time dependence for f is never valid unless f represents a

stationary (equilibrium) state, with the trivial kinetic equation.
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bvv]t':hecked‘ a posﬁe’riofi’.' We shall see later that this approximation

= 0. Tt may be trie as an qpprbkimation, but this must be

is g_ene‘rally_ a very good oné, with several rather unimportant
-exceptions.

The equation for "‘8fu has .riow reduced to the simple form

at
. i

-Where 8E  1s determined by equaﬁion- II-50. |
Following Landau,6 we solve the :Lnitiaf “value'pro'biem with

a Fourier transform in space and a iaplace transform in time.

ot (pp0) = [age a o oe (ry,t)  (TI-TH)

) -1k-r 0o oyt | )

'Sg(g,cn) = jd’rv e f dt e $ BE(r,t) . o (TI-75)
- ‘ 0 , o :

o is farv enough in the upper half w plane to insure convergence

‘of the time integrals and may be ana.ly'tically continued to the lower

“half plane. Later we shall have occasion to move k from the real

axis. We note the general relation
|
Ak,0) = A(-K*, - ") . ~ (11-76)

where 'the_ star means the complex conjugate is to be taken. The

inverse transforms are

a o 4 ey oy
(+xv)epe) ot & o) =0  @D)

-



~

L x e r e |
Yy (r,v,t) —f e ™ “f%‘”’? e 5 (v,0) . (I1-77)

| (2n) c H o

~ BE(z, %) =[—'—”—3-f 2 e Mamge) (11-78)

where C is a contour parallel to the real ® axls and above all
éingularities of Sfu "or SE -+ The electric field 1s now expressed

as

8E(k,w) Z -—E—l-{->lm n,a, [dy 8f (k,v,a)) , (11-79)
o~ K | ~

while the equé.tion, for 8fp- becomeé

' A q . _
- ) 2 4 ape - - . - .
(~tm+ik x)&fg + ol 8Ef, = Sfu(g,g,t =0) . (I; 80) -

The solution for &f and B8E -in terms of 8f(t = 0) is

simple algebra, s

| ax  iker .
T ~ do ot 1 ,
_Sfp(};,z,t) = [(en)'B e 5 © [ Ty +
| EE ik ar S |
s S R
i : _ - 8f (t = 0) (11.81)
(=i + iléx) e(%,w) (~iw + »ik"v') W

ka))

SE(r"b) =f' dl'é 3 ! eik r % | -i(l)t 1k )+7fn q'V w(j:lfk‘ ]
.;:~~ | (27[) | ) T . - NX

x va(t = 'o)‘ _- A ' g (11-82)
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. where

bl RN

#

: ar - .
, - R P A P
(J)v ~ d.lf o~ . »
1+) % , e (11.83)
v k w -k ¢« v ‘ ,

~y

€ (%) (D)

) From‘..e'quafcion I1-81 we may readily identify the Fourier-Laplace

- transform of the P operator.

' C_l}_.g ik dfp
g n, 2T bt nyg, ay' L P
P<k’v’w) = (‘_i(b_'_i’ls.v) e(k,w) "jﬂ)'f‘il'f‘z' ._i(b+i~.X: K (II' 2"')
The explicit form of the P operator is
- dx  iker - _ '
~ e am «th .
Ple,vt) =j 5 © Jf 5 © Pxyv0) . (11.85)
(o) | o o~

vIn:calculatiohs we apply the P operatorito the Fourier transform

of ‘the initial value of 8f. Frequently we:wish-td calculate §§
from 8f, afﬁer‘using the P operator. This is given by equation
I1-82.

We may'now‘write a-mofe explicit expression for the collision

term for a uniform plasma;
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qQ .o o vh dkoi rodky 1k ;E 1k ‘r
= a%' + (lefBEl) = ;‘“' J’ 5 f 25 ¢ '
THEA S o T (2)%: (zn) o
. S ?}i ikl ‘ I

. : . q ~ '
[ G f“iwltd[ do, -t .v kl dy, hﬂ nqu {n dxi

Poead e . : " m———— QY
J 2% - 21 ; . ] . j - Ty
c . . C . v( -do + il v (k1 wi) iw +;§l Xi

i | } , Ez'.-i; o b na%z (ﬂ dy,
a

- iw1+i§l ~L v‘k22.“ é(gé;wbj (- i, +ik v2)
% (sr (v, = 0) b (vt =0)) . (11.86)

As it stands (8f8E) will have explicit time dependence, and will,

- of course, depend on the initial value (Sfﬁflt =.0). We come now

to a second hypothesis (due to Bogoliubov), we may-calculate
(SfaE) in the limit t - ., . This assumptlon, like the preceding
one, is based on physical considerations, and may be tested a

posteriori. It amounts to a statement that (3fSE) becomes a function

of f much faster than the characteristic time in which £ changes.

Note the dilstinction: the first (adiabatic) hypothesis states that

8f ‘varies much more rapidly then f , while the second (time asymptotie)

' hypethesis.seys that (Bf8E) reaches a stationary value much more

rapidly than f varies in time. The latter hypothesis, which is

dhviously much stronger than the former, is not verifiable, and

| will result in considerable labor later in this work, For purposes
-of demonstrating the use. of 'the P operator we accept the hypothesis

- at present.
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Granted this hypothesis, we may invert the Laplace transform

L 4n equatlon 1I-86, 1gnor1ng a1l zeros of e(k,w) since their contribu-

tionﬁwill vanish in the limit t - oo. Note that we are fdrced'to
'. assume a stable piasma,.such that the zeros of € are in the lower

half ® plane. We have now.

i .(5fus§) = =E dv 3 , —-——5
B~ e _ (2:r) (Eﬂ)
‘lim t - o
“di vt 0 g ik df v’y
+ | e T ) —= e n - A
‘ v, k12 | dxl qu ikl v
-ikl-v £ ’“151'31t ik
' - S by n
N 2 oo
Uk ') (~1’k_L 1) @
"'ikf;.VE,at
dv. e =V , L
xj ~2 <8f (k_L l,t = 0) 5f (k Yo b= o)) . - (1z-87)
e(kyr Xy vp) | |

It appears that the expression goes to O Dby the Riemann~Lébesque26

lemma, which states

b

lim f £(a) e aq = 0 : (11-88)
o bt o

where " f 1is Rlemann integrable. We muet use the explicit expression

for {8fdr) -



_ <6f (r ﬁ)Sf (r2’ 2yt)) = g (rllrel MK Q’t) + f (rl;V :t>

e

8

" 5(31' zé) 8(v,- v,) | - (11-89)

‘  where g 1is the two partiéle'cofrelation function of the BBGKY
' hierarchy. This result is obtained by'direct calculation in

' appendix A.

It is clear that the terms involving g do go to O by

the Riemann<Lebesque lemma for any reasonable choice of g .

We make use of the delta function in velocity space,'and the Fourier
"transform of the delts function in space 6(£l- £2) - (2:rr)5 8<51+ 52)

to find:

a q ik, kg q f (X )
2o Crgn - 2 L[ B T
b~ bl kl : e( k- k,v)
. lim t-oo
@ ik, ar dv (v)
v 2
+ L s TP ay (ma,) n, T
Vo k) 1 o (w 1y vy - Ak v

-~1k~xt -k o vt

' ’ . 1 ~] 1 ’Vl ~2 -]
x( - - J'
ckyky e W) (k- 190 3p) e(kk e vy) el - ko

(11-90)
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. Note that there is no singuiariﬁy at E'Xi = k. v2 » for the two -
expressions involving this quantity cancel each other at this point.

 Thus the 2 ‘integral goes directly through this point. S

We consider again the kinetic equation we seek (no space:

o

.dependence)

dfu EE a ‘ S e
= a oy O )

‘and observe that it is an equation for a real quantity. Therefore
in equation II~90 only the real part of'the_expression_need’be,kept;
- . This is conéisteht,'of'course, for the imaginafy parts vanish, being :

~1

this reason. One term, now vanishes completely, and we may take the.

odd in k. . The infinite self force term :also’: vanishes for

real part of the first term.

, df
Uy bt (v) 1% (.ov2 dvy 1%y - Ty, £ (V )5(1‘1 kl )
Real ) = -—-—-2— Z 5 » 5
. kl €(" l’ kl'vl) kl v k le(']\fljl{wl. x:l_)l
(11292)
We have used the fact that

”8151!%1' y)o= ‘eﬂ"~1" Ben) o (11-93)

_'wﬁere the star'means-that the complex conjugate is to be taken. . o

We still must consider the term
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ik .(x,;v ) ¢

g dv e . : ' .
. ——= e (I1-9%)
<ik1 V - ikl Jo ) e(kl;k Vl) e(."’,\l,ﬁ_l_)‘,}h‘ ,YQ) '
' We split the exponential into its real and imagiriary. parts. .
_e:'LXt = cos(xt) + 1 sin(xt) . " (11-95)

The C(.)S'A termv contributes |

~dy, cos {}31 (v - Y% ) t}

(1) - - tle ) l€<~1:~1 0l ®l eGex - w1

X{Réal [e(k 3 ve)] Imag [e(k k vl)] - Real {e(gl; iﬁ'&)] "
Inag (- X,- K xgﬂ} | (11-96)

where we have rationalized the denominator end used eq_uation II-93.

This term vanishes by the Riemann Lebesque lemms. (The integrand

is a smooth function flfl'(xl- XE)). |
Finally we have the sin term--again we rationalize the -

denominator., ' ' ‘ Lk

[ e (11-97)
(s - 3y~ 1k ) le('}él’}fl' l’l_)le le(k X ¥ e |

{Real[e kl, )} Rea,l[e(lgl, 151.31)] + !J.ma'g[ Gk, 5 )] Imag: [e( KXoy ]}



This term may;be'calcnlated using.Jordan's:theorem:

closest approach distance k

. -50-- R . <
27

If g ‘is of bounded bariation on [0,8], then

noja

1n [ gl A g
tPoo : ,

The final result is the Lenard~Belescu eqpation, generalized

to two species.'

2 : .
af , . 5(k
S R Z q - 2n_ . 2 -"""d ‘ [ dv, ~l Nll& ( ~ l ‘YQ)
dt y mu -y d.Xl ~2J klll- le(k—l k_L 'V‘ )I

{fv(ve) ar, | fu(n,l) df, } ‘ (iI-99)
o My ~2 |

Having completed the right side with aid of the adiabatic hypothesis,

we now reinsert the time dependence f(v) » f(x;t) . The X,

. integration is divergent at large k., 'and should be cutoff at the

~l

Qﬁkt ’

0 - q? ‘
Equation II 99 is generally a quantitatively satisfactory

:eqpation for - describing the behavior of a stable plasma, with the

exception of the large k,

of’its_faults, with an eye toward correcting them.

divergence. We raise now the question

We see first that for certain choices of f we may cause €
4af

to become very small, so that. =~ Dbecomes arbitrarily -large. This

at

fact discourages us from using the perturbation technlque suggested -

g0). O (a1-98).

o
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by Dupree, for- the first correction could be larger than the lowest

- .order term.v>"

Secondly, the theory cannot treat an unstable plasma, because
the collision term blows up in the limit € > co. It is clear from

this derivation that one may make calculations . of (SfSE) for +t . less

than 1nfinity. (The derivation from the BBGKY is tedious). The
' breakdown of the Bogoliubov hypothebis must be regarded as the cause

_of the difficulty for a barely stable plasma, as well as for an

unstable plasma; A third difficulty lies in the transition to

equilibrium. It is well known thabt long waveleﬁgth plasma oscillations

damp very slowly in an equilibrium plasma. If we do not use the

.Bogoliubov hypothesis these modes will remain almost indefinitely,

even thbugh the plasma is very near equilibrium. It seems unreasonable »

for the approach to equilibrium to Be sb;slow.v We may expect to

remedy this defect by including higher order terms in calculating -

. (£8E).

Before attempting a general discussion of=our<lineuoflaftack

we diScuse briefly the present kinetic theory for an unstable plasma.

/

D. The Quasilihear Theory

-7 We now discuss the present kinetic theory for an unetable

‘plasma in order to bring out some of the difficulties we shall have

later, We make no attempt to "patch up" these difficulties here,

for the work would have to be repeated later when s more general

kinetlc equation 1s derived.‘ Apparently the problems are now well
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~ whole scheme. we will.hot discuss the work of Balescueon the unsteble

“?;?plasma, for the author is not familiar with his methods., We shall

;52— . . . - ’ A

,known,.for,ﬁresent research 1is directed toward the calewlation of

fhigherfbrder'corrections; without regerd to the validity of ‘the

B

4ult1mately derive an eqpation which 1is similar to that derived by

IBalescu, and shall compare the results there.

The quasilinear theory takes as a starting point the Vlasov:

~ equation.

ar - ' S
—_ 4 v +-qu L.gr =0 (IT-100)
at ~ e Tl v "~ p - o

This is arn approximation to begin with, and has the effect of limiting

. the time for'which the theory may be considered valid. It might

seem that the time for which the theory is valid could be estimated

simply by estimating the size of the neglected term. If this is

tdone, for a plasma near equilibrium, one obtains the estimate

W Ink

t o~ —gx-— . This time may be made very>long, simply by making A

large. However, as ve shail see later, the heglected term contains

 factors which grcw exponentially in time. This has the effect of

cutting doﬁn the time of wvalidity of eqﬁafion IT-100. How much it .
1s cut down depends in general,on'the iniﬁial value of the two body
correlation function (g of the BBOGKY hierarchy). In view of the
nmethods (discuSsed later)ﬁsed by the theory this problem must be

regarded as serious.
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. We arrive at once'at'a-second,difficulty,“ Equation II-100

- is an equation for an.ensemble average qtantity .fu(z,x)t) .

'Presumably f :is glven by experimental meésuremént or -else chosen

because it is of theoretical interest. In either case we would (it

_seems) desire. to solve eqpaticn'II-lOO to find fu(z,ypt) in terms

of fu(r,v3t = 0). The fact that this is not done is indeed perplexing.

In general the theory is directed toward an equation for fo(x)t),

representing the spatially homogeneous part of f({,x,t), while no

effort is expended toward making statements about £(x,v,t) itself.

28,29

Confusion is increased because some authors speak of‘deriVing

a kinetic equation for a spatially homogeneous system, though they
expand f in a Fourier series and keep terms elkfﬁ with k #0 ..

This difficulty 1is more pronounced when we consider possible

experimental verification of the quasilinear theory. We would have,

to determine f(z,x;tv= 0) by actual measurement, in order to

predict the subsequent‘behavior of fo(x)t).- This 1s so because the
quasilinear theory drops the two-particle correlation furction (g)
and. useé the Vlasov equation to describe the system. ' In order to
eliminate the effeéts of g we must détermine the ore particle
distribution function (throughout the system)vﬁith sufficient accuracy

so that we may say that the effects of statistical fluctuations of

V4

g are negligible, If we cannot find the spatial dependence of f at

af

ot =,Q; then the Vlasov'eqpation predicts -2 - 0 (alternatively

at

: gié‘undetermined). In this case the evolution of the system would be

"1

: described by the statistical nonuniformities; il.e., g .
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' eﬁe'note for~emphasis'that]it:is;uotspossible to;make a
,fgéﬁéfal statement about the size ef the~collisien‘tefm (g) in an s
 1;unstable plasma. Though it is ﬁossible ﬁovassign'an effective
collls1on frequency -to the effects of short range (r < K ) encounters
e.in a_plasma,: the effects of long range (r > h ) encounters may be
Fllafge or small in an unstable plasma. The question is s1mply whether
‘We are able to measure nonuniformities in the.system, thereby"
. determining £ . If we cannot perform the measurement the nonuniformities
- still drive the system, but We must consider their effects in a

statistical ‘sense. Note that the spatial averaging of quasilinear theory

_ . Caa0
:does, in a sense, give a statistical result for E%E .. We return to .
‘ . 0
the standard path and seek an equation for ggg .

We decompose f({,x,t) by means of a Fourier sum. Frequently

“the sum is converted to an integral affer the analysis is completed.

:I.k-r

£ (r,v,t) = f'o(x,t) + ) f (v,t) e T (I1I-101)
Hon~ K k£0 :
" where ' O~
! Lk, 1 Tz o 3
£, (wt) = 7§ fd,z; £,y t) e . - (11-102)

"Equation IT~100 mway be broken. into spatially dependent and spatially

,independent parts

af

EI»D
gos

Ye¥gE o - (TI-103)
k ~ A A o

-
P11 S



A e lemamats L et

adiabatic hypothesis: f

255=

P fidkiv.P ko L, gk 0 %—“- ZEk'z . £ -0 .(1I-104)
- dX'. ~ L -mu QX e TR mu 7~ av ‘

~  It.is assumed that no externél field is applied, so that Ek=0 = 0.
vIn deriving'the basic quasilinear equation one neglects the term in

equation II-10L4 which involves a sum on £ . We will follow this

procedure, making a few remarks about the present means for including

* them aftervébtaining the equation for fo . We make the usual

0 :
k# varies much more rapidly than fo, 50

#0

that we may solve equation II-104% for fk while holding fo

fixed. Equation II-104% now has the form

ar X 9 _ A
e k po4d o _ 4 -
5+ ikey fN + --—mu d—-—x gk f|~l = 0 . _ . (11-105)

This is formally identical to equation II-T5, and we may write
down the solution immediately by comparison with équation II-81. The
Foufier integral is replaced by'a‘sum,.and 8f(t = 0) is'replaced

by fk(v,t=0).
VRN _

~'x
s 0 (II-106)
EE' ;g ar )
m ;5" av bt n,9, dy' X
+>:” }fw(t’=0).
V (1w + 1k-v) e(k,0) (~dm + dk.v') 4 M
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" The solution for - E(r,t) 1is formally the same as ‘that for 8E(r,t)

glven by equation I1-82.

‘ s ik.r -imt -1k hg(r n; q_v ‘ }
_E(r,t) R IZ{. jé_“ < >€(k"” f( for+ike v) fv (t

(II 107)

' Substitution of equations II- 106 and II-lO7 into equation II- 105

: _.V'leads immediately to a form of'the kinetic equation for fuo .

0)

0
el - U Zf d% Rt "°iabt {____
at 'mu v,dx _ -1af1k v
: 0 _
“3‘& f.k:.EE_u‘ ‘ . X

. 9 mM 2 T TG | dy, ][Z i_’ls lhrnaqa .

. | 1u.>l+ik v)e(k,ml) _ ,(-iai+i§-,gl)‘ G K e[.-'ls,wej‘
v X -k i e
x| ] £ 5t = 0) £y vt - 0) . (T1-108)
B T 1 > -

The reader has not failed to notice the_si‘milax"ity' between equation 2

‘lII~lO8_. and equation II-86. We now consider the evaluation of the

o inverse-iaplace transforms. The quasilinear theory states that they

should be evaluated in the limit t > . This is,.mea,ningless for an

unstable plasma, of course, for then these terms blow up for some

~.. values of @ - A better description is provided by the words -lerge

'time, or time comparable to the time in which fo

itself changes.

One may now invert the transforms, picking up zeros of e('lv:, w) as

well as those at o = k~x .

E
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The qpasilihear théory-keeps-onlyvéonﬁributions from

ﬁe(%,aﬂ = 0 = e(kgak) which defines the complex frequency B

o =,Qk:+'17k . - The result is obtalned directly

0
o e 2y, t . .
' . u 'k 2
af Q q ? ,5-5 dv 7k € §: (4 napvqaqv
Moo . Woay Y v
‘ m dv. - de de {1e 2 2
at o X F S (@ e
“% %
av, £ Xv ,t=0) avy (v, st =0) o
X [ ~l v f . (11-109)
(-i@k+ ikev. ) (-ia&k -ig'zé)

It is convenient to express the derlvatives of the dielectric
function in terms of a real quantity. The following is adequate,
though not elegant. From the definitions of the transforms we have

e(k,w) = e(-k;~-a") =« (11-210)

It follows that

é(k,wk+ 8) = e(-k, - wk*- 5*)* . (11-111)

. We now consider 8 a small.real qpahtity, and use-thé fact that

-3) . | | (II-»llQ)

e(-k,

<o 8)
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- We now Taylor-expandAabout :5f=

de : ’ * : * h ,
e(k{‘d:k) - B + .-. = e(-k a) ) - 5 dww T+ . (1‘1..113‘)
o h | .
. Tt follows that
de de | * | | oy
W =" SRR o (zremd)
% X

 whichis the desired relation.

Thus;eqpation.II~109 may be written in thé'form

0 §
Eykt

. . ar .
- 0 2 Uk ke i '-(hn) nmn 7
ar e e,y ~x T3y azv vl Tk €
_ 2 dav 2
.dt_ m ~ k ( )] [(ﬂk-k v) + 7y }
ok ) -k .
dy, £, (‘v ,t = 0) av, £ (v,,t = 0) :
x [ Ly~ f ~2 g -2 , ~ (IT-115)°

-ikov - iQk+ 7k -;E.Xé+ iﬂk+7k

Tﬁ;§ eqp§§ion is usually written in terms of the electric field:

&;E o
b df 2y %
. k _
dfiio .%2 . }: VEk(t = 0) E (t = o) o —ET 7y ©
—t- = = a.i . . (I1-116)
K : [(“k‘ lf‘l’)- % ]

The qpa51linear theory- ignores all terms coming from the zeroces at -
-1k.vt '
= %»X'. The statement i1s made that these terms e disappear
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iﬁ the ast?totic,limit. This statement is faisei This misconception

~

leads to a difficulty Which We'noﬁ point.out (it is well knoﬁn).

' The quantity G(E?qﬁ' is ah analyfi¢ function (by definition).
” The‘zeroes of +this functién will trace Quﬁ lines in the w.vplane,-
in geﬁeral;- We plot a O of € for é fypical case of an unstable
plasma. |

wy=VY

S

The plaéma 1s unstable (has exponentially growing modes) for
y >0. Wé.consider the point of neutral stability ¥ =0 . At

this point the velocity integrals are undefined at the point
‘ : .
e

Q = %'Xl’ Q= E'Xé" Likewise the factor (2 - )2 5 is not

defired at the point V=5 k . The difficulty is unavoidable since

an unstable plasma always has a point of neutral stability. Frequently _
"x

5 5 s is approximated
| (R -k-y)™+ 7,
by =« 8_(%{-_-kov) despite the fact that the resulting equation no

P ~ N

 the % integration over the factor



.zeroes of _e(ELw) in the perturbation series, and neglects terms

K . - -60- . :
| - S S

P |
| |

| L ‘
longer conserves momentum. Note also that for 7k <0, the appfoximation o

1 E :

wonld lead to - ﬁ S(Qk k v), representing a negative dlffus1o‘ |
coeff1c1ent. i _ ; s v? i |
b . . ‘ . |

0w The tﬁeory has other peculiar features. It is customar& to
prove-that'thénenergy of the system.].é mv® £ dv + 8- E: 2 is

i

-conserved, but a satlsfactory proof for momentum conservatlon has not

appeared. Kadomtsev3 has proved that momentum is conserved by

J
l

maklng approx1mations suitable to resonance and non-resonance pertlcles.

He does not dlscuss the transition region. At present stable modes

"(7 < 0) are 1gnored, so that the theory disappears when the plasma

| . i
becomes stable. We shall see 1ater that all these dlfflcultles[are
1k vt :

~

’ corrected by uhe 1nclu51on of the terms proportlonal to e - e

? '
| i

- We conclude by discussing the 1ncluslon of the hlgher oroer

terms (usually called mode coupllng) in equation II-10Lk, It is;convené

.tlonal practlce to use perturbvation theory to calculate these terms.

| o
Thus we substltute solutlons II-107 and II-108 for f and E: into

the terms in questlon, One 1ncludes only those terms comlng from ;
|

; ’ f . . . . C .
coming from zeroes at ='£-x . The reason for this is madeﬂc%ear .

31 |

hvby a quote.”” | : ' : . o : | - ta

‘ i ' . o ST
| | ' 1LVt

't is. also'to be noted that if terms in f, like e ° i a

S
had been kept and substltuted into the last term on the |

| p »1eft in equatlon (lh) (our eqpatlon II-th), then the ;':’t L

)

ve1001ty derlvatlve would give rise to terms grow1ng llke
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% 4n equation-'(lll-). ‘This is a fundamental difficulty in
.pursuing a perturbation expansion to higher order in these

"contintum modes, " and vas - first noted by Backus."jg

It'is'true'that these terms lead to secular behavior‘in the-
| 'perturbation expansion. On the other hand 1t 1s not clear that one'
should s1mply drop the terms for that reason. It seems to this
'author more reasonable to conclude that the direct perturbation
.expansion breaks down,‘and other mathematical techniques are called
_for; ThiS‘breakdown presumably represents some_physical phenomenon,
or -else the_iowest order theory is incorrect.

Pater in this work we shall demonstrate a method for handling
B “terms” e;gfxt ,. which is satisfactory for teSting spatially uniform
systems; We shsil avoid the perturbation‘technique, except when we
;wantAtO'demonstrate the appearance“of certain terms in the dielectric
function; In'cerrying.outvthe analysis for the uniform system ne

shall correct many - of the difficulties with the qpasilinear theory.

" An improved form of eqpation II-116 w1ll be presented on page 210,
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o ‘»III." THE GOATS OF PLASMA zcu\rﬂrrzc THEORY
"Tﬂé brésen£.discussion should have come at’ the 5eginning.of‘th;s‘
.;work,vlbgicallj"spéaking;. We han postéoned it becaﬁse man&sof'the
"aréﬁééhts we make hefe are taken.for granted in thé,thepries discussed
pré-iri‘éﬁ_sly.' On the other hand we shall find that when we weaken the
_basié’assumptioné we find diffiéulties which have not appeared before. _
It ;s well fo make owr assumptions exp‘licit.“‘ | ' |

The discussion divides naturally info ﬁhree toples: Whatrié é
kiﬁetic equatioﬁ; how do we go about constrﬁcting such an.equation; and -

what mathematical pitfalls must we avoid?

. A. What Is a Kinetic Equation?

Thié seémingly immocuous equestion was‘brushed aside casually at
the beginning of‘this work (page 6). We wish "to describe the behavior
‘in time and space of a system of interest." The answer means nothing .
‘until we decide what is an appropriate deséription. If we do not want
“the precise“orbit of each of ‘1025 particles, what are we willing to
gettle for?

It is génerally as;umed (implicitly) that an‘appropriate
description consists of an‘eqpétion'for the average one particle
.distribution f(g,t),,(ﬁé consider spatially uniform systems), where.
ﬁhis-equation contains only 1ndepéndent variables, constants, possible
;'external constraints (e.g., forces), and f itself; The Boltzmann,
Fokker~I1anck,_and Lenard-Balescu equations meet these criteria. We
vndw.question not the desirability of obtaining this sort of equation,

but the mathematical and physical assumptions used in deriving these

equations.
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Tt 1s clear, of course, that the macroscopic as well as micro-

séopic_properties‘of a system depend on all the initial conditions we

'“:_imposeuon ﬁhé.sysﬁem. The statement is'eqyally true for alﬁarticular
‘physical and an idealized'(ensémﬁle averaged ) system. For this reason
V'Duprée’s proofh that all higher correlation functions become functionals
: of'-f(x,t_= 6) is intrinsically faisé. It 1is quite poésible (though

”statistically'unlikely) that é system may have a set of initial values

for correlation functions which cause f£(y,t) itself to change very

rapidly for some period of time. f might "jump" at t =0 as a

- result of the higher correlations.

- In general we wish to avoid such behavior. Note that there is-

no need to do so. The equations we have available, either~BBGKvar

‘Klimontovich-Dupree, are perfeétly adequate to describe the evolution
. .of an arbitrarily small volume of I’ = [Xl, xé,v...,XN} space. We may
keep all initial values if we desire. In fact our chief objective is

to avoid this complete description.” The reasons are practical, of

course. It is this desire which leads us to attempt description of

-only certain types of systems--kinetic systems.

The problem has been discussed 1in some detail by Sandri.35 Wé
summarize by‘q‘uoting:5
"We say that a gas is in a kinetic regime if the one-body
distribution satisfies an equation of the form
1 ' ' '
OF
&F = A | | (TIT-1)

where A[Fl] is a functional of o only, +++ "
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'_éorrelation functions whose‘presence.aﬁ % = 0 will be "forgotten”

-6k~

"The fequirement'that a gas should approach thermodynamical

equilibrium via a\kinetic‘regime_defihes sharply the class of

sqi?é to pefmit the contraction shown in Figure 9. The class-of

-'tﬁéée'correlations will be called kinetic."

Liouville Equation : .>: Kinetic Equation

Sandri - Figure 9

The:prospects for obtaining‘a kinetic equation for a plasma- (in

Sendri's sense of the word ) ‘are quite bleak.

For some types of distribution functions (whiéh are not

,»pathologica;>the plasma will be unstable. In such a case the

initial correlations do not go away rapidly. In fact their effect
may persist until the system approaches equilibrium. In
addition long wavelength plasma oscillatidns damp extremely slowly

even for a plasma near eqpilibrium. +In fact the damping rate

.goes. to zero as the wavelength of the oscillation goes to infinity..

Here we shall improve matters somewhat by including higher order

‘terms. Nevertheless we shall not be able to eliminate all‘effects

of iﬁitial conditions.

How can We‘obﬁain 8 consistent kinetic theory'wheh some

¢omponents .of the initial correlation functions persist for -long

1times? ‘We simply keep these components.
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- of ‘(SfSE), does not remain valid Indefinitely. Standard arguments
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. B. The Construcfion of a Xinetlc Equation

We .consider now the means forvdbtaining the desired'kinetic" ‘

equation, where we have (perforce) weakened the condition that

%%5 should depend’onlyvon £ « The discussion is directed toward

the previous derivation of the Lenard Balescu equation (pages 38-143),

We state first of all that the evaluation of (Bf3E) 1in the limit

t > ® 1is not acceptable. The reason 1s quite clear: the adiabatic

hypothesis, which holds f(z,t) fixed in time for the calculation
| ' 35

" show that the change of ‘fu(v,t) with time may be described by a

collision frequency, or relaxation (to equilibrium) rate of the
order of muﬂn A/A . The figure certainly must be revised upward

for unstable distribution functions. Of course as a system approaches

‘equilibrium the rate of change of f goes to zero. We shall use the

figure given for a crude estiméte of the time for which the adiabatic
hypothesis is walid
~ A _
tad < w fn A
Db
Thus we must calculate (8f8E) for some time less than 4 . The
results. will be largély“independent of this time, of course.

The mathematically correct procedure is to eyaluaté (B£8E)

without regard to the value of t, i.e., from +t = O. This leads

‘to the following_difficulty; (Sfﬁg) depends on the initial values
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of the correlation functions. We wish to avoid these initial values,

in so far as is pdssible."However/if'We Simpiynpﬁt.in an arbitrary

v;vglue~fof‘ gt = O); we may generally expect the system to "jump"

until g(t), is'in‘qpasi-equilibrium with f£(t). In the meantime

the adiaﬁaﬁic hypothesis has been broken and we have lost tradk»of

f', unless we can solve for it for short times. Note that

arbitrarily setting: g(t =:0) = 0. does not avoid this difficulty,
for the following reason.  When we set g = 0 we are stating that
- the particles are uncorrelated. '(The statement applies to two body

~ correlations, but we are ignoring,higher correlations for the

present). The particles are now distributed randomly-through space.-

But in this case we may expect the potential energy of the system

to be somewhat higher than it would be if the particles were given

a brief.period of time to rearrange their positions. The particles

 will minimize their potential energy very rapidly for t >0 .°

:Wheré does this energy go? It must go into kinetic energy. The

plasma "heatg" itéelf very rapidly while esfablishing quasi~equilibrium

'with its correlation funcfions. As expected, the adiabatic hypothesis
'r_'fails.‘ The fact that the heating of £he plasma is.ﬁery slight indicates

that gt = 0) = 0 is far from an extreme choice.

The cure for this difficulty’is'fairly obvious. We evaluate

C (6f§§) for time + greater than the time it takes the initial

correlations to go away; but smaller than the time for which the
adiabatic‘hypbthesis is valid. We then treat t as.a continuous

variable starting at t = 0., Alternatively we may evaluate (Bf3E)
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for -all t (less than t_ ,‘ofﬁcourse) but neglect all terms which
die out rapldly. | |
' In eilther case we expect’terms Which‘do not-go away even'for

't-x'fad. Thus we. will generally end ﬁp keeping some of the initial -

-values, and the question which to keep and which to thfow away must

be answered somewhat arbitrarily. In fact tad is a very long time,

and almost any requirement will sét a reasohable dividing line. For

example it seems reasonable to throw away terms proportional to

lrl

Cif they decay by a factor % in time ¢t :This leaves

ad *
-only a very small part of the initial correiation funcﬁion in the
kinetic.eqpation; |

We turn nbw to a second problem concerning thevconstruétion
of a kinetic equation. How do we terminate the endless set of"
‘equations that‘describe the behavior of the system? To qﬁote

' Mbntgomery_and_Tidman36

“Expectation values of most measurable quantities are

1 =
f&i and f¥; of the BBGKY hierarchy). If there were

calculable in terms of f, and f, . (In our notation

some scheme by which fl and f2 could be calculated
' withouﬁ knowning f5,fh;..(i.¢.,_if;we could break the
chain of'equationé representea by (4.7)), it is apparent
tﬁat a vast and practical simplification would have
~been achieved, Tt should be stated unequivocally that

there is not yet even one non-equilibrium situation
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Where 8 clear proof-of the correctnesé-bf such. a procedure
has been given."
3

'Thus Wé céh, in principle, choose these arbitrary'functions in such

‘inlgéneral f fﬁ;Aetc., ﬁay be chosen arb;tfari;y at 'tvé’d. 
;a w§y thatiﬁﬁéyvhave ) cbnsiderabié effect on the system, at least
,A-fbr small time (£ 2 ”5%').  waever we shall see that the two-
' Bédy'correlation function relékeS'to become a2 functional of £
in fhis short time (With the exception of SOme long range effects),
" Presumably higher:order correlation functions relax at'approximately
the same rate;' Thus we shail exciudé‘the possibility that higher
 : qrder correiation_fuhcfioné'have an important effect by coﬁsidering}
'fonly'systems“in which most Qf“this relaxatiqﬁ has taken place. In
 terms. of an iﬁitial value prqblem;'we wish fo find the behavior
6fgf(x;t) for 4 greater‘than this relaxation time, which may be
ﬁéken as order _iL'. The behavior of f for t»<:i%; is a
legitimate qustiEn; but we will not consider it. PIt is difficult
h £§ imagine preparing a plasma in the lab in whichrcorrelation functions
wbﬁld cause'_f to change on the time scale .j?— .
Granted that the'higher'correlation funﬁtions become functionals

' of T, we must still justify a method for terminating our set of

t

vergtions.
We are now on solid ground. We eliminate the effects of -
‘initial values from our equaticns because we are not interested

in these effects;' f changes.slowly in time because we construct
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: *6u£ théor& oﬁlyﬂfbrfthis éaéé, We may néw make~érude estimates of -

".  the size of terﬁg in thé equations for f,g,ﬂ, or f, (5f8E>,.(Sf§f6§),.
et§; We find that successive terms are in the ratiovl : % .v Thus
" the ultimate justification fpf truncating the set df equatibns‘is i
(an& must be) quantitative., If successive terms did not become less
and less important,.theré would be no point in working with

pfesent theories. | .

. In this work we shall‘find an equation for »%% valid to

vvorder %. for the long raﬁge effects of particle interactions. The
: ‘short-range difficulty remains, and limits thevqpantitativelaééuracy
of the equation to order Z%K . In order to obtain¢realizticb
behavior from'thg terms with explicit timevdependencé (e7k ) we

shall have to includé some of the effects of the three particle

correlation function h (in terms of the X.D. equations (SfoSf».

0. Tné Brésuaows of Perturbatioh miécry Y

Our probiem is nowrsufficiently limited to appear simple. We
wish to deriVe_a collision term for a uniform plésma. We truncate
thebinfinite set of eqpationé‘describing the evolution of the

system ﬁy considering the uéual case in which successlively higher ‘
‘order terms ﬁecome less and less iﬁpprﬁant. We hold f(x,t)_

fixed while caiculating'the colliéion term fér' t large enough so
that most of'thé gffeéts,of initial‘vaiues of (&fdr), (BrdLdr),

etc;; are negligible; All that remains is to carry out the
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“‘maﬁhématids.v In fact this is not qpite SO simple, for a standard
L technique of mathematical physics (perturbatlon theory) often
“ﬁbreaks_down‘in the case_of plasma kinetic theory.. We now illustrate '

 this statement:

The breakdown of the mode-coupling analysis of qpasilinear

theory has already been mentioned (p.53). The secular terms

. which: gppear are generally ignored, but ﬁhis may be expecteéed

to change as better mathematical techniques are developed{
Montgomery and Tidman | démonstrate a method (due to Guernsey)38
‘for.calculating the pair cnrrelation function to orden %

for a plasmn in equilibrium. The treatment is statistical,

and leads to the concluslon that the two-body function is

~

given by
2
T (e ,r,,v < ) EKT . 2KT ngrﬁg \\
o\l o2 v Y R T ///

(III-e)

~ where the bracketed'(ensemble averaged) quantity is to be

calculated. The caléulation via perturbation theory is

"‘“”;isufficientlynlong3thathweuw1113not repeat’ it. . The result is

/_ @-"T%—:TT 7_"15. +D*(-i:2-) . (ITI-3)

Again qnotingi39'

g 2n]r X,
< KTIZ) <Zp



order in (in our notation

-Tl=

"The difficulties arise when one tries to go beyond first
. 5 .

&
KT

to be done before the sﬁructure.of_any bossiblé perturbation

)e.. Miach analytical work remains

series is.accurately known, and the subject is very much an

open one."

" We note that for 421'52' smell, collective effects are

unimportant, and we must have

2 . 2
- 9 S g ,
<a KT'?-Cffe'> v TR
S |,z

. :(szfu)

small

The right hand Quantity.simply is not expandable by perturba-
tion.theory. This is not to say that perturbation theory

is completely useless, for higher terms give us more significan£

‘ decimal places in the region ﬁhere:the serles converges. However

it tells us nothing about the behavior in the interesting

region ]51-32] = (%T) .
’Misawaho has calculated the effects of three body correlations

~on the mean free path of particles in a plasms, using perturba-

tion theory. He finds ﬁhat the correctidn is represented.by

‘a factor of -~ lou (exponent positive). He does state that

he has not investigated the validity of perturbation theory.

Presumably the calcuiation of a few more terms would enable

" him to make a decision. Rostokerhl has repeated the calcula-
“tion without using perturbation theory, and finds only a

-minor corréction to the lowest order theory;
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;fhf: Séndri35 haS'investiéated theAposéibilityiofiincluding

_-ﬁhree body;effécts in plasmé'kinetic théory,’whilé keeping

| the Bogoliubov hypothesis (g,h ete., veryvrapidly functionals

: of f)..va'concludes that this is not possible, as their
inclusion leads %o divergent integrals. We shall show‘that
this is false by calculating some of these effects: the
effects of thfee body corrélatibng on long.wavelength
fluctuation. Sandri's error lies in the method of analysis

f"used, which corresponds to pertrubation theory.

V1;: Sandri blames the Bogoliubov}g_expansion technique for his
difficulties, although he does not use it. Sandri does
_demonsﬁrate thatvegpansions may be made In either the
domain of & function (the independent varisbles) as well

Tvas in the range (e.g.; perturbation.theory). If Sandri
had used thevBogoliubov expansion instead of a similar one
due to FriemanLLE he would have avoided repeated argumenté

. which are'nécessary'to.defive the desired equations. Iﬁ

is quite possible that the Bogoliubov expansion would not

break down so quickly as the one used by Sandri.

We have not exhausted the subject, but it is clear that some
underlying feature is being ignored. We state one difficul’cy: The

_exact equations of ‘elther hierarchy (BBGKY or KD) are never singular

“integral equations. (A singular integral equation has the form

(x - a) £(x) +u(x) [£(x') a&x' = O where u(x) ‘isrgiven. The -
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- Gﬂensformed so that f, = fl(k,VﬂDD.' Van Kampen
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eingularity:is at x = a).A,The equations of either hierarchy

resemble singular integral equatins after transforms are taken

so that éi + vV 3 ﬂ»+ik V. The statement is true & fortiori

‘for the first equation. The lowest order equation is not a

singular integral eqpation even after the omission of the higher

order term (g or (8fSE). It has been and still is fashionable to.

discuss analytic properties of the linearized Vlasov equation

43

has demonstrated

an elegant mathematical techniquevfor solving these singular eqpations,

and has applied the technique to the linearized Vliasov equation.

The work is referred to frequently and the technlques are often

used./ HbWever virtually all work along these lines ignores the
fact that the expansion(s) used in obtaining the singular integral
egpationvbreak down precisely at the singular point. The solution
of ‘Van Kampen is methematically‘elegant but physically monstroue.

The straightforward (the word is meant as a compliment) work of

”Landau6 is physically adequate, and it makes no attempt to exploit

a property that a real system'does not have.
. We trust it is olear why perturbation theory falls so often
in plasma kinetic theory. If the lowest order equation is singular,

its‘solution will contain a singularity. The perturbation expansion

“in this singular solution will then 1ead to worse and worse behavior

'‘in the neighborhood of the_51ngular1ty.

There is another feature which is not commonly recognized.

Small (higher order).terms may not be neglected over & long period



 small érréf'in

Tk

of time. In physicalrterms'whenvwe-neglect a Small‘term Ve_make a

é% . :Theveffect'may be, inka SenSe,_cﬁmulativé.

_ Statements are frequently made about the asymptotic behavior (in
"'Qtime) of solutions to plasma equations. Virtually_no one examines
" the conditions under which the approximate‘eqpation?> is valid

~into the asymptotic region. Backus52 and StixMF have considered

this ?roblem.
We have concluded that perturbation thedry is generally to

be awvoided in plasma kinetlc theory. In the next section we shall

derive an equation which would (if we could sélve it) permit the

kinetic equation to be made accurate to order (35), neglecting

the short range KT(Z%K) difficulty, of course. The only means

available (that the author is familiar with) for solving the

equation . is perturbation theory. We will proceed with care.
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IV. . CALCULATION OF HIGHER ORDER EFFECTS

A. Procedure for Deriving a Better Kinetic FEquation

In secﬁion II-C the Lenafd-Baiescu equation was_derivéd in
a‘rather straightfbrwar@ way. To explain the proceduré for'deriviné
a better kinetic equation we deséribe the steps we shall perforﬁ

 differently..
,l' We shall not assume a stable plasma;: As a resﬁlt we cannot
calculate (BfSE) in the limit + - .. We shall calcqlate
. (83‘.‘8@) for t large, }Sut., for & time somewhat less than
the time for which fhe‘adiébatic.hyﬁothesis is valid; This

"implies that we shéll find terms with exﬁlicit time dependencé.

2y, t
In fact we shall find terms proportional to e K , wWhere

Yy is fhe imaginary part of the frequency' @, = Qk+ iyk
satisfying 'G(Ewwk) =0,

2. We shall attempt té estimate the effept of higher order terms
in determiniﬁg the evolution of the system. In particular
we wish to establish the fact that long wavelength plasma

oscillations do die away as the system approaches equilibrium.

- To .do this we need an accurate estimate of 7y .

~The method for estimating higher order effects is suggested

by Dupree's method for solving the set of equations for (&£(1)-8f(n)).

‘Recall that we wish to evaluate (5£8E), which we obtain

from the solution of the equation for (Bf3f). We write down the
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- exact equation for ~(8f(l);8f(2)),‘which'is given{by-equation 1I-57,

with no=2,
[a%—: + T»(}i)' + 7(2 )] _f(f&f(i.l.‘) sf@);- =

SermeeeE)) - (r)B@s@WY . (e

. Previously the solution for (8£3f) was obtained by neglecting

the right side of eqpaﬁion IV-1. This lead to the Lenard-Balescu
equation. We now wish to investigéte the significance of thg»right
hand terms. To do so we use the solution for (Bf8fdf) obtained by

Dupree. (Equation II-69, with n = 3).

(es(1)oe(2)ez(3)]) = Py(x) (se(1)ee(2)8(3)]t = 0)
oy .
e [arryen) [agsta)) (ore)se))
O : ' v ‘

e (@) (82LBE(3)) + (((3)82(5))) (Br(L)B(e))
- (ar(1BE@)IYBIRE()D) - (BE(1)8E()E(R)BE(2)))

1."--‘(8f(é)8f(5)&3$l)5f(l)})]‘-'. - (1v-2)

-
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_The terms involving -(5f6fqz§f}) may be éxpanded,aécording '

I-12 we have

(5f(1),éf(2)..’,5f(n)) = -' Z vHaH'bHé‘“

cluster
a,byceee>1

&+b+cees=n
Thus

cluster

.('S_f‘(.l)v_ﬁf_(e) 82(3) 8e(k) = Hy + DI A B,
Picking -one of the terms of equation IV-2, we have

- (8r(1)er(2)(B(3)8e(3))) = :<~-{6f(1)sf(é)8f(3)6f(h))>

E <8f(1)8f(25> ((F(3)82£(3)}) + (82(1)82(3)) <8f(2)g(3)>

(BrQIFG)) (er(2)82(3)) .

 Using this result in equation IV-2 we have

(br(1) b2(2) 82(3)|t) = By (t) <8f(1)‘8f(2)‘6f(3)'lt

to the cluster expansion described in appendix I. From equation

(A-12)

- (TV-3)

(Tv-1)

o) -

(continued Eq. IV-5)
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r B - ) (s BINERRITI + (or(ENEGITD)

0

+

(s2(1)02(2)) (02 (3)F(2)) + (56(1) @ (2))(B2(2)82(5))

+

(82(1)82(3)) (65(2)@13)) + (62(1)T(3))(82(2)8£(5))

+

(lor()o2(2)O3)6£(3)) ) + ( (s2(1)2(3) P2 )o2(2)) )

+

( [af<e)af(3)<2(1)§f(1_)} ). E - avs)

‘ We now may, in prin01ple, use equation IV—5 to obtain the right
| side of equatlon Iv-1; then solve the resulting equation (Whlch is still
_' linked to higher equations) to find the behavior of (8f BE) , '
collision term for a plasma. In fact this is a task of énormous magnitudé,i
which mﬁst be simplified by various approximatioﬁs{ The approximation
we make now is well defined, though»resﬁricted in validity. We shall
keep the effects corresponding to short range interactions between
particies, while discarding the long range effects correspondingito
'collective effects in the flasma. This 1s essentially thé samé as the
- approximgtion leading to the Fokker-Planck collision term for a plasma,
instead of the Lénard;Balesculcollision‘term.b | o
The validity of this appréximation may be described briefly.
" In a stable plasma we may estimate the effect of higher order terms,
" and find thaﬁ they are successively less important by a factor 1/A .
| The dominant contribution to each term comes from the effectS'which ﬁe ‘

shall keep: the short range ihteractions (ro <r< kd) .
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However the situation is quite different in the case of an .

 -unstable plasma, for two reasons. In the first placé the terms coming .
from initial values may be assigned any size we choose, for they do not

- aie away rapldly--in fact they grow in time. Secondly the correlation

functions all contain source.terms which grow exponentially in time,

..with_the result that we cannot neglect higher order terms for long

time, even 1f we set the initial values of each correlation function equal.
to zero. Both of these effects result from the behaviof of the long range

(collective) interactions, which we are.excluding. We may describe the

tvalidity of our approx1mat10n in the following terms.

We may neglect the long range. of interactions nhen
-1l. The usual plasma ordering is maintained for the slze of the
~initial value terms. The expansion parameter does not have
1to be: 1/A , but we cannot'fermit the initial value term
‘from h +to be so large as to dominate terms aris1ng from g .
vé; Any unstable plasma must return to stability in a sufficiently
- short time so that higher order terms do not have to be con-
sldered. If the system remalns in an unstable or marginally
stable state for a sufficiently long time, we may not neglect
* the effect of higher order terms.
3, The correlations which we shall Calsulate nust dominate those
_corrections coming from collective interactions in the plasma.
In the general case of an unstable plasma the effects of long
range interactions increase in time, tnen decrease after the

system stabilizes itself. We may be sure that the correction -
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o ne oompuﬁe‘is signifioant only afﬁer she srstem has been

“stable forvsone'time. Thus we are'oalculatlng a correction
-:lwhich is significant only for a stable plasma. |

We proceed with the calculatlon. The .left side of equation Iv-1

: inrolnes (8f Sf) s and hence is of" order. n B where . is our smallness
parameter. The rlght side of eqpatlon IV—l 1s to be obtalned using
‘eqnation IV-5. All terms of eguatlon IV-5 are of order n s with the
exception.of these three terms of the form ( (&f fSQgZSf} ) which are
Vof-order‘ n3 . ‘Weldrop these latter.terms.\ |

‘ ' Among the terms which remain are those which denend on initial
values (5f 8f &f I t = 0) . We now omlt these terms becduse we shall v

_ ‘consider only the case in which they are smaller (order n ) than the

initial wvalue terms which'we shall keep {(3f &f ] t = O) .. For the same
Zn A

reasonewe shall later omlt terms of the form (5f 5f | t = 0)
- They represent a higher order correction to the inltlal value terms which

. we shall keep. Again we state that the long range effects contained in

(8 8f 8f | t = O) tend to grow in time, as do those of (&f df | t =.0) .

‘fThus the correction Which 'We are computing will be significant only
.after the system has been stable long enough so that the effects of the
‘initlal value terms on the evolutlon of the system are not important.
(In a stable system the initial value terms die out exponentially with
time., See Chapter V). The. terms which remain from equation IV-5 are

‘now given by
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(sf(l)Sf(e)af(B)lt> =-| ar JfB(t - 7) [(Sf(l)ﬁf(f)$<6f(2)£?11)>

0]
L+ (er(wee(@))(52(3)DM0)) + (sr(Isr(e))o2(3)LM2))
o+ (er(1) () Mee(2)82(3)) + (82(1)82(3))(82(2)D15))

+ (af(l)g?ia))(af<e)af(5)>}. | S  (zv-6)

We may now verify that all'terms-on the right side of equation
IV-6 are of the form (®f 8f)(®f BE), and hence.are of order n x 1 = n2
Thus the right side of_équation,IV-l represents an n2 correction to the

left side, which is of order 1 .. We now inquire when the correction

~ terms may be significant.

If we neglect the right side of eqpation IV?l, we may split the

- equation for (&f &f) - into two equations for. 5f(£11 le't) and

6f€ge, Yo t) . In this case the P. operator is given (formally) by

the solution of the linearized Vlasov‘équation; We now regard the right

" side of equation IV-I)as coming from the "collisional correction" to the

eqpétion for &f . In thié waygwe‘may‘observe when this "collision
cérrection" shbuld be_considéred in deriving the kinetic equation. It
is easier to'estiﬁate effects in thé épace [gl, Xi} , than it is to
consider Lxl,,yi} and ng;wyé}ﬁ simultaneouély. We now give the
transformed equation foi' ot (X, Y w), where ‘we have set (§°)= 0 ;.t.i-a'ndv

chosen k £ 0 i The k = 0 mode contributes nothing to the kinetic

eqpation,.duevto the shielding effects present in the dielectric function.
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(~dw+ik yl) 8f + = BE ..

_82_ . .

ar

T BE(t = 0) B _ {sf5EIk,w}..

'(,IV-.7) |

' The right hand side should not be neglected for

8.

. of the frequency.

Low frequency @ ~ O . The left hand sizé = 0 (formally .
identical £o the linearized Viasov equation) is not satis-
factbry‘for very slow processes. | |

bLong Waveiengﬁh k ~ 0. Iﬁ this case the.térm %'X Sf
vbecomes smaller than the collision term. —:

Field free motion'»ﬁg ~ 0. In thié cése.neglécting the
right hand side ylelds free streaming ds a solution.

ar
av

| For the value of v such that SE « = =.0.,

~

For any mode in the region of v space ® = K.v .

For cases where Yy = Imag o, is nearly O . The collision

k

+term will yield a small correction to the'imaginary part

4

It 1s possible to go into more detail but we shall not do so.

What, then, would be the effect of including the collision

term in the equation for ©8f ? In general very little. The

. Inclusion of an order 1n term will lead to corrections of order 1

to the solution for 'Bf :(the correction will show up mostly at

the regions mentioned above). This will lead to corrections of

order 4n to the kinetic equation. Is there any case where the

corrections must be kept? Yes! In general we must keep the higher
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" 'order correction to the dielectric function. 1f we wish to have an
 accurate estimate of the.growth (damping) rate 7k.. 'In particular:
‘we must keep the correction in order to make long wavelength plasma

-oscillations die out on the collisional fime scale.

We may now trace this required correction back to the
equation for &f . 1In general short wavelength waves (k > kd) damp

out rapidly in a plasma. The which damp slowly are those of long

-wavelength (k z'kd) . Thus we wish to calculate.the corrections
+to the long wavelength behavior of the plasma. We shall calculate
' these corrections by considering only the dominant (largeX) part

' of these corrections. This approximation limits the accuracy of .

1

our results to order ok . In terms of equation IV-T7 we wish fo

.calculate {Sfﬁglk < kd} where the wavenumber inﬁegration used in

obtaining the collision term will be over-large wavenumbers (K).

We indicate the integration explicitly.

d¥

k o _
0 : .
{stgik}collision = ﬁi - (gﬁ)5 {Sf(§ "_%)Sﬁ(g)} ° (IV-S)

This term, when multiplied by Sf(-g) and averaged, will
yield the small correction to the equation for (&f(k)df(-k)),

where k £k, . In terms of equatibn IV-6
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(82(-k, v, %) (678E[k,v,,t)) " = ; b nvq_"l‘f‘d)% -

Mo o« K R
TX (2 )3 <F)(5f(“§:1{2’t) Sf('kv"lf; Xl’t) Sf.v(I.S’ 173) t)> =
4 T : . ‘ Vi _
. A o
. : dK i : Co
> krn a, J[dv ,[ - — Jf dr  P(-k,v,,t .~ T)
£ v ~3 (gn)5 K? o 20T

~1

CxPx - K vy t-T) B y,t - T) [%‘ (82(-k, v,,7) 8E(k, 7))

', {a;:“ (82(-K, vy, %) BE(K vy ) + g (B2(k - K, 1y, %) (K -k 33,10>},._V_v

~ ~

e d(BE(K, v, ) BE(-K 7)) ‘{a%- (8201, vy, 0) 82(-k, 75, 7))+

o~

d : i\ s ,
B (e v, B2 oy )+

4 (Sf(§~§,xl:¢)5§(§-§17)>’-{a%;'(5f(-§§zé;¢)5f(§;xi:f)>

~

c%; (8£(-k, v, 7) Sf(lj,}{}?r))}} B o (1V=9)

We now proceed by a perturbation technique similar to that

suggested by Dupree. We shall inseft for the expressions

(8r(x) 8£(-K)|*) and (8f£(X) BE(-K)|7) +the long time values

(82(x) 8£(-K) |7 = w) , (8£(K) SE(-K)]% = o0) . The physical

motivation is simple; we expect the large KX terms to evolve

rapidly to become functionals of f . Thus we may insert the
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k asympfotic forms for'thesevéxpressions,'then‘calculate (8f(x) 8r(-k))

in terms of these long ‘time values.

’.In_fact even the large X terms do not approach a limiting

value as t -» 00, for they contaln expressions which oscillate

indefinitely. This comes from the fact that the P opeators are
obtained from the linearized Vlasov eqnation, which is a singular
equation. We shall avoid the difficulty by substituting the

condition é% = 0 for the condition t —oco. Of course elther

'condition‘represents an ad hoc approximation that is used on

occasionvin order to permit a calculation. - The‘completely correct
procedure is to solve for (8f 8f) and. (8f 8f 8f) simultaneously.

This appears extremely difficult, though we expect that the result |

would justify the requirement used here. We note for emphasis

that the requirement 'a@:g =0 1is a legitimate one, which may be

satisfied by the appropriaté choice of g(t = 0). Thus we will

substitute in equation IV-9 the sﬁationary values of (Bf(K)5f(-K))

- and  (BF(K)BE(-X)) . The latter expression was calculated in detail
‘on pages 45550. We do not require the whole expreésion, only that

. part which.leads to the dominant (£nA) contribution to

(8£(8£8E}) . This part is given by

' : ' 4n; | (v S '
(6f (X,v) BE(-K)} = - i q" "(“) . (Tv-10)
Ve e K= e(-K, -K.v) ’

!
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 If this term itself,is.integrated pver‘?gi‘(as in the
caleulation of the ,Leﬁard;Balescu'.qqlli'sior‘l» term) the result

rdi§erges as K? for large ‘[Kl; but vanishes ﬁhen the angulér ‘K

- integration is performed. vWe cannot ignore this term in the |

present context because other £actors‘of K will appear before

~the § integration is performed. We may set € = 1, since we cut:

off the X integral for small K .

PR - S

We also need the expression g% (8£(K,v) 8£(-K,v')) ,

where we obtain (8f 8f) by using equation II-T1, which involves

‘the P operators. Agein there is a -subtle point, for the velocity -
 derivative does not commute with the P operators. (This point

was overlooked by Dupree). We note the fact that the velocity

‘derivative applies to particles, not operatdrs, and write

. 4 4 .
C gy B (Kyr = o0) 8 (Ky'sw = ) =

x exp {1‘150{51/‘1(03)’3@3(00)]). - o mveIr

R TN

TS STt M- WV RPN
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We may now use the 'P operators of'eqpation IT1-71,

and the fact that the result must be stationary in time (to avoid

. C o AKevt
: ' ‘factors of the form e ) to compute
i ' ' ‘
1
: | -‘1-<5f(Kv1=oo)8f(-Kv'er=oo)) -
z\‘ . . ] dx v ~)~) Q ~)~ 2’ )
? , _ .;v : : L a4y EE'._dga af,
: - Sm) o B, ™ @ W o
y ——=— 8, 3ot . (Tv-12)
v . %X K-+ (v'-v) o '

Among the terms of IV-9 are two which depend only on large

i ‘ K +walues. These terms do not contribute to the equation of

motion for (&f(k) 8f(-k)) , being in effect a correction to the
initial value term. We discard these two terms, We then |

substitute the results of IV-10 and IV-12 into equation IV-9 to find

<8f(‘}§:}[2:t) {,SfGEIE’Xl’t}) = ; Lmlnqu
t

o . f I(EK)B ——j .d'r P(-k Vprt=T) P(k 'K, 1’t 1)

.0

‘ | ‘ ' . X P('IE;XBJ-t'T) [% <8f(‘."1§)y2:7) 8'}\3‘(%)7)) A

. | K . ar _af
: A : x{ <~1 ~3) [ L df] . lmq2 [ K2 dXB d'Y'l_
_ A 'n dyy dx3 " K - (X - X')
) (k-K) o af  ar
2 dv av, - 2 X - :
4 (k-K) ~l D ] o Mrddm o~ {f(x3)'
M (k) « (wn - 7,) 'S

(continued Eq. IV-13)
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- ,<sf(-1;,v ﬁ,) 82(k, v., 7)) + R £v.) .
dzi ~ o2 ~ ol . (k-K)2 ~,
& (58 (1 10 5) 21 r))}} o ()

The result is largely a formal:one, since the quantitles
(Sf(k) SE( k)lT) and (&f(k) 5f(-§)'¢) are in fact the quantltles
‘'we wish to find. We now state the rhilosophy which enables us to.
carry through the calculation. We wish to redefine;thg P operator .
| to include the effect of highér order terms on the small wavenumber
(k) behavior. To this end we genéralize the P operator to

include these effects, and call the result P'.
<6f(k, 108) 82(-k v,,8)) = P (k v.t) Pk, ,t)
x (8 8|t = 0y . | (TV-1k)

. For large wavenumbers (K) the P operator will not be
~affected. Now using the result of eguation II-62 for the new
‘operators P', we may rewrite IV-13 in the form

7

(82 (-k, v, t) {8 BEIK, v, t)) =

iX

(Sf(-k’é’t){z )4-1( n qvf ~3J (2:“)3 F':

(continued{Eqpation IV-15)
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& | | | . |

o x[ ar P(k;K,v',t - 1) P(K,v,,t-T) ¢ 2 ~8E(k,"21:)-
TR T s m

‘[5(1’1' Y5) [ae . ‘df)j gt [ % 9

+ v
Xm.v‘ avs m K« (v,- vl) |

n

(&K 4r ar |
‘ 2  dv, dv 2 rK . : '
- _(x-x) ~l w3 b i 9”7 | = d _
E + - i_;é.. Ef_ Sf(E:Xi:T) f(XB)
(&K) - (- ) |
+ — : T, sf(ls,gyo;r).f(xl)] S (1V-15)
The result fol]_.'ows because

(Bror(8r8E)) = (Brdf)(SLBE) .. : (Iv-16)

It is now clearly easier and shorter to remove thé factor
(8f(~k,v,,t) from equation IV-1l5, and regard the remainder as the
pr ) , ‘

collision term fpr'the quanti‘by 8f . Thus we write

a | qQ o d4f q{ dﬁf} |
—-+v-V>8f+— BE « =~— = - =(BE *@ — (IV-17)
at -~ 1 moo~dy ml~ dl’; collision

where
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Vkﬂég B

GfSE} = hﬂ n J[ ‘
. i collision , E: | qu "3-J (Eﬁ)5

- x‘fd«r P(a-E, v, t) PG vy o) | & 8E(gT)
0 |

K ar af

{8(21' XB) < + df) + gtg® { 2 EX—; dyy

. ¢ - n ~1 ~3 ’

(15'5) ar - af

2 ,. = v - | . ‘ 2 . ,v._
(1;-1{) d,,l d~3 ” + »”ﬂii {%2 o -‘L 8f(k ,'T) f(v )
(k) « (13- ¥3) | | |

R . o A
+ (k-K)2 . i Bf(lg,xj,+) f(gl} . | (1v-18)

The procedure is justlfied because eqpation IV-l7 does ’
lead to the correct ‘equation for (8f6f) Likewise we may solve
equation IV-17 to find the new operator P’ .:vNote that the

operator P' for equation IV-17 will be & - function of {rl,vi} s

so that it will commute with the P’ operator acting on the

coordinates (EE,Vé}.‘ The entire procedure is thus self consistent.

' We are now faced with solving equations IV-17 and IV-18. Such a

solution is all but impossible. We must determine the behavior of.

" “two quantities, 8r_ and 8f, in terms of the rather arbitrary

functions ,fe and fi . One encouraging feature is the fact that

the equations are linear in B8f. A second encouraging feature lies
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in the fact that:thevcollision term is "smally. so that the linearized
Vlasov equation provides a'deceht deécription'for the béhavior of

‘ﬁf ; With this in mind we shall solve TIV-17 and IV-18 by means of

'f1a_Lap1éce transform in time, followed by a weak form of perturbation

- theory.  In general equation IV-17 is a "little kinetic equation,"

4 B
Involving diffusion . in velocity space. For lack of analytic methods

- we shall not attempt the géneral solution,

The transform of IV-17 yields

| (otikey; ) BE + DVBE ¢ g = BE(t = 0) - b oo v (BFOR "‘:}5"”}col_1ision_

~ . ' . ~1

| (1v-19)
The bracketed quantity in equation IV-18 has time dependence only
through 8f(r) . We shall write this time dependence in terms of

,'the ihverse Laplace transform, and indicate the rest of the

-~

. expression by the bracket [w,] . Thus the transform of IV-18 yields:

"
B e BEBE[) 1y ygr0n = (BFOEIO) oyhy0i0n
. ) w . : les)
| . & K f iwt[ [aos -t
= ) Weon av ;[;—3;—- — dt e at P (t=1)! —== e (w,] .

(1IV-20)

After the substitution ' = t-r and an inﬁegration by

parts on 7', we find
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o wfsElm}collision o JQ d,t ¢ ‘ Z b 2%
o lav ( )p (t) S - (1v-21)
 ) ~5,.(2,()5 'q T
We have used the fact that Sf(aa )s 8E(o.> )——)O for Iw l——»O
‘ The remaining time integral may be performed when we express 28 (t)

._1n -_terms,of P(wl) P(a) )

{Sfﬁglw}collision = L bt n qv f(g,f)B ‘dv
R R daw -1 1 pdw - , o '
xf at 10t -2-1;1- e 1 P(wl)j-é—f- e ° Plo,) lo] . = (1I-22)

We now perform the velocity integration over thei- delta Ifunction in
equationb IV-21, and omit terms which lead to order one‘expressioné,
while keeping the dominant (4nA) terms. We also indicate particle

species for definiteness.

| (2n)’
ik  hx af
> q” 28E(k, w) £
1

' : K dw
~ 1
[Sfuﬁglbv ’w}colllslon =_j f 2n

- Sv—

{ 2w T ]
'(~a>l+ i[ij]« vl) (K0 - @) (-1 - wl] + 1 K- vl),

q _ 1('15-%)' df

(-iK )Z ()4_ )
' s o 1q ) n
(21r)3 gﬁ (- 1 o+ 1 [k-%]-xl) e(g,a)—wl)e(}::'-l{ w

1 ~ nf'l)

(continuted Eq. IV-23)
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L, v . |
% Y : o] ' —
- te +ilkKlyg) (- i[w@lj + i'g.XB)J
AL naq,

Jorl = 7 Legomoy )0y w11k )

- ay, y [ K a ' .
x; = Foile 1 g —_— e — 8f (k,v,,») f (v,)
4 (- i[m—ml] + 1K VB)j v uiv L muK2 4%y el _V ~>

o — . - Bf (k)V ;) £ (v )}
mv (k-K)2 dXB Vs "-'3 5% 1
: XK af ' ar
Zs . =~ q BE(k,0) ¢ —~
oy K« (vo= v.)
(x-k)  df ar

cag o 0L ) g H

‘ 2
+ (k-K) ~1

- (1v-23)
(&) » (v;- ¥3)

In the first and third terms' we close the ml contour in the

‘:lOWer half plane since e(K,w-wl)_'has zeros in the upper half plane.
V'In the second term the effeé’bs of the dielectric function may be
neglected because of the small K 'cutoff. Here we set € =1 and

- close 'bhé w,

1 contour in the upper half w, plane. For the same

1

Ez
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4
réason we sét € =1 in the third term; In‘the'first-térm we write

B 1 Real e(-g%[%—%]-xl-w)+'i‘1mag é(-%;[g-g]-xl-w)
Cegoe-lekly) T Je(gae-lxklv)[* |
(Tv-2k)

The term in%olVing the real parf of € vanishes, being odd in %‘, -
?while the term involving the imaginary part'leads to 4nA dependence,
.and must_be kept. We then sét € = l» in the denominator of term one.

© Finally we write -

1 . 1 !
(ot £l nl) @by D (eky)
v . . .
x{ * RN O — T (1v-25)
Lot knr Blg-nl) Klyg- gl | o
and drop those terms which vanish, beingfodd in K . As a result of
‘:these operations we'haVe' »
o " . - dK_‘_Kuan
- {8f BE|k, v ,0} -=f = _
. . ~ I\A,N 4
a M 1 c§llisiqn (2“)3 mp
: af
28E(k, 1) —= |
- ~oa Xm . ,
X , - Imag &(~ K, [k-K]-y, - @)
(-ia) +ik.Xl) '

l, (continued Eq. IV-26)
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[dK irmu(-K 1K2 <o)l
Eﬂ)B'j "5 L( nb+ ik- Y3 Y- i+ ikey, + K. [v ~l‘])_

2 - BE ko) ¢« — :
TR : _( : dXB J +Jr(Evr)B &/

j "'5 .
HJ (- To+ikev, + 1 K- [v - v ])

x ¥ (b q ) na
S

K ( o ( | 1(k-K) .. oy
x| . L 8 (kv ,0)f (v,) + : 82, (k, v, 0)2, (v, )
ClnxE W REATTVIST g e B VTR
9, af K, df
+ BE(k,w) * == =5 o =
mumv ~ A vy K? dXB
@ - kv
i SE(k, ) s |
+ B = - . (Tv-26)
. ® - k-

We use the I&emelg formula (eqpatlon II-Qh), and keep only
-the delta functlon, which -leads to log dependence when we perform
the X integration. The integration is discussed in appendix B .

It also simplifies the result to use the fact that

4 Ay,
- == BE(k0) - T | ' o
gSfu(lﬁ:,x,m) = —t A . . (Tv-27) -

- 1w+ ik.v
. ~ N
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ﬁbre“we héve_ﬁséd,the golutiéﬂ:to the linéariied Vliasov equation as
‘a first approkimaﬁion fof? 8f, and have dropped the term involving
the initial value of 8f. This initiel value term wouwld lead to
‘correétionipf7ofder £§£ &) to the initial_value term vhich we
Akeep, (Sfo]t = O)., This has beeﬁ discussed on- pages 79,80, The

‘perturbation solution for Bf will be discussed shortly. We now

" collect terms and find

. " ~— 2
{SquEIIf,’Xl’w}collision -7 }; 2 9, qp.j,dx
il s v vy (A oL & N (v) (1v-e8
A[Q\(w-}ﬁ’x.l’ M Xj) <mu ay, “m dv3) Sfu(;l-;’ Xl’w)fv (35) - (1v-28)

| : yo (L &1 4 ‘ ]
+19<*(w-}\{anz5’ ~L XB) (m dv, ~m_ dv >fu(Xl) va(}fg)\{yw)j
: poo~1 VA3
_ Where
2

/Y I~ \ L x
MQ\(x;z) S for kd? 7

. v/ ~
k. y y2 I NP A | ?
Lo 0 - ' x
‘.En<x >< y5 ‘ >for ko>§->kd-

= 0 i for%c;,>k- " ~ (1IV-29)

0]
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'B. The Behavior of Fluctuations in the Plasme

, We have already committed ourselves to a perturbation solution
for 3f. We may, if we choose, keep all small corréctions to the P
o@erator, with the result that this operator would contain order one

terms plus -order ﬁ%é terms. This seems hardly worthwhile, ih view

. of other difficulties which will appear in the kinetic equation, e.g;,

the large k cutoff. Accordingly we restrict our attention to the

point which was the original cause for the calculation of % terms.

We need the correction to the dielectric function.

The lowest order solution to equatlon IV-19 is given by

qE df

. SE(k a)) . --I 8¢ (t - 0)
8~ = -+ . (1v-30)
M i - 1& Xi ) ~un+i% xl

"We eubStitute this result into the collision term for fluctuations in

the plasma (eqpation Iv-28), and neglect the terms coming from the
initial value of 8f. (See pages 79-80° and 96). This leads to a

correction to  Of giyen by

) | onna2q?
& 1 1 Z ) vq'v q‘u.
T '~iw+1k-v m '
» ~ LY R 5
o] .
. —= 8E(x, o) - = 5(y5)
| X{Q(w-k VL5 Vo= Vi) e l
: )
~ ~MT e S5 modyy om, dvg /g ikey )
. - q_v dfv
. , = 8E(k,w) = 1.
ks ) (e ) = }.- (Iv-31)
M ml-i Xl ‘mv 433 (im-‘i}g.v )
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~ Putting IV-30 and IV-31 into Poisson's equation;, we find the

'*,dielectric function including the collisional damping of waves.

5 ar
w r ok £ dv
o) = 1+F 4 [T
’ . n X w-}gx
2 2 o 2
w Fw w 1
+ i B {AV idv' Y quqvg - B qv }
w,v 2k e L&mbxﬁ (w-k-v)

X Kk o Q(a)..‘k.v;‘v_'v') . ..l_.. .i. - _l_ _d_.>

. dfu
' . -t ——
fv(X ) % dv . ‘ S o
% ' . o (Iv-32)
(@ - k-v) '

,Sincevwe keep only the correctioﬂ to ﬁhe dielectric function
o in'the.néw operators P, we shall simply call the operétors‘I; and the
reader may decide which dieléctric fuhctioﬁ suits his pfoblem. Recall '
that the ﬁ%ﬁ corrections to equation IV-32 were obtained by cutting
off the X integration at the Debye wavenumber . Wé may be sure that |

7

this procedure is valid only after a sufficient time for the large K
confribution tg the integral to dominaté the small K contribution.
In general the small X contributions tend to die out slowly. Thus
’Ehe é%ﬁ corfections are generally valid only for a systemvnear
equilibrium. |
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V. THE KINETIC. EQUATION FOR:A UNIFORM SYSTEM - s

A. Construction of the Kinetic Equation for Short Time (t <t 4)

Having-modified the P operator to include hi_ginervorder effects

' 1n thé vdie’lectric function, iwe now turn to the calculation of ﬁhé kinetic
eciuation. The formal procedwe is esséntially that» discussed in the deri-
va’cior; of the Lenard-Balescu equai;,ion in chapter II, except that we do not‘

take the limit t=> . We wish to calculate

dfu qu a v ‘
—_— = L e = o) -
dat om dv. <6fu g) : ‘ L (v-1)
u ~ . . i
where
' | ax _ S : o
(of BE) = [ — (8f (k, v, t) SE(-k, -t)) . . (v-2)

We write outlthe explicit form of (8fuﬁg) s in terms of the P operaﬁor.

dw, wim t pX —-E T = =2 b r '
(Bfuﬁg) = [@?—l_ e 1 v m-u- k? av . .qu.-/; : @_vl 4
. (-'-'iml":+ ;iN'X) é(k, wl) J -l o+ Ay
1 dop dmpt |y B bmngg, % .
e 1 X
. . . 01 #
~iw, + 1key 2n . k e(-g,_wg) -iw, - ik.y, |
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T Wfa( ) 8(y - x,) + gw(,lg, Y Y to= 0)) .

(v-3)

The 1as£ factor contains é 51ﬁgular term (1nvolv1ng S(V ; A »
and a term éomlng from the inltlal value of the two partlcle correlatlon
functlonr, We shall call the latter term the_ 'initial value term" , and
-“defer its‘calculation until léter. We may perform a velocity integration

over the singular term, with the result:

BE) = -
<5fu >s e 1 eﬂe.e X
1k g £
[ ko q.f (¥) .
) , . ‘
LE e(l o))~y + iky)(-day, - ik-y)

q ik  af ik

Zm 2 qv e - ayr (y) -
e(k, o 1) e(ak, w, ) (i + 1k v) (-L@l + i%'Xl)('iwé" i)

(v-k)
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4

- Our atﬁention wil1 be focused for some time on the results of

the . integrations. Therefore we shorten notation by defining oper=

ators Al and A.2 .
3 ik ‘
Al.=‘_f§-hﬁqpfu(x) .
. k .
5 q“ ik - af i R
Ay =y Ef; 2 & (4nq, )"0, -5 [avf, (y;)

(v-5)

In téfms of'theSe-definitions we have

ay,  -iot[dw, -dapt [ - .

(8f BE)_ + e —e -
l I .
,. ("'jme - i’l\‘{-x

+ . - .
F e ek, o) ek 0,)( ~iw) + 1x-y)( -t +iikey )( - do, - 1Ey;)
(v-6)

Pl

. We now evaluste the w integrations by pushing the @ contours

:down”in their respective «w ~ planes. We keep the residues from the poles

which eaéh cohtoﬁr sweeps over, but we neglect the contour itself as soon



o  >as:it is‘fapidly damped in ﬁime._ (Imag » < “pA _ ) .. We piCtufe a
'possiblé résult of the ai' integration; "Poles in the upper half plane

v yield residues which grow in time, while poles in ﬁhe 1ower half plane

Yield damped residues. There are also pbles on the real axis.

original ., contour

1
--------------- -9_--..._____-.._____,_..--__._-_.._____.._..é.__..-_-_---.-—-_—--—--
. o pl
, o (} 2 ..P ane
| ( - o tn
. i
A
¥ Yy S ' '.
A | /\{ e 4 o o
7 . . .7 .
Final @, contour (neglect)

1 , : -
: ‘ | , ' (v T

1
terms. Since we discard the final- w, and w, contours, the terms
-1, % 10

e and o «_kt do not include very rapidly damped terms. Thus the

" As & result of theblm and w2 integratiqns we obtéin the following

k integration over these terms is cut off (the integrand disappears)

" when oy and " have large negative: imaginary parts. Imagﬁ;gkj <

-k
-0 Inh
R
A ‘ ]r . o . ‘-r N
-ikevt, -do b
' _ : 1 e e ek S
{8 BEY = A : 4. , : - s
CRTEs (e s k) ae] (o tE) | |
Sl -
' l )
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written as

A, | -ik‘xﬁ ' -i}g'xlt
+ = = : _ + =
("i) _ .e.(k) k'")(,l\{, g - 57-"1) e(%) ,%‘Xi)'(%‘xl - -15'3)
-_L ) ) .
e-:.a)kt' | e1k~v t
+ X +
dey (o - key)loy - kov) ek - k)
dw |, .
% ] i
e %m-kt
€
Cdel (o, +kev,) | ' |
| d_LGias_'k “k vad o , c T : - (v-8)

In general the dielectric function may have several poles in

'_ithé'region swept over by the w contours.‘ Thus the terms which we have -

'-imkt and e"im-kJC :would be given'morevaccurately by

:.Z~,:iﬁ % anda = QiﬁA"af " We shall omit the summation, which has
Lde - ‘

k . k" .

no effect on thlegrthcomiﬁg analysis.._We shall also cons?der oniy the
berm 13, so that = e-iwki,t{:eiw_k% :;‘ Z;l (wki + w_k.l )t
summation will again belim_plicit? The behav;or of terms invvolvingv
e«-i(cnk.i + w_kfj Yt

where the

will be considefed after the rest of.the analysis is

~completed.



terms) is well defined for all values of v X

- “shall therefore replace
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We now note the important fact that (Sf BE) (the sum of all

p and k. (The

R authortwishes to thank Dr. David Sachs for-emphasizing this point)r
A{ Although individual terms are;singularvfor some values_of these argu-
':j‘ments, the singularities are always'cancelled out by,other singular-
- ities, leav1ng the sum perfectly regular. In essence'the ) contOursa

- have picked up all the poles of the original quantity (Sf (5 v @) )

SE( - ©,))

In practice it is inconvenient to work with individual terms

- “which are undefined (singular) for some values of their arguments. We

k'vv by k'v --1ip whenever there is a question

.~

bdas to the meaning of a given expression (p is to be a pos1tive real in-
| flnite51mal, although the ch01ce p negative would lead to the same
,hpresult) This changes the value of the quantity <5fu6§>y, by en in- ;
| finitesimal amOunt, but,it‘makes’our calculation’much simpler. There'is
" no way of - eliminating singularitles coming from zeros of the dielectric
.*‘pfunction (e. g., -k'v = o ) This will not cause difficulty, for the
tfbehav1or at such a p01nt may | be defined as the. limit as the variables
'(e.g.,, 5 orl-x) approach the value yielding a singwlarity. We shall

‘see that the sum of all terms remains well defined.

When we carry out the multiplication of factors in equation

V-8, we find . eight terms., Two of these terms are Independent of time;

‘and one has time dependence e27kt (from the fact that o, + o =

Pk -k

»Qi;k5). These terms may be evaluatéd as they stand without difficulty.vfu
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" 'We require the real parﬁ of these terms for'tﬁe kinetic equation. Note

that the ”Al operator is imaginary, while the A2 operator'is réal. We

usevtﬂe relations

o 1 _ Imag  e(k, k<v)
Imag _— = — ~ .
e( -k - k) JeGs Bw)|
(v-9)
: 1
Real [dy = % ldy &(k-y, - ky)
e (-1)(gy, - Ky + 1p) | »
(v-10)
| 1 e
.Real : g
(-1l ~Fx) (B -ky) + %2
(v-11)
o - de Coaey %
“We also use the fact that = = . e from equation
: | D ol o doja
II-114. The contribution to dfu coming from these three terms is
_ . dx : o R ,
. given by
5 “dfu
9 ¢ - 4 Q. 4 Jak [ay k k. —= 8(k-y-ky;)
B (ereE)L. = B ay 1
uo CIIT ~
mu/, dy _ m, av T —5 X
- - k'!e(k, k)
2
' 2nvq_v.v.
> £ (y,)
v m v
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SR 2

5 og0w) e el ky) o af a.
2 - |
e(,lé) ,15‘3[) mu dv

' The first

' Balescu equation,
" in the dielectric
'-effegts) has been

and Frieman state

D | - (v-12)

’énd'second'terms_are'idehfical to those of the Lenard-

if we omit the higher 6rdér-effects which are ?resent'
fuﬁction;7.The thirdv(withvthe negléct‘of higﬁer order
.calculated By.Rﬁtherford ahd Friemanhs. Rutherford

that all terms involving elé‘lt go to zero by a

- "phase mixing process". The statement is incorrect. These latter terms

are preciselyvthe

7 consistant.

ones which must be included to render the analysis

We turn now to the calculétion of these other terms. We write

" them out and number them, as we shall consider them separately.




e o e et e e e S

-

1 , ~
others = Al o +
dw oo_k |
-ikevt dikev.t @
(-1) | el xox) e <k - ky )y - keyy - 10)
-ikeyt  -do_ b @
.e e S
e(x, k-v) de . + kv ) (kv - kv, =1ip)
dwiw ‘
-k
-lk.‘l’lt, -ia)_kt @
e e : :
-
e(k, k.v,) de (. +kv. Ykev, = k'v + ip)
dw jw
-k
ig-xlt e-l(l)_‘k't




'We shall evaluate them by deforming contours of integration The A
' operator does not 1nvolve any integrations, while A contains an

',integration over. v

 sultant contour of integration may then be thrown away, Jjust as the

=108~
Our principal task consists of the calculation of these terms -
o1

Yyo- The entire express1on (equation V-13 ) is

‘ then 1ntegrated over X to prov1de a contribution to the collision

© term, We;shallvobtain simpler expressions for the terms in equation

V-13. by deforming integrations over Xk and v

¥y “into complex vector

1ntegrals

It is pertinent to ask for the phy51cal significance of- integrals

'”over‘functions of cOmplex vectors. The author assigns to them neither

. more nor less significance than the termS'which have already been cal-
fculated (equation V-IE ). The quantities 1 -5 of'equation V-13

. are well defined as they stand; and may be left.in.this form, if we choose.

Tnstead we shift contours of integration because this allows a great sim-

plification in the explicit form of the collision term, and because it
makes the-resultant expression relatively‘tractable. ' The result is quant~
itatively unchanged. |

Essential to the procedure is the fact that we may calculate the
terms .of equation V-8 for t very large {almost tad)."When we'let
k or 'y, (real) hecome k or x (complex) in the proper fashion we'

may cause the exponential time factor to cause rapid damping. The re-

1

- and @, contours:were thrown away once they became rapidly damped.

2

]
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Thisidoes not.mean-that the terms given in equation V-8 vanish.

l‘ méve from'real to-cémplex:valués they pass over poles

“which- lead tb fesidues which are not sufficiéntlyﬁrapidly'damped to be

thrown away. In fact some of the resulting terms will not be damped

- at all (except that they will disappear on the implicit (‘t>tad- ). time

scale. " Our résult for eqﬁation V-13 will consist of the cbntributions

from poles which afe sﬁept over as-wé displace the variables of ‘inte-

ération; | |
. Thﬁs far we have spoken of shifting X ‘and ¥ into'compléx

values s though they aré scalars. In fact both variables are vecﬁors,

and we must consider vector (volume) integrals rather than scalar (line)

" integrals. - As the transformation from a real volume integration to a com-,

plex volume integration may tend to cause mental indigeétion, we do what
we can to make the procedure more palatable.

Note the fact that all terms of equation V-13 contain the
-1k vt ikev,t |

- factor e ., or ~~1" , or both. If we wish to cause damp-

e

ing in the exponential we need displace.dnly one component of 'k , or

of w

o . Displacement of a'component of v, perpendicular to k leads

~1

“to no change in the behavior of the eprnential, Displacement of a com-

ponent of X% perpendicular to y, does affect the time behavior, as it

~]1

affects the value of Wy and o |

x In this work we shall follow the

© simplest course, by expreSSing the results of all contour integrations in

terms of a shift of '311}54 s Oor 5“31 . This permits us to use the

usﬁal nomenclature of scalar contour integfation and to draw pictures of




-110-

.fhe movemenf of éoﬁtours-in'thé respectiye ¢bmple¥‘plaﬁes. .Wé simply
-iénore‘the coméoneﬁts of.‘XiJ;g ~ and f%_LYiﬁ,{ |
Wé‘wili.have to displace,a‘compbhgnt“of‘ug_gy on occésion,‘in
_Qrder‘fo ﬁéke certain contoﬁfs disappear sufficiéntly rapidly.,'waever
| our final result will coﬁsist only'éfvthe résidues of polés swept over
. by the displaced contours; so that this resuiﬁ will notlcontain terms

involﬁing two cdmpléx componenté of X . This will become cléér
presently.

A further'q?estion ariées. When the only variable of integfation
is k , we ﬁust perférce‘shift the 'k “contour" in order to produce
damping in the exponential. Hoﬁever'in many cases there are two vari-
?ables.of integration, 15 ‘anc'lr_g‘f:L ;. When we conéider the initial value

terms we shall find three variables of'integration x, Xy’ “and_ gé .
' Which.coptour(s) shall weAmove, and how should we express thg result:?
 The question is academic. We move any'of the contours in any way
ve see fit;.as long és we'perfdrm.legiﬁimate-mathe@atical operatiéns, In
'this'work'we shall move either one or two contours (for each expression)
in order to produce s resulf.in the most direct fashion. Generally we
-'shéll seek a result containing the smaliest number 8% terms; In some
cases a differeﬁt éhoice of contou:é, with é resultant larger number of
terms, leads to moi'e simple picturés of contours ‘of infegration. No

clear advantage results from such choices, and we choose the contours

:which lead to the greatest economy of expression.
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We now consider how far we may displace k and v (we. shall
henceforth use scalar notation for the relevant components) from the

real axis. For the k integration we observe-eqpation VJiS, and the-

" definitions of the operatofs- Al'vand' Ay . Tnefe are no difficulties

and we may displace k as far as we choose. (0f course we pick up

‘poles in thevprocess). On the other hand the. Ei dependence is not

gi?en, for f(Xi) is an unknown of the equation. How far may we push

v, without running into difficulties? - If we consider the equilibrium

~1
2 o ‘
' dlstributlonf"”exp —fmvl , we see that f becomes large in magni-
?’T o ' 2
: ‘ ‘ mv...

tude as the imaglnary part of Vi becomes large. f q , €XD 55T | We

do not want to throw away large térms, even if'they are rapldly damped..
- For thls reason we place a limit on the‘imaginary part of vy

.Imag v, TV th . In this work we shall not consider the possibility

1
places a limit on the types of distribution functions for which the theory

that f(vl) has poles within this range of v = real. In essence this

holds. The author doubts that the restriction is physically meaningful.

. Because we evaluate all expressions for large times ( t < t ),

" we seldom have to dlsplace k or vy very far from real values. In

general we want ' Imag (kv N i ;f A If v, ~ v, then ve displace X
A

oy approximately k EnA . If ko~ ky » We displace vi by approximately

R

v ﬁnA . When %k or Vl are very small we must displace the corres-

th

pondlng variable a large distance from real values. This is not surpris=- -

ing, for our description of the fluctuation phenomena is not valid in thib
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@

' -fegioﬁw4 sée‘page 82.'-Since there is no apparent incohsistency, we

Simﬁly;omit the cbnffibution.of contours in this }egion. Alternately,

V1

{0 be displaced arbitfafily;far.
We turn now to the explicit form of the terms We'shall calculate.

. We have already performed contour integrals over Cand ) ,.piéking

1 2

. . y l : ) ) l . .
uP‘Poles of the form 5Ty and. _ETE;BT In either case the result

wﬁs-elementary,_sinde Wy and w, were bona fide scalars. We simply

took the residue at the pole, replacing all ®'s by the value at the

' pole.

This situation is modified when we consider moving the X and

1

value at the pole, we still must perform integrations over:the remaining .

W cohtours. Even though we replace the component in question by its

vector components. Instead we shall leave the residue theorem in implicit

form. Thus

- Residue ak A(k) 8(k'y - a) .

(V-14)

or

'.’Egsidge: dxl_B(gi) 5(%’31 -a) .

r

o (v-15)
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The explicif form of several of the terms of equation V-13 1s now de-
termined. One point remains.
We have already found the zeros of the function e(k,w) in the

o plane. Wercall these values of ® "mkf'_, vhere k was real.

e X, o ) =0
| ' (v-16)
. Of course'we shall use the same notation when ‘5 is cdmplex. |

The‘d{fficulty 1s the following.  The zefos-ofw_e(g, w) in the o plane

‘lead to residues containing %%‘ . But e(k, k*v.) , which appears
' - " T T .
in V-13, has zeros in the '5_ plane and in the Yy plane . When we
- pick up the pbles of L , we are lead to residues invbiving de
= " as Weil as the reviousl calculated Qﬁ ch The termin;
& k(vy) 2 | previousty caleu Wwlolk) -

ology is inconvenient, and we seek a uniform means of expression:for the
" poles of: —%-_,_:We procede by expanding € about a zero in the respec-

tive planes. ( e is an analytic function by definition).

 Residué




BRI

-Residue R Residiie

el keyy)

) Koy, - + e e
dw'@k( V ak) .

ay, B(xi)'_ o | |
, 5(kev, - . L P
-Awjwy, o S
ax c(x) ax o(k)

Residue:

lk(l;-k(v))+~-.

[a et
8 - x(y,))

€
() (¥-19)

We show that'this'expréssion mﬁy be written in the form of equation

v-18. We héve
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v_d_kiig(,gl) -

%S - = & -
K k(v )- _ 1 da>wk. ‘da)wk de o
1 -— |7k
v dw
From equation V-16 we have

d¢ ' de gm

and combining V-19, V-20 , and V-21 , we have

(v-20)

( v-21 )



R

first case. We consider first the v
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e(;,w;j j l%( d.(.uK)

[
o

Residue

o (v-22)
We use the .property of the delta function [dXA(x)Sﬁfﬁcﬂ =
. . 7 ’ .
[axA(x)d(x - xo) to write V-23 in the desired form
. ‘ ‘
J. £ (xo)
Residue |-dk C(k)
(v-22)

We shall express all residues of -% 1n the form of - eqpatlon

V-18 or V-25

Before proceding with the calculation we illustrate where the

zeros of e(k, gsgi) and ‘e( -k, —%oxi) might be found in the complex

'k and y planes. N6 detailed picture is possible, since we do not

~1

- assume a particular .cholce for the distribution functions fe(gi) and

f. (v ) In general the plasma may become unstable for plesma oScilla-

l ~ -
L T

tions (w ~ wé) , ion waves * @ o —=£ | and the two stream

N instability (low frequency). We will draii pictures appropriate to the -

l_Aplane,bwith k real.



-(v-2hj

:  The symmetry follows from the fact that e(k, 5-31) = e -k,
. o ¥ ' : '

- kv ) . As shown here the plasma is unstable for some waves with
positive phase velocity, and stable for all waves with negative phase

velocity. Noté that in the unstable case the zeros of € cross the real

axis. The region enclosed by this crossing may be identified with an un-

stable volume of k, vy space. Waves (solutions to 'ﬁfg} &k) = 0 '),

~ with this phase velocity are unstable, i.e., the factor efiakt grows in

“time. infwhat follows we shall consider only the case of an unstable

Plasma, aé it evidently includes the stable plasme as & special case.
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. The behavior in the k plane is somewhat different. There are
- two functions which we ‘must_ consider e(k, kyy) and e( -k - Ey)
'We consider the case of an unstable plasma.

o

A#
£

(v-25)

U
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The curves represent possible solutions to the equations indi-
cated. As shown ey ‘is essentially a'parameter'takiﬁg on values ' = 00
to + .00 . There are two curves for each eqﬁation because for a given

1 there are two solutions to the equation e(k, 5-31) = 0 or to the

' eqpatidn e( =X, —5-31) = 0. The syﬁmétry-between the two pictures,

and betweén the two curvés in a given.pictUre follows from the fact thaﬁ
e(k, 5131) = e(_ﬁg*; - 5%4 gif4 . Again the region(s) in which the

zeros of gv cross the real axis may be identified with an unstable volume
in k, Y, space.

In the analysis to follow we must perform integrations over k

1’ where both vecfofs take on both positive and negative values.

. ' Since it.is inconvenient to consider all possible combinations of signs,

'~ we shall henceforth choose k and v, positive with respect to_some

' arbitrafy axlis, . This is in no way a restriétion, as the other cases

- follow trivially from the.basic properties of the dielectric function.

Thé other cases follow directly from the plctures glven préviously.

Henceforth we need consider only the pilctures:
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€( -1'\{‘, r-_%oxl,) = 0

-é(k' Kev.) = o . | ‘

We now consider the procedure for moﬁ.ng contouré in the. kX plane

80 as 'to'produce rapid damping. The terms which we will consider have the

ikvt C aikevet -1t

“time dependence of the foi'm o ™ ~1 and T ~L -k . It might

e e

seem reasonable to move k up in the first case, and down in the second.

ThlS is not always correct for w, and o also vary with k. We

-k
use the‘ Cauvchy~Riemann eq_uatlons, with wk o= 52k.+ iVi{
Sl T B S T

jdkR de R 'dkR : dk__[ .
. S o (v-27)

For plasme oscillations a - ‘\/wea + 37<Tk2 50

w

— — -
dkR 232&.

k ve.\ - - ...
gth). ,:-

(v-28) ¢
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i
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For the imaginary part of cuk we have

e
vy (%/\
' (v-29)

Since we do not push' k  far off the real -k axis in order to

- we neglect dgk A compared. to 7k . A f‘uréher‘ point along this
| T 4 | |
' l:Lne must be mentioned. In general the relation d)k = = (D__1:e holds
only for k  a real vector. When k disucomplex we have (.Dk = - wk"’"
Thus ve ask what is the value of @ + @ = 21y for k off the real’
axis? = From equation 211, for both a)k and ®, We have
e W, 4R AR, ' |
. - + = + - .
Codk dk dk
dky T T 1

d.kI. ‘ de

(v-30) |

‘for Xk on the real axis. Thus when we push k off the real axis the
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value of mk + O k

-i§~effecfiyely unchénged; In.ali expressions -
involving 27yt s thefvalue of 7, Shéuid be aetérmined from
A e(k =-reéi, wk).:Q 0 , rather fhan from;a zérq ofjthe dielectrié
".funéﬁion_at é point where k is comélex..

If ﬁe'piék a representative term,vsay*feik‘xte-ﬂgkt s i£ is
clear from the preceding that_a change'zskl in'the imaginary partvof
‘k éausegga chénge in the real part of the expdnent-given by
V -yAkI + ﬁﬁi"?kkl |

Thus we wanbt to move the k contour up (into positive

. d . o
imaginary values) for v larger than EEEA" and down for v less
an | R ‘

‘ than

dkg < We illustrate'possible motions’ of the k contour for

‘varyihg values of - v.

deformed

- k. contour

e

faf
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PEBHPL P

\ )
(o T
\\ / A m
\\ > [
7o s 8
-~ . «% - o
f S
] w B

volume.

- e - -

v "small"

(v§51)
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. :Ih some regiohs (spécifically‘those regions:where the deformed .

. contour crosses'the real axis) the contour integral .is not sufficiently
,dambéﬁ, and mayfnot be neglected. These regions are unimportant, for

a:-We may still displace avcomponent of Xk perpendicular to v. Thisv

does not affect the behavior of the factor elb.xt , but it does affect

the factor :e-ia%t . Since we may always displace a component of ‘k,
ﬁerpendicular té v so"as_to cause rapid damping, we shall simply.
neglect vestiges of contours‘of the type shoﬁn by sblid'lines in pic-
ture V=31, | | |

| We now consider the-zeros which fhe‘ k contour may pick,upb

while moving in the k plane. Evidently therehare two possibilities:

ek, ky) =0 and e( -k - key)=0 . (Of -course the zeros of

~e

key - @, and key + 0 are at the same respective points). In view

k k.

- of the picture just drawn it may not always be clear what terms the %k
. contour-will pick up while being displaced toward:rapid damping. Rep-
‘resentative pictures are fiﬁe; but we need a more systematic approach,

for all pictures depend on the particular distribution function f(g)

which we happen to choose.. The point of view which we take now is

“essentially pragmatic, and applies eqﬁally well to the initial value

terms which we shall calculate later.

The process is the following; We test t@g.ﬁehavior of each

integral by pushing ‘the k contour both up and down. In one case we

) =0 , in the cher case We pass

)

pass over the point where e(k,

&
2

0 . (We cannot say which is

over the point where ‘¢( -k, - k°

<

@
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- "rwhich3- it depends on whether v 1is ihside_orfoutside the nhstable

volume in 'y space) . The time behavior of ‘the expreséions“élkfxt
s

- :w.)k'b : _1'15 - '}?fe

is now very simple. - In the case where

the k integral passes over-'e(g, 5{3) = 0 '; we find k'v = oy .,_so

ikt -im b -ikeyt ~iw b _ ~i(w, + a)_k)t

that = constant, and k =
e e . e e e
27k ; In the case where the k integral passes over ¢ -X, '%°X)= 0,
ve find oy —ay | so that H¥b qimt -l +o )t 2nb
L] - - . e e e
while e-;%;xt -ub—kt = e = cantant. Thus in all cases the time be-

27chG . Wé now choose the ‘k

havior is either e°-= constant or
contour which has the more rapidly damped behavior, for the given va.lue
of y . Thus if 7,>0 for this value of y- , we choose the X

contour leading to time behavior e® = constant , while if 7k<:O ’

we.choose the contour leading to time behavior ez7kF .; The argument
works equally well for the terms l%'xte'ubkt_»and e-ig°xte~y®_kt .

Note that we do‘not have to consider taking residues from poles - we

- simply want to know which direction to push the k contour to producé

~demping. .

Thé argument. for throwing away.contpurs'resulting from the motion

of k,Lv is essehtially similar. If pushing k_Lv. leads to a damped

- residue coming from.a zero of € , then this zero could (and should)

have been picked up when we deformed k"v » If we 4id not plek up
the zero of €. with the original kilv contour, then we should have:

puShéd the component of 5k. paréliel’toi v farther into complex values.
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v Tﬁis may:be Qbserved from thé'fime behaviqr'Of;thé expénéntials.. Thé v
reader may ﬁondef_if:we,could not pick ué polesiﬁy a more-or‘less o
afbitrary_&isplacementjof the vector\vk; We could, but we have
.choéen to leave-the resuif with only oné componeﬁt of k ‘complex.' |
. In general a diéplaced k contoﬁr may pick up contours in more v

;533 t e-ybkt

. than one velocity space. Terms like 1 '8(gf3'~ wk)‘may be

‘  made to damp rapidly by moving the vy contour of integration,‘ Aggin
we may pick up poles in the process. | |

| A final statement 1s necessary. In order to avoid confusion
':we adopt a convention expressing which variable(s) is(are) complex.

In the delta functions we place a bar:over'the complei variable, Thus*.
ch;v . wk) means that the component of k. pafallel to v, is aﬁa? '
'lyticaily confinued inﬁo complex values. Alsﬁ we need a means for |
separating terms which appear for'variabies iﬁ the gnstable volume

ng arid m_k 'haviﬁg ppsitive iméginary parts) from terms which appear
. when the variables are in the staﬁle volume ‘( wk and 'w_k_ hﬁvihg ﬁégm‘
' ative'imaginary parts).. We shall indicate the difference by placing a
' p1us or minus superscript én @ vhen it appears in a aelta‘function.
Tﬂus :SKk-zé + m_k+ ) ‘means thét véA is a complexbveétor, and w_k has
a positive imagiﬂéry part. |

- We procede now to the calculation of the terms of equation 196).

.- We consider first terms 4 and 5. . - : '_ : “

£
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)4' +' 5 = +
e(}"(". kX S'YE w ( ;k + Ky )(}é‘xl - kY + ip)
-k .
«ik.v.t ~dy t
e 1 e k
» de L]
-k -k 4 )dm,wk_(wk IR AUCTHER xl‘,)v_

(v-32.>

~ Both terms are to be integrated over }gﬂahd A 80 that we

may move elther contour. We choose to move the k contour as it leads

to fewer terms. There are two possibilities, depending on whether Y

is inside or outside the unstable volume of velocity space. We first

considér'thévcase of 'Xi_'inside the unstable volume. If we push the

respective k contours toward the zeros of . €(k, %*xi)A and e(. -k,

- %sxi) we are lead to time behavior 827kﬁ ( 7k: positive since v,

'lis inside the unstable volume of velocity space). If we push k :in the

+ Kev and w, - k-v
~o ~y o

' opposite direction we come to the zeros of w_ X - 1

k
which produce time‘behaviqr‘ e®= cénstant. The latter éase is more
rapidly damped, and we push the  k contours on until they are so rapidly
_ damped they ﬁay be neglected.‘_The.resuit is.given‘by_the residues of
the poles. (As noﬁedvprevioﬁsly wé,may neglect ﬁhé Zero at- kv = o
-because Wevmay also push the _vi contour to produce rapid damping).

Thus we have
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.,._"2:rr15(§-xl-_+ ® ) o -

de
&bcb_

~

k‘»e(l& %’xl)_(ls‘xlv-_ 5y _+v1p) L

e T +
2318(§'x1 - o )

)(k‘v.

- kg Mgty - ke te)

g—flw;( -k

(v'-saﬁ )

In the second term we have used the property of fhe delta function

h 8(x-a)f(x)'= 8(x-a)f(a), and inserted the ib, according to the prescrip-

tion given earlier., We may, rewrite equation V-33 using the decomposition

.
x + ip

h+5

=P %fl ix8(x) ¢ to find

‘ P 6(;}:{: J - (J.),_i;-*-)
- o gy - ey - k) —
. N o N. . ’ . _d_~_€_ G(k k’V"*‘)
am fw. NN
=k .
tewe
+
s(keyy o )
Cdey )
d_B’wke( - ,l,S) - ,1§, "'l) » -
, . (v-3k)




‘ The contribution to the Kinetic equation is given by | —

.

[k - A

bes ).
Q'ﬂs'v(-i)( 5)

"Howéver“if we write out the principal value terms wé find that

they lead to a contribution of the form P ( & - a*‘) , which is

imeginary, and hence may be neglected (it must be O ). The term in-

volving 5(§'X-" %'Xi leads to a real contribution to the kinetic equation'

given by

L5 = - 2:1'25(;5._;5 - key

o ) . +
&(k Yy ot O ) §(g x> ) ]
%) de : T dey - ;
oo, k) Glw < - EYy)
-k k- Q
(v-35)

If we compare these terms with the first term of_eduation V-12

' wevsee‘that the three together may be represented by a single contour

integral

(Termvl of - oo

Term 5

G(}S} %"Y'l) = 0

\/@F\/ .

equation .
V-12)

k plane

7SN

=

©

=

8

= .
\

(v-36)
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’.whérevthe contour is split only when vvl .1s in the unstablevregion of

;veiocity space. ’ : o -

' There remains the case when_‘v ' is outside the unstsble volume.

. 1 .
In this case we push the k contour toward the zeros of _e(g, %’Xl)

and 'g('-_k? - %'Xl)J » in order to produce damped residues having time'

behavior »e27k§ | 7k negative ). The result is now given by
- o Eykﬁ
2:c16(}§,-gl - ) e
-F'

)++5:=

)

EE
“ld€ -
ﬁ(wk)! SR B2 CENRS

2n1§(j§'gl +o ") Tk

(Vv-37)

de
ﬁ(wk)

 Comparing these terms with the third term Jf equation V-12, we

see that the sum may be represented by a single cdntour”integral:



- wheéré the contour 'is split only when v

" of v
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Gomtion. 22222 —— e T
v-12) . ' , \_'/ \ _.

1

1

of the unstable volume). Using the fact that @+ w;k

rewrite equation V-37) .

27, t - - N
| te © (k-vl - o) : (k",Y]_ oy )
L +5 =
de 2 (o, - k-v}) (w =~ kv + 1p0)

We now consider terms 2 and 3 .

(v-38)
is outside the unstable volume

space. (We have arbitrerily chosen e(k, ky) =0 to the left

= 217, we may

(_V~39)



~132-

(o By +o )& y-Ey -i) |
(v-50)

We first push the xi contour up (into positive imag'inary valueé)

'in 'Eerm_ 2 . We obtain a non vzero result only when the contour picks up
a pole of ef _ K, - l%xl) ) ..(We discard the rapidly damped co'ntéur).
We'will pick up the pole or;lyfwhen a_)_k has a negative imaginary part,
: co:t"r:ésponding ‘to damping. | Thus | |

~ikevt -im b

[ et 'v - ~ -k
-2718 (k Hotey ) e e |
de :
o, <t BV sy @)
~1kevt -iw  t "
e e -
de ek, xv)(w, + kv ’)(k-v - k°v. - ip)



& non zero result only when we pick up a pole from e(k, xy) = 0.

=133~

i
- We now'dispiace the X Gcontour in eé.ch expression, obtaining
(The zero of Xk-yv + US_k

would lead to time dependence e° , telling

us we had pushed the contour the wrong way.) Thus

2, B7y" oy - o
-ex"te ¢ 8(FY + o, BE Y - o)

1

‘ — -
gf(wk)l Y I

- . '- -2')’k'b
215 (Ery - ¢ e

5 - |
R R S [ S TS B o
/. ‘ . ) v l.. : L . (V-ha)

Terms 2 and 3 are related to the terms of picture V_-38 by further

‘deformations of contours, but we shall not draw a picture. Term 2 in-

volves analytic continuation of two contours of inteération, ) k and y,i .

: There_rémains term 1.

e o K |
Term 1 = . - . '
. » -~ de | ;
do o (w-k * % ,Y,)

fki.i | I. ‘v 3 . ‘ . v.:,‘  j ) | l(V-u})



~time dependence é27k‘

SEL

| If we push the k contour to the point where e(, k-x) = O , we find

¥ | while if we push X to the point e( -k,

»,égjx ) =0 we find time dependence e° = constant. Since e(k, %'¥)

d&es'npt appear’in'the expression, the,fesult is given by

2n18(k-y ro_ ")

Term 1 =~
iy | | (v-lsh )

:-.This term plus the seéond term of-eqpatidn V-12 may be repre-

;:sented'by the single contour integral:

Term 2 of . 5 _\\L ‘ .///7'

Eguation A— 14 L -k,plane f
- V-12 ' \\\\\;’t;//// . . ' .
- Term 1

(- -ky)=0
: (V-l_rs)

vThis completés the calculation of the terms in equatibn V-13. :

We evaluate now the terms of equation V-3 which we have called
"initial value terms";'fThé calculation is simply an application of the

methods we have been using to a different set of terms. A few statements |

are necessary before we procede. .



powerful one. This 1s not apparent in the deriﬁatioh-of'the "or
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The initialwvalue tefms are différenﬁvfrom those previously con-
sidered in that their k dependence is not explicit. This appears to

Be of little consequence, and we shall assﬁme that g(k, t = O) does not

have poles in the complex k plane for Xk approximately real

(lkI[<’ka) . We emphasize now that this need not be the case. .A single

(rather extreme) example will be sufficient. Suppose that g(nl - 32)

- contains periodic terms. Thus

38, - G - x,)
g(fl -,32) ~ oz e * L 2% 4 g' (non periodic).
. (V-16)

then

g(k) ~ z 5k - £) + &'(x) .

(V-17)
When ‘we move the k contour the terméAcoming from the delta
functions remain.. In particular we find‘terms in ﬁhe kinetic gqpétion .
which are proportional to __iﬂi'xt.eiwzit' . Vélocity derivatives of
these terms lead to séculér terms in thé kinetic.eqpation.
In this work we have‘beeﬁ forced to make repeated assumptions about
the initial value terms. It may not be élear_why the treatmént of initial -
values is 1ntrinsical;y ﬁuch ﬁore-difficult ﬁhan.the treatment cf_the

"f dependent" terms, so we give & brief explanation.

The adisbatic hypothesis ( g—f is small) is in fact a very
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.f‘dependént" termsvwhich4usualiyvdominate the kinetic eqpation.m.We-asSume
. %%— is small; the calcﬁlations bear this out; fﬁrthérmore, higherlqrder
. éffectslaré usﬁally négligibie. The Self conéistency appéars built in.

This is not the case when we consider initial value terms.

Although we have imposed the condition that the adiabatic hypothesis

.éhould hold for + ~ 0 .» Tthere is no general way of insuring this result.

Initial values are initial values - they can be what they like. Although

| we wish to limit initial value terms to those'which_maintain the adiabatic

hypothesis, we cannot do so unless we calculate (directly) their effects. -

.The self consistency of the dependent terms is here replaced by explicit

mathematical restrictionsvoﬁ the type‘of'initiai value terms we permit.

Can fhese restrictions be brdkén, ﬁhiie the adiabatic hypothesis remaigs
valid? ‘The'author\doubfs,it.. In the example chosen three-bodyleffects

(1) may be expected to ﬁéye an important effect for £330 . |

We now write out the "initial value terms" from equation V-3 .

(3£ 8E). = |[5=|5= e Te ° X — X
H N : -1, + kY K
, - av. i
- ‘hﬂna%z ‘ Vs .
o e - g(fl&, X:i;‘ ye,t=0) +
(- ko) (- - 1ky,)



®

It

containing

)

Prof o

is cdnvenient to define operators which act on the factors

poles in the o planes.

ar, 1x
T hn:nv'qv '}'{'é'

Fo] o

(v-49)

(v-50)

g(}&’ 'Yl’ 'YQ" t = O)‘

- - .(v-h8).
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As before we pei‘f§rm the ® i_ntegrations by pushing the a)i

-and’ w2 contours downuntil they may bve_neglecte'd. The resul_t comes

. from t_h‘é" poles.

| -1kt kgt -1kt ot -

. . e e e e C
(Sfu5E>I = B, + - gk ¥ b
oot e = X - '1\{‘._}\/_2_), de ((I; +k-x;) SNy -3

o jed k -k N AP

-ik-yt ik.y.t
+ E' ° : +
(-1)
el kryle( -k - ku)kx - ky)

Akoyt igepyt

il
e e
e ylel -k - kn)ly - k)
~ikegt -do b
e e +
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| ~N o] So=k
e e
e(k, kv jd—é (k'y, ~kv)o, +X%kx)
AR I [ IR M k ~2

(-1 - ko) o, @ - B - )
é-ibkt'eiiwakt
Sl Sl (o - ey - B+ B

¢

_g(kb s oY t = 0) ‘ .

“Again the result is well-defined for all values of all arguments,
although individuval terms may be Uhdefined at certainvpoints."'It'sim-'
plifies matters to replace Xx°v by _g;x + ip in all ceses where

an individual term is undefined. We consider'p positive, though p negative

leads to the same final result.

7
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We now move COhﬁours of integration to produce_démping-in the

termglcontainigg 'elk.xt , ete. Not; that the Bl . operator contains

2 2

~an intégration over v, , while the B operator contains integrations
over - v, and %, - The final result is obtained by integrating all

terms . over %

We consider first the terms involving fhe Bl operator.

-ik 'yt ik'x bt -ikeyt ~iw %
v - e e 2 e en
C L € -k - k'¥,) de - |
~ ~ AR s i .
& w_k(‘”-k tE) -
' (v-52)
Wé pﬁsh the R contour up in the first term, obfaining a non
zero result only when Xé is in the stable volume

sikeyt  -io |t

2nis (1,552 + W k_‘) . o -k _
- {BrsE) ~ . - o+
) B, . T ;
de
Ble.y
~ik.vt ~in .t
e e K 2
de _ ) B : ’ '
EE(D_k(w-k vk Xé) ' ' o (v-53)
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We-ﬁhen‘displace the X integration in the first term in order -

~2 ~2
’ aﬁd displace k to producé rapid damping in the éecond‘term, obtaining

to make v, ‘real (\ﬁgy'and v are connected through the delta function),

a8 non-zero result‘only»frém‘the pole at 5‘2@ oo, = 0

: ro = - -k
1 o - 2nid(ky, + o, ) e e :
(eeog), - SRyt Ok o,
TR Cae !
! o ® o

ol
m

-k | | o (v-5L)

The sum of the two terms is zefo, and the terms involving the

' Bl' operator do not contribute to the result.

- We must still calculate the terms coming from the B2 operator.

Since the methods are now quite familiar we will not calculate them

-igixét we-push.the ¥

separafely, in terms containing the faétof o

cOntqur up, obtaining a result. from the poles‘the contour passes over,

In terms containing e"ig‘xlt' we push el down. The last term is

well defined as written.
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Tn the first and third terms we displace the k contour in

order to produce rapid damping.  The term which persisté comes from

~

" the pole at €(%, %kx) =0 . Thus the final result is given by

'(V-55) :

(-1) 2
de . ~ )
a(wk)‘ k K T Sk
... _ b ) ) 6 ‘f;/ - . -, _ -
2nid(k X_l @y ) _ 2;;1 (k Yo oy ) 2n18(k v @
) — + o+
CRMEINICED SR CIES SIUCHER 3PN RS SAICHE
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. 2 ' B . L _ _ 2- , } : . : . N
(@) ek - w )8y, + o) (2n1)"8(f:y - o )8(k ¥, + w'k)E
(@ = %%) ' (o = kxy) _%‘

(v-56) .
.We shall not.aftempt to'describe‘the result by pictures §f the
Various«gpmplex-planes,_~Note that.all con£inuations into the complex =
plane appeér in the stable volumé of thé respective spaces.
Theianalysié of'eqpatibn V-3 is essentiall& completé except
for one argument. Wé'have.not allowed for the fact that the original

@, eand ®, contours can pickluﬁ a number of zeros of e(k, wl) and

e( - X, ab) . Thus where an o contour ihtegration,produced a term
| | 5 im ¢ |
e K vﬁﬂwkl)

' e'i“k# axmk) , the actual result is given by

.y Where

 ‘the supefscript: i 'labeis the particular pole of e(k, é) .vaikewise.
. in'displacing the k!, Xi and /N éqntours we @ay pick up various-poles
of € y  Tﬁis affects our result in two ﬁéys. |
1. TFor all terms we have calculated which involve a zero of theAdi-
electric function, we have a sum:on a;l roots of the'dieigctric

function which are not too rapidly damped; We shall continue to

leave this sum implicit.

b4

2. In carrying our the préceding analysis, we also produce terms of

the form -ﬂnklt ~iw kjt , with 1% 3 .. (These results
e e v '
generally come from the poles passed over byldisplaced_contours;

’ the contours are neglected as before). These terms may also be
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i

%- o o "made to damp rapidly because it is generally true that v——ggh———— :F
é .& .} | :  '; 'dzikJ u;v We displace the k contour in the approprlate dlrictlon
%v to cause yk T+ ’7-kJ to become large and negatlve, and neglect
} | - A : . these;terms involving different roots of the diélectric functioh.'

It 1s poss1ble that in certain reglons of k space we may have

dy ay 4 '
, k + Xk = 0 . (The requirement of equality leads to
¢ : o dk dk o -

1 I

d&&l ) _dn.__kJ Thus plasma oscillations of

I} i

§ : '

i . v : v
f : o - dkE : dkR '

k) . -
% . .

' : - '

i .

‘wavenumber ~. fm, have the same group velocity as ion weves).
me '

B

We neglect thls poss1bllity because it occurs only for specific

value§ of k. Thus we 51mply exclude a small volume of integration

from our result. The resultaht error is comparable to that pro-

duced by the inadequate'treatment of higher crder effects.
We now state the result of all the preceding analysis. The
¥ ’ ' c011151on term is extremely complicated in forny but it is a real function

of the real variable ‘X' The kinetic eqpatlon is given by:

3 R B

daf

= ?]t

i

o T PR e
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Lo ' .l._,.__. sl ‘ : o - . » T
e e fagaxm [ o1 emts(Ryrei) e

o el reg)  ws(Ery - o)

i(key - o) oy, -~ 5 '7k(£'x -y ) 7, &% - Koy -ip)

- Ly . . : 2 ._ - - -
27[63@5 y=o ) o an 8(;5 Xt w_k)a(:lé z- wk)

key, + o Mk'y - kev. - 1 . .
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2%, %P

v ooomo dxljdye_g(l& gl’ y,a,.t=o)_

Err‘é(,l;',\:ri -

| 1 )
1ka - Eu)o - ky)o, + k) ,(b'xg~+~&_k)(wk - %°%)
2nd (k- m;;{) 2:1:5(,}3;5 - wl'{) h
. ' - . . +
OV DUCHES S (o - 5oy, + X 5)

g T R
b 16(,15,-31 - wk)a(,l\g Y, * w_k) | Uy 15(,1\{")\(,_-: d)k)S(,l\{,f,Ye + cn_k)

o <key - 10) o - By +1p)

= (v-5T)
Thisr equation constitutes one of the. rrincipal new results of this
wcrk We have seen that the derivation of the proper contours of 1nte-
gration for the respective varia.”bles of integration is a complicated task.
The a.uthor has not seen equivalent results derived from the XD (or
equivalent BBGKY) set of equations. Thus we cannot compare the resul.t,

“to other work along this line.
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By using x}éfy é.'ifferen‘t techhiq_uee Balescut® 5és derived a
' klnetic eqpation for a homogeneous unstable plasma. . The author is not

'g famlllar w1th the techniques used by Balescug except that they are ‘based '
_on a formal solutlon Qf.the Liouville eqpatlon, followed by an_approxf

. _imetienvscheme for‘pickingeout terms Whichhlead to & kinetic (long time)

" ‘equation. Since we cannot discuss the methods used by Balescu, we con-

centrate on-the-equation itselfs: 9We—cite‘differences—betweenwour~equa£ien—

V=57 and Balescu's equations A9.18 - A9.21, in aseending order of
importance., . . . -

a) In the first term of equation V-5T7 we find the'terms

- + SN +y .
2nie(ly o) 2nis(ky + © )
e and
. de ; - ] . de ‘ .
Ao e( - X "%‘X}) ‘ an ke(fl\{,’}é Xl)

The equivalent term in Balescu's eqpation are given by . a

- + ' ' P "
ey o) w3y + ‘”-k)
- and
de 2 .
7’_]% (wk)l : ) N dm (w ) l

The quantitative dlfference is small, for by maklng use of the delta

functlon.we see that Balescu has replaced e(kg @, ) and e( =k o -)
. de ]
by o1, (

aw wk

up clearly in the conservation laws, and our result is correct,

- Qiyk) » We shall see later that thls dlfference shows

b) The second difference lies in the treatment of all terms which

~ -involve the factor B8(k-y - wk) in equation V-57 . Balescu does not

e
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recqgnizé that the "k (in'Balescufsfnotation é)'may be analytically

_continued. He is<thus-forc¢d.to use a contrived (and incorrect)argu- .
"ment. In essence ﬂe pefforms‘a-“pseudo'integration"'QVern,x , then

. - analytically continﬁés this X integration, picking up poles but throw-

ing away the rapidly damped contour; He then REMOVES the y integration.

. This proéedure is obviously incérrect;'and the result shows in the fact
‘that his equation is not an equation &t all, for the independent variable

‘¥ 1s sometimes real, and.sometimes complex. -

¢) Since Balescu does not analytically continue %k , he cannot

A
1o, t _mpk t

treat terms of the fofm' o ok . He therefore restricts

.himSelf'to the case where oniy one zéro'of. € 1is not rapidly,ﬂamped.

Equation V-57 does not have this restriction, though we choose to leave .

‘the sum on the roots.of € implicit.

'We shall see later that equation V-57 has a theoretical defect.
Iﬁ addition it is much too.complicéted to be of use for a pragtiéal
calculation. Before going into these difficulties we investigate the

basic properties of the equation.



~150-

B, ElementaryjProperties'bf'the Equafidn"

The eqpatlon we have derlved is: long and compllcated in structure.

JTWIt may be expected to fulfill certaln basic condltlons, llkew1se certain.

aspects of the equation should be 1nvest1gated and compared to ‘other

work in plasma kinetic‘theory} We explore in some detail because the

demonstrations are not always easy.

'Wé'ﬂdfé‘fiféﬁfthe'réléﬁfonibétﬁéén our éﬁﬁatiéﬁ_énd fThat de-"~
veloped in Chapter II (equation II-99)'tHe Lenard-Balescu equation). If

we make the following approximations:
a) Neglect highe?-order effects. This eliminetes the effect of

"ccllisional" damping on the collective "

7

wave" behavior in the plasma,
and hence tends to make electrom plasma oscillations less~rapidly damped..
b) Restrict our attention to stable plasmas ( 7, K0 for all k)

¢) Evaluate the collision term in the limit t - o ,

”"We;recover equation IT-99 ., The significance of approximaticn c¢) will

be considered iater;
1. The Conservation Laws

~ We turn now to the basic laws which & valid ¢ollision term must

ll,cbey. The collision term must conserve number density, momentum, and

energy. Strlctly speaklng the result follows from a rlgorous analy51s,

and the explic1t calculatlon is simply a check. Our equation is suffi-
‘ ciently complicated to justify ‘this check. In addition‘we will later
o obtain‘an approximate, but much more simple form of the kinetic equation.

'The individual who does not like the approximations should have confi-
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:. dence in the pfimaryvreéult.
We.néte at once tﬁét”the collision férm (the right éide of
- equation V-57 ) may be split into three functionally‘independent’pérts,'
| 1) Terms wﬁiphrdo not'have‘expiicit'time.dependence. |
2) Terms with time dependence 4é27kt ,.Which depend bnly on f.
3) Terms withbtime dependence e27kt , which depend on the‘initial
value of g
Since the three parts are functionally independent, the conser-
vation laws must hoid for each part separately,:as welliés for the sum.
._ This more stringenﬁfreqpiremént makés the analysis easier, for
.we may:consider the.thrée partSVSeparafely‘ We-prove'conservation of
I'number'density first, and shall write the collision term as —%; °‘g

where convenient.

n, at I -
£ = n | ~Bay=n |=-7 ay =fg; Ndy = 0 .

(v-58)
The result follows because all functions of y vanish at’
lv] = o . N is a unit vector normal to the surface Y = o .

We next demonstrate conservation of momentum. After an integration

by parts we have

Snm 'QV') = = % nm J dv
Fo@oee T T

Sl | - (v-59)
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We consider first the part of J which has implicit time de-

pendence. For this part we have

ap.. (ax (ayix

~T T e 2 ~ .
—_——= - 3 naq f— £ (v) — -
dat 2 ~ :

: o %L MR e(-’}é, - %'X)

.21ti div Fo ) ] E}i
A -k dv
+ §2nvq_devf( )X
de
‘&l |
gy - .%'.Y,l) X
] : 21{16(}3‘;\1‘1 - mk+) o E L 2nid(k Yot . —[[
e N N
: : das fa, Mo RaAl 0 dw q)_k kY j

v

(v-60)

Lenard considered the terms which do not involve derivatives of
% e , and showed that they éQnserve both energy and momenturﬁ, i.e., the
energy and momentﬁm integrals are zero. In two of the remaining thré'e

terms we use the relation

, | s Th gy w2 [af,
. - A o - ﬂi' 8 s X
W ky) = 2+ § 3 A T
.Nl -r%.x

7
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~1
(v-61)
_ 'We now have
a(Ey + o))
— +
ae|
aw W_y |
- + '
8(% Xl + U‘)_k)
+ X
- ) de Lre
xl) aw wlké‘:"l‘-{" ~ "'l)
dy
= (v-62)
In the first term we let L>v. and y :Y‘l . In the second
we note that e(k, ’lg'xl)S('ls-xl - wk) =0 . We now have
- + e +
8(k'y +o, ) B Blkey oy
+ - : -
de ae
dw ® | du) Oy




Eev +w )
Nl -k
+ ———
o de : .
aw | E('l*{*’ % 'Y'l)
-k -
- (v-63)
The fifst two terms cancel identically. The 'remairiing terms are
T * . de o de| *
of the form A - A  (from the fact that == = - ), and hence-
. . dﬂ) a)k B d_a_) (D-k
‘are zero also. Note that the zero result (and hence momentum conserva-
t:.ton‘)‘ may not be proved 1f.‘ we replace TEED) by == — s
. . LR~ — (kw, - )
_ dw o, ™ ~1 k

as in Balescu's equation.

. We now consi_der the terms of the kinetic equation which have

" explibit ‘time dependence. For the terms which depend only on f we

have
d':‘EII L z
- X
at
e v “16(5‘3\’,1 + a)_k) :tiS(};:"yl- W, ) |
- i - 4+

L 1(}\{,'35 - U‘\l{)lh.xl- (Dk ' 7‘1{(%.X - wk) : 71{ ~.~ ~.~l
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é - ' o V___ : - . - :
28y + o )8y - o) end(Ery - o)

. 7, . : | (k'xl; w-k)(k'x_' %.Xl -.;p) | . :
| » Tiyeny
Wé may break the k intégral into two parts:
1) The uhstable volume of g spaée. This region is presént qﬁly in.
the firét term of eQuation v-6L . In all other terms the delta functions
restricf ‘g' to the stable volume. .

2) The stable volume of k space. This region is represented by

-all terms of equation V-6L .

We consider region 1) first. For .o in the vupper half ® plane

(cbrresponding to unstable values of k ), we have

2 : df
. — = el o) -1=-1 -
k2 . k7 _ .
| ® - kv | o | (v-65)

’

because €(k, &k) = 0. When we substitute V-65 into the first term of

v-6L , we £ind en imaginary result,. which must be zero (it is odd in :5);

This completes ﬁhe proof for region 1 .

' For_region»e) wé shall obtain a zero result by moving the various

contours of integration. We first make substitutions similar to  V-65.

For w in the lower half w plane (corresponding to stable values of %)



we have .

I ar
b X L P RV
L= e(l,i;:‘@k)‘_ 1 _Qﬁikzl‘,v ch. s 8(x T )-ay
o ' ke
'dfu‘ o
T - o) a o |
= “x , \ - (V-66)
dv = é(k'fxl - ‘Dk'-) 1- e(k, g°vl)
kY- kY -ie
-1
. (v-67)
l -
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i

P o - L2
7id(k Y+ w%k ). nllﬁv(}g AR ) o ox Hg,
P S : - +. " d,l\(,
m
(ay xx S
d 2yt 2n ' i . .
‘ ~ k 2 vV ‘ - - - .
X . e . — vdAzl fv(;ul) 5(k-y - ®, ) .
‘ de o ‘
i ==
e )I
S - v . ' C 2n28(k'v -f;a) ™)
o Uemredaemy ey
. .‘ n.ia(;s.y,l o)
i ® o
f Skt - Tx
(v-68)
~ o P ‘The first term vahishes because it is imaginary, and hence is odd
o1 - ™ . . . . . *
in- k . (The bracketed part has the form —-—-]-'-2—-— - -:'LZ?— iﬁ }
. A _ "‘-i IAI .
Tn the second term we deform the v contour to make ‘v real in
' those terms involving &(x-y - a)k_) . Due to the ip prescription we do
. not pick up & pole. Thus the remaining terms venish identically..
) The initial value terms are 'fessentially ddentical to those ,just‘
) cohsideréd, in terms of the methods for d_emonstrating the conservation
P ‘laws. The momentum integral is given by
o
g

egn
P



G g’ aykx o S |
a . F g ~ G e A
Sl T e o,V - T
k- {am Pk

2nd (k" -;’cok_) 2n8(k T, + @)
(mk - }\{Jx)(w_k + ,}il’e) (a)k - kov) (“’k - 5’31) |
2n8(k-v - ak') be"18(k X wk)S(kQQQ + w_k-) :
4 ' +
COEE P AREICIE S DY) (o, - k-x) '
L is(k Yy -'@k")S(k XQA+ d;k")
(o, - koy, - 10) B o o (v69)

4

- For 'k in the unstable volume of k 'spacé onl& the first term is
non zero. - Making use of equation V-65, we find _an'imaginary result,
which must be zero. For 'k in the stable volume of ¥ space we use

equat’ions, V-66 and V-67 to find
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B

b 18(5F - 7 )8(k Ty + °°'_1;">' s L -
- — + &rd(py - o 08k, e, )X

o]
5k y - w0, )l - R
o kJ (v-70)

We make use of thevfact‘that
z g (k, v., v.) = Real .
o, v Sov'™ o~ A~ A
' - (V-T1)

to obéer§e thaf thé.first'gréuplof térms in eqﬁation» V-fo is?odd in x
‘and"therefqre gives a éero result. Iﬁ fhe rémaining'termsbwé move the' A
cqntour in those terms containing '§(g.i - wi) ;. ;o as to make. 2 a
"real vector. The femaining terms then canceél. This completes the proof
. that the collision term conserves momentum. . | |
Wé now turn to the demonstration thaf.eqpation V-5T conserves

energy. Of course the plasma contains electrostatic energy as well as

‘kinetic energy. The appropriate ~conservation law is given by

sm n (V") +
8x'

. .. ) v . "\A .
a |z 3 2 <fff?’) -0
, ) o
. (Vf72)

' For the kinetic energy (T) of the plasma, we have, after an

- integration by parts ;
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(V-73)
The integrals we obtain from the explicit form of y . QH dy
may be reduced to thosé considered in the demonstration of momentum .

conservation. = The relations are given by

gy Oy) ay At & )

_ = o J 0 () ax |
u)kA- kv . (Dk - k'V (V'7L")
: fl%‘xg(i) (k% - x)dy = x @(x)'s(}s-i'; x)ay - -
J L | (v-75)

Integrals Equivalént to the right side of Vf7h and V-T5 were
eveluated previously. For this reason we will not calculate energy con-‘
. servation explicitly. However we must still calculate the electrostatic

energy of the plasma. We have

VJ -

| & | a, f'@we- it -dogt oy
(oF2) = { 8B(5)8E(-k)) = | ©° |
| (2x)’ B B T A
s B bmydy (o % [ﬁ I by, %
2N ' o o }v 5
X e(k,wl) (-iwl.+ ik Xl) ; K e(-k aé) ( iy, - 1~'XQ)
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yp-xm)
o n '?'nfaozvfoz(';fl) teple 3y s ¥y t=000 - o
e o (v-T8)

| Since the method of calculation has‘been discussed fully we will
‘not explain the steps in detail. We cohsider\the singular term firét,

. and invert the transforms.

- ' o o - o =ikey
(BE 2)‘= f-dk b3 (hﬂqV% g‘k-f - € :
5 v | L ~1Ty ‘

(2)° Cx o | e(k, b'xl)

it f- gyt mI b |
e . k : € : ' e ' .

%'53 Uy ~o) |10 - ky) Sl U *+ o)

o J ] PR |

N (v-77)' _'

The product consists of four terms, two of'which are well defined
asIWTitten‘. We displace the k contoﬁr until it is rapidly damped, ob-

taining the result:

. 2 . r ,
(55.2y - T enya, [dExX o -
S v na a1, (47 ' i

Ie(b: §.31>12
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‘-A T e K + .
. ) enlﬁ(gxl +©_y ) . 2nqu2
- - . - y =
‘ B _ : v ak X
agl ., . de! ~ ek k'vq)| - o
—_— e(.. '15) - ’1\{“2 ) — AR ~1
el 1T iy
2y, .t .
kke & 1 o R
. %. Yy o+
. — dxifv(xl) + - 8(k Yy Oy )
de \ o v . 2 k
ﬂw@ﬂ | lxgy - ol
]
8(k'y, - w —)g »
~ Nl
S (v-78)

The first term may be fepresented'by the cohtour integral

;;**-  \//:/iﬁr\\//i; s

. - k plane

while the second may'be_expressed by the contbur'integrai



16k

=0. . (v-80)

We have arbitrarily chosen vi in the unstable volume of
f veldcity space in V-79 , and in the stable volume in V—80
We now, calculate the <8§2> coming from the initial value term.

‘After inverting the Iaplace transform we have

oz Pl kX |
o ay, 8y, (& ¥, x, £ =0) X
. ' J .

-1k -3 t
r 1k,yit 1m%ﬁ +1k,32
e e e
- o+ -
(s &y) dewk ox -o) | |-k - k5

an
~iw _t
e -k
T, B rey) | ] e
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Where appropriate we defofm the v, " contour down, and the v, contour

up, to produce the result:

gy - B 2oty | Bk R
851 7 T Qv

2y t '
e Ko . f ' S

2 XmJ 0¥, 8o (B Xy Y ?;O)
I g

T Llae;
R N
1 onid (k') - ) 2rib(gey, + o)
X + +
vy = o )y + 00 y) Ky + Oy ]
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v sl v oy Rley - e ) |- | |
- i | (v-82)

-These four terms may be represented by the following pictures

planes.

’;n the Vi and vQ
\ V’JLE . \\\ v, plane
: 9
TN |
e(s, k) = O (v-83)

(v-8L) '.
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it,is a1$traightforﬁara but tedibus calculaﬁion’to deménétrate
- the conggryation of energy er‘the system. Since the‘analytic work
has'beenlégfried_out wé-leave the verification to the interested reader.v
_5fhevconseryaﬁion laws are basic o the validity of . kinetic
equaﬁionl‘:We £urn now to somé rathér_subtlé'quéstions concerning the
"{validitykof equation V-57. “We COnéider.first the effect of initial
_conditidhs oﬁ the behavior-of the_systém.
2. The Treatment of Initial Value Terms
"We now treat tﬁe collision term (the sum of all term;.on the
right side of the kinetic equation) és"an integral over X of a‘SUm of
terms. We méy arbitrarily break the % integration inﬁovtwo regions: 
l)  A region, generélly characterized by large %k , and impliéit fimen
dependence, in which the initial valué terms do nof appear. In this region
gk v, Xi, %) rapidly becomes a functional of f(y? t), and.we.have.let
this relaxation occur instantaneously. This is not an error, but a
‘physical restriétion valid for éertain interesting systems (kinetic
systems).
2) A region, always characterized by small ﬁ(k f kd) , and by explicit

27" |, in which the initial value terms may have a signif-

time dependence
icant effect on the system. TFor this region we must know.the initial value
term g(t = 0) +to insert into the kinetic equation.

The reason for the discussion is the following: region 2 appears

have time dependence arising

t0 be counted twice. The initial value terms

from the zeros'of the dielectric function; they represeht colkctive effects.
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"But so do the time.dependent terms which depend only'on‘ f.. If we have

»obfainéd a correct expréssion for the effects of the initial value of g,

thén only these initial value‘terhs-should be significant for small times.

We now demonstrate that this is the case.

We shall consider 7, a small quantity, and shall not attempt to

. estimate the error caused by finite Yy (Balescu has considered the -

point of marginal stability 7g'= 0 1in order to demonstrate continuity

of the collision term for v inside and outside.én unstable volume. OF
‘course this is essential for a valid result. Since Balescu's equation

‘does not contain initiai ﬁalue terms the demonstration is simply a check

and has no physical significance.) We will carry out the calculation

for y inside the unstable volume of v space, because fewer terms

appear. We state our approximations and 6bjective precisely:

Given t =0 early time), and ¥, a positive infinitesmal
: _ k

and y inside the unstable volume in velocity space (to ‘simplify the cal- |

culation) » we wish to show that the effects coming from the zero's of ,@

are given by the initial value term, While‘the remaining terms involving

‘zeros of € are canceled by still other terms in the kinetic equation.

Wé'consider first the initial value term. With v inside the

unstable voluﬁe_all-terms involving &(k:y - wk-) drop out and we have

2

. o [dk X ke Tp I‘ 2 nn
. 9y o dv _ Z qaqv oV .
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' - a,v » ~2
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(V-Sé)

The expression in square brackets is real, for the first and
. . _ Ny _ o _
.fourth terms have the form AA , while the second plus third may be
written B + B . We indicate the bracketed term by [ } . Since the

collision term is real, we take the real part of V-85 .

. 0
. <§fu8g>1 = ." ﬁﬁ

- (v-86)

For Yy @ positive infinitesmal we may approximate the k inte-

gration by a resonance integfation.

(v-87)

We see that the initial wvalue term is not zero in general, even

though 7 0
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We now pick out of the kinetic equation the remaining terms

which have explicit time dependence, and set t = O 'in these terms.

_ : a, -(d% kk 2nqu2
L Tl — .
\Sfu537T = - — o y ay, £, (y;) X
- mH hla 2 L
k '%(_ k) i(k'v - a)k)
L e +0.) G 7
f 1 ol r oy ) (kg o)
: - e e — s
kv, - |2 oy . ' 4 v
Sl k k : k _ (v-88)

When ¥y is in the unstable volume. of v space the quantiﬁy

"k is resonant only for ¥ in the unstable volume of - X

: 2
']Q{;'Xl - wk, . ) ) ) ' ) .
space. The terms involving 6(5-xl - o ) and 8(5-xl‘+ ® 4 ) drop out

since they are non zero for k in the stable volume of k space. . We'per-

form the k integral in the resonance approximation to find

ar ' '
e, [dEkE _u 2 sk
e amy, - - 2 ax r 2mya,” 80y - &) X
b 2 7y
& Pk

ay £, (v (kg - 2) | (v-89)
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The express1on blows up as 7k‘* 0. .We now show that this
(dlvergent) term is canceled by other similar terms in the klnetlc equa-

'tlon. 'These,terms are given .by

{5t BE | |
H >? av.f (v, o (kv - 5'31) X
( 1 orid(Ery, + o .7) }
‘Ie(%, v ) de : ' de . :
- ~1 Tl -5 - k) e - €0 %'L’)'J
L. dw Wy : 1 dw Wy 1 B
| (v-90)

We are concerned with the resonant part of the expression.
In the resonance approximatioﬁ we expand the dielectric function
about a zero. Similarly for“y -+ 0 we have B(E-Xl - @k+)»» 8(%°Xl -'Qk);

_etcu We now haVe

R '%kh
<8quE>P . M av

v E; : ~2 1;} 2nqu2 dy, f (v )S(k v -k Y ) X
. k).; %g—(wk)' ,
K 1 | oy - 9) | ey +a) '[
[y =
|'= % "x Tx |

(v-915
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' We add equations V-89 and V-91 to find

,<§fu8§>5: + (B BE), = -

J N ,',(vf9é)‘l

- Two of the terms cancel when we wrlte 5(k v - Qk)8(£ A lgk) =

5(k ‘X~ Ey )3 (kv Qk) . The remaining terms cancel when we perform

the Xk resonance integral on the term Qk) + 7 . This
: , : _ k ‘

completes the proof that fér.small fime the explipit time dependence of
'thencollision terﬁ'is given by.the’iﬁitial value terms. For small times
the‘othér!terms propbrtibnal to égykt contribute nothing tq\the'erlution
of the éysteﬁ. We may define‘a .”sﬁéil-time" as a time for which  é27kt
| 1 '_ << l |

We note a secopd.cénclusion; The infinite fesonance of the Lenarq

Balescu equation (see page ) is in fact & zero for t = 0 . Tor small
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times e27k? - l:= 27##1_, and the.contribution due to the'terms of

equation V-92 .tends to grow linearly with time{b Note in addition that
this'termfgrpWs in time eﬁen at the point 7y = 0, While the initial-:

27]:;C does not. Thus as time goes

15

value term,;ﬁﬁich~is proportional to
on the initial value terms becomes less and less significant in a margin-

ally.étéble system. We shall return to this point when we discuss quasi-

linear theory.

3. Invariance under Translation of the Origin of Time
We turn.nbw to thevbésic form of the equation. . The equation seems
peculiar (or at least‘unusual) in two respects; it depends- on the initial
value of the pair correiation funétion, and it contains explicit time

dependence. - Thus it is not obvious that the equation predicts the same

. behavior fof observers who begin observing‘a given system at different

times. The equatioh is not explicitly invariant under a translation of the
origin ofiﬁime (ice., for different choiées of the initial value.of time).:
We carry out'the»demonstrétion that.thé equation 1s invariant under time
tranéiatioﬁ, for,we shall use this resvlt in Section C.1.

Since our concerﬁ”is with the time dependence of the kinetic

equation, we drbp‘the dépendence'on all-othef-qpantities ( Y, , variables

i

of integration, etc.). For generality we choose to as the origin of

- time, rather than t =0 . We,nayfwrite the kinetic equation in the form

aft | a - : N . _ 7
T, " oa é%(t_l? - I | .g'(tl 3t . | (v-93)

1
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Here <%(£l):.is'theICOllision term at ﬁhe fime in.quesﬁibn, while
J(tl j to>.indicates that the actual coliision term depends on the origin
of time 'through the initial value, g(to) and the ex.‘plicitv’vcime dependence
. (ﬁl - to) din ﬁhe term gontaining  27k(tl - to) . Acéording to time
,fransiation'invariance we should nés be able to deﬁonstraté that for any
diffefent choice of'ﬁhe origin of ﬁiﬁe (t2) we obtain the same collision

- term.

ar d ‘ ' .
= = 7= ° U(t,) = - Ity 5 t,) .

o] L

-~ -

A pfeliminarygdiscussion is in order. vThe kineticvequation (V-fT)
wais obtained by the inversion of two ILaplace transforms'in the limit of
large positive time (sée equation V-S). On‘the other hand the equation
‘may be considered a valid kinetic (long time) equation for any time
(t1 § to) . If we run time backward the system.simply evolves away from
“equilibrium. This is not a surprise, for kinetic equations generally do
have a prefeffed direction iﬁ_time. We are now concerned with the mathe-
matical sfruétﬁre. We write Lé-;(ti - to) as the (doublg) inverse
Iaplaqe transform (plus associated integrations, etc. which are not releé”
vant here) which formed the basis fér the dérivation.of the kinetié
vequation, while &fé-l(fl -‘to) shall be.the same operation evaluated
with ti - to considered large and poéitiVe{'_Of course ﬁhé two are not
the same, in general. According to the process used in the defivation of

‘the kinetic equation we have




.we have, for ahy times ti , ¢t

-17h-

] gy ]

é%(t ) = g(tl 5t o) ;Z9 ey - tg) | £, 5 b)) + glty)]

any t .
(v-95)

f depends bﬁ'{%o through its own initial value and g(to) , and on )

. through the kinetic equation itself. We now point‘but that'the‘collision

term at the initial time té

- Whiéh We may calculate directly from V-95 by setting it1,= to , 1s not

equal to the expression

7
Do) |2, 5 by) 2+ alt) J
| (v-97)

‘because 'Ié-l(o) =1 .

‘Likewise for t less then to,‘,f;’l(tT_- té)‘ is well defined

‘and non zero, while ;ié-l(tl - to) is zero, by a basic property, of the

.Laplacé transform. We'note an essential feature which will be sufficient

for the demonstration of time translation invariance. By & basic properﬁy

, N ' , '
of the OZZ operation (equivalent to equation II-62 for the P operator)

J
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T ) s L ) (7-58)

. We now carry out the demonstration. By virtue of equations V-96 and ;

. v-98 we have

o o ' ' o s(xx- )
1) = (e 5 8,) = OZ;'l - ) ;7/ (o) |£(t, 5 %) ——————455 +

g(t) | = le (tl—fco) F) o o (v-99)

Since to ‘was an arbitrarilyAch'osen origin for time, we have for any
other choice of origin t2

(%

1) 7 (v;loo)5

Jte) - (t - t) §6y) ol

We must find’ }(tg) ’in.order to carry ‘oﬁt the required proof. We simply
use equation V-99 to find /(t )y .

- Xl -ty @ o (v-
09(t2) I (s, to).;%(to) . (V-101)

From V-100 and V-101 we heve

v

g ) _ ) _ ./)’-l ' o
‘éxtl) = 306 5 1) = Ly (6, - t5) §(8,) =5
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. s
. Using V-98 we find
. o

o= st 1))

Gy m )R = 3yt ()
1 which is.fhe reqﬁired:relation. The collisioﬁ tgrm at a given timec;Qﬁl) :
"dees not dependﬂpn our choice for thg-inifiél value of ﬁime. The kinetic.
eqpation ig;;nvai;gﬁt under trahslatioﬁ of the origin of.time.

We may ﬁéﬁﬁéénsiaer-Balescu’g fésult and state an important
§anlusion, Béleécufs eqpatién is not invarianﬁ under time translaﬁioﬁ.
If we érbitrarily set the initial wvalue term equal to zero, as does
.;Balesgu, we find the system‘immediately startsmgenerating correlations,

" and observers who start‘observing the system at later times will not be
'able;td use‘Balescu's.eqpation. This error has beeﬁ pointed out 1"ec'en‘c,ly.,br7
' We -emphasize that equation V=57 1is invariént beéause.it will simplify a
calculation still‘fo be performed; | . |
| 'h.'-The H_>Theorem and Techﬁiques»fér Approkimating the Kinetic Equation
There is a finél siénificant question”which,shduld e aﬂswered:
:.Does‘the kinetic equation drive the_system'towérd equilibrium? Abre.harrih8

‘has investigated the equation derived by Balescu. He considers the ”

following problem: - .
1) Two translating Lorentz distributions such that the system is

‘weakly'unstable to the two stream instability..

2) TNo initial &alue terms, so that Balescu's equation_is applicable.
'Hé then shows that the immediate.(fér times much lesé than the time to |
reach.equilibrium) tendeﬁcy of the syétem is to sﬁabilize the unstable modeé;
_). '. The resulf is not a very useful‘one. 'we Obtain a’ﬁore general

conclusion by proving an H theorem. This theofem is sufficient to show;

that the system approaches equilibrium; it therefore includes the stabiliﬁ-



tefms it is convenient to define an operator R

..]_77..

ing tendency of the system.

We.consider the time derivativé of H , where

dy £ (y) 1nj{nf | . | V-10%
v £, () [uu] | ( )
We have

AE.
%

J
w

| (V—165)

We wish to show that ‘;—,If-'é 0 , with equality only when the system

.is-ih;the-equilibriumaétate. :The demonstration is not trivial, as a
‘significant number of possibilities must be considered. ‘We follow the

- path that seems most direct.

We will consider the initial value terms first.  For these

1
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(v-106)

N o

The confribution_to_‘%%} coming from initiai value terms is givén’by

2n6(§in -w ) ) 2ﬂ§(%'22‘+ ® ) | 2nd(k v - )
(o + oo - kw) (o - o=y« ey - By - 2o k)

(v-107)
When k. is in the unstable volume of k space only the first term in

brackets appears. We take the real part to find
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& 1 " ~ ‘ | I (V-.108)_

In the unstable volume of k space 7y ié positive. The resultant:

expfession-invdlves a product of complexlconjugate integrals, with thei
dHI £ 0 .
dt o :

When k is in the stable volume of Xk space all six terms of

result

eqpaﬁion V-107 appear. It is now convenient to make the approximation

that the poles of € 1in the v

1 and v, planes are near the real vari-

2

able_axis; Thus we write

‘1 | , 1 1
ot 20 (ke ¥, - w )~ = ‘
B e Hs A
1%'3\,’1- + w—k) l(J&'Xl - Qk - 1[71{, )

gy, -~ o)

1 k
(v-109)
By using this approximatioh fepeatedly in V-107 we find
g - 1 |
~EE =7 Rl . , : : "l l ' [ l‘ o
- iy -0)Ey -9 -1 7 )(,ls-ye " )
2% 8(E-x»-' ™) . ' '
%k (v-110)

kv w4 . - 8 i
(@ - 5y - 1)y, - 8 + il 1)
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We now make an eqpivalenﬁ approximation on the ‘k integration

P

- of equationb V-110. Here the approximation is not so good, for Yy

 itself is a fundtiqndof k. In computing %% we are interested in theb

‘sign‘of quantities;: Th the kinetic equation this approximation would
cause some error for '7k 0 , though it.would lead to simpler results. We -

~write

_ . (T o Y - 1 | o
iEx - o) S A P2V “(v-111)

‘We use this approximation on equation V-110, and take the real part of

the result.
4 C
B 7x
dt .
ey - |2 gy - - iy, D&y -2+ iy ])
- o (v-112)
 Since 7y is negative in the stable volume of  k space, we again find
T < 0 * We note in passing that the approximations on the velocity

integratibns, when made on the initial value terms in the kinetic equation,

lead to the following simple expression.

. 2o :
> /;k kx - B 2Nt

7I. ~NA~ dy e - T ' )
o™ “é . ' + 2nd(k'y - 2 )| X
. bmp, | kl-L g‘—(w ) 2 lwk ~ X X‘Q' . : g
- dw*k -




.‘ 5 ,‘ 2n n quq‘V

’of'the kinetic eqpafion~that involve Xk- %% . We define the operator R

R, = , di)/dk k. —-— ) z 2n e
' k f (v) ﬁ"
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g (k "'l’ ,YQ}t"o)

(e - Qk ) 117kl)(k Yy m  * 1‘7ki)

Tf

- (v-113)
The surface in k space‘ 7k = 0 1s defined as the limit 7k -+ 0 from

mﬁhﬂ ﬁde(7k<0 or 7, >0) .

We return to the proof of the H theorem,’and consider all terms -

o

~

(v-11k)
and cons1der 7y @s small, so that we may write
/.' + : . , - o, B
sy ~o) By -2
o - % - k) a (- 217,) (V-115)
4 : w o
-k
R : o+ : + .
sy to, ) sk Q) |
N SN % S . . | (V-116)
- dx, kev) de SR '
o : T -k
‘The coﬁtribution to %% from‘thevterms we now consider is given by
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)| Tk a k)! B S
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X _ : . : : ] (v-1ar)
—J .

‘The expression may be broken up.into sevéral parts:  a non resonant
’part and a resonant part involving both the stable and unstable volume in
k space. We consider first the unstable volume in ‘k spdce. In this

case only four terms appear

=T

Aoy - kry,) w8k - kry)8Eey - )
- R s R WA TR IR )
2 - .

: L ]€<k; lf;‘.vl!?

art
at -

w
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‘ o2yt
ﬂgﬁ(k-v - kev.) Y, e k
+
de(w ) § l%‘x B Qk @E~( ) ]k- W 2
| Tx am P/ 1R T Oy - - |
~ (v-118)
In the reeonancevapproximation we have o
| r : - 2y t —J;
anl R, | x - xy) 5(kev, -2 7) & S
dt 2 i o ~-~1 Tk ! o
} de )' 7% 1 (V-119)
I ldw ™k A
The oﬁerator- R2 1ls positive definite, while e27kt -1 is'poéitive for
k in the unstable volume of k space. Thus we find ‘%%——‘< 0

When k ié_in the stable voiume of k space we use approximations

V-109. and V-111 on equation V-117 to write

CTae BT Ray .t -
lele By)l™ e, g2 | t0sx- 9 Mgy - ol
do\ k :
) w:ﬁlﬁ(%'ﬁi f @ ) - ﬂl&(%'yi - o )
71{(;3.\; -2 4+ 171:) : 7k(;§.x_ 2 + wk) | o (v_-qeo)

We take the real partVOf the expression, and use the resonance

approximation to calculate
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Since 7k ‘1s negative in the stable volume of k space, we again find

QEEE <0
S dat ’

We have thus fi r considered only the regioh_of k spaéevin which

‘is small. There is also the region in which . is lérge. (1t must,'

Ty 7y |
" therefore, be negative). Here the only significant terms is that involv-
ing l/ﬁé(g, g'gilg . Lenérd_has shown that this term, plus the contribution
from the final part;of the collision term (also involving 1/@6(5,‘5331)!

dt

- yield gE‘é 0, with equality wheh the system is in equilibrium;

' A final proof is necéssary. One term involving 1/1612 has been
split into two regions’in.-our;proof. Therefore We_must split the remaining
_term -into two parts. We must stillvconsider the small Y conbribution

from this final ﬁerm.v The term in guestion yields the following contri-

s Koz
bu#lon-to Frs
o C2 : : r , . L+
I & 5 (Du _ \dfu N 2nid(k-y + ® )
2 = | =14 "7 WK TS S .
dt j‘fB ) k ~ /"’ "~ /-/v . . .
- | s |
| o @, i
- (v-122)

Since 7k' is small we expand € about a zero, and keep only the first term.
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7 Vg0

2 ar 1
—
- = = i pm +
C 8o B o8& dv | kv + w0
kdw|w, B
Sk -

2nid(k 'y + w_k"')] . o I (v-123)
We note the fact that de is real for ‘W on the real axis (the

. - dw w_k . -k

’AreSbnance-approximation) and take the real part of V-123 to find

8 (v-121)

In the resonance appréximation this term is zeré. Tﬁe féct that
it is zero only in fhe resonanée.approximation is nof significant; bther
terms in the kinetic eqpatioﬁ‘give' %% <0, regérdlesé of:approximation.'
5. The Simplified Kinetic Equation

The approximatidn methods we havg»uséd here may be applied to

‘the kinetic equation itself to yield a collision term which has all contours
of integration on the "axis" of real variables. This more tractable, but

slightly less accurate equation is given by
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 We bave defined the function
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il

@Qs-gl‘);i +1  Img ey koy) TO (stable)

-1 imag e(%; E;Xl);i 0 : (unstaﬁle)‘_
. _ : (V-126)
.The value of the integrand on the hypersurface where
Imeg e(k, %;Xi) =0 is given by.the (confinuous) limit from either’
”side. |
if we ﬁegieét the effect of h;gher order'terms in the dielectric

_.function, we obtain the generalization of the Lenard-Balescu equation:

ar o - L eng? |®x-ky)
) s d - 'k k Y
- e A e - z *
m ~ L 7 le(x, kv )]
(s at,, fv? /o
— — s
s w ) - u(~)dxl Osy) X ey - o2 *
2y %
- k 2
2n8(k v - 2 )\ S 1 q ,
k4 s(sy, - 8) |+ 5 -
Y i 2 m dv
8 /5| T
O . ) \
. 5+ 2nd(k-v - szk ) X
wk - rl\{,‘vl ‘
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(5, - 5y, - 1y, 1)(&, - g v 2l )

(vi1e7)

Equations iV5126_ and V-127 contain all the essential Peatures
of the»original kinétic eqpation.

In view of its relative simplicity, eqpatlon V-127 is greatly

'preferable to the orlglnal klneulc equation (equation v-57) , and we

shall llmlt further discussion to the propertles of equatlon V-127

At a cost of small approximations we have obtained a relatively tractable

_result; Thus we havevoveroome praotioal objection to equation V-57.

C. The Long Time (% >-tad) Kinetic Equation

1. Derivation of. the Equation
There remains a theoretical objection to equation V-127 .

Suppose we consider the factor eEZKt » which occurs in the equation.

For. 7k positive this factor represents an exponential growth of collective
effects in the plasma. We now observe the long time behavior of this factor.

(t>t,,

ad)' By virtue of-the H- theorem 7k decreases, and then becomes

MhegatiVe,'until the collective effects (coming from the zeros of € ) die

2y. t

away. Thus over very long ﬁeriodslof time the factor e k~ becomes

infinitesmal. Although this is quite reasonable, there is another feature

that is not immediately apparent. Since 7, 8&enerally deoreéses with

time; the factor egykt,‘may decrease with time, despite the fact that 4% ,.

is positive.
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S
: _ a ‘27kt) _
In particular as 7k goes through zero we have —ag(e -
8y, 27y b L= s Ty o .
: <é7k +t —ag)e -Z££O = T : This is incorrect, as the

‘eollective effects should contiﬁue to grow as long as .7k. is positive.
We now propose to remedy this defect.
Equation V-127 1is a valid kinetic equation for 0< £ < tad )

but it does not yvield correct behavior for '+t > tad

, because the adia-
bétic hypothesis breaksvdoﬁn. How may we correct this? The answer is‘
stfaightforward. We start the sysﬁem off at t =0 , then permit‘it.to
evolve forward. tb time tl‘g tad . By this time the adiabatic hypothesis
| “is beginning to cause difficulty. . Accordingly we_adjust f(g) to its
current value f(y}_tl) and allow the system to evolve forward in time
for another time step t z tad .. By continuiﬁg this prdcedure we may
follow the system as 1t evolves through times much greater than _téd .
The calculation is conceptually simpie, but not &ery elegant. 1t 1is
formally and theoretically better to adjust ~f(y% t) continuously (if
infinitesmally) whilé the system e&olves. The caléulation'is straight-
fdrward, éhd 1s based on tﬁe proof given earlier’thatvthe coliision term
is invarient under translation of time.

The initial value term and the f dependent terms aré fﬁnctionélly
independent; so we shall consider fhem separatély; It is also coﬁvenient
'.to treat the case of X in the unstable volume of k space., The extension
to the stable VOlﬁme'of k space may bevtakeﬁ for granted now.

We shall consider the initial value term first. With k in the

ﬁnstable volume of k ﬁspacé we have'
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ar
dgk k- —2

_(6f“(v)§@1t)1 = w | VS dy exp[27k(t‘. ﬁo)]z en.n q.q, .
‘ . . 0y |
)-L de€ ;- . . :
jkd"a?kl iy - o)
dxl. 'dXé o gaw(%b Ny o2 Xp oo t =0)
(v-128)

(Q - ke o s SZ- . : .
& - kwy - 17 )@ - ky, + 17))

M2

where we have‘set the time origin at to fo? generality. We are con-
'cerned‘with the fact thaf f(v) and on do not.remain cénstént‘with
time. We now omit all factors of equétibn v-128 which arebnot‘relevant
to the argument by defining an operator D which contains theée factors.

We mve, at time )

- Q -',15 af () Loy, (6 )(t, - t)]
(S(f“(v)6§]t1)1= p K - gvo exp Tk 0’1 T Yo

m (e
i ~ o i(gry - o () )

X

b

b3 Annqu'.‘

v

| (5fv(xl)5§lto)

Aw o)

) gy | Altg) - By
k )

(V-129)
~ We now use eqpation‘ V-129 as the initial value térm to carry

the system forward from time tl' to  time t2
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9 ,. k 'Idfu(tl) expL27k(tl)(t2 "Gl)’iz
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2>:_ =P R | X
- mo ok ay Ci(ry - o (t) |
B ' .
1 '
5 L:quv dxl . _
o e, R (v-130)
e 1) el E, . ' ‘
Using the fact that _
“Lxn g 2 av 5 y
vV A~y
T2 dv. . 4ae
Vv .mv k ~] = - Tl .
(x.v, - )2 : k o ' : (v9151)~
We hav.e'

. q, k af (t;) exp/ey, (t,)(t, - t,) + 2y, (t Y(t,-t )]
(Sfu(x)ﬁﬂltgl =p-£ = w17 : ki e 1 ko 3 oF
N mu k | dy 1(}5-x - wk(tl) )
- .5 hnnqu( /idXi‘ o ' ‘ .
X - '( — (8t (xl)s;glto)i o
de Jw(t) - k'y L . (v-132)
o wk(tl)',f' "k o’ T 1 : |

Using this‘value'for <5fH(X)5EItg> as the initial value term we

compute (6%(@6@[’53)’,, and find
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2) ' 1

— X
e ifEr - el

- p
(or, (v)ogles) = D oy

exp [?7g<tg)(t5 - t2>»+>27k(tl)(£é - tl>'+ 27k(to)(£l‘- to)] ,

p hﬂn'qv | dy, ' ' |
. v s ’
o, 2 . ' -

The result is apparent by now.  With . - ti'infihitesmal, we have

n-1 t o o
b ~'7k(ti )(ti_'_l - tl) = J 7k(T)d_T . . : (V-l5ll-)

i= 0

~

-and -the contribution to the kinetic equation from the initial value term

“is given by (we include the effect of damped modes)

dXé gdvck; Xi{ Eé; t = O)‘ O‘VI
(O =Xy - 3 DR kvt 7g])

(v-135)
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: The term now has the éxpeéted form, in that it continues to grow as

long as 7y is p051tlve. We also note in passing that in each veloclity

. : 1 . .
~1ntegratlon we have made the approx1matlon wk(% Yo k'v‘+
1 i+l o~
wk(ti) - %.Xi : This leads to an error of order %// which we
s k ad T :
neglect.

Tn the preceding we made no use of the fact that the kinetic

" equation (and hence the initial value term) is invariant under translation
' ' de .
of the origin of time. The cancelation of the factors EE'wk ‘was carried

out explicitly, in order to demonstrate the formal method in detail. The

. procedure 1s now established, and we skip these steps here, for the

' . demonstration of invariance permits us to do so. This shortens the en-

suing calculation considérably.
We now wish to establish the form of the terms in the kinetic
eqﬁa%ion which héve explicit time dependence 627kﬁ syet depend only on f.

‘We define an appropriate operator D' ;-and vwrite these terms as

exp [Eyk(to)(t % )]
o, - Eoxl”

L £, (e 5088 - By

Jlt = D! )
) (v-136)

~ Again ﬁe have set the originvof time at’ to and chosen k in the unstable
volume of Xk space. We now use the collision term at time t, as the

initial value term andnpermit the system to evoive to time 't2 .
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e ’ /.
exp|27, (8, (6, - t,)] )
/ — [ X 3 - N -,
lo, - kxl
7 A T : expl2y, (£ V(.- % -:.)]‘51 '
, I . _ [/ : N L'k 0’1 ToldiT .
D explgyk(tl)(te tlZi dxifv(vi’ to) | A
i T
V . L‘ k ~om .

(v-137)
The fojm is correct, because if f(xl, to) = f(xl, tl), we find

that equation V-137 gives the same J(te) as;yhen we set t 3 t,

ih'eqution V-136 . ‘In'fact' f(xi, t) changes sloWiy with time, and

we are calculating the effect of this change. For tl - to' small, we

have . -

exp[Eyk(ti)(tg - tlﬁ

e 8 T, oy £08(% - ko) +
loy, = kel - .

27, (6,)(t; = %)

! . - ) .
D exp[E'yk(tl)(tg tl)] Ty 7, (g )

o, - xxl® -
(v-138) -

'We now use J(tg) as the initial value termvto‘carfy the system forward

to time <

3

I85) =D exP[27k(t2)(f3' ’Ggﬂ .

Joy, - Koy

eyt (s 5 >§<gﬁ§ “Ey) o+
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~

o expE7k<t ), g )T m-,g) - | ane (v, )80, - &

.Xl)

D' ‘.exp 27 (‘D )(t -t )‘{

~ o~
2 T
oy - -yl

-

Dt explfgyk(tg)(tB - té)_—'f ay; 2, (g, 500, -

A ( 2 )5(52 - xew ) CE e

X .

- ky) 271;“1)(“2 :1) .
|y, - K-yl
D' exp _271‘(5).(% - ty) + 27, (£ )5, - & )] oyt (xy, .)8(8 - k)
2y, (£ )(t, - t°)
e = (v-139)
o - 5xl®

The generalization is. straightforward.

-
Fd

" 'jf(tn{l’.)'= P,AGXP[eyk(fn.).(tnﬂz- - tn?} | f _

_dvf(v,t \a(sz - k°

. n-l 2 T, )(6. -t
o 5 ,7k< 126 5 - t)
- i=0 ’

) X

, _
-
;djvflfv( ;g )s(sz - kxl) +
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i+l (v-140) -

Passing to the integral form, we find

3(t) = D' | ayf, (g, ©)8(a - k- v) + d’c'exp 2[ 7 (mar| X
o ! l _

27, (v1) S . |
e ————————————— 1 R . ) - .

— J dxlfv(vl, £ )6(%{ }331) . o (v-1k)
: I(Dk - :%.Xl . . . ’

Using thls result, plus the result of equatlon V-135, we obtain the

kinetic equatlon for an unstable plasma.

af  q 2 [ ©
=L d_. £k -
T a9k jdy s 2n.q (kv - k%, ) o
X v =« ’ 2 M%‘Xl) X
| lete k3, |
1 of af, 1

—— £.(y) (x) +
m 4y vl y K dxl Ky _wk|2
2nd(k-y - 2 )2 1 dfu 78 (k Y - @ ) q‘u2 3

7k / m Ay Tv~L gﬁ(w )l mu2 dy

dnt 'k J
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| ar o ' o o - |
Ak kK ke 2 . t |t //-7 ')
g~ dy R 2 ‘ ' - : { k .
i ~ 5 hﬂnpqy | at' exp|2/ 7. (7)dm +

. k .
2 v , 2
hide, | ‘ (lw -k v
_ . 3 > . S qp'e 4
. . - ! - - -t R
2nd(gy - 2 ) | g T (Nl, £1)8(R - Koy ) + < 3

) | T

s . S [po T / ‘» )
e ) dyv eXP?Q/ ‘7k('f)d'f‘gf R 71{ { -)<)
o 47— + QKS\%'X - RS
@] oy - 5ul? N
dw D e T A

2n.n - o o ' '
quq‘V g ( "-’l’ Xps t =0) | o . . N
5y - D - kg aln ) (v-1l2)

The equation remains valid as f(y) changes in time. it is
étfaightforward to verify that th¢ equation reduées to the Lenard-Balescu
equation after long times. The systém fiist stabilizes itself (7k) be-
| comés negative for aii modes ), after which the effects éoming frém the zeros
of € die awéy, |

The equation is non-Markoffian inifwo respects:

1. If_confaiﬁs explicitly the effect of the initial cérrelation
function . g(t‘%fo) . This initial value term may continue to affect the

-system for long times.
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'2; The équétionfcéntains a tiﬁe integral over the previous state of -
the‘system. This represenus the fact that the partlcles of the system
contlnually create 1nhomogene1t1es, ‘which may grow in time in the same

1 _“fash1on as thqse already present in the system through g(t =0) . In
- ‘ thg usual nomenclature the_partiélés emit waves.

| We shall not cérry but.the aemonstration that the equation con-
serves number density, momentum and energy, and leads to an H theorem.
This is unneceséary, since we have preViously demonstrated that these
resﬁits are’ true at each instant for equation V;l27. 'The:manipulations :
" of the last|few pages do not affecf these results. |

A final comment is in order. It is straightforward to demonstrate

that the electrostatic energy is given by

75(k*v, - szk) b g 2 d}élﬂgg.’. t { . -
+ v q'V T fo at’ eXPl‘/,yk(_T)dT '. X.
7kldm(w ){ | . i




-199- .

0O

S B T ‘
[[ dk k k exp 2j ')’k(’r)d'r!( A
av.
~]

Y .go:v(,l& Ny 2 Yoo t:=10)

%%ng)l?. - //.

(v-113)
where the result is now valid for long times. If we take the time deriva-

tive of V-143 , we find

d(&gz)

- 5 kng?| % %.5
At v Y tlac, 2 a1, (% t)a(%'xll~vgk) -
k ﬁ(wk) ’
_ , .

L oeng? [ HEE ) R

v 7 [ at' exple [ 7. (v)ar| | av.f (v,, £') X
o~} ~

Vo - P Tk 1ty \Y A

]&LL d€0 ) -0 ' ' 4
™k v |

s(gyy - 9) + = ‘Tl [EEE %)

” ’f’l‘ o,V T _ Llge 2 ‘ d"y:l
‘ k azb'(wk)l N
(o s
| dxé. gav(N, xi,;xé,.t =.o)‘ exp 2/2'7%(7)q¢
(,%'xl - Qk - il?’k! )(,ls,iy,a - 'szk_+ ilyk]) o (V,-ilp_h)

Note the fact that the electrostatic energy contihues to grow even -

when e = 0. Thus"the collision 'term continues to éxtract energy from the
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particles even after a marginally stable state'has;beén reached..
2. The Effect of a Uniform Magnetic Field

We now extend the kinéﬁic‘equation to include the effect of a

ﬁfﬁﬁiform.magnetic_fiel@.. Sinée the procedure has been demonstrated in
detail in earlier pages, we simply carry out the steps which are different:

we must recalculate the P operator.

The principal effect of the magnetic field (in terms of analysis)

jis'to complicate considerably the formal expressions which we must handle.

In order to keep the results relatively tractable we shall consider the

‘case in which the plasma distribution function, f(v, t) is independent

of’the.angle about the magnetic field (@). 1In the more general case we

- simply expand f(V;_; v, g, t) > % fM(VL ;~Vz;t)eln¢ and repeat the

. n
Ssame analysis.

k9

- The initial steps are taken largely from Bernstein

and ’
' : 50 . : e s . 4
- Rostoker””. As the signs of changes appear explicitly at many points in
the analysis, we adopt the notation 'q}‘L = lqul for thevrespective charges

and indicate signs explicitly in the equations. Similarly we define the
B
qu

m ¢
3}

cyclotron frequency o =

The natural coordinate system of the problem is cylindrical co-
ordinates, with the axis (z) along B . We choose an arbitrary axis
perpendicular'tb B as the zero of the azimuthal angles, and write y =

(vy » A #), k= (x,, x_, @). The P operator is obtained by con-

Z

sidering the linearized Viasov. operator acting on an arbitrary function,

which we shall call 5f.
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('d- o, " qux}-{:'}‘?’.. Koo qlJ R
@ t¥ V)Bfi—-—m 3 —= BF = =0
H ) ¢ X u ~ ,'(V—ll@)

We are ignoring electromagnetic effects, so that JX SE =0 .
- We Fourier transform in space and Iaplace transform in time, . expressing

‘quantities in the coordinate system already chosen.

(

- . asr
- ] E 1 d - l - -——-E‘- =
[ io o+ 1k v, + 1k._L v, cos(g oczl‘ SfLL z a)u 7
| | a, ) ar, a,|
Sfu(,l\g,_ .'Y"t = 0) F o 5 kz_a-;— + k.L cos(d - a) ™,
: s k z o
- : - (v-1L6)
We use the in‘bégrating factor
| g : ? |
R ~1 . . . t_ T - .
exp | . f_u)u -iw o+ 1kz.vz.+ ik, v, cos (o O')) a7 I .
c - |

(v'-llrzj_ |

and’ the fact that ® has a positive imaginary part to produce the result

. o, g
= - " -1 e s
Sfu<1a{/ X ) = pry "23;‘ ag" exp. | . _CDH {-1(1) + 1kzvZ +
. ilw . L g”
o r .
' . o | o k-8
T : . .3
iky vy cos(@’l_' - 04)} ag’ {Sfp.(l.{’ vys v, BN, t=0) S (k-3E) +
: i B _ . mH k2 :
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N s ar,, ~
" ] N ) '
A ) cos(g" - ) av, I _ _
oz . J (v-118)

‘By uging the expansion of exp {iz-sin ) i in terms of»Bessel functions

-
0"

exp[iz sin ;5] % by eimj J:n(z) . ' - (v-149)

N==~00

and Poisson's equation

ik: 8E (k, @) =T . b“ﬁnuqu [dx Sfu(}g, v, @) . :
b . T | (v-150)
we readily find Sfu and SE .
|4
of

ag'' exp {t wu-l g( - iw o+ ikz?’z)(g -g") +

2100

N
iki Vi sin (Q’ - Oé) {‘]
: J

- ,'q‘u o 'kJ_ vy v
T |
/
‘m n
M H
ik d
< w | L0z
k ~ /un
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i(im+ ikzvz")(g’ -gm) + ik_Lv_;L’(ﬂ’ - oz)}) F im@’ - oz)] X

[}

my W v o
Y v . ’ ’ .
o3 1y -
[ iw+ i(ky ).vm (v-151)
1k
SE(s ) = 5 | Z .
. K dy
@ G_(}é, w)
exp| * o {(- iw + 1kzvz-)(Qf - g ) + ik, v, sin(g - Oé)} 7 in(g"-a)| X
L ‘ ' | " =
afu(}é: Vs V.o g, t = O'>‘
L- i + l(lﬂg-z)un] ‘ ‘ ) ] ‘ ] . } (V-152) .
/- where we have defined
(]ﬁiay)n"‘:’kzvz'_i_ na '
k. \ b - (v-153)

/ a a4 'm)u- a 4 , .
3w =% mtv & \
, ~/un. z L L T (V=15Lh)
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~and thé dielectric function is given by

> 2<-li"—\§:\j\,\/3§-d\>.

e(;vg,w) - 1-.4 oo [dwg 7

o ——

. e |
K : e En (vas)

e
a & g [ cdot o, it
A I B A - L - X
~o 27 T //
Of 0o xs o BB( -, o)) . | (v-156)

The procedure. is now.extremely‘straightforward, but eitremely
"fedioﬁs. We'simply list the ﬁext (elemehtary) operatiohs,lin order to
save péges of éxplicit calculafién.

15 Using V-151 ahd V-152 we Write down the formal expression fof
| <6fu(1,§, v, wl)ag( -k we)) Since_j;he distribution function is independ-
ent of ¥ we may carry out the indefinite g integrals. (We also assume
gt = 0) ‘independent éf a" );,
| 2:) Ve then meke use of the fact that (Sfa(%,'.x', t = O)SfB( -k v, ot = 
lO)) = HQQ-S(X - Xl)fa(zi) f:g(o) to carry-out‘an integration over v
. Note the %ac_t that k= (_vk_*g_,":‘ikz, o) implies - k = (k, , = K » O+ 1 )
This causes cancelation of terms in the exponentials, and ieads to sums of

o ¥uvy

Bessel'functions of the form X J i .
o o nn ch //
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3)_ We then-carry out the angular integrations.over the initial wvalue

term. Again we are lead to sums of squares of Bessel functions. In these

terms and those mentioned above,wé shall leave the integration implicit.
A oot ,

27 o .
Thils - J/ ag! é}ﬁm ngt L oms - J( ag' &, where & _ is the
. ° irel - , mn o mn : mn '
Kronecker delta, which acts on the sums of Bessel functions.

4) There remains the angular dependence of y where v -is the

'independént variable of the equation. - We now include the velbcity

derivative which is included in the collision term.

af q .¥x3B. df '/
=i s B R ) N | o
v oo € Y N T S (V-157)
Using the fact that
4 Kk, A . o a
k T = — sin(a - ¢)55 + ‘kl cos(a - @) = * k, == .
X L : L zZ
' (v-1358)

we may perform the « integration (implicitiy).. We must use the fact that

S ) .,gn o ) o
I 4 @)+ ()= — 3 (z). , (V-159)
n+l n lA z n o

5) We then invert the lLaplace transforms, and évaluate them in
exxentially the»same-way that we analyzed the case B = O . There is a

siﬁgle exéeption: - we displace contours of w rand k- in order to
\ » . z

1z’ ‘o

produce damping of the_contoﬁrs. Thus all poles which we pick up in the
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varibﬁé iﬁtegralS'will fesult from deformations of the respective =z cém-
vE$Onent$} The fiéld B makeé z a "preferred" direction.  Of course we
Cmay‘have-to diéplace perpendicular cémponents of the resﬁeétive integrals
. on occasion, in order to make contours damp out sufficiently rapidly.
These terms will not appear in the result. |

We now write down the kinetic equation for a plasme in a magnetic
, fieid which is valid for short time (t < tad). We drop the explici£

signs of the charges, leaving both cyclotron frequencies posi%ive.

2
af Q. X af a dk
. U . U Tu T~ of 2
T T m T *RB &w T a I % x dvl> 7 en,, x

1 a\ 1 Qs
L‘f ), i), | st efew,] -
27.% | - -
I o lawan) [ 2 ee[ow- 3]
m, gfo( k)’ oy, - (g-x)@lg Ty J
| 2 dx {' a
ké_) f(")f()\ YS‘*—‘*—-ZVNR!——-) X
(“ A fpn BTV le ' m2 ﬂ/ TN s
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2y t k.LV.L) d
) Jn wu %i EE pn f“(X) 2n n qaqv |
a}v v dxi' X
o TE
L)
& Px
‘ \
W FF T\ )% (B e B n v 0)
(Qk (~ T )y L7 (e - (5% Do - il [) ! (V-160)

As Dbefore the function © is given by

@
N
&
25
<:\./
8
J§ DU |
1}
+
*_l
B
Q
0q
m
T
&

'Xl)vm]b> o (étable)

N.il)vm] <.O (uﬁstable)

(V-i61)'

1
1
'_J
g
[03¢]
m
/.‘?;“\

.The calculation to make the equation valid fof long time is the

‘same as in the case given previously. The general equation for a uniform

plasma in a uniform magnetic field is given by
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x r 1/ d
| _( )_’2‘+>2ﬂ6§(kv)im‘—§?.k X al-i)mjfu(y, t) X
- (kv
' un! N
Y L [% (e )
1 —
Sy, ¥+ "“EGE dv) X ~ 7 7
" . TR ey, - ),

kv, b kv ' v
) 2( LY 2 L) Ay
~é”u% % J J','( @, ) gow<k9-xi’xé’.tfo)

(8, - iy + 17,00, = G )ym 2l )

(V-162)

-

'D.: Criticism of the Quasilinear Theory

v

In view of the earlier section devoted to quaéilinear theory
(II-D) ' we may write out a corrected quasilinear equation without further
explanation.- The necessary analyéis has been carried out in the preceding -

pages. We have -
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t
o 2 ) j[ y. (1)aT
Ty _% e L3 EGeoptw=0 HTuo o Jo'E .
dt. me X " - Tdy
)
+ 2nd(k-v - ) ?". :
2 ~ k } ' .
If ) | (v-163)

This equation is better than equation II-116 in three respécts:

l) The expressidn is mathemafically well defined. (The surface iﬁ
.k spacé 7k'§ 0 1is tq-be.taken as the limiting wvalue from.eithefvside).

2) The equation'tfeats the stable modes as well as the unstablefmodes.

3) The exponential time dependence is given correctly. The time
‘dependence glven here is sometimes derived, but the author does not con-
sider these derivations satisfactory.. The problem is to give a derivation »
which is wvalid for damped modes also. |

Despité tﬁese improvements equabion V-163 must be considered

defective. ‘The reasons have appeared in the derivation of the kinetic
equation, and we simply make them explicit here. Thé‘difficulties are =
the following:

1. It.is nof possible to assign a size to the collision ferm‘(involv-
ing g ) in an unstable plasma. The physical reason is that ﬁhe.Bogolui-_
ﬂbév hypothesis breaks down, and g does noﬁlreiax to become é functional

of £ . Thus the neglect of g is essentially arbitrary.
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! 2. Even ivae éét4 g(t4= 0> ‘equal to zero,‘we cannoﬁ,expect to kéep it
‘émall for great leng%hs,éf time; As noted ear;iér (page 172} the collision
tefm involving' g cohtinues to growuwhile the system approaches marginal
1 stability- (Z ~ O).“This is significant; for the quasilinear term in-

4 . t :
- volving exp{jf 7de stops growing. We shall return to this point
e . (° - ' '

shortly.

3. In general fo(x, t) is not a slowly varying function for_sméll times

t g %—- . This is because a general distribution f£(x, X5
R < ‘ .- .
evolve rapidly for small times. The volume average of such a rapidly

t = 0) will

varying function is in general'EQE a slowly varying'function. ‘The aﬁthor
does not know of a general way of ensuring that ‘f(g, v, t= O) ‘will
. evolve in such a way that fo(yp f) will be ajslowly varying-fﬁnctionmfor .
. small times.j | |

In view of these criticisms it ‘seems more reasonable to consider
the inhOmogenéity of the system.as statistical. zIn this way we can tredt
eqﬁation V-165 as a special case of the general kinetic'eQuation. The
gquasilinear equatién represents the case in which the?initial value term
(now éailed. g(t = 0)) dominates the evolution of thé‘syste@ for early‘
periods of time. TFor longer periods of time the. f dependent.terms
determine thevbehavior:of"the system. Note in particular that there ié no
asymptotic.state, in the sense 6f quasilinear theory, for the collision
 term continues to grow after the systemrreaches a state or marginal

stability.
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E. Discussion of Approxinations
We consider now thé basic assumptions and‘approximations used in
';éétting up the theory. We proceed by gqualitative arguments - a quanti-
vtative calculation would amount to an extension of the'theory.
The most powerful (and sevefe) approﬁimation used in'tnis work

‘was the truncation Qf the infinite set of coupled equations describing
* the evolution of the system. Two rather distinct regimes are possible,
depending on the relative*importance of different terms in the kinefic
equation.

1. The terms with implicit time dependénce dominate those Wiéh'explicit
r(e |

time dependence (expi)’7&% %), In this case the usual plasma expansion

in %— is valid, and the inclusion of higher order effects (h, of the
BBGKY hierarchy) leads to minor corrections. We have obtained an estimate,

. valid to‘order l/@nA for part of tnese corrections. We havelcglculated'

. the ef%ect of these corrections on the dielectric.function of thé plasma,.
.while omitting the'correcnion to the motion of the particles. Thus tThe .
resuitant equation is not more accurate than if these effects were excluded
altogether. ‘On the othér hand we have established.the correct asymptotic
form' of the equation. After a few collision times (t 75 a;ﬁﬁﬂt ) +the
Lenard-Baléscu is the correct equation. If we do not include the correction
to the dielectric.functibn coming from higher order effects, we must keep
all terms of thé kinetin equation. Pure Landau damping acts so sldwly that
we must keép all terms with expliéit time‘dependence forvan indefinite time.

The inclusion of collisional damping causes the collective modes to die out

‘on the collisional time scale..
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2. The terms‘with.éxplicit'time dependénce:dominate:the'kinetic
equation. As discussed.éarliér'this.tends to bé‘a local effect, with
the time dependent terms most important in driving an unstable volume
of velocity spéce. Wé may consider our trﬁncation ¢f'the infinite set
of equaﬁionsfin the following light,' There is no general criterion fof

throwing away any higher order terms. All higher order terms may be

specified arbitrarily at t =0 . Furthermore the long wavelength
effects arising from these terms do not die away rapidly (t -~ 5}') 5
' ‘ IR

and in the cése of an unstéble>plasma they grow. Thus our negiect of .h :
rpétricts the validity of,bur.equation ©o the simplest case - the case iﬁ
which the ususl plasma,ordering remains‘valid,‘ Note that the: expansion
parameter does not have to be %—- - We shall consider this point further.
when we discuss the signifiéance of the equation.

A second approximation used in this work is the adiabatic hypothesis.
We hoid T fixed while calculating thé-behavion of fhe collisibﬁ term;.and

~then permit f and g to evolve together on the long (t>‘tad) time

scale. We trust it is clear that this approximafion is very good in most

cases.  The "normal™ collision térm becomes a functional of f in a time
: l . 1y ﬂ. . .
of order o This normal® collision term causes f +to change on a

time of order . The guantitative error introduced by the adia-

prnA ‘
batic hypothesis is far below other inadequacies of the equation: e.g., the
large cutoff. Note that the adiabatic hypothesis does tend to break down
when the collective effects (involving expL[?dTu]) become:” very large.

The collective effect may become large enough to cause f to vary on the
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time scale é?— . However in.this case the neglect of higher order
éffécts‘ (h, etc.) is not justified, and our equation simply does not

applyf

- F. Sigﬁificancevof the Kinetié Equation for a Uhifbrm Plaéma
We now discuss the significance of equation V-1h2 -, with regard"
fo other work on the subject, and élso with régard to possible expefimehtal
“Véfification. | | |

1. Wé first éompare our equdtion to the,Lenardealescu'equation.

-~ Accordingly we restrict our attention to stéble systems. For this case

our result is_a substantial vindication of the ordinary Fokker-FPlanck equaf
fidn. For a stable system, or a marginally stabie éystem,'the Fokker—Pianck5
equatioh will give a satisfactory description of the time evolﬁﬁion of
'vf(y, t) . This is in markedbcontrast to the'Lenard—Balescu equation,. which’
contains a‘divergent integral fpr marginally stable systems,‘yetipredicts

52

essentially the same behavior aé the Fokker-Elanck equation for a system
which is sufficiently stable. Thus the_ordinary,Fokker#Plahck eguation may
be regarded as preferable ﬁo‘thebLenard-Balescu equation. We must'qualify
this statement siightly, for in general the contribution to the kinetic
equation from the initial value term g(t = 0) ma&bbe large, even though the
system is stable. In this case neither.thé Lenard-Balescu nor the Fpkker;

- Planck equation is adéquate.

2. 1In the general case‘of the unstable plasma, equation v-142 is

qualitatively different from others which have been derived, so we confine

the discussion to general comments.
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An‘outsténding difficulty with the kinefiC'equétion‘is_the appear-
ance of tems dependent on the initial value of the correlation function
gt = O) . However desirable the goal of an equation for f involving

“only f 1tself, this simply cannot be done. TIn general one might consider

a trﬁly statistical treatxﬁent, in which one wouid calculate gt = 0),

give £(t = 0), by direct averaging over I space. On the other hand

it is not clear how one might choose the enseﬁble in T° space to corres-
pond. tQ a gi;en physical system. The value of gt = 0) is certainly de-
pendent.on_the manner in which the system was made unstable. A possible.
choice will be‘mentiongd ﬁhen we consider the possibiéty of experimeﬁtai
vefification{

One feature of thé kinetic equation has apparently not'beén recog~
 nized; This is the fact that the collision term continues to grbw as.the1
: system appréaches.ﬁaféinal’stability; This is in marked contrast to the

usual ’fquasilinéa?_type}’ coilisipn terms, which stop grbwing as the |

! y341 |~>(constant) as

system approéchés mafginal stabiiity, because exp
7(7)'*@. The significance of thﬁ'differeﬁcevis cgégzieraﬁie.' Quasilinear
. theorists are:forced to éalcﬁlate perturbation corrections (mode coupling)
" to théir'lowest éfder équatiéh; fof the lowest order equaﬁion only drives
,ﬁhe syétem toa marginaily'stablevétate. The mode‘coupling terms are °
" needed to’driﬁe tﬁe system on to positive stability. On the other hand the
collision term_of'éqﬁétidn V}lhE,‘doéé not lead %o anrasymptbtic:state which
‘ ié marginally stable.i‘Thus one is not.forced to invoke mode éoupling (n)

-

in order to produce positivé stability. Again it is not clear how unstable
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a syétem one may permit, while neglecting mode coupling. The conflict is

the fesult is aséﬁmptions regarding two different variables. 1In the case

of guasilinear theory one considers the effect of - g as given by an ordin- -
e . S w bnh ' g
‘:ary collision frequency, say P;A . Since A is typically of the

order ofvrlO6 , one passes to the limit A =, and neglects g alto- -
- gether. We trust that is'is clear this 1s incorrect, for g does not

have an effective collision frequency in an unstable system. On the other

 _,¢/7' " hand one may corstruct theories for A = « , granted their physical appli-v

. cation is limited.

0 ' | o : Howevér, there is another set of quantitities which one may choose.

. arbitrarily.. The initial values g(t = 0), h(t i-O), etc. may be con-
sidered very 1érge at t=0. In'thaf case the initial value terms

(including h(t = 0)).may drive the system to positive stability before - -

the terms of equation V-1L42 become relevant. A single comment -is in

order ~ one may not start the initial value terms off at thermal levelA'~% 3
oo , and neglect those growing temms of equation 1V-142 which depend only on f .

The entire situation is confused by the fact that many authors

v

apparently believe that the Viasov equation drives a syétem toward equi-

librium, despite the fact that %% =0 for a spratially uniform systemv

described by the Vlasov equation. E( H is given by the'usual_j’fznf). The-

rxr oy, A

domain of validity of equation V-142 versus the quasilinear theories which

| include mode coupling, 1s still to be demonstrated.

'3. We consider now the possibilify‘of_eXperimental verificatién of

equation V-142. PFrom earlier remarks we conclude that there is little
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| “point in trying to verifyfthe_e@uation for the cage of a stable plasma.
"We cannot exceed the'accurdcy of theIOrdinary Fokker -Planck equation

e ' unﬁil the short range behavior is cleared up satisfactorily. Along this

53,5k4,55

. " line Kihara et al have done calculitions on transport coefficients.

e g

The problem of -an unstéble plasma is rather different. The buildup

;1 o and decay of energy in collective fluctuations may well be observable in

several interesting cases:

a) A double stream (or a Singlé stream into a background plasma)
experiment.r | |

b) Plasma in a_strdng elgctrié fieldL Here our equation is ﬁof stfictly
valid. - ﬁowever if the électrié field is not too strong the only éignifi-
- cant ¢fféct-on the collision term will'be‘a modificétion ofvthe growth
and damping rate.of the cohefent fluctuations. (A pertufbative corrective
proportional to <E>, éhoﬁld be added to the dielectric function. This
gives the dielectric funétion a preferred direétion tending to destabiliée
electron fluctuationé traveling‘iﬁ the difectionlof electron drift, and

ion wave fluctuations traveling in the directioﬁ of ion drift).

1
i

In either case we are faced with a difficulty: what do we choose
for the initial value term? The most plausible suggestion is a ''sudden™

approximation. We take a stable (possibly equilibrium) plasma, and suddenly -

shoot’in a beam, or Lurh on an electric field; By sudden we mean in &
time short compared to‘thé time  for collective fluctuations to grow or
‘decay appréciably; accbrdinéito the_Vlésov equation. We may hope that

the initial value term is given by the equilibrium value, so that the -
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_collective fluctuations will build up from a ''thermal™ level.

The hypothesis seems ﬁlausible, though it lacks theoretical
justificatioh. ~We,need a short time equation which can describe.thé
brief interval during which the beam (or the field) is turned on. It
is quite possible that g may change very rapidly as the experiment

begins. Nevertheless the sudden approximation seems worth a tfy..
G. Conclusion

We have used the elegant formal methéds of Dupree, and the’com-
putatiénal proéedures suggésted by Landau, to dérive a kinetic equation
for a homogeneous coulomb plasma. The result is.free from mafheﬁaticalv.
difficulties, valid for both stable and unstéble plasmas, and has the

expected form in the asymptotic (large time) limit. The eduation has

been shown to satisfy the usual physical laws which are demanded by basic

. physical concepts. The result is then generalized to include the effect

:of a uniform magnetic field.

The essential limitation of the work is the truncation of the

infinite set of equations which describe the plasma motion. In the case

of the stable plasﬁa this truncation-is_ordinarily an excellent quantita-
tive approximation. TFor the.highly unétable’plasma the approximation is
not always jusﬁified, The region of walidity is detérminéd by tﬁeveffective
size of h , the three particle correlation function.

We have corrected several formél difficulties with the usual
quasilihear eqpétion, while raising a number of'questiohs about the signif-

icance of the entire theory. It is apparent that the'basic éssumptions of
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quasilinéar théory nééd to be conSidefed in the light of the kinetic

" equation described above.

A collision term valid to order _l//énm. has been obtained fof

‘lgmall'amplitudé waves in a uniform plasma. This result generalizes the

ordinery Fokker-Planck equation from the domain 0% w<¢< ab, Otéik<<kd

to the domain 0% w<< A, 0% x>k, .
P <7
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- APPENDIX A

In this secﬁion we démonst?ate the equivalence in physical
content of the BBGKX hierarchy and the sét bf'equatiéns'develoﬁed by
Dupree and Kliﬁontévich (KD).V The o schemes'afe obviously not
: ' ' :identical; howevér, byisimple mathematical operations we can go from
: one to‘the cther.
l’XQ.;;Xn)’

| where 25% is the probability distribution for n different particles,

i . ' The BBGKY hierarchy consists of equations for fgg(X

and X = £?£;$i} . We now relate these functions to similar quantities

Which‘may be constructed accordingito the Dupree scheme:
SR Ce) - R = (E Te-r) - B . @)
f‘ _ 1 1’77 'n 7 1 i A

Thus the first terms‘aré identical. For the second term

F, (X %)

(P(x) F(x,))

n

<% Z B(Xy- X;) Z B (Xy- Xj»
n i J

= (

1 o T B N1
2 i=j"8“(?§i"“¥i) ?(Xef"‘?(j))‘;ﬁ ( n >f By - %)) 5805~ %))

F=3 . o N
| o ¥

s 0 %) + T, ) e, %) e

5 o o o
wherg We #ave dex;ned a new function 'A(Xl’x2>_ = = B(Xl- X2)




N
3
s
v
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- It is convenient to devise a notation which recognizes the

. possibléiidentity of particlés in different spaces {Xi,Xj}; We

adopt the following:

1. The symbbl X%..between_tWO'funétioﬁs A and B vmeahs'thatbthe_
particlés invqlﬁed are tévbe faken as identical.
2. Iﬁ an expression containing this_symbol no other functions are
. to be taken as identical unless they are appropriately marked
by théir om |

3. We shall use cﬁrly brackets to indicate an expression with all

particles different.

- Thus

F(x,) F(X,) = {F(X15 F(x,)} + F(X)) F(ig) . (a-3)

' We proceed direétly to the three-body function

3]

R (KX Xy) = (R F(K,) FOG))

((r(,) 7lx,) P51 + (2T B(y) F(x,))

(F(x) P (X, )F(X )+ (R )F(X F(X )+ <F(x JF (X, )F(X 0

-+

i

(Xr 2,)%) + 7, (X, Xy )A(X %)

+

o (X, %y) DR, Kg) + T (K, %) A0, X)) + (X))

X .

A(Xlgxé)'A(xg,XB)' . ' (A-L)

W
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By now the generalization is obvious.

I

(B(x,) F%,)--F(X )

Fn(Xl, XE{ .. -Xn)

I

N . ‘ . s 0/ - .'.-‘ e 0. ‘..c v
) | | = o055y ) +OZ:5 Tan (X Ky Xy Xy X))

n

e T T ) AR A R) - )

It ié‘clear‘fhat the functionS'?Fn differ from those of the BBGKY
in fhat'they are singular. The singularities-result from allowing a
given particle to appear in different spacesv {Xi}, (Xj}.

€? | o © + Bince the Dupree-Kliméntovich system involves equation for
<5f(Xl) Sf(x2)..-§f(xn)) .Wé now consider the relation of these

gquantities to th0se‘of the BBGKY hierarchy: f,g,h"°. Since

F(X“i) = £(x,) +5f(Xi)‘ BT

Py, %) = (D2(r) )+ 8E(r))] [2(x)+ B2(%,)1) = 2%, )2(xy )52 (x, )B2(X, )
(a-6)

The terms f£(&f) vanish because (3£) = 0 . Comparing with equation

- A- 2 and u51ng the fact that (X 2) = f(Xl)f(X2> + g(Xl’XE) we have

1§
(1
f
H
i
?3
t
!

o ) = s(x,) 2 AL - (aT)




o) I

Fdr.thé next quantity (Sf(Xl) Sf(Xg) §f(X5)) , we calculate

I

'-f.(F(Xl)E(Xg)F(X5)) f(Xl)f(Xe)f(XB).+-f(Xl)<5f(X2)5f(X3)>-

+

f(XE) <6f(Xl)6f(X5)) + f(XB) (5f(Xl)6f(x2))

-+

i
3
v
v
L
¢
¢
¢
i
i

(o2 (x,) 6f(Xé) B105,)) a8

We use A-7 for (Bf8f), and compare with A-3 to find

(o2 (e, 82, )8£ (1)) = B, KK + (Xy,%,) ALK

g (X, %s) AKX, X,) + (%, X5) A, %)

+

+

2 . S o | | f(X;) A, %,) AlXy Xs) - (4-9)

The notatibn is simplified if we define Hn, a function of

n séts of coordinates {Xi,Xé,"'Xh}, as the sum of all ways of

‘connecting these coordinates by lines so that each coordinate is
connected at least once. The lines may repreéent correlafion or a
A function. If we use a jagged line for correlations, and a'straight

line for connection by & A function, we have

R
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v £(x) = -
£(x))
: o Hé(xl’XE) =3 S ) o
. S X Xy
i .
1 H5(X1,X2,X5) = X, Xy o+ X Xy X, 5
n(X,Xpsp) ey, % )00 X)) g(X), % )A(X,, X))
3 _ - X X
R | R X, x3_ -+ | X, | x5 A . (A-10)
% Comparing with equations A-7 and A-9, we see that (Bf(Xl)Sf(Xe)) = Hé(Xl,Xg)
; and (§f(Xl)8f(X2)8f(X3)) = Hé(Xl,Xé{XB) . These first two terms are
g _ : a little misleading however. We write
3 Fn(Xl’Xe_"'Xn_) = ((F +3f)(F + &F)---(F + &F))
1
é _ | :
* = ). ffff-.-f (BLBf«--5f)
P o all
IR - ' , combinations
= ) HH---H (5£0f---5f)
La , ‘ , _ - all ! l»" 1
i ‘ . ‘ - - combinations
] ' . , |
T 3 = ) E(,X,ccO)RE e o (A1)
ﬁl Sl : S L ~ a+btcss-=n J , '
P B , . , each coordinate appears once.
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linking coordinates.

006

Where the cluster,éxpansion is the same as that customarily used in

the BBGKY - hierarchy except that “A functions may also be used for ¢

To find (Sf(Xl)"'Bf(Xn)), we eliminate all terms involving

H, from each side; therefore,

1

(s£(x)) BE(X,)---08(X ) = o H B H (A-12)
. cluster :
a,b,ce-->1

Having established the relation between the functions of the

.two systems, we turn to the equations for these quantities. Equivalence

to all orders could presumably be demonstrated by the use of efficient
notation’and a great deal of labor. It is hard to imagine a less
enlightening task. We spare the reéder'(and the aﬁthor) by confining
ouwrselves to the equivalence between the equations fof f and g of‘
the BBGKY hierarchy, and those for f and (8f3f) of the Dupreé-
Klimpntovich hierarchy. |

The BBGKY equations for f and g of a single species have
been written out previously. (Section II-B). We consider now the

Dupree equations. The equation for f dis :

Ly Qygy . L, e 4. ¢ -
(F+xm- V) £f&X) + 2 (B T, twoag ((eEdr)) =0 . (A-13)

Recall that the curly brackets { } mean that the particles of &f
and OFE may not be identical. |

In the notation of BBGKY
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- write functions to the left and right of differential operators, we.

o) = o for o )

q{{BE>T) = - nfvl ¢15 ({Sf(xl)éf(XB)}) d}% . | (A-iu)

Since ({3fdf}) = g we have

( a ar(x

. : ) :
AR n 1 _n L2
ot VIt i Efvl 13 f(X_5 )X, T, m jvl¢l3 av)

X g_rj(xl,xi)-drx5 ='0. R ) | (A-15)

so that A-13 is also the first equation of fhe BBGKY .
¢ The second Dupree equation, like all higher equatiohs is

constructed by using the equation for the fluctuation guantities:

R gy . BT 4 gy . AF
i+ v v)af(xl)+m(§) dzl+m6§ T,

L | |
s @y WEPT - e (826)

We create an eqpatibn_for (Sf(Xl) 8f(X2)) by multiplying A-16

byﬁ 8f(Xé), Writing‘a-similar“eqﬁation with subscripts 1 and 2

interchanged, adding and averaging.' Note that <6f(Xl) Bf(Xg))

contains a singular ﬁermv'f(Xi)A(Xl,Xé). Since it is convenient to

. : a _arx))
use the notation =+ (f(Xl)A(Xl, X.2 )) = A(Xl,Xe) —— + A(Xl, X2) —

etc. The equation we consider is:

df(Xg) |

2
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ol ,®

& ) _, - .
A 7Y, (Sf(Xl)Sf(Xg)) + % 'L(g)’- a%—l (o£(x,)p1(x,))+ (1e2)

(& ~L1
@

+ I% {8Eaf(x )y - df + (Les 2')}
| = J
| (1) S |
e S fcese - DLy aeix)) + 1)) = 0 . C(a-17)

ml

We consider each numbered term separately:

. d . P . A - :
1 (EE’ + 21 Vi+ xé Vé)(&f@f) = (EEf + X ViT Y Vb).
l2(X.,X ) + £(X,) V(X X"‘)-E
L8V %2 1/ TVt
Cam . A _n [, L a
2 =(E) T .<8f8f)—-.m[§.X3‘Vlﬂ5.l5 f(XB) s g(X, %) -
‘ 'n( df(X) :
- d)% v;zle £(X )V(Xl,X ) — ,
. . I8 ' ’
q af _ .1 {4y . _4af
> n (OB g = - f 5 V.8 Ty, %)
_E;{-‘ Vg e AKX, )
m;d}%rl.lB dy; 2 2’730

0 fax. - L . af
T E.f@;xj.vl 13 dy, a(X); 5) m v1¢12 dy; £(%,)

(A-18)

- In term L 'we must remember there is no self force on a particle.

~Thus

¥
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e Siem . A sem )] . 9 ap . '

v b = ((3E T Sf(xl)} Sf(XE)) = 5 ({(eE ) af(xl) Sf(Xg)})

: + = (BE. &, £(x,) 8£(X,)) + (3B T o£(xX, ) 8£(X,))
o m a L 1 ;f o a "
L | = m[d'XB Vilis T, hgxlzxg’x_5) s Ty, g (¥, X5 (X, X))
. o o |
' . S - n?v1¢12 dy, g(X;’Xg) : | (A-19) -

 We substitute these quantities into equation‘A-l7.' The singular terms
/ma&ibe éliminated by using the first equation (which is the same in
. ,‘**"/ : | either system), A-15. Multiply A-15 by A(i,2) take 1«2 , and add. |
: When the resulting eéuation is subtractedlfrom A;l7,_thereby'eliminating
all singular terms, the result is the‘equation for g of the BBCKY
| hierarchy. | | .. | |
As a Tinal step we consider the brdering, i.e., estimation of
relative order of magnitude of terms, used by Dupree. Notevthat Dupree
does not order the equation.for Bf ! in particular OfBE may not
P - be treated as higher order than ®f in equation A-16. ’J{.’he' énly

quantities which may be ordered are average quantities, such as (3£df)

- Dupree orders equations in terms of the quantities Hn

previously defined, As noted f(Xl) = Hl(Xl); (Sf(Xl)of(Xg) = SéKXl’XQ);v

{
i
5
1
3
i

<5f(Xl)8f<X2)5f(X3)> = Hs while further terms are more complicated.

Dupree orders these functions by treéting Hi as order nn-; , Where

n is small. Thus £ = ¥(1), (8£df) =0(n), (5£ersr) =)3"(n2) . We

i
i
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vdemonstrdte that this ordering is equivalent to that used in the BBCGKY"

hierarchy. The singular terms cause no difficulty and are considered i
as order one while - % is order 1 .

In equétion A-13 for f(Xl) the lowest order £ (1) terms
represent the Vliesov equation, the correction A(n) is the collision
term. This agrees with the ordering of the hierarchy, where g 1s

treated as small compared to ff --see equation A-15. Eguation A-17

'is an equation for Hé(Xl,Xé) = f(n) dinvolving two terms in Hé . with

several of the A functions omitted. When a term involving HB is
written out explicitly (see equation A-19) one finds a singular term,
and two non-singular terms. The former is the higher order [7{n) term
in'thg eguation for f(Xl)'A(Xl,Xé) . The remaining two terms are those
customarily dropped in the BBGKY equatioﬁ for as being higher order.
It is hardly surprising‘that the sets of equations and
approximation methods are the same, since they relate to a common’
physical process. Sometimes one set of equations is more convenient

to work with, sometimes the other. It is best to be familiar with both.
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APPENDIX B. Integrals over K

Fromvthe gnalysis of .the collision term for small amplitude
waves in a plasma (page 23) and. for fluctuations in a plasma (page 95)

we obtain the following integrals:

1
Wb,
=

= ‘S(w - kv +_§-fv - v. 1) | (B-1)

1l

%, Mw—lcv+K[v—er '? (B-2)

' We consider d first and set ® - k-v

' 1 Xy=a and vi-¥=Dh
The k integration runs from |k| = Xy to x| = L The only vector:

quantity avallable is Db, so that we may write

<J_ = AT +. Bbb - S (B-3)
A ~

‘where I is the unit tensor and A and B are to be determined. We

AN

. dot equation B-3 twice with b to find

4 X >
Ab2+Bbb = %-}(I?I 8(a - X-d) (X+D)

(B-1)

2
(@]

2

The X integration converges rapidly for large K , so that the
resulting terms are order l/ﬁnA compared to those we shall keep.

This error is of the same order as that produéed by the ordinary cutoffs.
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We now take the trace of B-3, and use the result of B-4 (a = -bgB)

to find

1 [

5(a - K-3) . (8-5)

We introduce cylindrical coordinates with the axis parallel to 'R .

The angﬁlar integration yields 2x, while the integration over X }b

yields three wvalues, depending on the relative magnitudes of -a and b.

a
€‘< kd we have

B
[k02 - (a/b)g]2 |
A = % : ' k, dk, [k_]_g + (a/b)e]—l = % Inh . (B-6)

i
k" - (a/0)°17

‘ a
For kd < T <k we have

0

1
1k 2o (a/0)°)7 , |
0 2 o711
A = ijdkL [k + (2/p)°] =%t

(B-7)

a

For 5 >-ko the region of integration vanishes and we find a = O .

The final result is that given in the text

N
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i
1
i
A

G

@

)

=

;253a

Q ] [ (- w(y- v } o - x-vl
< = ————— fnh | I - for k., > ——————
S A “ v, - vI? R
A~ ~L o~ ~L o~
1, (% [ (v1- ¥y~ ¥) }
= ng —————— I - 5
lvo- vl o - xew] /U v, - vl
lw - k-v[
for kg < —— < %o
vy~ xl
Iw - k-vl ‘
= 0 FOr  m———— > ko . (3-8)
Izi' XI ' - |
We now consider %22 ; Because k < kd << ko we:could simply

neglect the Xk dependence outside the delta function, in which case

we would hav-e<_9l =z9p . Instead we displace the origin by the vector
/\/V\ N\/\_ N .

k , then neglect the k dependence outside the delta function.

~

3 v L L:EZ 8w - kv + K‘- tv'— v]) “ (B-9)
M 2 g K o~~~ 1~ | ’

We make this choice so that symmetry is preserved between v and V.

1

the collision term. This hés the effect of ylelding exact congervation
laws fér fl(kyzyaﬁ. Of’coprse this is not necessary).for the collision
term isxonly approximate. It may perfectly well lead ﬁo.small'errors in
the cohservation laws, and elsewherel £>2 ‘may Be evalﬁated now by'the
methods used in obtaining le .‘ Thé d;}ference between égl and. QQQ

o . A AW AN
is of order: l/ZnA ; and hence is not significant.
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