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The paper presented in this issue of the Journal by Tang and colleagues illuminate the 

deficiency in our knowledge of the reciprocal metabolic relationship between liver and heart in 

health and disease.
1
 The results presented in this paper used a large number of previously 

acquired 
18

F-FDG PET studies to investigate the association between non-alcoholic fatty liver 

disease (NAFLD) (Figure 1A) and myocardial glucose uptake. Previous work published by Lee 

and colleagues in Metabolism,
2
 had found a significant correlation between NAFLD and 

vascular inflammation using 
18

F-FDG PET to measure maximum target-to-background uptake in 

the carotid arteries; however, the present study is the first to elicit through imaging the 

correlation between NAFLD and potential cardiac metabolic abnormalities.  Patients with 

NAFLD have a high risk of related cardiovascular disease (CVD).
3
 It has been pointed out that 

the leading cause of death in NAFLD patients is CVD rather than liver-associated 

complications,
4
 of which only 5% of NAFLD patients die from liver-related diseases.

5
 
18

F-FGD 

PET is an important indicator of cardiac glucose metabolism and its alteration in the presence of 

disease; however, to systematically understand the relation between NAFLD and the risk of 

cardiovascular disease, other probes, in addition to 
18

FDG,  should be used to study the complex 

and dynamic pathways of energy substrate metabolism in the heart in health and disease and 

their relationship to the metabolic pathways of other body organs. 
 

 

 
 

Figure 1. (A) Non-alcoholic fatty liver disease (NAFLD) is the excessive accumulation of fat in the liver of people 

who consume very little or no alcohol. Fat deposits (white/clear round/oval spaces) and mild fibrosis (green) are 

shown in a micrograph tissue sample of nonalcoholic fatty liver disease. The tissue is stained with Masson's 

trichrome & Verhoeff stain. The hepatocytes stain red. Figure used under a Creative Commons Attribution-

ShareAlike 3.0 Unported license (https://commons.wikimedia.org/wiki/File:Non-

alcoholic_fatty_liver_disease1.jpg).  (B) Liver has many functions in the body, including a major synthesize of very 

low density lipoproteins (VLDL) for cardiac lipoprotein-derived fatty acids. The ultra low-density lipoprotiens 

(ULDL) called chylomicrons are from dietary fat. Adipose triglyceride lipase may play an important role in 

developing NAFLD. This figure was originally in Science. 2011;332:1519, and reprinted with permission from 

AAAS.  (C) Lipoprotein shown here as a micelle with a polar surface of phospholipid monolayer, free cholesterol, 

and apolipoproteins. The non-polar lipid core contains cholesterol esters, and triacylglycerides. Reprinted with 

permission from ShutterStock (ID: 246595399). 

 

 

The aim of the paper by Tang and colleagues was to investigate the association between 

NAFLD and myocardial glucose uptake to see if alterations in 
18

F-FDG uptake could be an 

indicator of cardiac dysfunction in NAFLD individuals. They retrospectively assessed 
18

F-FDG 

PET imaging data of a total of 201 subjects with NAFLD and 542 without NAFLD who were 

imaged over the years from December 1, 2011 to November 30, 2017. The liver (Figure 1B) in 

addition to adipose tissue is a major source of lipoproteins (Figure 1C), which are a major 

substrate for cardiac ATP production. NAFLD is a disease with an extensive amount of fat in the 

https://en.wikipedia.org/wiki/Masson%27s_trichrome_stain
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liver. The diagnosis of fatty liver disease was confirmed by CT where disease was indicated if 

liver attenuation was at least 1 Hounsfield Unit (HU) less than the spleen and the attenuation 

ratio of liver to spleen was less than 1.0. It was found that myocardial 
18

F-FDG uptake was 

significantly lower in individuals with NAFLD compared with those without fatty liver. The 

authors also demonstrated that in NAFLD patients the glucose uptake was inversely proportional 

to the increase in left ventricular (LV) filling pressure, suggesting that NAFLD individuals with 

lower myocardial 
18

F-FDG uptake are more likely to have high risk of impaired diastolic heart 

function. The reasons for alterations of the biochemical processes of myocardial glucose uptake 

in patients with NAFLD is not clear, but probably is the result of several complex biochemical 

processes involving genetic factors, atherosclerosis, inflammatory cytokines, insulin resistance, 

and other alterations in biochemistry of glucose and fatty acid metabolism.
6,7

 

 

The process of glucose and fatty acid metabolism converts chemical energy into 

mechanical energy that is regulated by hemodynamic factors, neurohumoral factors, and oxygen 

availability.
8,9

 It involves translocation of molecular substrates into the cell and mitochondria, the 

facilitated diffusion of molecular species, enzymatic processes in metabolic pathways, and 

genetic regulation of enzyme production, where many things can go wrong. In the heart, energy 

production in the form of ATP involves the metabolism of 70-80% fatty acids and 20-30% 

glucose (glucose, lactate, glycogen).
10

 The ATP produced is used in several chemical reactions 

involving sequestering of substrates into the cell, transport of ions (such as Ca
++

) in and out of 

internal vesicles and ions (such as Na
+
, K

+
) in and out of myocytes during nerve impulse 

propagation, breaking down of metabolic substrates (chemical synthesis), and the production of 

mechanical translation between actin and myosin fibers (muscle contraction). The heart turns 

over its ATP pool every 10 seconds.
10

 Metabolism of carbohydrates produces 4 kcal/gram of 

energy, whereas metabolism of fatty acids produces 9 kcal/gram. The use of fatty acids as a 

substrate generates the greater number of ATP, but it comes at the expense of a greater oxygen 

requirement than the use of glucose. Because of the many chemical processes and transport of 

molecular species, the conversion of chemical energy into mechanical energy is only 

approximately 20% efficient.
10

 
 

The significance of understanding cardiac metabolism of fuels, such as glucose and fatty 

acids, is now appreciated in heart disease.
10,11

 Glucose metabolism begins with the transport of 

glucose into the cell. This is facilitated by GLUT transporters of which GLUT-1 (insulin 

insensitive) and GLUT-4 (insulin sensitive) are the major glucose transporters.
8
 When insulin 

binds to receptors on the surface of a cell (Figure 2A), this signals a cascade of reactions 

activated by phosphatidylinositol kinase activity which results in the movement of cytoplasmic 

vesicles containing GLUT-4 toward the cell surface. The vesicles fuse with the cell surface 

membrane embedding the GLUT-4 protein channels into the membrane. In the cell cytoplasm, 

glucose is initially converted to glucose 6-phosphate by the enzyme hexokinase. In PET imaging 
18

FDG undergoes this first step to 
18

FDG-6-phosphate but then is unable to continue through 

glycolysis. G6P is a branching point in carbohydrate metabolism:
8
 1) G6P can serve as a 

precursor for glycogen (Figure 2B) synthesis; 2) G6P can proceed into glycolysis after being 

committed by PFK-1; 3) G6P can enter the pentose phosphate pathway; or 4) G6P can be a 

precursor of uridine diphosphate-Nacetylglucosamine (UDP-GlcNAc). The first step in 

committing glucose to the glycolytic pathway is the phosphorylation of fructose-6-phosphate to 

fructose 1,6-bisphosphate by the enzyme 6-phospho-fructo-1-kinase (PFK-1). This is a 

pacemaker enzyme for glycolysis.
8,9

 From here fructose 1,6-bisphosphate continues down the 



glycolytic pathway to pyruvate. Glycolysis reduces a 6-carbon glucose molecule down to two 3-

carbon pyruvate molecules. In the process ATP is made independent of oxygen through an 

anaerobic process. The entire process results in the production without oxygen of two ATP, two 

NADH, and two 3-carbon molecules of pyruvate. The pyruvate molecule is either converted to 

lactate or is actively transported into the mitochondria by pyruvate translocase. The pyruvate is 

then converted to acetyl-co-enzyme A (CoA) plus CO2 and NADH. The acetyl-CoA is the 

primary input into the Krebs cycle to complete the aerobic metabolism. Pyruvate can also be 

converted to oxaloacetate to replenish Krebs cycle intermediates. The Krebs cycle produces the 

energetic enzymes NADH and FADH2 involved in producing ATP through oxidative 

phosphorylation (Figure 2C).  
 

 

 
Figure 2. (A) Insulin binds to its receptor, which starts cascades of biochemical events including translocation of 

Glut-4 transporter to the plasma membrane and influx of glucose. Reprinted with permission from ShutterStock 

(ID:114645271)  (B) Glycogen is the main storage of glucose in myocytes and is shown here in a two-dimensional 

cross-sectional contains a core protein of glycogen in surrounded by branches of glucose units (as many as 30,000). 

Public domain image (https://commons.wikimedia.org/wiki/File:Glycogen_structure.svg). (C) Electron transport 

chain of oxidative phosphorylation. The oxidation of NADH releases an electron which is transferred along the 

electron chain between protein complexes (Complex I, III, and IV) extruding H+ ions across the inner mitochondrial 

membrane into the space between the inner and outer mitochondrial membranes. The oxidation of FADH2 results in 

transferring of an electron between Complex II and III with the extrusion of H+ ions across the inner mitochondrial 

membrane. This produces ATP as H+ ions are transported back into the mitochondria by way of transport with ATP 

synthases converting ADP to ATP with the production of water. Reprinted from Nat Struct Mol Biol. 2017;24:800, 

by permission from Springer Nature.  

 

 

In the circulation, fatty acids are predominantly the long-chain fatty acids oleate and 

palmitate.
9
 The pathway of long-chain fatty acid oxidation starts in the circulation with the 

liberation from triglycerides and crossing the plasma membrane with the help of transporter 

proteins. There are three major fatty acid transporters in the heart of which the fatty acid 

translocase (FAT/CD36) (Figure 3A) is the major long chain fatty acid uptake regulator.
12

 After 

entering the cell, long-chain-fatty-acid-CoA synthetase (LC-FACS) catalyzes the reaction 

https://en.wikipedia.org/wiki/Oxaloacetate
https://en.wikipedia.org/wiki/Krebs_cycle
https://en.wikipedia.org/wiki/Plasma_membrane
https://en.wikipedia.org/wiki/Glucose


between a fatty acid molecule and ATP to give fatty acyl-adenylate that then reacts with the free 

coenzyme A (CoA) to give fatty acyl-CoA. The fatty acyl-CoA is then able to enter the 

mitochondrion by way of the carnitine shuttle (Figure 3B) with the assist of carnitine 

palmitoyltransferase I (CPT1) and carnitine palmitoyltransferase I (CPT2) and carnitine-acyl-

carnitine translocase (CAT). In the mitochondrial matrix β-oxidation cuts the long carbon chains 

of fatty acids into a series of two carbon acetate units. These acetate molecules combine with 

CoA to form acetyl CoA. Each β-oxidative cut of the fatty acyl-CoA molecule yields a fatty 

acyl-CoA molecule of 2 less carbon plus an acetyl-CoA molecule and 1 NADH and 1 FADH2 

(producing 5 ATP molecules by oxidative phosphorylation).
13

 The acetyl-CoA enters the Krebs 

cycle by combining with oxaloacetate to form citrate at the beginning of the citric acid cycle. 

Each turn of the cycle results in the complete combustion of the acetyl-CoA to CO2 and water 

and releases energy in the form of 1 GDP and 3 NADH molecules. At the site of oxidative 

phosphorylation on the inner membrane of the mitochondria, these reducing agents release 

electrons to the electron transport chain of protein complexes (Figure 2C). This results in an 

energy conversion by oxidative phosphorylation of 11 ATP molecules per acetyl-CoA molecule 

oxidized.
13

 The coenzyme ubiquinone (coenzyme Q10) is important as an electron carrier in the 

inner membrane of the mitochondria. Reduction of ubiquinone to ubiquinol (QH2) by electron 

transport contributes to the generation of the proton gradient. Cardiolipin (CL) is a 

diphosphatidylglycerol lipid that constitutes about 20% of the total lipid composition of the inner 

mitochondrial membrane. During oxidative phosphorylation large quantities of protons are 

transferred from the inner mitochondrial membrane into the space between the inner and outer 

mitochondrial membranes causing a large pH change. It is suggested that CL functions as a 

proton trap within the mitochondrial membranes by localizing the proton pool and minimizing 

changes in pH in the mitochondrial intermembrane space. 

 

 

 
 

Figure 3. (A) Insulin and contraction stimulates translocation of glucose and fatty acid cell membrane transporters. 

Reprinted from Prostaglandins, Leukotrienes and Essential Fatty Acids. 2010;82:149, with permission from 

Elsevier. (B) Carnitine shuttle transports fatty acids between cytoplasm and mitochondrion. The fatty acyl-CoA 

first combines with carnitine to form acyl-carnitine and eliminating CoA with the assist of CPT1. The fatty acyl-

carnitine crosses the external mitochondrial membrane. Then the fatty acyl-carnitine crosses the internal 

mitochondrial membrane via CAT through facilitated diffusion. Carnitine is then exchanged for CoA by CPT2 to the 

original fatty acyl-CoA. The released carnitine diffuses back across the membrane by CAT into the mitochondrial 

intermembrane space. Reprinted with permission from ShutterStock (ID: 279851630). (C) Peroxisome 

proliferator-activated receptors (PPARs) regulate synthesis of enzymes for fatty acid metabolism by providing a 

high degree of transcriptional control of gene expression.  Figure from 

https://upload.wikimedia.org/wikipedia/commons/4/43/PPAR-diagram.png, used under Creative Commons CC0 1.0 

Universal Public Domain Dedication.  

 

Abnormal structure and function of liver cells in NADFL patients may provide insight 

into cardiac cellular abnormalities. The liver (Figure 1B) is the central organ for handling lipids 

https://en.wikipedia.org/wiki/Carnitine_palmitoyltransferase_I
https://en.wikipedia.org/wiki/Carnitine_palmitoyltransferase_I
https://en.wikipedia.org/wiki/Carnitine_palmitoyltransferase_I
https://en.wikipedia.org/wiki/Adenosine_triphosphate
https://en.wikipedia.org/wiki/Electron_transport_chain
https://en.wikipedia.org/wiki/Phosphatidylglycerol
https://en.wikipedia.org/wiki/Oxidative_phosphorylation
https://en.wikipedia.org/wiki/Liver


including storage of glycerols and fats in its hepatocytes, manufacturing triglycerides and 

cholesterol, synthesizing glycogen, and producing bile from cholesterol. It is also involved in 

making proteins and blood clotting factors. Another important organ closely related to the liver 

for manufacturing and storage of energetic substrates is adipose tissue whose main role is to 

store energy in the form of lipids, where there is a constant flux of free fatty acids entering and 

leaving its cellular adipocytes. Free fatty acids are liberated from lipoproteins (Figure 1C) by 

lipoprotein lipase (LPL) and enter the adipocyte, where they are reassembled into triglycerides 

by esterifying it onto glycerol. The net direction of this flux is controlled by insulin and leptin 

and only when insulin is low can free fatty acids leave adipose tissue.  

 

It is recognized that cardiac cells differ in many respects to liver cells. Cardiac cells need 

continuous energy supply but have poor capacity to synthesize and store energy substrates, 

whereas liver cells can synthesize, store, and release energy substrates. However, they have 

similarities and understanding irregularities in liver cells of NAFLD patients may give insight 

into potential defects in cardiac cells. In NAFLD patients, an increase in hepatic levels of 

triacylglycerol (TG), diacylglycerol (DG), cholesteryl ester (CE), and free cholesterol and a 

change in the percent of polyunsaturated fatty acid (PUFA) in these lipids has been observed. As 

indicated in an excellent review by Peng and colleagues,
14

 this may be due to mitochondrial 

abnormalities found in NAFLD patients indicating metabolic alterations. These abnormalities are 

seen as abnormal morphological changes, leaky mitochondrial membranes, accumulation of 

structural and enzymatic proteins, and oxidative stress. Mitochondrial molecular components of 

cardiolipin, ubiquinone, and acylcarnitine play an important role in mitochondrial function of 

oxidative phosphorylation. It is suggested that cardiolipin and ubiquinone levels increase in 

NAFLD to enhance mitochondrial respiration, thus reducing steatosis (abnormal retention of 

lipids). On the other hand, acyl-carnitine involved in the carnitine shuttle (Figure 3B) increases 

with NAFLD indicative of mitochondrial stress, mitochondrial dysfunction, and impaired fatty 

acid oxidation. Modulation of action of enzymatic proteins through allosteric regulation may also 

change the mix of metabolic substrates with the disease. For example, methylmalonate 

semialdehyde dehydrogenase and propionyl-CoA carboxylase are involved in the metabolism of 

succinyl-CoA (component of the tricarboxylic acid cycle). It is known that these enzymes, which 

are decreased in mitochondria of obese individuals, could also be decreased in NAFLD patients. 

In addition, there is evidence that increased dihydroceramide and dihexosylceramides with 

NAFLD may increase metabolism of ceramides and contribute to metabolic disorders in the 

disease.
14

 Ceramides (composed of sphingosine and a fatty acid) are found in high concentrations 

within the cell membrane providing supportive function and also cellular signaling, including 

regulating differentiation, proliferation, and programmed cell death.  

Decreased glucose metabolism may be a potential indication of cardiac lipotoxicity in 

NAFLD patients. Cardiac lipotoxicity (Wan and Rodrigues,
8
 Schulze et al.

15
) is  the excessive 

accumulation of intramyocellular fatty acids and their metabolites, and is a main contributor to 

the pathophysiology of insulin resistance and dysfunctioning of heart muscle.
16  

Fatty acids are 

delivered to the heart by 1) lipolysis in adipose tissue releasing fatty acid into the plasma, 2) LPL 

mediated breakdown of TG-rich lipoproteins from the liver (VLDL) and gut (chylomicron), and 

3) endogenous triglyceride (TG) breakdown within the heart. The paper of Tang and colleagues 

in this issue found higher levels of fatty acids in the blood of NAFLD patients. Arterial fatty acid 

https://en.wikipedia.org/wiki/Lipid
https://en.wikipedia.org/wiki/Lipoprotein
https://en.wikipedia.org/wiki/Lipoprotein_lipase
https://en.wikipedia.org/wiki/Triglyceride
https://en.wikipedia.org/wiki/Ester
https://en.wikipedia.org/wiki/Glycerol
https://en.wikipedia.org/wiki/Cell_membrane
https://en.wikipedia.org/wiki/Lipid_signaling
https://en.wikipedia.org/wiki/Cell_differentiation
https://en.wikipedia.org/wiki/Cell_proliferation
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concentration is the primary determination of the rate of myocardial fatty acid uptake and 

oxidation, and intramyocardial triacylglycerol (TAG) content.
12

 The transport of fatty acids into 

the cell is facilitated by FAT/CD transporters. Both muscle contraction and insulin (Figure 3A) 

stimulate the translocation of FAT/CD36 to the cell membrane, which is mediated by 5' 

adenosine monophosphate-activated protein kinase (AMPK). This translocation occurs 

independently of the insulin-induced translocation mediated by phosphatidylinositol 3–kinase 

(PI3K).
16

 It has been shown that increased CD36 abundance in the cell membrane and an 

increased plasma fatty acid concentration not only can lead to an excessive increase in fatty acid 

uptake and oxidation but also leads to an increased rate of fatty acid esterification into TAG and 

increased concentrations of fatty acid metabolites of diacylglycerols (DAG) and ceramides. 

These intermediates of TAG, DAG, and ceramides are potentially harmful intracellular 

components that can create insulin resistance by reducing the insulin-induced GLUT4 

translocation to the sarcolemma and lowering the rate of glucose uptake.
16

  

 

There are many feedback controls between glucose and fatty acid metabolism. For one, 

the oxidation of pyruvate and the activity of pyruvate dehydrogenase (PDH) in the heart are 

decreased by elevated rates of fatty acid β-oxidation; whereas, pyruvate oxidation is enhanced by 

suppression of fatty acid β-oxidation. The enzyme AMPK is particularly important as a fuel 

sensor that plays a big role in cellular energy homeostasis to increases fatty acid uptake and 

increase β-oxidation during times of increased energy demand or decrease fatty acid uptake and 

β-oxidation in times of low demand.
12

 For example, through the AMPK-ACC-MCD axis the 

concentration of malonyl-CoA depends on the balance between acetyl-CoA carboxylase (ACC) 

and malonyl-CoA decarboxylase (MCD). Other enzymes involved in the fatty acid β-oxidation 

are sensitive to feedback inhibition through allosteric control by the products of enzymatic 

reactions, including FADH2 and NADH. These enzymes are also under a high degree of 

transcriptional control by peroxisome proliferator-activated receptors (PPARs) that regulate the 

expression of genes (Figure 3C). For one, the nuclear receptor PPAR𝛼 is a major transcriptional 

regulator of fatty acid metabolism whereby overexpression of PPAR𝛼 results in increase in 

cardiac fatty acid uptake, fatty acid β-oxidation, and lipid overload; and under expression of 

PPAR𝛼 results in decreased expression of fatty acid β-oxidation and a parallel increase in 

glucose oxidation.  

 

There are several other biological components involved in controlling the homeostasis of 

energy production. For example, phospholipids in cell membranes are involved in signaling to 

activate metabolic processes. In the membrane of the mitochondrion there are uncoupling 

proteins that are transport proteins providing an alternate means for the reentry of protons from 

the inter-membrane space to the mitochondrion matrix that is not coupled to synthesis of ATP. 

These help maintain concentration and electrostatic balance between the inner mitochondrial 

membrane and the space between the inner and outer mitochondrial membrane. In disease these 

concentrations can become out of balance. It has been shown that enzymatic activities of 

mitochondrial complex I and II are significantly reduced in 24 week-old spontaneously 

hypertensive rats (SHR).
17

 Recently, increased levels of branched-chain amino acid  (BCAA) 

have also been reported in animal models of heart failure.
18

 The end products of catabolism of 

BCAAs can enter the Krebs cycle either for oxidative decarboxylation or anaplerosis (the 

formation of intermediates of a metabolic pathway).
10

 BCAAs, especially leucine, increase 

https://en.wikipedia.org/wiki/Gene
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mammalian target of rapamycin (mTOR) activity and thereby promote protein synthesis, cellular 

metabolism, and cell growth.
19

 

 

Advances in PET metabolic imaging provides a necessary tool to further our 

understanding of various forms of cardiovascular disease and potentially improve the care of 

cardiac patients.
20

 In particular, PET imaging of glucose metabolism,
21

 fatty acid metabolism,
22

 

and oxygen utilization
23, 24

 provides information about metabolic shifts related to cardiac 

function,
25

 making PET an outstanding tool to measure cardiac metabolic changes in patients 

with NAFLD. There have been some imaging studies investigating liver metabolism in NAFLD 

patients, one using 
11

C-palmitate
26

 and one using 
18

F-FDG and 
18

F-FTHA
27

 and another study of 

NAFLD patients using 
18

F-FDG to image vascular inflamation,
2
 but no studies to evaluate the 

disease relationship to cardiac metabolism other than the study presented in this issue of the 

Journal by Tang and colleagues using 
18

F-FDG. Using other metabolic imaging tracers to 

measure myocardial fatty acid metabolism would help to better measure more precisely and 

understand the reason for the metabolic shifts in this particular disease.  

 

Most of our understanding of shifts in metabolic substrates in the heart has been elicited 

from PET imaging studies in heart failure.
10,11,28-32 

Using 
15

O-labeled water and 
11

C-labeled 

acetate, palmitate, and glucose tracers, one can assess simultaneously myocardial blood flow, 

energy expenditure, and fatty acid and glucose metabolism.
28

 Studies have shown decreased fatty 

acid utilization and increased myocardial glucose metabolism in patients with idiopathic dilated 

cardiomyopathy.
28

 On the other hand, patients with congestive heart failure, myocardial uptake 

of a radiolabeled fatty acid analog (
18

F-FTHA) was greater and radiolabeled deoxyglucose (
18

F-

FDG) uptake was less than controls.
31

 When patients in class III HF were treated with carvediol, 

myocardial uptake of 
18

F-FTHA decreased and 
18

F-FDG uptake was unchanged.
32

 The 

discrepancy among these investigations may be attributable to the severity of HF, where in the 

early stages there is a normal (or slightly elevated) rate of fatty acid oxidation, with a 

downregulation in advanced stage of HF.
10

 In all of our imaging studies
33,34 

glucose metabolism 

was consistently elevated in the hypertensive SHRs compared to the normotensive WKY 

controls. When fed, the fatty acid metabolism in the SHRs was less than with the WKY 

controls.
33

 Whereas with fasting, there was an observed increase (though not significant) in fatty 

acid metabolism in the SHR model compared with WKY controls.
34

 Metabolic changes appear to 

precede mechanical changes of LVH progression in the SHR model.  

 

A recent paper in this journal by Manabe and colleagues
35

 gives an extensive review of 

possible PET cardiac tracers to evaluate cardiovascular disease by targeting myocardial 

perfusion, metabolism, innervation, and inflammation. Another interesting paper by Li and 

colleagues
36

 highlights efforts to develop tracers that target mitochondrion, which plays a 

fundamental role in cellular processes ranging from metabolism to apoptosis. Although perfusion 

is important, PET imaging of cardiac metabolism in heart failure continues to be the main focus 

in the development of new tracers.
37

 Another important application is the targeting of the 

development of fibrosis, especially important in hypertensive cardiac myopathy. Potentially 

using 
11

C-martinostat, which binds with high affinity to class 1 and 2 histone deacetylases 

(HDACs),
38

 would help to facilitate the development of novel anti-fibrotic therapies to reduce 

fibrosis in many heart failure patients.   

 

https://en.wikipedia.org/wiki/Sirolimus


A paper by Wu and colleagues
39

 provides insights into the design of PET fatty acid 

tracers. [
11

C]-palmitate is a 16-carbon fatty acid commonly used for measuring myocardial fatty 

acid metabolism in PET studies,
40

 however, it is degraded rapidly within 2 minutes by complete 

β-oxidation in cardiac tissue.
41

 Therefore, effort has been made to develop tracers that are 

trapped in the cell by insertion of an S-atom or substitution with a methyl group preventing 

oxidative degradation.
42

 An example of a β-methyl modified fatty acid labeled with 
11

C is  1-

[
11

C]- β-R,S-methylheptadecanoic acid ([
11

C]-BMHA). [
11

C]-BMHA has high retention of 

activity in the myocardium and excellent imaging properties.
41

 Examples of fatty acids with an 

insertion of a S-atom include thia fatty acids labeled with 
18

F: 14-
18

F-fluoro-6-thia-heptadecanoic 

acid ([
18

F]-FTHA),
42

 18-[
18

F]fluoro-4-thia-oleate  ([
18

F]-FTO), 16-[
18

F]fluoro-4-thia-palmitate 

([
18

F]-FTP). These 
18

F-labelled tracers demonstrate excellent properties as myocardial PET 

tracers.
39,41 

 

 

Metabolic therapies that stimulate myocardial carbohydrate oxidation and inhibit 

myocardial fatty acid oxidation can improve cardiac performance and prevent or reverse the 

progression of LV dysfunction and remodeling.
10,11

 Specifically, such compounds as metformin
21

 

and dichloroacetate (DCA)
43

 can improve glucose metabolism. Metformin acts by enhancing 

insulin sensitivity via the AMPK pathway. Studies have shown that metformin also attenuates 

cardiac fibrosis by inhibiting collagen synthesis.
44

 Moreover, studies in rats treated with 

dichloroacetate (DCA) showed increased glucose oxidation by attenuating increase in energy 

reserves, activation of the pentose phosphate pathway, and reduced oxidative stress improving 

cardiac function and animal survival.
21

 DCA has been used since its discovery in 1969 to treat 

lactic acidosis complications of congenital mitochondrial diseases and diabetes. It stimulates 

PDH and carbohydrate oxidation by inhibiting pyruvate dehydrogenase (PDH) kinase. Another 

drug (rapamycin) used for the prevention of transplant rejection inhibits mammalian target of 

rapamycin (mTOR) in SHRs, reducing cardiac hypertrophy but does not reduce blood pressure.
45

 

Heart failure with preserved ejection fraction (HFpEF) is frequently accompanied by left 

ventricle hypertrophy and myocardial fibrosis. Histone deacetylases (HDACs) are a class of 

enzymes that cause conformation changes in the 3D architecture of DNA, modifying its 

transcription. HDAC inhibition with ITF2357 (givinostat) decreased hypertrophy and fibrosis 

and improved diastolic function in HFpEF patients.
46

 Other possible therapies for lipotoxicity in 

hearts of NAFLD patients can be learned from the diabetic heart. Wan and Rodrigues
8
 report on 

how the protein “ensemble” (heparanase-VEGF-LPL) cooperates in the diabetic heart to switch 

to predominantly use of fatty acid for energy; however, increased accumulation of fatty acid can 

trigger cell death by eliciting messengers such as ceramides. Understanding the interplay 

between heparanase, vascular endothelial growth factors (VEGFs), and LPL, might help develop 

therapies for restoring metabolic equilibrium in cardiac lipotoxicity. 

 

NAFLD is a serious disease with significant prognosis for cardiac death. The disease 

demonstrates abnormal structure and function in the liver cells that could potentially provide 

some insight into the same potential maladaptation of cardiac cells. The decrease in myocardial 

glucose uptake in NAFLD patients is a possible indicator of lipotoxicity in cardiac cells. Most 

PET studies reported in the literature involve using 
18

F-FDG to assess cardiac glucose 

metabolism. However, the complex mechanisms of cardiac metabolism can only be appreciated 

using multiple imaging probes. PET imaging of metabolic processes has been predominately 

aimed at studying heart failure; however, PET imaging of cardiac fatty acid and glucose 



metabolism and perfusion in NAFLD patients would significantly help to direct therapeutic 

intervention and to prolong life for these patients. Dynamic cardiac PET can significantly help in 

the management of NAFLD by improving the diagnosis of cardiac disease. 
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