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‭ABSTRACT‬

‭Inversion ankle sprains, or IAS, occur very often in everyday life, mostly during sports‬

‭and exercise. Detecting and evaluating the severity of an IAS are very important, but we need to‬

‭understand how to differentiate a normal ankle from an injured one. The goals of this Capstone‬

‭project are to find out what internal properties are impacted by inversion ankle sprains and how‬

‭they change the functions of the ankle ligament complex and to quantitatively differentiate‬

‭between a normal ankle and one affected by an IAS. In order to complete these goals, we‬

‭developed a mathematical model and simulated the stress relaxation behavior of the normal and‬

‭sprained ankles on MATLAB. We conducted a literature review on the possible differential‬

‭equations we could possibly use that calculate stress over time, we calibrated the possible‬

‭options for equations using experimental data from literature and then chose the best fitting‬

‭equation as our mathematical model, and then we tested our chosen equation on virtual patient‬

‭data to reveal the differences in the model parameters between the normal and injured ankles.‬

‭This would hopefully increase our understanding of how we can assess ankle sprains, and‬

‭doctors and physicians can make more accurate diagnoses and create the best treatment‬

‭necessary to heal these types of injuries.‬
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‭INTRODUCTION‬

‭Ankle injuries happen a lot in everyday life. Most people experience some type of ankle‬

‭injury sometime in their life, like a high ankle sprain, a twisted ankle, or even ankle fatigue and‬

‭soreness. Ankle injuries are one of the most common sports-related traumas, with ankle sprains‬

‭being the most common in this category of injuries. Ankle sprains occur very frequently in sports‬

‭and exercise, but it could also happen in everyday activity as well, like walking or tripping on a‬

‭curb. Depending on how severe the damage is, ankle sprains can cause bruising, swelling,‬

‭difficulty walking, and ankle instability for the patient. There are two types of ankle sprains,‬

‭eversion ankle sprains (EAS) and inversion ankle sprains (IAS). Eversion ankle sprains occur‬

‭when the foot rolls outwards and away from the body, while inversion ankle sprains occur when‬

‭the foot rolls inwards and towards the body. While EAS is more severe than IAS, IAS happens a‬

‭lot more often than EAS.‬

‭For this project, we are going to only focus on inversion ankle sprains. According to‬

‭Daniel Tik-Pui Fong and his team from BMC Sports Science, Medicine and Rehabilitation,‬

‭inversion (or lateral) ankle sprains are the most common injuries in sports and exercise,‬

‭accounting for approximately 14% of all sports-related injuries (Fong et al., 2009). IAS damages‬

‭and tears the ligaments on the lateral side of the talocrural joint, or more commonly known as the‬

‭ankle joint. The ligaments that can be affected by IAS include the anterior talofibular ligament‬

‭(ATFL), the calcaneofibular ligament (CFL), and the posterior talofibular ligament (PTFL). The‬

‭ATFL is affected the most in this type of injury due to the fact that this ligament is the weakest‬

‭out of the three, having the lowest maximum load at 138.9 N. Compared to the other ligaments,‬

‭the CFL’s ultimate load is almost three times the amount that the ATFL can hold at 345.7 N,‬
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‭while the PTFL’s ultimate load is approximately double the amount at 261.2 N (Fong et al.,‬

‭2009).‬

‭Inversion ankle sprains are mainly caused by the combination of excessive internal‬

‭rotation and ankle plantar flexion (Purevsuren et al., 2017), explosive inversion velocity (Chu et‬

‭al., 2010), and force, or load, exceeding the injury threshold on the ankle (Kristianslund et al.,‬

‭2011). IAS can lead to partial or complete tears to the lateral ligaments of the ankle (Fong et al.,‬

‭2009). Additionally, changes in viscoelastic behaviors, such as stress relaxation and creep (Lin et‬

‭al., 2015), and the loss of end-range stiffness in the ankle ligament complex (Kovaleski et al.,‬

‭2014) may also occur. The severity of damage to the ankle mainly depends on how explosive the‬

‭injury mechanisms were to the affected area, meaning how much high stress did the ligaments‬

‭endure and how fast was the inversion of the ankle. The assessment of the damage can be‬

‭determined by medical staff through x-rays and MRI scans to examine how much time the ankle‬

‭needs to fully heal and to discover the best treatment for each patient.‬

‭The viscoelasticity of the ATFL, CFL, and PTFL of the ankle ligament complex is an‬

‭important quantitative measure to detect inversion ankle sprains. Viscoelasticity involves both‬

‭viscous and elastic behavior, so any viscoelastic material gains the ability to dissipate or lose‬

‭some of the energy that is mainly used for deformation of the material (University of Michigan).‬

‭Other characteristics associated with viscoelasticity are stress relaxation, which refers to stress‬

‭decreasing over time under constant strain, and creep, which refers to strain increasing over time‬

‭under constant stress (University of Michigan). Viscoelastic models can be derived from simple‬

‭mechanical models that have combinations of both spring and dashpot properties. One simple‬

‭model is the Maxwell Model, where a spring and a dashpot are put together in series (in‬

‭sequence) and the total displacement of the system is the sum of the spring displacement and the‬
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‭dashpot displacement. In addition, the total stress of the system is the same as the stress applied‬

‭in the spring or the dashpot. Another model is known as the Voigt Model, where a spring and a‬

‭dashpot are put together in parallel and the total displacement is the same as the displacement of‬

‭the spring or the dashpot. Also, the total stress of the system is the sum of the stress applied in‬

‭the spring and the stress applied in the dashpot (University of Michigan). Each of these‬

‭mechanical models has its own constitutive equations to calculate the stress, strain, and total‬

‭force of the ligaments. Understanding these simple mechanical models would not only give us a‬

‭better understanding of what our own mathematical model would be, but it also gives us a better‬

‭understanding of the behavior of the viscoelastic material in the ankle ligament complex. It is‬

‭important to note that the concept of viscoelasticity doesn’t just apply to the ankle ligament‬

‭complex. It can be applied to assess any type of injury to the soft connective tissues of the body,‬

‭including ligaments, tendons, and cartilage.‬

‭It is important to understand how to differentiate between a normal ankle and an injured‬

‭ankle (one affected by IAS). One study by Che-Yu Lin, Yio-Wha Shau, and their colleagues‬

‭utilized a practical anterior drawer test to quantitatively assess the viscoelastic material in an IAS‬

‭injury using a standard linear solid model and to examine the stress relaxation behavior of the‬

‭lateral ankle ligaments using the stretched exponential function,‬ ‭(Lin et al., 2015).‬‭𝑓‬ = ‭𝑝‬
‭1‬
‭𝑒‬

−( ‭𝑡‬
‭𝑘‬

‭1‬
)

‭𝑘‬
‭2‬

‭They discovered that the relaxation behavior of the sprained ankle had a much steeper decaying‬

‭curve than that of the uninjured ankle, at least near the beginning of the relaxation process‬

‭(‬‭Figure 1‬‭). Another study conducted by Tserenchimed‬‭Purevsuren and his team consists of an‬

‭assessment of three accidental injury cases to reveal the causes of IAS. They concluded that‬

‭excessive ankle inversion and slight internal rotation are the primary causes of IAS (Purevsuren‬

‭et al., 2012). Finally, a third study from Vikki Wing-Shan Chu and her team explored various‬
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‭common sports motions, such as running, jumping, and walking, and simulated ankle sprain‬

‭motions within them, specifically looking at ankle inversion velocity to identify any increased‬

‭risk factors for ankle sprains. They found out that a threshold of ankle inversion velocity of‬

‭300°/s is an indication for an IAS (Chu et al., 2010).‬

‭This capstone project focuses on two important objectives. The first objective is to find‬

‭out what internal properties are impacted by inversion ankle sprains and how they change the‬

‭functions of the lateral ankle ligament complex, and the second objective is to quantitatively‬

‭differentiate between a normal ankle and one affected by IAS.‬

‭DESIGN + APPROACH‬

‭In this Capstone project, my faculty mentor and I developed a mathematical model and‬

‭simulated the relaxation behavior of the normal vs. injured ankle on a computational program on‬

‭MATLAB. There were three benchmarks that were taken during the process of this Capstone‬

‭project. First, we conducted a literature review on the differential equations that can calculate‬

‭stress over time. Secondly, we calibrated the equations using experimental data from our‬

‭literature, and then we chose the best fitting equation. Lastly, we tested our chosen equation on‬

‭virtual patient data to reveal the differences between normal and injured ankles.‬

‭For our mathematical model, there were three options or equations we could use. The‬

‭first option was the stretched exponential function (which was covered in the introduction),‬

‭. In this equation,‬ ‭is stress,‬ ‭is time,‬ ‭is the initial maximum stress,‬‭𝑓‬ = ‭𝑝‬
‭1‬
‭ ‬‭𝑒𝑥𝑝‬(− ( ‭𝑡‬

‭𝑘‬
‭1‬

)
‭𝑘‬

‭2‬) ‭𝑓‬ ‭𝑡‬ ‭𝑝‬
‭1‬

‭and‬ ‭and‬ ‭are the parameters that will be determined by curve-fitting. For every function that‬‭𝑘‬
‭1‬

‭𝑘‬
‭2‬

‭is nominated for our mathematical model, there will be two model equations derived from the‬

‭original function with a different number of parameters in each of them. For example, for Model‬
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‭1, which is‬ ‭, we only include the parameter‬ ‭, and for Model 2, which is‬‭𝑓‬ = ‭𝑝‬
‭1‬
‭ ‬‭𝑒𝑥𝑝‬(− ‭𝑡‬

‭𝑘‬
‭1‬

) ‭𝑘‬
‭1‬

‭, we include both parameters‬ ‭and‬ ‭. To validate the functions, we‬‭𝑓‬ = ‭𝑝‬
‭1‬
‭ ‬‭𝑒𝑥𝑝‬(− ( ‭𝑡‬

‭𝑘‬
‭1‬

)
‭𝑘‬

‭2‬) ‭𝑘‬
‭1‬

‭𝑘‬
‭2‬

‭calibrated them by curve-fitting (line of best fit), using stress relaxation data of injured and‬

‭uninjured ankles from Lin, Shau, and their team (Lin et al., 2015) (‬‭Figure 1‬‭). As a result, Model‬

‭2 labeled in red had a much better fit than Model 1 in blue (‬‭Figure 2‬‭). The method we used for‬

‭curve-fitting was the least squares method. This method continually searches for a curve where‬

‭the sum of the offsets of data points is minimized. This method for curve-fitting will be used a‬

‭lot during the calibration and virtual patient testing phases of this project.‬

‭Figure 1‬‭: Relaxation behavior of the uninjured and‬‭sprained ankles, which was a result of the‬

‭anterior drawer test performed by Che-Yu Lin and his colleagues (Lin et al., 2015).‬
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‭Figure 2‬‭: Calibration of Models 1 (blue) and 2 (red)‬‭of the Stretched Exponential Function‬

‭through curve-fitting with the stress relaxation behavior of the uninjured vs. injured ankles from‬

‭Lin et al.‬

‭The second option we had was the general decaying exponential function,‬

‭. This was used as a reduced relaxation function, which was part‬‭𝐺‬(‭𝑡‬) = ‭𝑎‬‭𝑒‬−‭𝑏𝑡‬ + ‭𝑐‬‭𝑒‬−‭𝑑𝑡‬ + ‭𝑔𝑒‬−‭ℎ𝑡‬

‭of the quasilinear viscoelastic theory used by Stephanie Toms, Greg Dakin, and their colleagues‬

‭to quantify the stress-strain behavior of the human periodontal ligament (PDL) (Toms et al.,‬

‭2002). In this equation,‬ ‭is stress,‬ ‭is time, and‬ ‭,‬ ‭,‬ ‭,‬ ‭,‬ ‭, and‬ ‭are the parameters that‬‭𝐺‬(‭𝑡‬) ‭𝑡‬ ‭𝑎‬ ‭𝑏‬ ‭𝑐‬ ‭𝑑‬ ‭𝑔‬ ‭ℎ‬

‭will be determined by curve-fitting. This equation is pretty straight forward since Models 1 and 2‬

‭just have a different number of parameters and exponential terms. For Model 1,‬ ‭,‬‭𝐺‬(‭𝑡‬) = ‭𝑎‬‭𝑒‬−‭𝑏𝑡‬

‭we only include parameters‬ ‭and‬ ‭with one exponential term, while for Model 2,‬‭𝑎‬ ‭𝑏‬

‭, we only include parameters‬ ‭,‬ ‭,‬ ‭, and‬ ‭with two exponential terms.‬‭𝐺‬(‭𝑡‬) = ‭𝑎‬‭𝑒‬−‭𝑏𝑡‬ + ‭𝑐‬‭𝑒‬−‭𝑑𝑡‬ ‭𝑎‬ ‭𝑏‬ ‭𝑐‬ ‭𝑑‬

‭Back to the calibration stage, Model 2 proved to be the more accurate fit for the data (‬‭Figure 3‬‭),‬
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‭and now we begin to see a common theme with the model with more parameters having a better‬

‭fit of the stress relaxation data than the model with less parameters.‬

‭Figure 3‬‭: Calibration of Models 1 (blue) and 2 (red)‬‭of the General Decaying Exponential‬

‭Function through curve-fitting with the stress relaxation behavior of the uninjured vs. injured‬

‭ankles from Lin et al.‬

‭Finally, the third option was the general quasilinear viscoelastic function,‬

‭. This was utilized in‬‭𝑇‬(‭𝑡‬) = ‭𝐴‬γ(‭𝑒‬‭𝐵‬λ − ‭1‬) ‭𝑎𝑑ℎ‬‭𝑒‬
−‭𝑏‬(‭𝑡‬−‭𝑡‬

‭0‬
)
+‭𝑐𝑏ℎ‬‭𝑒‬

−‭𝑑‬(‭𝑡‬−‭𝑡‬
‭0‬
)
+‭𝑔𝑏𝑑‬‭𝑒‬

−‭ℎ‬(‭𝑡‬−‭𝑡‬
‭0‬
)
−‭𝑎𝑑ℎ‬‭𝑒‬−‭𝑏𝑡‬−‭𝑐𝑏ℎ‬‭𝑒‬−‭𝑑𝑡‬−‭𝑔𝑏𝑑‬‭𝑒‬−‭ℎ𝑡‬

‭𝑏𝑑ℎ‬

‭an “BME 332: Introduction to Biosolid Mechanics” lecture in the University of Michigan, where‬

‭the instructors derived it from the QLV (quasilinear viscoelastic) theory that Toms and her team‬

‭used in their experiments. The general quasilinear viscoelastic function was an extended version‬

‭of the general decaying exponential function but now with an instantaneous nonlinear elastic‬

‭response. The instantaneous nonlinear elastic response is labeled by this term,‬ ‭,‬‭𝐴‬γ(‭𝑒‬‭𝐵‬λ − ‭1‬)

‭where‬ ‭is the principal stretch ratio,‬ ‭is the‬‭strain rate up from 0 to‬ ‭, and‬ ‭and‬ ‭are‬λ γ ‭𝑡‬
‭0‬

‭𝐴‬ ‭𝐵‬

‭constants determined by experiment (University of Michigan). Since this function was overly‬
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‭complex, we had to make some assumptions for simplification. We assumed that the parameters‬

‭,‬ ‭,‬ ‭,‬ ‭, and‬ ‭are all constant values,‬‭which means that, in turn, the instantaneous nonlinear‬‭𝐴‬ ‭𝐵‬ γ λ ‭𝑡‬
‭0‬

‭elastic response can be represented as a constant. According to the lecture from the University of‬

‭Michigan,‬ ‭= 8.92 x 10‬‭-3‬‭,‬ ‭= 8.79,‬ ‭= 1.3,‬ ‭= 4, and‬ ‭= 0.0862 (University of Michigan).‬‭In‬‭𝐴‬ ‭𝐵‬ λ γ ‭𝑡‬
‭0‬

‭addition to these applied constants,‬ ‭is stress,‬ ‭is time, and‬ ‭,‬ ‭,‬ ‭,‬ ‭,‬ ‭, and‬ ‭are the‬‭𝑇‬(‭𝑡‬) ‭𝑡‬ ‭𝑎‬ ‭𝑏‬ ‭𝑐‬ ‭𝑑‬ ‭𝑔‬ ‭ℎ‬

‭parameters that will be determined by curve-fitting. For Model 1,‬

‭,‬‭we only include parameters‬ ‭and‬ ‭, while for‬‭Model 2,‬‭𝑇‬(‭𝑡‬) = ‭𝐴‬γ(‭𝑒‬‭𝐵‬λ − ‭1‬) ‭𝑎‬‭𝑒‬
−‭𝑏‬(‭𝑡‬−‭𝑡‬

‭0‬
)
−‭𝑎‬‭𝑒‬−‭𝑏𝑡‬

‭𝑏‬ ‭𝑎‬ ‭𝑏‬

‭, we only include parameters‬ ‭,‬ ‭,‬ ‭, and‬ ‭.‬‭𝑇‬(‭𝑡‬) = ‭𝐴‬γ(‭𝑒‬‭𝐵‬λ − ‭1‬) ‭𝑎𝑑‬‭𝑒‬
−‭𝑏‬(‭𝑡‬−‭𝑡‬

‭0‬
)
+‭𝑐𝑏‬‭𝑒‬

−‭𝑑‬(‭𝑡‬−‭𝑡‬
‭0‬
)
−‭𝑎𝑑‬‭𝑒‬−‭𝑏𝑡‬−‭𝑐𝑏‬‭𝑒‬−‭𝑑𝑡‬

‭𝑏𝑑‬ ‭𝑎‬ ‭𝑏‬ ‭𝑐‬ ‭𝑑‬

‭Back to the calibration stage for the third time, Model 2 was the more accurate fit of the data‬

‭than Model 1 once again (‬‭Figure 4‬‭).‬

‭Figure 4‬‭: Calibration of Models 1 (blue) and 2 (red)‬‭of the General Quasilinear Viscoelastic‬

‭Function through curve-fitting with the stress relaxation behavior of the uninjured vs. injured‬

‭ankles from Lin et al.‬
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‭After considering all of the three options, my faculty mentor and I decided that option #3,‬

‭which was the general quasilinear viscoelastic function, was the best option as our mathematical‬

‭model for the project.‬

‭𝑇‬(‭𝑡‬) = ‭𝐴‬γ(‭𝑒‬‭𝐵‬λ − ‭1‬) ‭𝑎𝑑ℎ‬‭𝑒‬
−‭𝑏‬(‭𝑡‬−‭𝑡‬

‭0‬
)
+‭𝑐𝑏ℎ‬‭𝑒‬

−‭𝑑‬(‭𝑡‬−‭𝑡‬
‭0‬
)
+‭𝑔𝑏𝑑‬‭𝑒‬

−‭ℎ‬(‭𝑡‬−‭𝑡‬
‭0‬
)
−‭𝑎𝑑ℎ‬‭𝑒‬−‭𝑏𝑡‬−‭𝑐𝑏ℎ‬‭𝑒‬−‭𝑑𝑡‬−‭𝑔𝑏𝑑‬‭𝑒‬−‭ℎ𝑡‬

‭𝑏𝑑ℎ‬

‭Even though this was a very complex function, with the assumptions that we made to‬

‭simplify terms, it was the right amount of complexity that was able to most accurately curve-fit‬

‭the stress relaxation data out of the three nominated functions during calibration.‬

‭Now we move on to phase three of this Capstone project, which is virtual patient testing.‬

‭(Just a quick note, no human subjects were tested and monitored for this Capstone project.) My‬

‭faculty mentor and I created 15 virtual patients with a normal, uninjured ankle on one side and an‬

‭injured ankle on the other side. These patients have been chosen for a stress relaxation test of‬

‭both their normal and injured ankles, which will be performed over a 30-second duration. The‬

‭purpose of this test is to identify the parameters in our mathematical model that are mostly‬

‭affected by an ankle sprain, so we could quantitatively differentiate between a normal ankle and‬

‭a sprained ankle. Once the stress vs. time data has been collected from the relaxation test of both‬

‭the injured and uninjured ankles of all 15 patients, with the use of MATLAB programming,‬

‭Models 1 and 2 of the general quasilinear viscoelastic function will be curve-fitted (line of best‬

‭fit) to the uninjured and injured ankle stress relaxation data of each virtual patient. As a result,‬

‭the parameter values for Model 1 (‬ ‭and‬ ‭) and‬‭the parameter values for Model 2 (‬ ‭,‬ ‭,‬ ‭,‬‭and‬ ‭)‬‭𝑎‬ ‭𝑏‬ ‭𝑎‬ ‭𝑏‬ ‭𝑐‬ ‭𝑑‬

‭would be found as well as their respective error values. With these results, we will be able to‬

‭observe any changes in each parameter value between the normal ankle and the injured ankle and‬

‭any trends in the relaxation behavior (normal vs. injured) in this pool of patients.‬
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‭RESULTS‬

‭Model 1:‬ ‭Uninjured‬ ‭Injured‬

‭Patient #‬ ‭a‬ ‭b‬ ‭a‬ ‭b‬

‭1‬ ‭0.1057‬ ‭0.0053‬ ‭0.1025‬ ‭0.0046‬

‭2‬ ‭0.1051‬ ‭0.0053‬ ‭0.0968‬ ‭0.0063‬

‭3‬ ‭0.1051‬ ‭0.0028‬ ‭0.1007‬ ‭0.0048‬

‭4‬ ‭0.1014‬ ‭0.0044‬ ‭0.1018‬ ‭0.0061‬

‭5‬ ‭0.1018‬ ‭0.0039‬ ‭0.1012‬ ‭0.0065‬

‭6‬ ‭0.1024‬ ‭0.0048‬ ‭0.1011‬ ‭0.0042‬

‭7‬ ‭0.1017‬ ‭0.0052‬ ‭0.0949‬ ‭0.0061‬

‭8‬ ‭0.0999‬ ‭0.0042‬ ‭0.1007‬ ‭0.0056‬

‭9‬ ‭0.0986‬ ‭0.0041‬ ‭0.0991‬ ‭0.0075‬

‭10‬ ‭0.1024‬ ‭0.0042‬ ‭0.0950‬ ‭0.0045‬

‭11‬ ‭0.1036‬ ‭0.0031‬ ‭0.1010‬ ‭0.0031‬

‭12‬ ‭0.1033‬ ‭0.0022‬ ‭0.0987‬ ‭0.0064‬

‭13‬ ‭0.0984‬ ‭0.0038‬ ‭0.0985‬ ‭0.0064‬

‭14‬ ‭0.1008‬ ‭0.0043‬ ‭0.0989‬ ‭0.0036‬

‭15‬ ‭0.1003‬ ‭0.0037‬ ‭0.0972‬ ‭0.0038‬

‭Table 1‬‭: Parameter values of Model 1 determined by‬‭curve-fitting with the virtual patient data,‬
‭showing the changes in stress relaxation behavior from the uninjured ankle to the injured ankle.‬

‭Model‬
‭2:‬

‭Uninju‬
‭red‬

‭Injured‬

‭Patient‬
‭#‬

‭a‬ ‭b‬ ‭c‬ ‭d‬ ‭a‬ ‭b‬ ‭c‬ ‭d‬

‭1‬ ‭0.0012‬ ‭0.1460‬ ‭0.1049‬ ‭0.0050‬ ‭0.0057‬ ‭0.2121‬ ‭0.0995‬ ‭0.0033‬

‭2‬ ‭0.1029‬ ‭0.0045‬ ‭0.0032‬ ‭0.1255‬ ‭0.0108‬ ‭0.4474‬ ‭0.0934‬ ‭0.0046‬
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‭3‬ ‭0.0024‬ ‭0.1362‬ ‭0.1035‬ ‭0.0022‬ ‭0.0977‬ ‭0.0033‬ ‭0.0072‬ ‭0.2974‬

‭4‬ ‭0.0058‬ ‭0.3154‬ ‭0.0991‬ ‭0.0033‬ ‭0.0987‬ ‭0.0046‬ ‭0.0064‬ ‭0.2355‬

‭5‬ ‭0.1000‬ ‭0.0031‬ ‭0.0056‬ ‭0.4181‬ ‭0.0072‬ ‭0.3096‬ ‭0.0982‬ ‭0.0050‬

‭6‬ ‭0.0996‬ ‭0.0035‬ ‭0.0060‬ ‭0.2438‬ ‭0.0063‬ ‭0.3856‬ ‭0.0990‬ ‭0.0031‬

‭7‬ ‭0.0063‬ ‭0.3225‬ ‭0.0992‬ ‭0.0040‬ ‭0.0118‬ ‭0.6127‬ ‭0.0920‬ ‭0.0045‬

‭8‬ ‭0.0978‬ ‭0.0032‬ ‭0.0070‬ ‭0.4608‬ ‭0.0982‬ ‭0.0044‬ ‭0.0071‬ ‭0.3650‬

‭9‬ ‭0.0966‬ ‭0.0031‬ ‭0.0081‬ ‭0.6242‬ ‭0.0948‬ ‭0.0054‬ ‭0.0096‬ ‭0.2745‬

‭10‬ ‭0.1004‬ ‭0.0032‬ ‭0.0050‬ ‭0.3100‬ ‭0.0924‬ ‭0.0031‬ ‭0.0114‬ ‭0.6703‬

‭11‬ ‭0.0036‬ ‭0.2561‬ ‭0.1020‬ ‭0.0024‬ ‭0.0053‬ ‭0.5482‬ ‭0.0996‬ ‭0.0024‬

‭12‬ ‭0.0034‬ ‭0.3417‬ ‭0.1021‬ ‭0.0016‬ ‭0.0088‬ ‭0.3859‬ ‭0.0956‬ ‭0.0049‬

‭13‬ ‭0.0084‬ ‭0.5930‬ ‭0.0963‬ ‭0.0028‬ ‭0.0092‬ ‭0.3252‬ ‭0.0948‬ ‭0.0045‬

‭14‬ ‭0.0062‬ ‭0.3783‬ ‭0.0986‬ ‭0.0033‬ ‭0.0975‬ ‭0.0028‬ ‭0.0077‬ ‭0.8627‬

‭15‬ ‭0.0068‬ ‭0.5152‬ ‭0.0984‬ ‭0.0028‬ ‭0.0953‬ ‭0.0028‬ ‭0.0094‬ ‭0.8237‬

‭Table 2‬‭: Parameter values of Model 2 determined by‬‭curve-fitting with the virtual data, showing‬
‭the changes in stress relaxation behavior from the uninjured ankle to the injured ankle.‬

‭Each model was accurately curve-fitted with the virtual patient data, limiting the amount‬

‭of error value in the parameters as much as possible. After curve-fitting both Models 1 and 2‬

‭with the uninjured and injured ankle stress relaxation data for all 15 patients, I observed some‬

‭common themes among the different plots. First, and most obvious, Model 2 (red line) proved to‬

‭be the more accurate fit of the data than Model 1 (blue line) in all plots of the patients (‬‭Figure 5‬‭).‬

‭Secondly, when comparing the uninjured vs. injured stress relaxation behavior, for at least the‬

‭majority of the patients, the exponentially decaying curve was much steeper in the injured plot‬

‭than that of the uninjured plot. It is most revealed by the comparison of the initial drop in stress‬

‭towards the beginning of the plots (‬‭Figure 5‬‭).‬
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‭Figure 5‬‭: Stress relaxation plots of the uninjured‬‭vs. injured ankles for Patients #1-3. (NOTE:‬

‭The reason I didn’t include the other patients was because all of the plots, including the ones not‬

‭shown, convey the same message that Model 2 is a much better fit of the data than Model 1, and‬
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‭that the stress relaxation behavior has a steeper downward curve for the injured ankle than that of‬

‭the uninjured ankle).‬

‭For Model 1, the values for parameters‬ ‭and‬ ‭were consistent for the most part‬‭𝑎‬ ‭𝑏‬

‭surrounding all of the patients. For the uninjured ankle, the average value of parameter‬ ‭was‬‭𝑎‬

‭0.1020 with a standard deviation of 0.0023, and the average value of parameter‬ ‭was 0.0041‬‭𝑏‬

‭with a standard deviation of 9.0034 x 10‬‭-4‬‭. On the‬‭other hand, for the injured (sprained) ankle,‬

‭the average value of parameter‬ ‭was 0.0992 with‬‭a standard deviation of 0.0024, and the‬‭𝑎‬

‭average value of parameter‬ ‭was 0.0053 with a standard‬‭deviation of 0.0013. This means that‬‭𝑏‬

‭the difference between the uninjured and injured ankle average values of parameter‬ ‭is -0.0028,‬‭𝑎‬

‭and the difference between the average values of parameter‬ ‭is 0.0012. These difference values‬‭𝑏‬

‭show that from the uninjured ankle to the injured ankle, there is a sufficient drop in parameter‬‭𝑎‬

‭and a slight rise in parameter‬ ‭. Even though these‬‭numbers aren’t all that high, the plots‬‭𝑏‬

‭comparing the changes in parameter values from uninjured ankle stress data to injured ankle‬

‭stress data were most revealing (‬‭Figure 6‬‭). So, in‬‭summary, parameter‬ ‭was more affected by‬‭𝑎‬

‭the injured ankle than parameter‬ ‭.‬‭𝑏‬
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‭Figure 6‬‭: Plots showing the changes in parameters‬ ‭and‬ ‭from the stress relaxation behavior of‬‭𝑎‬ ‭𝑏‬

‭the uninjured ankle to that of the injured ankle.‬

‭For Model 2, the values for each parameter (‬ ‭,‬ ‭,‬ ‭, and‬ ‭) were mostly all over the place‬‭𝑎‬ ‭𝑏‬ ‭𝑐‬ ‭𝑑‬

‭considering all of the patients. For the uninjured ankle, the average value of parameter‬ ‭was‬‭𝑎‬

‭0.0428 with a standard deviation of 0.0480, the average value of parameter‬ ‭was 0.2017 with a‬‭𝑏‬

‭standard deviation of 0.2028, the average value of parameter‬ ‭was 0.0626 with a standard‬‭𝑐‬

‭deviation of 0.0480, and the average value of parameter‬ ‭was 0.1473 with a standard deviation‬‭𝑑‬

‭of 0.2109. On the contrary, for the injured ankle, the average value of parameter‬ ‭was 0.0493‬‭𝑎‬

‭with a standard deviation of 0.0456, the average value of parameter‬ ‭was 0.2169 with a standard‬‭𝑏‬

‭deviation of 0.2260, the average value of parameter‬ ‭was 0.0554 with a standard deviation of‬‭𝑐‬

‭0.0456, and the average value of parameter‬ ‭was‬‭0.2374 with a standard deviation of 0.3159.‬‭𝑑‬

‭This means that the difference between the uninjured and injured ankle average values of‬

‭parameter‬ ‭was 0.0065, the difference between the‬‭average values of parameter‬ ‭was 0.0152,‬‭𝑎‬ ‭𝑏‬

‭the difference between the average values of parameter‬ ‭was -0.0072, and the difference‬‭𝑐‬

‭between the average values of parameter‬ ‭was 0.0901.‬‭These difference values show that from‬‭𝑑‬

‭the uninjured ankle to the injured ankle, there is a slight rise in parameter‬ ‭, a slight drop in‬‭𝑎‬

‭parameter‬ ‭, and huge increases in parameter‬ ‭and‬ ‭. Again, even though these numbers aren’t‬‭𝑐‬ ‭𝑏‬ ‭𝑑‬

‭so high in value, the plots comparing the parameter values for uninjured vs. injured ankles prove‬

‭that these changes in parameters are significant to mention (‬‭Figure 7‬‭). So, in short, parameters‬‭𝑏‬

‭and‬ ‭were most affected by the injured ankle than‬‭parameters‬ ‭and‬ ‭.‬‭𝑑‬ ‭𝑎‬ ‭𝑐‬
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‭Figure 7‬‭: Plots showing the changes in parameters‬ ‭,‬ ‭,‬ ‭, and‬ ‭from the stress relaxation‬‭𝑎‬ ‭𝑏‬ ‭𝑐‬ ‭𝑑‬

‭behavior of the uninjured ankle to that of the injured ankle.‬

‭DISCUSSION‬

‭Overall, the virtual patient testing was successful. In all of the ankle stress relaxation‬

‭plots for the patients (uninjured vs. injured), Model 2 had a more accurate fit of the virtual‬

‭patient data than Model 1 by a long shot. Model 2 always looked like an exponential decaying‬

‭curve, while Model 1 usually looked more like a linear curve. The probable reason for this‬

‭consistency in curve-fitting results is that the equation for Model 2 has more parameters than the‬

‭equation for Model 1, which add to the complexity of the equation and can make a better fit with‬
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‭the experimental data. In addition, since the stress relaxation behavior looks like an exponential‬

‭decaying curve, adding more exponential terms can also make the shape of the curve a better fit‬

‭of the data. Since the instantaneous nonlinear elastic response is constant, we were able to reveal‬

‭the linear downward slope towards the beginning of the stress relaxation plots (‬‭Figure 7‬‭). This,‬

‭in turn, made the plots of Model 2 look very similar to the plots made by Lin and his team when‬

‭they performed the anterior drawer test.‬

‭Regarding Model 1, the values for parameters‬ ‭and‬ ‭were very similar in comparison‬‭𝑎‬ ‭𝑏‬

‭with each patient, regardless of whether it was the injured or uninjured ankle. This made it easier‬

‭for us to predict the average value of these parameters. In terms of changes in parameter values,‬

‭the coefficients before the exponential terms of this function,‬ ‭, had a larger change from the‬‭𝑎‬

‭uninjured ankle to the injured ankle than the parameter located where the exponents of the‬

‭exponential terms are,‬ ‭. This makes sense because‬‭the coefficients of a function usually affect‬‭𝑏‬

‭the slope and y-intercept of the corresponding line or curve. So the relaxation behavior plot of‬

‭the model was mostly affected by the change in parameter‬ ‭.‬‭𝑎‬

‭Regarding Model 2, the values for parameters‬ ‭,‬ ‭,‬ ‭, and‬ ‭were very scattered between‬‭𝑎‬ ‭𝑏‬ ‭𝑐‬ ‭𝑑‬

‭all of the patients, regardless of whether it was the normal or injured ankle. This made it very‬

‭difficult for us to predict the average value of these parameters. On the contrary from Model 1,‬

‭the parameters,‬ ‭and‬ ‭, had a much larger change‬‭from the uninjured ankle to the injured ankle‬‭𝑏‬ ‭𝑑‬

‭than the parameters‬ ‭and‬ ‭. This is because the‬‭parameters,‬ ‭and‬ ‭, are located in multiple‬‭𝑎‬ ‭𝑐‬ ‭𝑏‬ ‭𝑑‬

‭areas of the equation. More specifically, the parameters‬ ‭and‬ ‭can be found in the coefficients‬‭𝑏‬ ‭𝑑‬

‭before the exponential terms, as part of the exponents of the exponential terms, and in the‬

‭denominator of the function. Since these parameters are found in multiple places, a change in‬

‭these variables will cause a bigger effect on the stress relaxation curve. A common theme can be‬
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‭found between Models 1 and 2, which is the fact that the parameters representing the coefficients‬

‭of the functions (more specifically, the coefficients used before the exponential terms of the‬

‭functions) are mostly affected in the stress relaxation behavior when transitioning from an‬

‭uninjured ankle to an injured one.‬

‭CONCLUSION‬

‭In summary, inversion ankle sprains ultimately cause changes in coefficient parameters in‬

‭our mathematical model. Such changes affect the stress relaxation behavior of the ankle by‬

‭creating a steeper decaying curve. By curve-fitting multiple sub-models with experimental data,‬

‭we were able to discover the differences in shape, fit, and parameter values for these functions.‬

‭Our mathematical model successfully depicted the quantitative differences between a‬

‭normal ankle and an injured (sprained) one. Keep in mind that this mathematical model doesn’t‬

‭have to apply to just quantitatively assessing inversion ankle sprains. This model could be used‬

‭to assess eversion ankle sprains and its affected ligaments. It could also be used to assess other‬

‭ligaments, like the UCL (ulnar collateral ligament) or the ACL (anterior cruciate ligament). It‬

‭could even be used to assess injuries in other soft connective tissues of the body, such as the‬

‭Achilles tendon and articular cartilage. So our mathematical model can adapt to any quantitative‬

‭assessment of soft connective tissue.‬

‭In the future, we could even extend the virtual patient testing by performing stress‬

‭relaxation tests on patients some time later where the once injured ankle is now fully healed.‬

‭This is so we could evaluate and compare the stress relaxation behavior of a normal ankle vs. a‬

‭healed ankle of a patient. Since the ankle ligaments that are healed from the inversion ankle‬

‭sprain would look similar to the normal ankle, we could infer to see similar stress relaxation‬
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‭curves between these two ankles. We could also see new changes in different parameters in the‬

‭sub-models of our mathematical model. There could be a possibility that different parameters are‬

‭mostly affected by a healed ankle, and not necessarily the same parameters that are mostly‬

‭affected by an injured ankle.‬

‭As another extension to the virtual patient testing, we could install different treatments‬

‭for the injured ankles of the patients, such as pain relievers, the RICE method, or a combination‬

‭of both. Then, after some time, we could perform the stress relaxation test on the patients’ treated‬

‭ankles to see how their stress relaxation behavior compares to that of their once injured ankles.‬

‭Not only could we see differences in parameter values of the relaxation curves for our‬

‭mathematical model, we could also reveal the best treatment to aid the injured ankle for the‬

‭patient.‬

‭Inversion ankle sprains are being detected, evaluated, and treated almost every day, and‬

‭these practices and methods are currently improving and/or being innovated. The use of‬

‭mathematical modeling and computer programming is an interesting, yet innovative concept that‬

‭could be applied to not only the field of biomechanics but also to the field of medicine and‬

‭health. It could give us a new perspective on how the parts of our body function on a cellular,‬

‭tissue, or organ level, and how they can be affected by trauma or disease. This Capstone project‬

‭provided a practical application for injury evaluations by quantitatively assessing inversion ankle‬

‭sprains.‬
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