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Abstract

While metapopulation theory offers tractable means to understand extinction risks for patch-

ily-distributed endangered species, real systems often feature discrepant patch quality and

accessibility, complex influences of environmental stochasticity, and regional and temporal

autocorrelation. Spatially structured metapopulation models are flexible and can use real

data but often at the cost of generality. Particularly as resources for management of such

species are often critically limited, endangered species management guided by metapopu-

lation modeling requires incorporation of biological realism. Here we developed a flexible,

stochastic spatially structured metapopulation model of the profoundly endangered Amar-

gosa vole, a microtine rodent with an extant population of only a few hundred individuals

within 1km2 of habitat in the Mojave Desert. Drought and water insecurity are increasing

extinction risks considerably. We modelled subpopulation demographics using a Ricker-like

model with migration implemented in an incidence function metapopulation model. A set of

scenarios was used to assess the effect of anthropogenic stressors or management actions

on expected time to extinction (Te) including: 1) wildland fire, 2) anthropogenically-mediated

losses of hydrologic flows, 3) drought, 4) intentional expansion of existing patches into

‘megamarshes’ (i.e. via restoration/enhancement), and 5) additive impacts of multiple influ-

ences. In isolation, marshes could be sources or sinks, but spatial context within the full

metapopulation including adjacency could alter relative impacts of subpopulations on all

other subpopulations. The greatest reductions in persistence occurred in scenarios simu-

lated with impacts from drought in combination with fire or anthropogenically-mediated

losses of hydrologic flows. Optimal actions to improve persistence were to prevent distant

and smaller marshes from acting as sinks through strategic creation of megamarshes that

act as sources of voles and stepping-stones. This research reinforces that management

resources expended without guidance from empirically-based modeling can actually harm

species’ persistence. This metapopulation-PVA tool could easily be implemented for other
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patchily-distributed endangered species and allow managers to maximize scarce resources

to improve the likelihood of endangered species persistence.

Introduction

Metapopulation modeling is an important tool in conservation of endangered species in frag-

mented landscapes, particularly those that are dependent on climate-impacted resources such

as water [1, 2]. Essentially, a metapopulation is an emergent property of inter-dependent sub-

populations, each experiencing asynchronous extinction and recolonization [3, 4]. Early meta-

population models were mathematically tractable and intuitive, yet arguably inadequate to

account for dynamics in most natural systems [5]. Spatially structured metapopulation models

and incidence function approaches injected realism, but at a cost to the elegant symmetry of

the Levin’s metapopulation in the strict sense. Real management problems feature discrepant

patch quality and accessibility, complex influences of environmental stochasticity on patch

quality, lack of data on predictors of population demography, and regional and temporal auto-

correlation of metapopulation parameters. Theorists have tackled these problems and applied

their innovations to exemplar species (e.g. stochastic dynamic programming of the Mount

Lofty Ranges Southern emu-wren, Stipiturus malachurus intermedius [6]), showing that,

beyond simplicity, metapopulation theory’s exceptional strength is its flexibility and ability

make use of real data.

The critically endangered Amargosa vole (Microtus californicus scirpensis) is a microtine

rodent occupying less than 40 hectares of rare and deteriorating marsh habitat in the Amar-

gosa River Basin. Like numerous geographically isolated endemic species, the vole is at

extreme risk of extinction by virtue of very small population size and strict dependence on pat-

chy marsh habitat within the driest portion to the Mojave Desert [7–9]. Their small population

size makes them vulnerable to local environmental pressures, environmental stochasticity,

inbreeding, and demographic challenges [10–13]. Nearby growing cities and towns, agricul-

ture, and solar energy farms compete for the critically limiting resource–water, and water is

increasingly unreliable due to anthropogenic climate change and drought [14, 15]. Climate

change projections suggest that, among California’s ecosystems, inland deserts are likely to

experience the most severe impacts. The Mojave ecoregion is projected to experience of loss of

habitat suitable for present vegetation from 83 km2 at present to only 9–59% of that [16, 17]

Normalized difference vegetation index (NDVI) data reveal decades-long attrition of water,

decreased plant production, smaller habitat area, and less connectivity among habitat patches,

all exacerbated by changing climate [12, 18]. Countering such challenges requires conservation

resources to support and improve habitat, optimally guided by theory and data.

Here we developed a flexible, spatially-explicit stochastic metapopulation model that uses

available data and allows managers to assess interventions or unintended external influences

on habitat patches and corridors. Specifically, our goals were to: 1) to develop the metapopula-

tion viability analysis framework, 2) parameterize the model using data on patch quality and

configuration, environmental impacts, vole demographic data, and inter-patch migration

events, 3) classify patches in a source-sink-transition framework depending on whether each

patch is expected to persist >25 yr, or if persistence is contingent on patch position within the

metapopulation, and 4) analyze how changes in water availability and habitat affect extinction

risk of the metapopulation; those simulated changes included status quo, projected climate

change without intervention, climate change with intentional expansion of existing patches
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into ‘megamarshes’ (i.e. via targeted restoration/enhancement), and enforced local provision

of stable water. In the face of limited resources, metapopulation modeling can efficiently prior-

itize strategies for conservation of species in fragmented landscapes, particularly those that are

highly dependent on climate-impacted resources such as water.

Methods

Study system

The Amargosa River basin, in the driest portion of the Mojave ecoregion, features numerous

small relict wetlands from the Pleistocene, 10,000 years before modern water recession and

habitat change. These wetlands are biodiversity hotspots with endemic or endangered springs-

nails (Pyrgulopsis sp.), pupfish (Cyprinodon spp.), Amargosa niterwort (Nitrophila mohaven-
sis), Tecopa birdsbeak (Corylanthus tecopensis), Bell’s least vireo (Vireo bellii pusillus), and the

Amargosa vole. The total range of Amargosa voles includes 36 marshes across less than 1km2

of patchily distributed habitat (Fig 1) near the lower Amargosa River from 35.8492 to 35.8863

latitude and -116.2170 to -116.2477 longitude [10, 19]. Average daytime temperatures range

from 15–23˚C in winter and 37–43˚C in summer. Mean annual precipitation (1972–2011) is

120 mm [20]. Fewer than 1000 Amargosa voles remain in the wild [12].

The wetlands depend on surface and subterranean water from precipitation on nearby

mountains (averaging 700 mm/year at high elevations [21]) and patchily distributed springs

tapping a fossil aquifer, an inadvertently created Artesian well, and overflow from wells and

graywater from nearby homes and bath-houses [22]. Few of the marshes depend solely and

directly on natural water flows, but rather are highly dependent on human water use. Typi-

cally, one marsh occurs at a spring or pump outflow source, and the marsh’s outflow serves

downstream marshes which we grouped by water sources [12] (Fig 1). The vole relies on bul-

rush (Schoenoplectus americanus)-dominated habitat for food as well as refuge from predators

and thermal extremes [13, 19, 23]; such marshes occur as patches within a harsh alkaline desert

matrix.

Field methods

Mean water depth of each marsh patch was calculated from water depth measurements col-

lected at grid-point locations every 20m throughout bulrush-dominated portions of each

marsh. Water depth measurements were collected twice (peak winter and summer) during

2017 to capture seasonal changes in water levels although overall water levels could change

annually as well, particularly under impacts of drought.

Voles were trapped in a nested grid design for population size estimates [13], and later

along comparably established grids to detect movement. Records of tagged vole movements

between marshes were compiled from live trapping during this study and from studies in

2013–2017 [12, 13, 24–27]. Movement was also monitored using RFID transceivers and inte-

grated corded antennae (IS1001TM-12V, Biomark; S1 File). Transceiver units were strategically

placed between paired marshes 7/10 and 69/12, separated by a clear pinch point (Fig 1). Live-

trapping occurred in paired marshes described above every 6–8 weeks during from February

2017- August 2018, and each individual captured was marked with a uniquely numbered

metal ear tag (National Band and Tag, Newport, KY) and received a 12 mm passive integrated

transponder (PIT) tag (Biomark, Boise, ID). Inter-marsh movement was recorded when a

PIT-tagged animal passed within 36 cm of antennae; these antennae were positioned so as to

allow us to infer animals leaving or entering a marsh. Transceivers recorded movement of

tagged voles from June 2017 –August 2018. All live trapping of animals was performed pursu-

ant to California Department of Fish and Wildlife Scientific Collecting Permit #SC854, US
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Fish and Wildlife Service Amargosa vole Recovery Permit #TE546414A-2, UC Davis Institu-

tional Animal Care and Use Committee Protocol #19905, and an MOU with the Bureau of

Land Management.

Model overview

The main model module, metavole.R, was constructed in R using a spatially structured meta-

population model approach related to the incidence function approach [28, 29]. The stochastic

model was implemented as a Monte Carlo simulation with 1-year time steps. The metapopula-

tion landscape (volescape) was a dataframe representing 36 circular marshes with area and cen-

troid characteristic of natural vole habitat. As any metapopulation reflects a balance between

local extinctions and colonization, we estimated both of these.

Fig 1. Range map of the Amargosa vole. Map of range and marsh habitat patches of the Amargosa vole, Microtus
californicus scirpensis. Marshes are numbered according to conventions of the ad hoc Amargosa vole team. Groups of

marshes are outlined based on shared dependency on original water sources. Red stars indicate placement of

IS1001TM-12V Biomark RFID transceiver and integrated corded antennae. Sink class I has a predicted time to

extinction (Te)> 25 yr; class II Te = 10–25 yr, and class III Te < 10 yr.

https://doi.org/10.1371/journal.pone.0237516.g001
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Local extinctions occurred when Ni < 1; predictions of Ni were derived from Ricker

dynamics, i.e. Ntþ1 ¼ Nt � expðrdð1� Nt=KÞþεÞ, where Nt was patch subpopulation size at time = t,
rd was per-capita subpopulation growth rate at low population density, Ki was subpopulation

carrying capacity, and ε was environmental stochasticity (a normal random variable with

mean = 0 and variance = vr [30]).

Colonization was simulated to be a function of inter-patch distance and the probability that

voles would emigrate from any given patch. Each patch i was subject to a particular “migration

pressure” function [28] which was a Poisson random variable. Poisson random variables are

characterized by a single parameter (mean and variance) λ; λ was defined for the metapopula-

tion as β∑(Nj×e−αd), i.e. it is a compositive function comprising subpopulation sizes of all

marshes j 6¼ i, the inverse of the mean dispersal distance (α), inter-patch distances (d) from the

center of each marsh j to the center of marsh i, and a calibrator (β) [4]. There is little discussion

of the parameter β in the literature, and we are not aware of it having received a name previ-

ously. We describe our approach to choosing its value, how sensitive model output is to the

value we chose, and how this impacts model applicability and future research in subsequent

sections of the paper.

The simulation was run for a given number of years (a trial), during which vole demogra-

phy in each patch was simultaneously simulated according the Ricker dynamics, which yielded

whether or not that patch was extinct and if not extinct, its Ni. The subpopulation Ni values

then were used to calculate migration pressures for each patch, which represents the function

that allowed for inter-patch migration. Once the algorithm had repeated these events the

desired number of trials, the simulation performed accounting to create a history for all

patches at each year of: mean and variance of N, total metapopulation size, the number of

migrants, the expected number of years before the metapopulation would go extinct (time to

extinction, Te), and each patch’s occupancy (S1 Table). All data and software code are available

from the authors upon request.

Model parameterization

Parameter definitions, data sources, and values are summarized in Table 1. Bayesian prior esti-

mates of population growth (rd) and variance of environmental stochasticity (vr) from better-

studied California vole subspecies were used; these were calculated from linear regressions of

time series of population size data [9], available at https://foleylab.vetmed.ucdavis.edu/

resources.

The model module metavole.R required values of quality for each patch and the Ricker

model for within-patch population dynamics required estimates of population growth and car-

rying capacity. In foundational incidence function metapopulation literature, patch quality

was considered to be best predicted typically by area [28]. However, we aimed to assess multi-

ple different predictors of patch quality (area, water depth, area × water depth = volume), and

did so by choosing the linear regression model with the highest R2 among candidate predictors

of patch vole population size (Ni). We assumed that most of the Ni were at or near their carry-

ing capacity (Ki), because voles in occupied marshes would be expected to have high fecundity

and ability to rapidly achieve maximum population size but are limited by patch area and

connectivity.

Migration pressure was estimated by using a plausible value for β (while it is typically set to

1 for locally common species or at least those that can access patches readily [28], we chose a

much lower value because neither characteristic applies to Amargosa voles), α calculated from

observed inter-marsh movement events recorded in this study (see ‘Field methods’), and dis-

tance between patches (dij) determined from maps. A plot of cumulative number of voles
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traveling each distance indicated exponential decay (S1 Fig) with rate (the maximum likeli-

hood estimator for α) = 1/(mean known distance travelled).

Trapping and demographic analyses

Results of trapping and recapture analysis to determine population density (D) of voles have

been published previously [13, 31]. Trapping was undertaken over six months in 2012 and

2015 at six randomly-placed, consistently-configured grids of 108 traps/grid. Each grid was

105 m x 95 m in dimension with twelve 15 m x 15 m subgrids nested within the grid and each

subgrid consisted of nine trap stations in a 3 x 3 arrangement with the traps spaced 7.5 m

apart. The grids spanned available habitat types and were trapped for four consecutive days

and then resampled monthly. In the original reports [13, 31], data were analyzed with several

different models: the boundary strip [32, 33] conditional likelihood model with two parame-

ters (probability of first capture (p) and probability of recapture (c)) and the spatially-explicit

capture-recapture method (SECR) [34–36]. Boundary strip models were compared using the

bias corrected version of Akaike’s Information Criterion (AICc) [37] allowing both parameters

to vary over time, only one to vary but the other not to vary, and allowing neither to vary.

SECR models were also compared with AICc, including: (1) no effect on the detection function

g(d) (probability of capture at a given distance from the center of the home range) due to tem-

poral, behavioral, or individual variation; (2) g(d) influenced by temporal variation but not

behavioral or individual variation; (3) g(d) influenced by behavioral variation but not temporal

or individual variation; and, (4) g(d) influenced by individual variation but not temporal or

behavioral variation. The package RMark [38] was used to estimate D for boundary strip mod-

els and the package secr [39] was used for the SECR models.

Population size was calculated from D and total marsh area. All models gave similar esti-

mates of population size, with the best supported model being the SECR model with no varia-

tion in g(d). Subpopulation sizes at 14 well-studied marshes were then estimated from

Table 1. Parameter values in metavole.R. Objects used in metavole.R, a spatially structured metapopulation model of Amargosa voles. N/A indicates a data source is not

applicable for a given object.

Object Default (units) Description Source

metavole.

R
Ni initialized at

1×Kvolume×area

Subpopulation size at marsh i This study

rd 0.01/(vole×yr) Instantaneous growth rate of the population [9]

Kvolume 17 voles/(cm×ha) Proxy for per-patch carrying capacity and quality–calculated as published marsh population estimate/

(mean marsh water depth × area)

This study

vr 1 (vole×yr)2 Variance of environmental stochasticity [9]

spacecor 0 Degree to which rd and K co-vary between adjacent marshes, from 0 (no correlation) to 1 (completely

correlated)

N/A

β 0.01 Migration calibrator [28]

Α 0.01/m Inverse of the mean dispersal distance among marshes This study

dij M Distance between centers of patches i and j Values determined

from ArcGIS

volescape Volescapepf The landscape of 36 marshes characterized by marsh number, area, water volume, and geographical

centroid. Alternate versions of volescapepf used for scenarios as described in S2 Table.

This study

metashell.
R
tmax 101 Number of years the simulation runs N/A

trials 500 Number of times metavole.R simulation is run N/A

https://doi.org/10.1371/journal.pone.0237516.t001

PLOS ONE A stochastic structured metapopulation model to assess recovery of endangered species

PLOS ONE | https://doi.org/10.1371/journal.pone.0237516 August 13, 2020 6 / 19

https://doi.org/10.1371/journal.pone.0237516.t001
https://doi.org/10.1371/journal.pone.0237516


quarterly, range-wide trapping done between Nov 2015-Sept 2016 [40]. Density was estimated

using SECR as done for the initial six grids.

Finally, we created a general rule for optimal prediction of Ni and Ki using multiple linear

regression with area, depth, and volume predictors as described above. The optimal model was

chosen by stepwise removal of predictors to minimize AIC. Because the optimal model

retained only volume, we therefore calculated K for each marsh as Ki = (water depth × marsh

area × Kvolume), where Kvolume = Ni/(water depth (cm) × marsh area (ha)) and is an analogue

to subpopulation density at K.

Sensitivity analysis

Sensitivity analysis was conducted using the One Factor at a Time technique [41], exploring Te

across a plausible spectrum of input values. The model was run for 500 trials, each of 101

years. Variables assessed were: a) rd from -0.5 to 0.5 in 0.1 increments, b) Kvolume from 1 to 100

in increments of 5, c) vr from 0 to 10 in increments of 1, d) β from 0 to 0.1 in 0.01 increments,

and e) α from 0 to 0.1 in 0.01 increments.

Modeling scenarios

Habitat patches have been classified as source if rd > 0 and sink if rd <0 [42]; here we updated

definitions to: 1) depend explicitly on expected subpopulation persistence over 25 yr, 2) allow

for each subpopulation’s growth rate to range from positive to negative due to stochasticity if

close to 0, 3) contextualize a patch as source or sink based on its proximity and accessibility to

other patches, and 4) add an intermediate class of inconsistent sink or source patches. The

patch types are: 1) Context-independent Source where rd > 0 and Te tended to be high with

the subpopulation persisting in metavole.R even when isolated (i.e. no migration from other

patches), 2) Rescued Sink, which typically had rd <0 and low Te in isolation but which, likely

due to a form of rescue effect (here via colonization) [43], frequently maintained a resident

subpopulation when in the metapopulation, 3) Context-independent Sink with rd <0 and low

Te both in isolation and in the metapopulation, and 4) Converted Sink, where a patch that had

functioned as a source became a sink in the context of the metapopulation. Each of the 36

marshes was classified by running the simulation setting all marshes except the query marsh to

an area × water depth of 0 and then evaluating Te for that marsh in isolation.

Scenarios were run to assess ecologically relevant anthropogenic stressors and management

actions including: 1) wildland fire, 2) anthropogenically-mediated losses of hydrologic flows,

3) drought (minor, moderate, and severe), 4) strategically located ‘megamarshes’ in the north-

ern, central, or southern habitat range (indicative of potential habitat restoration/enhancement

projects), and 5) additive drought with fire, anthropogenic water loss, and megamarsh crea-

tion. Water reduction scenarios would directly reduce or eliminate habitat for this marsh-

dependent species. Impacts of fire are less clear, especially over time, but immediate impacts

would be to remove burned habitat from potential occupancy, as fire would remove food, can-

opy protection against aerial predators, and litter sites where voles escape predators and locate

their nests. Each scenario was implemented by adjusting patch area and water volume to

increase or decrease patch-specific carrying capacity (Ki) (S2 Table). Default model parameters

remained static except where noted to implement the scenario; each scenario represented a

model run of 101 years and 500 trials of the single set of input conditions that defined that sce-

nario. Model outputs included a history of the subpopulation sizes at each marsh updated

annually, mean subpopulation size across all marshes, mean metapopulation size (total num-

ber of voles), number of occupied patches, number of migrants, and the estimated time to

extinction (Te) after t years.
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Statistical analysis

Data were maintained in Excel (Microsoft, Redmond, WA) and ArcGIS (ESRI, Redlands, CA),

and analyzed in R [44]. We evaluated whether sex was associated with mean distance traveled

using a Student’s t-test and whether season, corridor vegetation status (vegetated, non-vege-

tated, or mixed), and type of corridor vegetation (bulrush, salt grass, and predominantly or

partially bare) were associated with distance using ANOVA. To evaluate management scenar-

ios, we compared means of Te (mvte), proportion of occupied patches at t = 25 years (mvp25),

total population size at t = 25 years (mN25), and the number of migrants across patches at

t = 25 years (mcol25) using one-way ANOVA and Tukey HSD mean separation. Linear regres-

sion was used to explore relationships between response variables and increasing levels of

drought. Values were considered significant if p�0.05.

Results

Parameter estimates

Values for rd and vr were calculated from other California vole subspecies as described by

Foley and Foley (9), yielding averages for each of 0.01 and 1.0, respectively (Table 1). Such a

Bayesian approach was used because our time series calculations require either a Bayesian

prior or multiple successive years of data which have not yet been acquired for the Amargosa

vole. The value for rd we used compares with monthly values of λ for Amargosa voles ranging

from a low of 0.5 in November of 2014 and a high of 2.3 in June 2014, which correspond to rd

= ln(λ) = -0.69 to 0.83. The coefficient from the best-fitting regression model of Ni (values

given in Table 2) on water depth x patch area was 33.39, providing a calculation of Kvolume as

17 voles/(cm x ha) (Table 2). We used a default value of β = 0.01 for all simulations except

where otherwise stated (e.g. in sensitivity analysis). The observed mean distance voles moved

among marshes was 136.86 m and the MLE for decay rate of distance travelled was 0.0073. For

modeling, this number was rounded to α = 0.01. Summary statistics were compiled for the

movement data (Table 3). Sex was not significantly associated with movement distance,

Table 2. Amargosa vole subpopulation sizes (Ni) at 14 well-studied marshes and best-fitting regression model of

Ni on water depth x patch area.

Marsh number Ni

1 120

2 23

3 7

4 1

6 8

10 20

12 7

12 1

21 18

23 19

39 83

54 113

67 10

Model R2 AIC p-value

N = 0 + ß3 area + ß2 volume + ε 0.847 78.61 N/A

N = 0 + ß1 volume + ε 0.834 77.77 2.0x10-6

https://doi.org/10.1371/journal.pone.0237516.t002
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although a single female was an outlier with a distance moved of 478 m. However, once she

was removed from the dataset, mean distances moved by males and females were almost

exactly the same (47 m); we calculated α with this outlier removed. All other independent vari-

ables assessed were significant, with increased distance of movements during winter and

spring, along corridors that were not vegetated, and when crossing salt grass or open playa.

Sensitivity analysis

Spectra of plausible values of the parameters in metavole.R were explored, yielding predictable

changes in mean Te across trials as a function of each input. Te was an approximately linear

function of rd and β, though there was evidence in the former of a weak sigmoidal curve tend-

ing to reach a plateau near rd = 0.4 (Fig 2D). Exponential decay was apparent in the relation-

ships between Te versus vr and α. In both cases, any increases in the independent variables

would be predicted to result in sharp reductions in metapopulation persistence. Lastly,

increases in Kvolume improved Te linearly until eventually saturating at approximately Kvolume

= 40, although this was due to the limited run of the simulation at 101 years.

Per-patch impact on metapopulation

Subpopulation dynamics were simulated for each marsh in isolation, setting values of all other

marshes to 0, yielding a distribution of Te values for individual marshes ranked by decreasing

values of Te (Fig 3). Four marshes were Context-independent Sources with relatively high Te

in isolation >25 yr (Marshes 54 in the north, 13 in the north-central cluster, and 14 and 23

towards the southwest in an isolated playa, Fig 1). Thirteen marshes in isolation would have Te

from 10–25 years and 19 marshes if isolated would persist <10 years, i.e. acting as Context-

independent Sinks, many of them in the south. We then examined the behaviors of each of the

marshes when the simulation was run as an intact metapopulation. Within the metapopula-

tion, five marshes tended to have high probability of persisting > 25 yr (Marshes 13, 14, 23, 54,

Table 3. Summary of movement patterns of 22 Amargosa voles that moved between different marshes near Tecopa, California.

Factor Frequency (No. of movements) Mean distance moved (m) Significance (t or F, df, p)

Sex t = 0.9, df = 9.2, p = 0.37

Male 141 47.4 ±59.2

Female 10 90.5 ±1436.0

Female a 9 47.4 ±48.5

Season F = 3.7, df = 3, p = 0.01

Winter 15 74.9 ±104.4

Spring 18 90.3 ±85.2

Summer 97 37.5 ±42.7

Fall 21 65.7 ±100.5

Vegetated corridor F = 107.3, df = 2, p < 0.001

No 3 321.0 ±140.5

Yes 145 39.2 ±39.7

Mixed 4 257.3 ±75.9

Type of vegetation F = 133.9, df = 2, p < 0.001

Bulrush 144 37.7 ±36.0

Salt grass 6 240.5 ±0.7

Bare or bare/mixed 2 297.8 ±110.9

a Mean distance moved by females with outlier removed.

https://doi.org/10.1371/journal.pone.0237516.t003
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and 55), one of which (55) had such high persistence in part by virtue of rescue, given the rela-

tively low Te in isolation, i.e this marsh functions as a Rescued Sink. Marsh 34 also functioned

as a rescued Sink. In contrast, Marshes 6 and 11 dropped from Sources to Converted Sinks.

Fig 2. Sensitivity analysis plots. Sensitivity of predicted times before Amargosa voles are extinct (Te) on a spectrum of values for five parameters in a simulation model

metavole.R. Parameters including (A) mean dispersal distance, α, (B) migration calibrator, β, (C) patch carrying capacity, Kvolume, (D) estimated rate of population

growth, rd, and (E) environmental stochasticity, vr, are described in the text. Graph gives mean Te and standard deviation.

https://doi.org/10.1371/journal.pone.0237516.g002
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Anthropogenic impacts scenarios

Anthropogenic impacts to vole habitat were compared using metavole.R, which showed that

lack of water or destruction of habitat by fire would reduce Te and carefully placed mega-

marshes could improve Te, but combined effects of simultaneous drought and fire for example

could be catastrophic (Fig 4, S3 Table). The Te for the baseline scenario (status quo) was 67

years; addition of wildland fire (in northern, central or southern habitat extents) reduced Te by

8.6% on average, anthropogenically-mediated loss of water flows reduced Te by 5.4%, and

moderate (35% reduction) drought reduced Te by 18.4%. These differences among scenarios

were significant (p<0.0001). The Te declines significantly with increasing impact of drought

(r2 = 0.91, p<0.0001, Fig 5). Similar trends were observed for total population size at time t
across scenarios. Furthermore, additive impacts of Drought+Water loss and Drought+Fire

were most severe, reducing Te by 21.2% and 22.7% respectively, although the differences

between these two scenarios were not statistically significant (Fig 4).

Trends of metapopulation sizes and migrants after 25 and 101 years mirrored findings for

Te across scenarios (Fig 4, S3 Table). Because the metapopulation was often extinct at 101

years during model simulations, the mean population (mNt) and mean number of migrants

(mcolt) at time t = 101 were very low (8.1 and 0.0095 respectively). For this reason, we focused

on the mean total population size and number of migrants at time t = 25 (mN25 and mcol25).

The highest number of migrants at t = 25 (mcol25) occurred in the baseline (status quo) sce-

nario, and greatest reductions in mcol25 occurred in Drought+Water loss (57%) and Drought

+Fire (61%) (Fig 4). The fraction of marshes occupied within the landscape at t = 25 (mvp25)

also had the greatest reduction for Drought+Fire and Drought+Water loss scenarios.

Creation of expanded ‘megamarshes’ in the landscape generally led to increases in Te, with

northern megamarshes being particularly beneficial, increasing Te 22.3% (81.8 ± 2.9 years),

mvp25 by 24.0% and mN25 by 313% (Fig 4). Changes in the southern habitat region were

more complex. If the entire southern region was destroyed by fire, there was no decline in Te

Fig 3. Estimated time to extinction for individual patches. Occupied marshes near Tecopa, California ranked by

predicted times to extinction when subpopulation dynamics were simulated using the model metavole.R, assuming no

other voles from outside marshes could access the query marsh (marsh in isolation).

https://doi.org/10.1371/journal.pone.0237516.g003
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or mN25 compared to baseline conditions; however the creation of a megamarsh in the south-

ern region led to significant increases in both Te (9.5%) and mN25 (98%).

Discussion

Amargosa voles exemplify several challenges in endangered species management, including

inherent high (and difficult to predict) demographic variability, habitat specialization, depen-

dence on fragmented habitat patches within a metapopulation, and accelerating human

impacts on habitat. We have published previously a population viability analysis (PVA) that

predicted persistence times for the species based on analysis of population time series [9]; here

we add considerable realism and value to the PVA by explicitly incorporating landscape fea-

tures, local subpopulation extinction, and inter-patch migration dynamics. Our analysis docu-

ments that no single patch in isolation could support a robust and persistent Amargosa vole

subpopulation, but that the metapopulation structure itself crucially determines the source

and sink qualities of each patch. The metapopulation-PVA tool is flexible, permits evaluation

of possible changes to the environmental determinants of vole subpopulation success, and

could easily be parameterized and implemented for other patchily-distributed endangered spe-

cies. Querying the model with a set of plausible scenarios of ongoing anthropogenic distur-

bances or potential management interventions allows us to make recommendations that

Fig 4. Metapopulation response to management scenarios. Mean values (and standard deviations) of metapopulation response variables across classes of scenarios

simulated in metavole.R to predict impacts of habitat stressors or intervention on extinction risk. Values for F-statistic and p-value of ANOVA are included. Letters

indicate significant differences between means for scenario classes.

https://doi.org/10.1371/journal.pone.0237516.g004
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would maximize efficient use of scarce resources to improve the likelihood of Amargosa vole

persistence, as is urgently advocated for other conservation programs [6, 45].

Our estimation of parameter values followed the practical guidance originally provided in

Hanski’s incidence function metapopulation work [28] coupled with simple subpopulation

regulation using a Ricker model and statistical assessment of best predictors for inter-patch

movement and patch quality. We acknowledge that parameter values used in the present

model were derived from early field research, and that ongoing research to monitor water

depth and other aspects of the environment and vole status would help keep the model opti-

mally relevant. Typically, patch area is the most intuitive predictor of patch carrying capacity

in a metapopulation model, whereas we chose to use area × water depth (the optimal model

based on AIC) because incorporating the biologically meaningful water depth variable better

explains the difference between high- and low-quality marshes and allows us to study a key

weakness and manageable characteristic of the system. However, there was little difference in

AIC between a model using area and volume and one using only volume, so we chose the

more parsimonious predictor (volume only).

Our model produced numerous useful output data including estimates of migrants, occu-

pancy, and Te, the latter probably serving most intuitively to allow for comparison among sce-

narios for metapopulation responses to stressors or intervention. Te has the benefit of being a

single, management-relevant number for ease of statistical comparison. It resembles the

“mean lifetime of a metapopulation” statistic previously proposed for stochastic and spatially

heterogeneous metapopulations [46]. Sensitivity analysis supported our assumptions that

changes in rd and Kvolume would have considerable impacts on Te, as was evident in our scenar-

ios as well. In general, optimal provision of water remains crucial to support robust vole sub-

populations and is among the most important and realistic management actions.

The sensitivity analysis also suggested that even small increases in vr could have dire conse-

quences for persistence of the Amargosa vole. There may be little managers can do to mini-

mize vr, though the creation of megamarshes may buffer against stochasticity that might be

Fig 5. Impact of simulated drought on metapopulation dynamics. Regressions of mean expected time to extinction

(mvte), mean fraction of occupied patches at time t = 25 years (mvp25), mean total metapopulation size at t = 25

(mN25), and mean number of migrants at t = 25 (mcol25) on percent reduction in habitat due to drought, where

habitat is patch area × water depth as described in text.

https://doi.org/10.1371/journal.pone.0237516.g005
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more problematic in smaller patches. However, our data and modeling approach show clearly

that context matters: no patches were so large and contained enough standing water as to yield

independent subpopulations persisting more than 101 years. Furthermore, the relative spatial

relationships among context-dependent sources and sinks critically impacted both the likeli-

hood that an entire region would function as a sink or that a regional megamarsh would have

a positive impact on overall metapopulation persistence. This dynamic is best illustrated in the

southern marshes: simulated northern or central-habitat fires reduce Te but we do not see that

in the south, because southern fire mitigates the effects of so many sink marshes. A megamarsh

in the area would improve metapopulation persistence because the context in which southern

marshes are sinks is changed.

Metapopulations persist due to balanced patch persistence and accessibility. The migration

parameters α and β had predictable impacts on overall Te and analysis showed that impairing

access to marshes (which can happen for example due to roads or loss of “stepping-stone”

patches) could dramatically reduce persistence expectations. The parameter β is somewhat

enigmatic and its relationship with Te was linear. If a species is locally abundant and suffi-

ciently vagile to frequently colonize new patches, it would have a high β [28] whereas neither

characteristic describes the Amargosa vole at present, which is why we chose a low β value.

Improving connectivity and creation of megamarshes could raise the value of β, while we also

acknowledge that future studies could be done to improve the precision of our estimate of β.

In addition, intentionally reducing access to sink habitat could sometimes be a worthwhile

management action if it helps prevent dead-end migrants from ending up in sinks. The full

impact of such sinks depends to some extent on movement rates among marshes, which is a

difficult to obtain datum, particularly for long-distance, rare, and emigrating movements, for

any species [47]. We could not comprehensively catalog movement rates, but, even though

earlier work suggested that Amargosa voles move minimal distances from any given capture

site [13], we focused on inter-marsh movement and showed that: 1) voles will often move

among patches that are adjacent if there is a vegetated or protected corridor, and 2) longer dis-

tance inter-marsh movements are rare but when they do occur, open playa does not impede

movement. Our finding of longer movements along playa and salt grass is likely an artifact of

this habitat patch structure because any inter-marsh habitat lacks bulrush and any movement

between marsh patches require crossing playa. While our data surely failed to capture all inter-

patch movement, the good fit of data to the decay curve suggests that inclusion of any addi-

tional movement events would not likely change the relationship we documented. In addition,

our movement predictions correspond well with recent genetic estimates that suggested one

effective colonization event per marsh per generation [11].

Migration among patches as implemented in metavole.R was determined both by inter-

marsh distance and by density-dependent subpopulation dynamics, such that densely inhab-

ited patches would be more likely to provide propagules. While one option would be to rerun

within-patch dynamics whenever an animal emigrates, we did not do this in the current model

because high source-patch density was a trigger for emigration. We also allowed for migration

but did not assume that each migration was synonymous with a colonization. The present ver-

sion did not incorporate synchronized forcers such as pulse dynamics or extreme weather

events [48], although the model has the ability to address regional and temporal non-indepen-

dence, an important consideration for Amargosa voles that at present persist entirely within

one water catchment. An earlier study inferred that Amargosa voles persist in a metapopula-

tion due to the habitat patchiness [10]: we were concerned that such a designation might

imply that subpopulations in small patches are buffered against local extinction by coloniza-

tion from nearby habitat patches. Rather, some patches may function as sinks and overall con-

nectivity among patches may be decreasing due to reduction of local water [15]. We
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implemented this by classifying each patch as a Context-independent Source, Rescued Source,

Context-independent Sink, or Converted Sink, extending the classifications used earlier [42].

With this innovation, scenario data must be interpreted carefully. A large proportion of

marshes in the landscape is predicted to be occupied for less than 10% of the time during the

101 year time period of any simulation run and yet, even if a marsh has low occupancy, it may

still provide refuge and a temporary stopping point for voles moving between patches. In the

landscape of the Amargosa vole, there is a natural zone of separation between habitat patches

in the northern, central and southern parts of the range. Simulated northern megamarshes

have a large beneficial impact on vole persistence because they take advantage of a subset of

patches that already have moderate or high occupancy rates and moderate connectivity. The

megamarsh is better than the present set of nearby interconnected patches because it reduces

impacts of demographic and environmental stochasticity. The central area megamarsh is less

clearly beneficial, because those marshes already present in this central area are very well-con-

nected. Only if a buffered megamarsh is installed in the south do these southern marshes do

anything except inhibit overall metapopulation persistence. Thus, a very reasonable manage-

ment question becomes: is it better to use scarce resources for the sure benefit derived from

the northern megamarsh or to the less sure but potentially more impactful south, if both are

not possible?

During a retreat in 2017, an ad hoc Amargosa Vole Team (comprising agency managers

and academic and non-profit partners) listed improving water consistency, increasing habitat

extent, and improving habitat quality as highest priorities for recovery of the vole. The federal

Endangered Species Act and California state legislation support legal protections of water and

intervention such as landscape modifications (e.g. creation of one or a few core “mega-

marshes” or changes to inter-marsh connectivity). Our data confirm that vegetating inter-

marsh corridors would have far less benefit than improving quality of patches per se, and that

megamarsh construction should only be done where it does not diminish current contribu-

tions of extant marshes but maximizes functionality of a set of adjacent marshes in a regional

network or source.

Less immediately under the control of endangered species managers is water in a broad and

regional sense, and yet our model shows catastrophic impacts to this species with progressively

larger drought impacts. As currently implemented, exploration of water loss and fire scenarios

only incorporated reduced habitat area, although we acknowledge that dispersal could also

change and should be monitored. Drought combined with other anthropogenic and climate-

related influences, such as fire and loss of point-source spring outflows, could have synergistic

impacts on persistence of the Amargosa vole metapopulation. Even worse, drought exerts

impacts on each marsh that are temporally and spatially correlated, so that our prediction of

linear impacts of drought on extinction risk must actually be adjusted to allow for acceleration

of those impacts. In a metapopulation analysis of highly vulnerable cloud forest in Mexico, a

similar finding of regional autocorrelation of climate impacts indicated that the expectation

for multiple species’ persistence was dire [49]. Ongoing loss of water in the Mojave would

likely be catastrophic not just to voles but to numerous flora and fauna throughout the region

[15].

Earlier research developed metapopulations of real or complex biological systems where

patches are not all one size, migration is not all equal, and parameters are subject to stochasti-

city or nonstationarity, e.g. [6, 29, 50–53]. Some have had to omit stochasticity, assume equal

patch size or accessibility, highlight that results are entirely dependent on parameter sets, or

make other concessions that improve usability but reduce generality. Our incorporation of

analytical Ricker dynamics within the overall simulation supports generality and flexibility.

We show that management resources that are expended without guidance from the model can
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actually harm prospects for persistence of the species [6]. The specific predicted Te for any sce-

nario should not be over-interpreted as parameters are surely not measured exactly nor are

they static; nevertheless, the relative impacts on the overall metapopulation of changing

parameters can be predicted [49], and the relative impacts of scenarios can be ranked even

without an exact Te as was exemplified for butterflies [54]. Critically, while the context of each

marsh dictates the emergent properties of the entire system, our modeling approach can

indeed be synthetic and generalizable to other patchily-distributed endangered species. Our

model and results thus have relevance to many species in metapopulations subject to climate

stressors including American pikas (Ochotona princeps), Cabrera voles (Microtus cabrerae),

Dupont’s larks (Chersophilus duponti), and others [55–59]. A data-driven tool that can synthe-

size predictions and simulated interventions will be valuable to efficiently and effectively man-

age the numerous species and communities that depend on conservation intervention if they

have any chance to survive.
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