
UC Irvine
ICS Technical Reports

Title
Line size adaptivity analysis of parameterized loop nests for direct mapped data cache

Permalink
https://escholarship.org/uc/item/9w1486vw

Authors
D'Alberto, Paolo
Nicolau, Alexandru
Veidembaum, Alexander
et al.

Publication Date
2001

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9w1486vw
https://escholarship.org/uc/item/9w1486vw#author
https://escholarship.org
http://www.cdlib.org/

•
IS

Paolo D'Alberto, Alexandru Nicolau,
Alexander Veidembaum and Rajesh Gupta

email:{paolo, nicolau, alexv, rgupta }@ics. uci. edu

UCI-ICS Technical Report #01-42

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Line Size Adaptivity Analysis of Parameterized Loop
Nests for Direct Mapped Data Cache

Paolo D'Alberto Alexandru Nicolau
Rajesh Gupta

Alexander Veidembaum

Information and Computer Science
University of California at Irvine *

email: {paolo J nicolau7 alexv, rgupta} @ics. uci. edu

UCI-ICS Technical Report #01-42

Abstract

Caches are an important part of architectural and compiler high performance
and low-power strategies by reducing memory accesses and energy per access. In
this paper, we examine efficient utilization of data caches in an adaptive memory
hierarchy. We focus on the optimization of data reuse through the static analysis
of line size adaptivity. We present a framework that enables the quantification
of data misses with respect to cache line size at compile-time using (parametric)
equations modeling interference. The framework considers both expressiveness
and practicability of the analysis. Part of this analysis is implemented in a software
package STAMINA. Experimental results demonstrate effectiveness and accuracy
of the analytical results compared to alternative simulation based methods.

*Supported by AMRM DABT63-98-C-0045

1

Contents

1 Introduction 3

2 Related Work 4

3 Background 8

4 The .Parameterized Loop Analysis 10
4.1 Interference Equation Simplification . 10
4.2 Interference Density, Rational Domain 11
4.3 Interference Density, Integer Domain 13
4.4 Interference Existence . " 17
4.5 Reduction to Single Reference Interference 17
4.6 Interference and Reuse: Optimal Line Size 18

5 STAMINA Implementation Results 19
5.1 Swim from SPEC 2000 . . . 19
5.2 Self Interference 19
5.3 Tiling and Matrix Multiply 20

6 Summary and Future Work 21

7 Acknowledgment 22

2

1 Introduction

In modern uniprocessor systems the memory hierarchy is an important concern of per­
formance, area and energy. It is also the component requiring most of the die area
in systems-on-chip and it is the principal power consumer, accounting for as much as
20-50% of the total chip power [19, 16]. In recent years, there has been a great effort on
the engineering of several levels of cache, to reduce the impact on performance/power of
caches. _The focus of our work on memory hierarchy is adaptivity in cache subsystems.
We have built an architecture that enables static and dynamic adaptation of memory hi­
erarchy: its configuration and policies (28]. In this paper, we focus on (compiler-driven)
data cache line size adaptation [27, 1, 28]. In fact, the architecture is able to change
dynamically the line size (by hardware monitoring or application instruction) during
the execution of the application. To exploit fully the potential of this adaptation, we
need a way to target it, that is, (statically) determine the application cache behavior to
trace adaptation for maximum performance and/ or minimum energy dissipation.

Related work on cache behavior analysis can be distinguished in profiling-based and
static approaches. Profiling has been used to determine the memory behavior by direct
measure. Varying some parameters of the architecture, the direct measure quantifies the
variation of the memory performance [18]. The approach is flexible and it can be used
for the analysis of the whole application as well as part of it. There are two limitations:
the measure might be dependent from the inputs and, of course, the analysis cannot be
faster than the execution of the application itself.

Static cache analyzers are independent from the inputs and focus on the analysis
of perfect loop nests [15, 29]. In (15], the authors propose to model the cache misses
of memory references by equations, Cache Miss Equations. Then every iteration (or a
sampled version) in the loop nest is checked whether it satisfies the equations or it does
not. The approaches count the solutions of the equations to achieve an estimation of
the number of cache misses. There are two limitations in the current static approaches:
1) The loop nest bounds must be known at compile time. This is not realistic because
they are often parameterized and it is not practical, because they can be very large. 2)
The analyzable loops are sensitive to tiling loop transformation. For example, if tiling
is performed on the three-loop-algorithm for matrix multiplication and the tile sizes do
not divide evenly the loop bounds, the inner loops bounds cannot be represented by
affine functions. The resulting nest is not analyzable.

To attack and overcome these limitations, in this paper we propose a static approach
to investigate perfect loop nests and determine the relation between line size and number
of misses on a per-nest-base. The analysis result is annotated in the code and it can be
used at run time to set the line size.

The paper is organized as follows. In Section 2 we present the approaches available in

3

literature and also a motivating example. The example is used to point out the common
pitfalls of the current approaches and an intuitive introduction to ours. In Section 3 we
introduce notations about loop nests and cache equations. In Section 4 we introduce
the theoretical frame work and our approach. Finally, in Section 5 we show the results
of our analysis for three representative examples.

2 Related Work

In this paper we analyze the cache behavior of perfect loop nests in scientific applica­
tions. The basic block, the subject of our investigation, is a loop nest so that each index
variable has positive values; it starts from zero; its increment step is always one and its
upper bound is either constant or an affine function of the bounds and index variables of
outer loops. Memory references are in the inner loop and their address computations are
linear functions of the loop index variables [21] (this condition can be relaxed w.l.o.g.).
Parameterized loop nests are basically perfect loop nests with parameters introduced in
the affine function of the upper bounds and in the linear functions of address compu­
tations (e.g. [8]). The parameter values are constant during the execution of the loop
nest, but they may vary after each execution. We use also the term of iteration space to
identify the set of iterations of the loop nest, which can be considered a bounded integer
polyhedron. We use the term of iteration point, to specify one particular iteration.

The goal of the analysis is to determine the cache behavior in terms of misses/hits of
any loop nest (in an application) and drive (software/hardware) adaptation to improve
performance. In this section we give a first introduction to the related work, the main
ideas and implementations of static approaches, symbolic approaches and profiling-based
approaches.

The Static Analysis is applied at compile time on perfect loop nests. For each
memory reference is determined a set of requirements (expressed as inequalities and
equations) representing the conditions for which the memory reference is cause of a
miss/hit in cache. A static model of the cache behavior is based on evaluation of these
conditions for each reference and the computation of the sum I:r5(I). o(I) is 1 if I is a
step of the computation for which all the conditions for a cache miss are satisfied. It is 0
otherwise ([15, 29, 6]). This is not a direct counting of the misses or hits. The accuracy
of the model is based on the accuracy of the conditions used to determine a hit/miss.

For the analysis of parameterized loop nests at compile time, it is possible to use the
static analysis, i.e. it is performed for each possible value of the parameters. The static
approach is the most natural enumeration approach, it is accurate but it is also the least
interesting for parameterized loop nests [5] (for an advanced and complete investigation
refer to Stanley's book [24] and Barvinok's tutorial [5, 3]). Or for a different approach

4

see Pugh's symbolic approach [22] based on the Omega Test (23].
Among the interesting ones there is the approach by the French mathematicians

Eugene Ehrhart (1906-2000). The original work proposes the exact enumeration of in­
teger points in a polyhedron with only one parameter and in two dimensions. Ehrhart
approach permits to have a closed formula so that the number of integer points is known
for every value of the parameter. The extension to a general number of parameters and
dimensions is proposed by Clauss et al [8, 10, 11, 9, 4]: Ehrhart polynomials of degree
k are defined for rational polyhedra 1 in Qk. Using the authors' terminology, the set of
inequalities describing the constraints of a polyhedron is called the implicit form of a
polyhedron. An equivalent one is the explicit form, which is the collection of vertices,
rays and lines (see [30]). The determination of the explicit format takes an exponential
number of steps 0(2k) (also the space complexity is affected). The characteristics of
Ehrahart polynomials are easier to see from the explicit format. Indeed, Ehrhart poly­
nomial are an extension of the multi variable polynomials where the coefficients can be
scalars and arrays. The arrays represent a set of possible coefficients. The size of the
arrays is function of the vertices coordinates. If the vertices are integral points, the
coefficients of the polynomial are scalars. If the vertices are rational, the size of the
arrays is the largest denominator of every vertex coordinates. The number of the iter­
ation points is computed directly for a subset of values of the parameters and a linear
system solution is sought. The number of systems and the size of the systems to solve
is function of the number of coefficients to determine.

The Ehrhart approach is feasible and elegant but it is impractical for common cases
in cache modeling (mostly rational vertices with large coefficients). We use polylib to
manipulate parameterized polyhedra and Ehrhart's polynomials to estimate the number
of iteration points in a parameterized loop nest (mostly integral vertices).

If the measure of cache misses is done at run time there is no hassle about parameters
or cache modeling. Profiling is based on direct counting of misses/hits (most of the times
by simulation tools and lately by hardware register counters) during the execution of the
application. The statistics obtained are used as feedback for further optimizations in the
compilation of the application. There are two basic distinctions w.r.t. static approaches.
1) The final counting is oblivious of the cause of cache misses. Even if the measure is
aware of the cause, it is not carried on as final result. It is used to determine the effect
of the variations of a tunable parameter (e.g. line size). 2) Profiling is based on the
assumption that the future executions of the application have the same characteristics.

Examples of profiling-based approaches driving adaptation can be found for example
in [1, 27, 28]. At run time, the hardware monitors the execution of an application and

1 A rational polyhedron is a polyhedron so that the coordinates of every point can be represented
by the ratio of two integer numbers

5

adapts the line size to the application's needs. The monitoring can be over the whole
execution or a sampled part. The hardware is able to measure the real misses and,
based on a heuristic, make some assumptions on the best line size. The authors in
[28, 26, 25, 14] investigate two approaches: Adaptive Fetch Line Size [28] (AFL) and
Adaptive Line Size [25] (ALS). ALS is the first approach introduced. The approach
tailors the line size per reference: each memory reference is associated with a line size;
references with spatial locality tend to have large line size; references with temporal
locality ~e.nd to have short line size. The line size determination is performed on a
reference miss, using information collected during the execution. AFL can be considered
a simplification of ALS. At any time there is only one line size for every reference. The
line size is fixed for an interval time and the optimal line size is a compromise among
all the references.

In the following, we sketch an example of problem, Figure 1, to explain the challenges
we tackle in a more realistic scenario. The example cannot be analyzed fully by any

extern double A[2000] [1024],B[lOO] [1024];

void foo(int m, int start)
int i, j;
for (i=O;i<m;i++) /* O<=m<lOO */

for (j=O;j<m;j++)
A[i] [j+start] += B[i] [j]; /* 0<= start <10024-100 *f

}
void update(int start) {

int startl=O; /* compile time */
int start2;
int startin;

start2 = start+2; /* not really at compile time */
foo(50,startl);
foo(50,start2);

scanf(' '\%d' ',\&Startin); /*run time*/
foo(50,startin);

Figure 1: Motivating example: parameterized loop bounds and interference

approaches (static or profiling) and no optimal line size can be determined. We describe
why the example is so problematic and how our approach does handle it. The simplicity
of the example must not mislead the reader, because it is representative for more complex
and meaningful cases in Section 5.

We use the C language to describe our motivating example. Matrixes A and B
have same number of columns but different shape (different number of rows). They
are in row major format and they are consecutively stored. The procedure f oo has
two parameters m and start. References A[i][j] and B[i][j] have spatial reuse because
the matrix accesses are column wise in the inner loop. The computation tends to use

6

the data in a cache line fully. Very conveniently, if there is interference between A
and B, it may happen between consecutive iterations in the inner loop. We consider
the case when B interferes with A. The interference equation is B_1 + 8B1i + 8j =

A_1 + 8A1 i + 8j + 8start + nC + l, where B 1 and A1 are the number of column of B
and A respectively (read the equation as follows "there is interference when the address
of B[i][j] is the address of A[i][j + start] plus a multiple of the cache and an offset of
size no larger than the cache line size at iteration specified by i and j") and substituting
the numbers in we get: 2000 * 1024 * 8 = 8start + nC + l. If 8start mod C < L, then
the equation has solution and there is always interferences between the two references.
Therefore the optimal line size for this example is L = 8start mod C. This result can
be obtained using polylib: the Ehrhart polynomial exists, for 8start mod C < L. This
is called also definition domain.

Static approaches are not able to analyze the example because the parameters of the
procedures affect the dimension of the iteration space and also the interference equation.
They are not known at compile time. Even if an range of possible values is known, the
problem size makes impractical a full investigation.

Profiling is not able to find the optimal line size as well. Given a training set
specifying two values for startin, i.e. 1 and 16, the profiling approach correctly can
determine that the optimal line sizes are 8 and 128, respectively. But it has to choose
one. Either choice is not optimal for any other input.

If we change the number of rows of the matrixes, we are able to see another character­
istic of interference: extern double A [2000] [1024] , B [100] [512]. The interference
equation changes: 2000 * 1024 * 8 - 512 *Si = 8start + nC + l. When i = 0 we have
the previous equation. The first m iterations A and B interfere, if 8start mod C < L.
When i = 1, for the same values of start, there is no interference. We can see there is
interference every four iterations on i (i = k 51~*8 with C = 16K). The interference is not
random but is not evenly distributed either. If we determine the Ehrhart polynomial, it
can have 512 coefficients (the number of coefficients can be polynomial in the dimension
of the problem).

In the example proposed, the interference may happen at every iterations or rarely,
it depends on the matrix sizes. Inspired by the example, we investigate a quantitative
measure of interference as the density of interference. When matrix B has 1024 columns
the interference density is 1, that is, if there is interference then it is at every iteration.
When B has 512 columns the density is no more than i· The interference density is
based only on the interference equation coefficients. We do not take in account any
parameters. The parameters come to play for the existence of the interference.

7

3 Background

A perfect loop nest composed of k loops [21] determines a set (iteration space) of integral
points (iteration points), in Jti. The loop order specifies a strong order between any two
iteration points J = (j0, ... , Jk-I) and I= (i0, ... , ik_1). I precedes J, and we indicate as
I <I J, if it exists a 0 ~ l ~ k - 1 so that in = Jn for every n < l and il < kl.

Informally, the first coordinate i 0 of an iteration point I is associated with the outer
loop of the nest and the last coordinate ik-l is associated with the inner loop. The
inequality for two points I~ J is verified if either they coincide or I <I J. A geometrfcal
order can be inferred too. I is smaller than J, I < J, if in ~ Jn for every n but a l so
that il < Jl. Graphically, a point I in the iteration space determines a unique bounded
polytope (GIJ ~ I}), a point is smaller than another if its bounded polytope is contained
in the other. It is easy to see that if I < J then I <J J, but not vice versa. A formal
definition of iteration space is the following.

Definition 1 The iteration space is a bounded polytope (lattice). The iteration space is
the polytope {IiO ~ I ~ N (n)} 7 in short PI~N(n), where N (n) = An + Bp with A and B
matrices of size k x k and p is a vector of constant parameters.

Given a point t E PI~N(n) and a vector r, it is common to investigate the bounded

polytope pr (t) = {J E PI~N(n) it - r <I J ~ t}. It is an interval in the iteration space.
Indeed, pr (t) = PI<lt-Pt-r<Jt is the difference of two parameterized polytopes containing
the origin. A property which is used all along is the partition-ability of a polytope into
rectangles. We define the polytope Pcandition = {IiO ~I and ((condition" is true}.

Property 1 The fallowing three expressions are true.

Proof: The first two expressions follow by the definition of precedence. Since the interval
pr (t) defines the iterations points that belong to PI<Jt and do not belong to Pt-r<JI' the
last expression is verified. - ()

The decomposition is very useful when a property must be found in the interval pr(t),
because the problem can be decomposed on simplicial rectangular bounded polytopes.
The decomposition assures that the problem is computable.

8

As introduced in [31], a reference RB of a vector B has temporal reuse if in different
iteration points the same memory location is accessed: Addr(RB(I)) = Addr(RB(J)).
The reuse is summarized by a vector r so that for every iteration point I, Addr(RB(I)) =
Addr(RB(I+r)). The address of a reference is a linear function: Addr(RB(I)) = BI+u.
The reuse vector is a vector in the kernel of matrix B, indeed Br= 0. Spatial reuse is
attained when elements of the same line is accessed. Temporal reuse is a particular case
of spatial reuse.

Reuse vector of a memory reference is statically determined by its index computa­
tions. If during the computation the reuse is satisfied, we have a hit in cache, otherwise
a miss may happen: the reuse r of a reference RA ((i) is prevented if either a reference
RB (t) with I- r ~ t ~I interferes with reference RA, or the iteration I-r is not point in
the iteration space. In general, if a reuse vector is prevented does not mean that during
the computation we have a miss in cache. Indeed, a reference may have multiple reuse
vectors and, to have a miss in cache, all reuses must be prevented. In practice, if we
analyze the cache behavior of a memory reference by a partial number of reuse vectors,
the analysis is conservative: all cache misses are determined correctly, but some hits
can be mistakenly determined as misses. The interference between memory references
is investigated by the Cache Miss Equation (CME) model (see [15]).

Definition 2 Given two array references RA {interferer) and RB {interferee) of the
arrays A and B respectively) we define the fallowing integer equation.

E(R R
- __) _ {AI= Bt + nC + l + Dp

A, B, t, r, p = . • r - -
with IE P (t) and t E PI'S:_N(n)

(1)

E(RA, RB, t, r, p) is the interference equation. A and B are integer matrixes of size
1 x k. A is the index matrix for the interj erer and B for the interj eree. C is the cache
size in bytes) Ill < L - 1 is the offset in the cache line and L is the cache line size1

always in bytes. The free variable n =I- 0 describes the distance in number of cache size
blocks between the two interfering references. p is a vector of parameters. r is a reuse
vector for RB.

We model a direct mapped cache, therefore if the equation has solution, there is inter­
ference and there is a miss. If there is no solution and in case of only one reuse vector,
it is a hit. A k-way cache can handle k interferences without a miss. We should count
the interferer references at least L bytes apart and determine if a miss happens. In our
case, the reuse vectors of inner loop references, if any, are very short [20]. Therefore
the interferer has a few chances to interfere with different memory locations. It is also
possible to check interference only with the leader reference of a group with spatial reuse
[31, 15].

9

4 The Parameterized Loop Analysis

In this section we introduce a quantitative approach to determine cache interferences
at compile time. Our focus is to achieve a quantitative measure for the misses that
are dependent from the line size. We focus on the determination of interferences and,
indirectly, on a subset of cold misses and capacity misses. Some authors suggest that
the line size may remove some capacity and cold misses, because, fetching more data, it
may alleviate the number of misses. We agree, but only when there is spatial reuse.

We organize the Section as follows: shortly we observe the interference equation
(Equation 1) and simplify it in a more concise format. The simplified equation is subject
of two types of analysis to determine interference density. 1) In the rational domain,
Section 4.2, the very elegant result is found in Theorem 4.1: an upper bound is found to
the interference density in function of only the cache size and line size. This estimation
is used in STAMINA. 2) In the integer domain, Section 4.3, the main result is found
in Theorem 4.4. These two sections are independent to each other and self contained.
They are similar and the reader may choose to read either one, to have a grasp on
the subject and leave the other for a more careful reading. In Section 4.4 we discuss
the existence of solution for an integer equation. Corollary 4.2 summarizes the relation
between the interference density, interference existence and miss ratio for two memory
references. In Section 4.5 we present how to reduce the general case of interference to
the simplest case: only two memory references and only one reuse vector are involved.
In Section 4.6 we introduce the goal function, i.e. the function we want to minimize.
We conclude this section with a brief discussion on the complexity of our approach.

4.1 Interference Equation Simplification

Consic;ler the parameters of Equation 1 as constant, we can write the following interfer­
ence equation (where the terms A_1 and B_1 absorb the parameters constant terms).

E(A B
__) = {A_1 - B_1 + L:~:;~(Akik - Bktk) = nC + l (

2
)

' 't, r - . -;- r - -
with l E P (t) and t E PI5:N(n)

The interference density of an equation is the ratio of iteration points where the inter­
ference equation is satisfied over all the iteration points. We identify with 0 ~ PE ~ 1
the interference density. When the reuse vector is short (distance equal to 1), and this
is often the case for code optimized to exploit spatial locality, PE has a very simple and
elegant approximation. The Equation 2 can be simplified further as:

d-l

AB_1 + L(ABktk) = nC + l with ABk = Ak - Bk. (3)
k=O

10

Again AB_1 may absorb some of the constant terms due to t±l =I.

Property 2 If Equation 3 has solution and ABk mod C = 0, k E [O, d - 1], then
PE = 1.

Proof: l AB-1+L:~;:~(ABktk) J = l Af1 + L:~:~~ABktk) J = lAf1 + I::%:~ 1 (Afktk)J = l Af1 J +
I::%:~ 1 nktk. The contribution of the iteration points will be always a multiple of C. If
there is .solution, there is for every iteration point. ()

By Property 2 we need to focus on the following equation.

d-l

Emod(A, B, t, r) = AB~\ + L (AB'ktk) = nC + l and AB'k = ABk mod C (4)
k=O

We distinguish rational solutions and integer solutions. The rational domain offers a
neat and elegant formulation for the estimation of interference density, which is pretty
much independent from the equation coefficients. The integer domain requires more
work, but it has similar property even though it is more notational.

4.2 Interference Density, Rational Domain

The existence of integer solution assures the existence of rational solutions. We are going
to describes a rational solution space such as if there is integer solution, it contains every
integer solution. We then determine the density in the rational space. We introduce
some definitions. Given q the smallest rational solution to Equation 4 we define as grid
the solution points Q(q) = {gl for any k gk = qk + A~mPk with Pk natural number}. We

k

define as grid cell the smallest polydron that has all vertices in the grid. Given an integer
l, we define as band the set of rational points B (l) = { .6. b I - L < l +I:%:~ AB'k .6.bk < L}.
Note that the origin always belongs to a band when -L < l < L . We define as
band cell the polyhedron determined by the vertices obtained as intersection of the two
hyper-planes: - L = l + I:%:~ AB'k .6.bk and L = l + I:%:~ AB'k .6.bk with the lines
Vk #- j, .6.bk = 0 for any 0 ::; j ::; d - 1.

For every grid point we can determine a band (B(l +AB~\)). Every point in the
band has the same solution value for n. In the band we can distinguish different band
cells. The space determined by the grid and the bands on the grid points is dense as
formalized in the following Lemma.

Lemma 1 For any integer solution z, there is a grid point in the band passing through
z.

11

Proof: By definition, AB~\+ L~=~ AB'kzk = nzC + lz; we can represent zk = Pzk A~m +
k

'"'fZk where r-yzk = zk mod A~i:. Therefore, AB~~\ + L~=~ AB'k(Pzk A~;: + "'fZk) =
AB~\ + C L%:;~Pzk + L%:~ AB'kr-yzk = nzC + lz. We have that nz = L%:;~Pzk +

ABm + l:d-l ABm''fZk d-l l -l kco k J and lz = (AB~1 + Lk=O AB'kr-yzk) mod C. We can see that -(d -
ABm +l:d-l ABm/z

1) :::; l -1 kco k k J :::; d - 1 because for every k we have AB'kr-yzk = zk mod C.
There are several points in the neighborhood of z and in the grid that have the same
solution ·inn, just increasing some of Pzk. These points are in the band passing through
z. <)

For any grid cell there is only one band splitting the cell in two, so that two vertices are
apart. The band is determined by two d - 1-dimensional spaces or hyper-plane and by
construction pass through grid points. In a 2-dimensional space the grid is a rectangle
and the band is a line crossing the grid cell on only two grid points. Two different bands
are crossing the remaining two vertices. See Figure 2 for an example in a 2-dimensional
space. Now we are ready to determine the solution density.

Figure 2: Grid cells and band cells in a plane. In a 2-dimensional space the grid cell
is a rectangle and the band is between two lines crossing the grid cell on only two grid
points. Two different bands are crossing the remaining two vertices.

Property 3 Every grid cell has up to nt:~~Bi: solution points.

Property 4 Every grid cell intersects three bands and up to 2}__ 1 (2i)d-l band cells.

Proof: Consider the grid cell with sizes A~m in a d-dimensional space (i.e. in a 3-
k

dimensional space it is a cube). The projection of any band on any d - 1-dimensional
space (i.e. in a 3-dimensional space it determines a triangle rectangle) has 2L1 rrk-1-. A~m I A2/;m

-r-J k k

solutions points. <)

12

(2L)d ·
Property 5 Every band cell has at most rrt:,b ABT: solution points.

Theorem 4.1 If Equation 3 has solution and ABk mod C =/=- 0, Vk E [O, d - 1] and
C 2 2L, then PE :::;; 2L1 2J'.
Proof: By Property 2 we can focus on the Equation 4. By Lemma 1 the grid and the
bands on the grid is a dense solution space. Every integer solution is in it. The density
is computed on a grid cell as the ratio of solution points in a band intersecting a cell
over the size of the grid cell. By Property 4 and 5, there are

2
}_1 (2~)d-l band cells of

size IT%~trBk' in a grid cell. By Property 3 a grid cell has size IT%:~~Bk'. Then we have

the proof PE :::;; 2L1 ~ (/

When the reuse vector has distance h, it is possible to write the Equation 2 as a
system of h equations. Each equation differs for a constant term. We approximate the
density asp= max(l, hpE), counting each equation separately. This is a over estimation.

4.3 Interference Density, Integer Domain

In this section we investigate a more detailed analysis of the integer solutions of Equation
4. It is introduced as completion of the previous section but it is not used in the current
implementation. In the rational domain, the solution density is introduced for a rational
space and defined as the ratio of area/volumes. It may happen that the solution space
determined by a band can be a rational number smaller than one. In an integral space
has no meaning (there is either zero or at least one integer solution). In this section
we show that the integral solution space has properties that are similar to the rational
space.

To make this section self contained, we need to recall some of the theory of unimod­
ular matrix transformations as well as elementary number-theoretic [2, 13). To do so
we introduce some notations for the operation "great common diviso~' [13]. If a evenly
divides b, we write that ajb. The greatest common divisor of two integers a and b is
the largest integer d so that dla and djb, and it is defined as d = gcd(a, b). gcd(a, b) is
also the smallest positive integer of the set {ax+ byjx, y E Z}. In [13], it is presented
a variation of the Euclid algorithm to determine not only the gcd(a, b) but also the
integers x0 and y0 so that d = axo + byo.

General Solution by Unimodular Transformation U: given Equation 4, we
consider the solutions for an arbitrary value of n = n0 and l = l0 • The constant value will
be c = AB~1 +n0C+l0 . The gcd-test (e.g. in [2]) can be used to verify if an equation has
integer solution. Indeed, there is integer solution if and only if g = gcd(AB'0, .. . , ABd-1)

and gjc.

13

In [2], the author presents a general approach to determine all the integer solutions
of an integer equation. We report the basic steps to determine the solution space. The
equation 4 is represented in [2] in matrix-form as follows: c = ~e A where c is an integer
scalar, tt is a row vector (matrix of sizes 1 x d) and A is a column vector (a matrix of
sized x 1). If gjc then there is an matrix U, so that all the solutions are determined by
the following expression:x = (c/ g, t 1 , t 2 , ... , td_1)tU where ti are arbitrary integers and
U is a unimodular matrix so that U A = (g, 0, ... , 0). The column vector (g, 0, ... , 0)
is also an echelon matrix of sized x 1, [2]. A matrix U is unimodular, if jdet(U)I = 1.
The matrix U is a linear transformation U : T -t X with X = T = zd mapping the
d-dimensional integer domain in itself; it exists the inverse matrix u-1 ; it is a one to
one mapping.

Shape of U: in [2], the author presents an algorithm (Algorithm 2.1) for the echelon
reduction of vector A and determination of matrix U. We reformulate the algorithm in
the following. The matrix U of size n x n is determined in n - 1 steps. In each step, a
single row of U is determined, starting from row n - 1 to row 1 (that is Un-l,* and U1,*,
"*" is wild; row 0 is computed for free in the last step). We observe the the i-th step
we determine {Un-i,n-j h::;i+1 so that:

2.::j::;i+1 Un-i,n-jAn-j = Un-i,n-i-1An-i-1 + x 2.::j<i-l U~-i,n-jAn-j
= Un-i,n-i-1An-i-1 + xgn-i = 0

By the Euclid algorithm we compute:

2.::i:'.Si+i U~-i-1,n-jAn-j = U~-i-1,n-iAn-i-1 + x 2.::j::;i-1 U~-i,n-jAn-j

(5)

= U~-i-l n-iAn-i-1 + xgn-i+i = gcd(An-i, gn-i-1) = gn-i
' (6)

Property of unimodular matrix is that elements in any rows are relatively prime and
elements in columns are relative prime too. Indeed, the row elements computed at any
step are relatively prime by construction. The Euclid algorithm, which is applied to two
rows, determines coefficients that are relatively prime as well. The matrix U is upper
triangular with all the elements of first lower diagonal different from zero.

We can see that at any time the variation of Euclid algorithm can be applied on two
integers, instead of the entire two rows, reducing the complexity of the algorithm from
the original 2 log(min(An_1 , An_2))+ I.::~:~(n-i+l) log gi (the Euclide algorithm to com­
pute gcd(a, b) with a> b has complexity O(logb)) to the n(n2-l) +log(min(An-1, An-2))+

I:~:~ log gi. The computation exploit the right associativity and it has the typical fish
spine shape. Using the left and right associativity (of the operation), we can always
reorganize the computation as binary tree, exploiting parallelism.

14

Use of U: the unimodular matrix U is a mapping between an iteration space in
X (image) and an equivalent one T. In T the solution space is defined as the plane
t 0 = c/ g. The number of integer solutions in Tare as much as in X and all solutions are
in a plane. In T the plane is dense, there are 2d-l "contiguous" integer solution points.
In X the image is stretched, the solution points may not be contiguous. We investigate
how convex spaces in the solution plane without integer solution in T are mapped in
X. A whole W is specified by a set of solutions S for which there is no integer point v
in W such as v = LskES >.ksk with 0 ::; Ak < 1 and Lk Ak = 1. In other words, a whole
in the solution plane is a convex space without internal integer points (the points of the
set are also the convex hull). If Wis a whole in T, its image W * U =Vin Xis the set
of integer points {vlwtU = vt and w E W}.

Theorem 4.2 If W is a whole in T then V = W * U is a whole in X.

Proof: By contradiction, suppose there exists a v E V so that vt = LvkEV >.k v% with
0 :S Ak < 1 and Lk Ak = 1. U is a one to one mapping and therefore vtu-1 = wt is
in W. vtu-1 = LvkEV >.k vtu-1 = LwkEW >.k wi, with O ::; >.k < 1 and Lk >.k = 1. W
would not be a whole. ()

In T, there are an infinite number of wholes, all of the same size (2d-l points) but
translated in space. Since U is a linear transformation and unimodular, the images
of any whole has same number of integer points and same shape but they differ by a
translation. Most interestingly, this is true even if we translate the entire plane, e.g.
varying the value of c. Without loss of generality we can focus on just one of them.

The solution plane is a (d - l)-dimensional space immersed in a d-dimensional space.
The whole W in T has a stretched image V in X. We investigate a quantitative measure
of the number of integer points in the d-dimensional space associated with only one
whole. Note that if we are able to achieve such a measure we are able to achieve an
estimation of the solution density in the integer domain. Cv, cube of D, is the smallest
hypercube in zd that contains D. In fact, the cube of a set Dis fully determined by its
defective sizes. If we use the common notation of ei for the column vector with all zero
but the i-th element, the defective size li of a cube Cv is I max<lED efd - min<lED e~dl.
Note that the correct sizes should be li + 1. We define as expansion factor of a set D
the product rr:; li obtained by the defective sizes of Cv.

Two wholes share no internal points (because they do not have any) and, in this
simple scenario, so do their cubes. The expansion factor is introduced to achieve an
estimation of the internal volume of D when D c Cv.

Theorem 4.3 Given a whole W in T) the cube of V

li = I maXJQl,i+l] LkEJ Uk,i - minJQl,i+l] LkEJ uk,i 1. .

15

W * U has defective sizes

Proof: By construction, W is {w = (~, z1 , ... , zd_1)1 every Zi is either 0 or l}. Then
using the definition of cube of V, the sizes of Cv are determined by the elements in the
column of U. ()

Corollary 4.1 If the equation c = x_t A has solution7 then there is a matrix U so that
the general solution is x = (~,ti, ... , td_1)tU and the solution density is at most Pd :::;

(IT::~ li)-1 where li is I maXJ~[l,i+l] L:kEJ Uk,i - minJ~[l,i+l] LkEJ uk,il.

There is- only· one solution plane and cubes of different wholes do not intersect. The
density ratio can be estimated in the cube, which is the inverse of the expansion factor.

Putting all together: when n is not an arbitrary value but it is a variable, the
equation may have solution for different values of n, each one of them describing a
parallel plane. As long as the planes are far apart, the whole cubes do not intersect.
But it may be that they interfere. The following Lemma enumerates the interference
density in this new scenario.

Lemma 2 If V is a whole in X and for every i E [O, d - 1] we have Cv and there exists

l h l C h d 2lkABJ: a j so t at j > Ai:n 7 t en PE :::; maxk c Pd·
J

Proof: For any n, the solution space is a set of parallel planes. On one dimension,
the distance between any two planes is (asymptotically) C /Ai. There can be at most
maxkE[O,d-l] 2lk~BJ: planes intersecting the inside of the cube. Each plane contributes
with just one integral solution. Indeed, any solutions in a particular plane will belong
to different cubes. Then from Corollary 4.1 the lemma follows. ()

The last scenario is when for every solution of n there are different values for l. This is
the case of two references that interfere for almost every iteration points in one (or more)
dimensions. In these dimensions, we can give a very simple estimation and "remove"
them from the equation and investigate the equation so modified as in the previous
cases. The following Theorem estimates the interference density in this scenario.

Theorem 4.4 Given a whole cube Cv in X and for every i E K C [O, d - 1] we have
l· > 2L then p < ((2L)IKI IT. l) * p(k=d-IKI)

i J E - C JEK lj E

Proof: In this case we have !Kl variables so that each satisfies the equation in an interval
of size C at most 2L/li (with i E K) times, therefore with density ~t. We restrict the
investigation on the other d - IKI variables, and we apply Lemma 2. ()

As we did in the other domain, when the reuse vector has distance h, it is possible
to write the Equation 2 as a system of h equations. Each equation differs for a con­
stant term. We appro~imate the density as p = max(l, hpE), counting each equation
separately.

16

4.4 Interference Existence

The interference density is based only on the observation of the interference equations
but it does not take in account the definition domain of the variables involved in the
equation itself. The existence of a solution is still to be found (e.g. [23, 6, 9]).

The interference existence for an equation is a function XP(L) where P(L) is a polyhe­
dron determined by the interference equation and for which the line size Lis parameter.
If P(Li) has an integral solution, XP(Li) = 1; if it has not integral solution XP(Li) = 0.

x is a monotone increasing function. Indeed, if Lo ::::; Li, then XP(Lo) ::::; XP(L1). If
there is interference for a line size Li, there is interference for any larger line size. A
preliminary test to verify that an integer equation has solution is by the gcd() test (e.g.
[2]). But the variable l in the interference equation (Equation 4) has coefficient one,
the test is always verified. If we consider l as a constant and assign any of the values
in (- L, L), it becomes a constant term of the equation with AB~1 . The equation has
no solutions if g is gcd(C, A~, ... , Ad_1) and AB~1 mod g = h with h <f (- L, L). If
h E (- L, L), the definition domain must be checked further to investigate the existence
of solutions (STAMINA uses a functionality of polylib [30] it is an exhaustive search).

To conclude the section we summarize the main result in the following Corollary.

Corollary 4.2 If m > 0 is the number of coefficients in Equation 3 so that (Ai -
Bi) mod Ci= OJ then the cache miss ratio is at most PXP(L) where p is the interference
density (either one in Theorem 4.1 or Theorem 4.4) and x is the interference existence
of the equation. If m =OJ the cache miss ratio is at most XP(L).

4.5 Reduction to Single Reference Interference

The simplest case we need to analyze is the following. There is an iteration space with
III iteration points; there is a reference with only one interference equation E (one reuse
vector of size h and one interferer); the interference polyhedron is function of the line
size and it is denoted as P(Li)· The number of misses is the following M = IIIPXP(L)·
We show shortly our approach to reduce the general case to the simplest case (see [15]).
The approach is constructive .

When there is a reference RA with multiple interferer, k, and RA has just one reuse
vector f, we indicate the density for each equation as Pi and the solution existence func­
tion as XPi(L) (0::::; is k). The interferences due to different interferers are independent

to each other, we can add their contribution. µ(L) = ~7=o PiXPi(L), we identify the
function µ(L) as interference density per reference. The upper bound to the number
of misses for a direct mapped cache is jijµ(L). If we would model a m-:-way associative
cache, we could consider as estimation of the number of misses III lµ~) J. This is an

17

approximation, not an upper bound, because the interference density does not give any
information on the temporal distribution of the misses.

When there are only two references RA (interferee) and RB (interferer). RA has
multiple reuse {ri}o,m-l so that f 0 > f1 > · · · > fm-1· Every reuse vector fi is associated
with a bounded polytope pri (t) so that pri (t) ~ pri (t) with i < j, and it is easy to
see that nf=opri (t) = pk (t). We will consider only the shortest reuse. If the reuse is
prevented, there is a miss. If it is not, there is not a miss. This is the simplest case. 2

Wheri there is a reference RA with multiple interferers and RA has multiple reuse
{ri}o,m-l so that f 0 > f 1 > · · · > fm-1· Every reuse vector fi is associated with a
bounded polytope pri (t). A set of equations E0 ... En-l represent the interferences
with different references. For each equation we consider only the shortest reuse vector.
We reduce to the case of a reference with single reuse vector and multiple interferers.

The approach investigates a subset of the points in the iterations space. Indeed, a
reuse may be prevented and cause a miss, if the previous iteration is in the iteration
space. Given a reuse vector f, the iterations non inspected are P = {f E PI<n:I (J - r) tf.
PI<n}. It can be written as the union of non intersecting simplicial rectangular sets
Pi(r) = P(no-ro<jo) U P(no-ro?_jo,n1-r1 <h) ... P(no-ro?_jo,n1-r1?_h ... nk-rk?:_jk). The measure of
the points investigated (PI<n: - PB (R)) over the number of points in the iteration space
(PI<n:) is an estimation of the confidence of the analysis. The confidence of the analysis
is based also on orientation of the reuse vector. Reuse across the inner loop is more
likely to be prevented, because of the distance.

4.6 Interference and Reuse: Optimal Line Size

In this section we present an approach to determine the best line size Lapt for given loop
nest, I, and a set of references { Ri} with 0 s i s m - 1 in the inner loop.

As result of several analysis steps: we can determine the reference reuse vectors
and the type of reuse, i.e. spatial or temporal. If a reference has spatial reuse and no
interference is present, the reference has a miss every ~ accesses, where Pis the line size
in data elements and s is the length of the spatial reuse in elements. If Interference
is present some of the reuse can be prevented. In the following we formalize the trade
off between spatial reuse and interference as 7J (L) = z + µ (L) if µ (L) < 1, otherwise
rJ(L) = µ(L). This is the miss density for spatial reuse, when the line size is L, the
number of elements per line is f. In general, rJ(L) is not monotone increasing. It may
have a single valley and it has always a single minimum, because combination of a
monotone decreasing function and a monotone increasing function. It is always possible
to label the references so that Ri with 0 s i s n - 1 are references with spatial reuse

2In general, even if the shortest reuse is prevented it may be there is no miss, a longer reuse is
satisfied.

18

and Ri with n:::; i :::; m - 1 with temporal reuse. The density of the misses for the loop
nest is defined as follows: E(L) = ~7:01 'T/i(L) + ~Z:,~1 µi(L). In general E(L) may have
one valley and has one minimum.

Now we have a quantitative tool to measure the effect of line size on cache perfor­
mance, the number of misses. Indeed, IIIE(L) is the number of misses for which the line
size has any effect. The determination of the optimal line size is the line size for which
E(L) is minimum.

5 STAMINA Implementation Results

The reuse and interference analysis is implemented in the software package StaMinA
(Static Modeling of Interference And reuse as a part of AMRM compiler suite). It is
built on top of SUIF 1.3 compiler adapting the code developed in [15) and using polylib
[30, 9, 8, 10]. We consider three examples to explore three important aspects of our
analysis.

5.1 Swim from SPEC 2000

swim is a scientific application. It has a main loop with four function calls. Each function
has a loop nest for which the bounds are parameters introduced at run time. For sake
of exposition, we present the analysis for the main loop nest of one procedure calcl ()
(Figure 3 written in C language). We analyze the interference for two different matrix
sizes, the reference size 1335 x 1335 and the power of two 1024 x 1024. For the reference
size, there is no interference for any cache line. For power of two matrices there is
always interference. The execution of SWIM with reference input takes lhr on a sun
ultra 5, 450MHz. Any full simulation takes at least 50 times more. Even the single loop
simulation is time consuming. Our analysis takes less than one minute for each routine
whether there is interference or there is no interference.

Due to the number of equations to verify, it is very difficult to verify by hand the
accuracy of the analysis. We simulate 10 of the 800 calls to the calcl routine using
cachesim5 from Shade [12). The simulation results confirm our analysis.

5.2 Self Interference

We now consider self interference. Self interference happens when two references of the
same array, or the same reference in different iterations, interfere in cache. The example,
Figure 6, is the composition of six loops with only one memory reference in each. Each
memory reference has a different spatial reuse and it is very long. STAMINA recognizes

19

#define Nl 1335
#define N2 1335

extern double U[Nl][N2], V[Nl] [N2], P[Nl][N2],UNEW[Nl] [N2], VNEW[Nl] [N2],
PNEW[Nl] [N2], UOLD[Nl][N2], VOLD[Nl] [N2], POLD[Nl] [N2],
CU[Nl] [N2], CV[Nl] [N2], Z[Nl] [N2], H[Nl] [N2], PSI[Nl] [N2];

extern double DO, DX, DY;

void calcl(int M, int N) {

int i,j;
double FSDX,FSDY;

for (i=O;i<M;i++)
for (j=O;j<N;j++) {

II RN o 1 2 3
CU[i+l] [j] = DO*(P[i+l] [j]+P[i] [j])*U[i+l] [j];
//C # 1 2 3 0
//C RN 4 5 2 6
CV[i] [j+l] = DO* (P[i] [j+l]+P [i] [j]) *V[i] [j+l];
//C # 5 2 6 4
//C RN 7 8 6 9
Z[i+l] [j+l] = (FSDX*(V[i+l] [j+l]-V[i][j+l])-FSDY*(U[i+l] [j+l]
I* c RN 3 2 1 10 5 */

-U[i+l] [j]))/(P[i] [j]+P[i+l] [j]+P[i+l] [j+l]+P[i] [j+l]);
II # s 6 9 3 2 1 10 5 1
II RN 11 2 3 3 12 12
H[i] [j] = P[i] [j]+DO*(U[i+l] [j]*U[i+l] [j]+U[i] [j]*U[i] [j]

II RN 9 9 13 13
+V[i] [j+l]*V[i] [j+l]+V[i] [j]*V[i] [j]);

II # 3 12 9 13 2 11

Figure 3: SWIM: calcl () in C code, in the comment lines the reference number and the
order of the references are specified.

that the interval between reuses is after one iteration of the outer loop. It computes the
reuse distance and, in the current implementation, it fixes the value of the interference
density at p = 1. It assumes there is a miss due to capacity (in general the distance is
not a constant and it cannot be compared to the cache size). For this particular case, it
is a tight estimation. In general it is an over estimation. The existence of interference
plays the main role, it discriminates when there is interference and when to count the
interferences. In Table 1, we report the results of the analysis.

5.3 Tiling and Matrix Multiply

We analyze two variations of the common ijk-matrix-multiply algorithm (e.g. [17]). In
Figure 4 the size of matrix A is not a power of two, but it is for B and C. The size
of A has been chosen so that if there is interference due the reference on A, it does
not happen very often. The index computation for A is parameterized (0 :::; m ::; 64
and 0 :::; n :::; 64). Accesses on matrix C interfere with the accesses on B. Due to the
upper bounds we choose for the parameters, A does not interfere with any other matrix.
Even if it could, the interference density would be small. We are able to distinguish

20

Loop 0
Line 8 16 32 64 128 256
Ect(L) 0.50 0.25 1.00 1.00 1.00 1.00

Loop 1 Ect(L) 0.50 0.25 0.12 1.00 1.00 1.00
Loop 2 Ect(L) 0.50 0.25 0.12 0.06 1.00 1.00
Loop 3 Ect(L) 0.50 0.25 0.12 0.06 0.03 1.00
Loop 4 Ect(L) 0.00 0.00 0.00 0.00 0.00 0.00
Loop 5 Ect(L) 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Self interference example. Loop four and five have no interference dependent
from the line size, the output is set to zero

two different contribution: at compile time, Ect(L), and at run time, Ert(L). Ert(L) = 0
for any Land Ect({8, 16, 32, 64, 128, 256}) = {2.00, 1.00, 2.00, 2.00, 2.00, 2.00}. Reference
on A does not interfere with C and B with 0 ~ n, m ~ 64. It would if we use lager
parameters values. We can see that the suggested line size is 16B. This example has
been introduced to show a case where the optimal line reduces interference and it is
smaller than the common 32B line. Let us consider a more interesting example, where
we analyze the tiled version of matrix multiplication Figure 5. We analyze only the
loop nest in the procedure ijk_matrix_multiply_4, and the result of the analysis is that
Ect(L) = 0 for any Land Ert({8, 16, 32, 64, 128, 256}) = {2.00, 2.00, 2.00, 2.00, 2.01, 2.03}.
Every matrix interferes with every matrix. The interference due to matrix A is negligible
since is an invariant for the inner loop. The interference between C and B can be at every
iteration point. There is no interference whenever Im - njmod C = L. This example is
very peculiar because the line size is not set once for loop nest, it is determined at run
time.

In the example in Figure 4 the analysis takes no more than two minutes. For the
example in Figure 5 it takes more than 8 hrs, on a Sun ultra 5 450MHz. The difference of
the execution times is expected. Most of the time is spent in the search for the existence
of the integer solution. This is our performance bottleneck and it will be subject of
further investigations/optimizations.

6 Summary and Future Work

We present a fast approach to statically determine the line size effect on the cache be­
havior of scientific applications. We use the static cache model introduced in [15] and
we present an approach to analyze parameterized loop bounds and memory references.
The approach is designed to investigate the trade-off between spatial reuse and inter­
ferences of loop nests on direct mapped cache. Experimental results demonstrate the

21

I* B[OJ [OJ 120000000
C[OJ [OJ

*I
#define MAX 4000
#define MAXCOL 2048

double A[MAXJ [MAX], B[MAXCOL] [MAXCOL], C[MAXCOLJ [MAXCOL];
void ijk_matrix_multiply(int n, int m) {

int i I j /,k;

for(i=O;i<n;i++)
for(k=O;k<n;k++)

for(j=O;j<n;j++)
C[iJ [j+3J += A[iJ [k+mJ * B[kJ [j];

Figure 4: Matrix Multiply. Two parameters: loop bounds and A offset. The parameters
n and m up to 64

accuracy and efficiency of our approach. We plan to expand our implementation to
consider multi-way associative caches and to improve the performance of the existence
test, by applying the gcd-test as proposed in [2].

7 Acknowledgment

The authors wish to thank Vincent Loechner, Somnath Ghosh, Dan Hirschberg and the
members of AMRM project. They helped on Ehrhart polynomials and the existence
test, cache miss equation determination, interference estimation and moral/technical
support, respectively. Financial support for this research was provided by DARPA/ITO
under contract DABT63-98-C-0045.

22

#define MAX 2048
double A[MAX] [MAX], B[MAX] [MAX], C[MAX] [MAX];

void ijk matrix multiply 4(int x,int y, int z, int m, int n, int p) {
int i,],k; - -

for(i=O;i<x;i++)
for(k=O;k<y;k++)

for(j=O;j<z;j++) {
C [i] [j+m] += A[i] [k+n] * B [k] [j+p];

void matrix multiply new tiling()
int ii,jj~kk; - -

for(kk=O;k<MAX/b;kk++)
for(ii=O;i<MAX/b;ii++)

for(jj=O;j<MAX/b;jj++)
ijk matrix multiply 4(min(b,MAX-ii*b), min(b,MAX-jj*b),

- - - min(b,MAX-kk*b), (ii*MAX+jj)*b,
(ii*MAX+kk)*b, (kk*MAX+jj));

Figure 5: Tiling of Matrix Multiply. 6 parameters: loop bounds and A,B and C offsets.
The first procedure describes the computation on a tile.

References

[1] E. Anderson, T. Van Vleet, L. Brown, J. Baer and A.R. Karlin, "On the Perfor­
mance Potential of Dynamic Cache Line Sizes". Technical Report UW-CSE-99-02-
01.

[2] U. Banerjee, Loop Transformations for Restructuring Compilers The Foundations.
Kluwer Academic Publishers, January 1993

[3] A. Barvinok, "A polynomial Time Algorithm for Counting Integral Points in Poly­
hedra when the Dimension is Fixed". Mathematics of Operations Research, vol. 19,
1994, N 4, pag, 769.

[4] A. Barvinok, "Computing the Ehrhart Polynomial of a Convex Lattice Polytope".
Discrete and Computational Geometry, vol. 12, 1994, pag. 35-48.

[5] A. Barvinok and J.E. Pommersheim, "An Algorithmic Theory of Lattice Points in
Polyhedra" .Manuscript.

[6] N. Bermudo, X. Vera, A. Gonzales and J. Llosa, "An Efficient Solver for Cache
Miss Equations", ISPASS 2000 c

23

[7] Ph. Clauss and B. Meister, "Automatic Memory Layout Transformation to Opti­
mize Spatial Locality in Parameterized Loop Nests", 4th Annual Workshop on In­
teraction between Compilers and Computer Architectures, INTERACT-4, Toulouse
(France), January 2000.

[8] Ph. Clauss, "Advances in parameterized linear diophantine equations for precise
program analysis", {!CPS RR 98-02}, September 1998.

[9] Ph .. Clauss, V. Loechner, "Parametric Analysis of Polyhedral Iteration Spaces",
research report !CPS 96-04, IEEE Int. Conj. on Application Specific Array Proces­
sors, ASAP'96, Chicago, Illinois, August 1996.

[10] Ph. Clauss, "Counting Solutions to Linear and Nonlinear Constraints through
Ehrhart polynomials: Applications to Analyze and Transform Scientific Programs",
research report !CPS 96-03, 10th ACM Int. Conj. on Supercomputing, ICS'96, May
1996.

[11] Ph. Clauss, "Handling Memory Cache Policy with Integer Points Countings", Euro­
Par'97, Passau, August 1997, LNCS 1300, p. 285-293.

[12] B. Cmelik and D. Keppel, "Shade: a fast instruction-set simulator for execution
profiling", Proceedings of the 1994 conference on Measurement and modeling of
computer systems, 1994, Pages 128 - 137

[13] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms. The MIT
Press.

[14] H. Du, P. D'Alberto and R. Gupta, "Memory Adaptation Techniques: an Unified
Overview across Benchmark Suites", Technical Report #01-41.

[15] S. Ghosh, M. Martonosi and S. Malik, "Cache Miss Equations: a Compiler Frame­
work for Analyzing and Tuning Memory Behavior", ACM Transactions on Pro­
gramming Languages and Systems, Vol. 21, No. 4, July 1999, Pages 703-746.

[16] K. Ghose and M.B. Kamble "Reducing power in superscalar processor caches us­
ing subbanking, multiple line buffers and bit-line segmentation", Proceedings 1999
international symposium on Low power electronics and design, 1999, Pages 70 - 75

[17] G.H. Golub, C.F. Van Loan Matrix Computations, Johns Hopkins Series in the
Mathematical Sciences.

[18] X. Ji, D. Nicolaescu, A. Veidembaum, A. Nicolau and R. Gupta, "Compiler­
Directed Cache Assist Adaptivity". JCS Techincal Report #00 17, May 2000.

24

[19] M.B. Kamble and K. Ghose "Analytical Energy Dissipation models for Low-power
Caches", Proceedings of the 1997 international symposium on Low power electronics
and design, 1997, Pages 143 - 148

[20] K.S. McKinley and 0. Temam, "A Quantitative Analysis of Loop Nest Locality".
APLOS VII 10/96 MA, USA.

[21] S.S. Muchnick, Advanced compiler design implementation, Morgan Kaufman.

[22] W. Pugh, "Counting Solutions to Presburger Formulas: How and Why", SIG PLAN
Programming language issues in software systems 94-6/94 Orlando, Florida, USA

[23] W. Pugh "A practical algorithm for exact array dependence analysis", Communi­
cations of the ACM Volume 35 , Issue 8 (August 1992)

[24] R.P. Stanley, Enumerative Combinatorics, Volume I, Cambrige Studies in Ad­
vanced Mathematics 49.

[25] W. Tang, A. Veidenbaum, A. Nicolau, R. Gupta, "Cache with Adaptive Fetch
Size", JCS Technical Report #00-16, April 2000.

[26] W. Tang, A. Veidenbaum, A. Nicolau, R. Gupta, "Adaptive Line Size Cache", JCS
Technical Report #99-56, Nov. 1999.

[27] . P. Van Vleet, E. Anderson, L. Brown, J. Baer and A.R. Karlin, "Pursuing the
Performance Potential of Dynamic Cache Line Sizes", Int. Conference on Computer
Design {ICDD '99) October 1999.

[28] A.V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau and X. Ji, "Adaptive Cache
Line Size to Application Behavior", In Proceedings of International Conference on
Supercomputing (JCS). June 1999, pp.145-154.

[29] X. Vera, J. Llosa, A. Gonzales and N. Bermuda, "A Fast and Accurate Approach
to Analyze Cache Memory Behavior", EURO PAR 2000.

[30] D .K. Wilde, "A library for Doing Polyhedral Operations", Publication interne N
785, 1993

[31 J M.E. Wolf and M.S. Lam, "A data Locality Optimizing algorithm", Proc. of the
ACM SIGPLAN'91 Conference on programming languages design and implemen­
tation, Toronto, Ontario, Canada, June 26-28, 1991, pages 30-44.

25

#define CACHE_SIZE 16384

int A[CACHE_SIZE /16] [(CACHE_SIZE+l6)/4];
int B[CACHE_SIZE I 32] [(CACHE_SIZE+32)/4];
int C[CACHE_SIZE I 64] [(CACHE_SIZE+64)/4];
int D[CACHE_SIZE I 128] [(CACHE_SIZE+l28)/4];
int E[CACHE_SIZE I 256] [(CACHE_SIZE+256)/4];
int F[CACHE_SIZE I 512] [(CACHE_SIZE+512)/4];

int
main ()
{

int i,j,k,l;
int step;
1 = O;

for (j=O;j<4;j++) {

}

for (k = O; k < CACHE_SIZE I 16 k++)
A[k] [j]++;

for (j=O;j<8;j++) {

}

for (k = O; k < CACHE_SIZE I 32; k++)
B[k] [j]++;

for (j=O;j<16;j++) {

}

for (k = O; k < CACHE_SIZE I 64; k++)
C[k] [j]++;

for (j=O;j<32;j++) {

}

for (k = O; k < CACHE_SIZE I 128; k++)
D[k] [j]++;

for (j=O;j<64;j++) {

}

for (k = O; k < CACHE_SIZE I 256; k++)
E[k][j]++;

for (j=O;j<l28;j++) {

}

for (k = O; k < CACHE_SIZE I 512; k++)
F[k] [j]++;

return 0;

Figure 6: Self Interference and analysis results

26

